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Universitat de Barcelona. Diagonal, 647, E-08028 Barcelona, Catalonia, Spain
2Departamento de F́ısica de la Materia Condensada, Universidad de Sevilla, P.O. Box

1065, E-41080 Sevilla, Spain.

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge

CB2 3EQ, United Kingdom.

Abstract. The existence of temporal correlations during the intermittent dynamics

of a thermally driven structural phase transition is studied in a Cu-Zn-Al alloy. The

sequence of avalanches is observed by means of two techniques: acoustic emission and

high sensitivity calorimetry. Both methods reveal the existence of event clustering in

a way that is equivalent to the Omori correlations between aftershocks in earth quakes

as is commonly used in seismology.

PACS numbers: 81.30.Kf, 64.60.av, 89.75.Da, 91.30.Dk

Submitted to: Journal of Physics: Condensed Matter

This is the Author's accepted manuscript (AM) version.
The Version of Record is available at Journal of Physics Condensed Matter 26 125401 (2014)
under doi: 10.1088/0953-8984/26/12/125401
copyright: IOP Publishing Ltd.



Avalanche correlations in the martensitic transition 2

1. Introduction

In recent years there has been an increasing interest in the study of systems that

respond intermittently in the form of crackling noise when driven by an external field [1].

Examples include a variety of physical phenomena among which magnetization processes

[2], plastic deformation in solids [3, 4], materials failure [5, 6] or Earth seismicity

are worth mentioning [1]. Crackling noise consists of a discrete sequence of events

which usually occur in the form of avalanches. Often these avalanches show absence

of characteristic scales which reveals the existence of a certain kind of criticality which

is usually displayed by the power law distribution of the energies or amplitudes of the

avalanches. Except for earthquakes (that have strong implications for our wellbeing),

little attention is paid to the study of the time scales over which avalanches occur.

Probably this is due to the fact that the existence of time correlations between avalanches

is not a necessary condition for avalanche criticality to occur. In fact, it is known that

a temporal sequence of independent events may have energies power law distributed as

has been shown for the zero-temperature Random Field Ising model with metastable

dynamics [7, 8]. In any case, the existence of correlations provides a higher degree of

complexity to the process and its analysis is expected to supply relevant information

for a better understanding crackling noise phenomena. This is indeed the case of Earth

seismicity where the study of waiting times and time correlations between earthquakes

has been a subject of interest from the beginning of this research.

Martensitic transitions are another example of process that have been suggested

to display avalanche criticality [9]. In these transitions avalanches are usually detected

from the measurement of the acoustic emission (AE) which originates from displacement

discontinuities across propagating interfaces [10]. This sound, typically recorded in the

ultrasonic frequency range, carries the whole temporal and spacial information which

characterizes the evolution of the internal strain field during the transformation process.

Therefore, upon cooling (forward transition) or heating (reverse transition), martensitic

systems evolve by relaxing from one metastable state to another within an energy

landscape that characterizes the complex multiphase phase coexisting region [11]. It is

worth pointing out that not only the statistical distribution of the energy of avalanches

can be obtained from AE measurements but also the waiting times between avalanches.

Beside AE, other more macroscopic measurement techniques such as high sensitivity

calorimetry, [12, 13] have been used in order to show that martensitic transitions do not

proceed smoothly but instead occur discontinuously through an avalanche process. The

interest of calorimetry is that despite its limited time response compared with the AE

technique, it enables to characterize avalanches at a more macroscopic scale at which

the heat conduction problem associated with the dissipation/absortion of latent heat

during the relaxation between metastable states can be taken into account. That is,

with this technique an absolute measurement of the energy released by the discontinuous

changes can be undertaken as well as a quantification of the ratio of this released energy

over the total latent heat. Acoustic emission, on the contrary, only allows for a relative
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measurement of energies of the observed discontinuities, but it is able to resolve many

more avalanches on a much finer time scales.

The comparison of the data obtained by both calorimetric and AE techniques [13],

reinforces the suggestion of a critical distribution of avalanches in martensitic transitions:

the energies of the avalanche events {Ek}, averaged over space and time, are distributed

according to a power law p(E) ∼ E−ϵ with ϵ ≃ 2.15 which implies that these systems

evolve without characteristic energy scales. The phenomenon thus has many similarities

with other complex dynamic critical systems. For instance, by comparing the behavior

of martensites with results from seismology, such a power-law distribution of energies

can be understood as the equivalent of the Gutenberg-Richter law [15] for the magnitude

distribution of earthquakes that can be obtained when seismological data is accumulated

from different time periods and different regions on the Earth crust. The comparison can

also be extended to the studies of other first-order phase transitions: the distribution of

amplitudes of the Barkhausen pulses in ferromagnets driven by an external field show

also a lack of characteristic scales and different universality classes have been identified

[2].

In this work we focus on the analysis of the correlations between the times of

occurrence {tk} of the avalanches during a martensitic transformation. Many tools

have been developed within the seismology community in order to analyse correlations

between earthquakes. Here, inspired by these techniques, we will show that both

measurement techniques, AE and calorimetry, reveal a non-Poissonian character of

the transformation process. This implies that there exist small temporal correlations

between avalanches. Keeping the comparison with seismology, we will propose a law

similar to the so called Omori-law for aftershocks after a main earthquake [16]. A

preliminary work [17], based on calorimetric measurements, already suggested the

existence of corrections to Poisson behavior in the distribution of waiting times between

avalanches, although the data were not conclusive. Here, by using simultaneously AE

and calorimetric data we will argue that the correlations do exist. We shall also mention

that the analysis presented here differs from and complements those based on Fourier

Transformation that have been performed, for instance, for the case of Barkhausen noise

in ferromagnets [2].

In section 2 we will present the details of the sample and experimental setup. In

section 3 we will present results related to the avalanche rate and avalanche energies.

In section 4, the existence of correlations will be evidenced by three different numerical

analysis techniques: (A) a direct evaluation of the aftershock activity rate after big

events (with energy above a selected threshold), (B) the use of the Bi-test [18] showing

the failure of the local Poisson hypothesis and (C) the scaling analysis [19] of the

distribution of waiting times δk = tk+1 − tk between consecutive events. Finally, in

section 5 we will summarize our results and conclude.
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2. Experimental

The same sample has been used for the calorimetric and AE experiments. It is a

polycrystal with composition Cu67.64Zn16.71Al15.65 and a typical grain-size diameter of

1.36 mm. It has a parallelepipedic shape with a height of 3.89mm and an octagonal

base of 0.94 cm2. The mass of the sample is 2.6503 g. More details about sample

characterization, preparation and heat treatments can be found in Ref. [13]. It displays a

martensitic transition from a cubic Fm3m (L21) high temperature phase to a monoclinic

I2/m (18R) structure at low temperatures.

The calorimeter [20] consists of two fluxmeters —which are electrically placed

in series while thermally in parallel— that press the sample. The fluxmeters are

also thermally coupled to a large calorimetric block. The system is cooled down

to ensure that the sample is in the low symmetry phase and then heated at a rate

Rcal = 0.011mK s−1 (approximately one kelvin per day). During the heating process,

the electromotive force provided by the fluxmeters —which is proportional to the heat

exchanged by the sample— was recorded by a nanovoltmeter Keithley K2182 at a

sampling rate of 12.5Hz. Hereafter we will refer to these values as calorimetric data.

The temperature of the calorimetric block was recorded by using a platinum resistance

thermometer. Linearly interpolated temperature values were later assigned to every

calorimetric data. High frequency noise in the calorimetric data was filtered out, after

the experiment, by a fifth-order all-pole Butterworth filter with a normalized cutoff

frequency equal to 8× 10−2.

If calorimetric data are plotted versus time or temperature, a series of bursts can be

observed during the martensitic transformation. A typical example is shown in Fig. 1.

Note that the burst occur above a continuous background that changes very smoothly

with temperature. Both the burst and the background change sign when reversing the

thermal driving. It has been suggested that the smooth and the burst response, also

classified as jerks, can be associated to two different transformation mechanism [17].

Here we focus only on the analysis of the discontinuous burst that can be treated as

avalanche phenomena. We restrict the analysis to a heating ramp.

By finding the local maxima and minima, we can evaluate all the positive bursts

∆Vk occurring at times tk (or temperatures Tk). Quite generally, the time distances

between consecutive positive bursts is much longer than their rising times. Thus we

identify the bursts as signatures of avalanches and the slow decays as consequences

of the response of the calorimeter and the smooth background curve. Assuming an

exponential behavior of the instrumental transfer function of the calorimeter, the sharp

bursts ∆Vk measured in voltage can be translated to avalanche energies E through

the relation Ek = ∆Vkτ/G where τ = 100 s is the time constant of the calorimeter and

G = 130mVW−1 is the gain. The sequence of avalanche energies Ek at temperatures Tk

corresponding to the signal in the upper panel are shown in Fig. 1(b). This corresponds

to a small set of the full record of calorimetric avalanches studied here that consists of

1655 signals.
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The AE setup consists of a PCI-2 acquisition system from Mistras Group (France),

working at 2MHz. The voltage signal from a piezoelectric transducer (R15LT) attached

to the upper surface of the sample is amplified (60 dB), and filtered (100 kHz− 2MHz).

Individual AE events are defined when the voltage crosses a threshold at 24 dB at

time tk. The end of the event (tk + ∆k) is determined when the voltage crosses the

threshold in the downward direction and remains below threshold for more than 100µs.

The integral of the square voltage during the duration ∆k, normalized by a reference

resistance provides a direct estimation of the energy Ek of the signal detected by the

transducer. Signals have been recorded during a heating ramp between 220K to 270K

at a rate RAE = 1.67mK s−1. Note that the calorimetric ramp has been chosen to be

much slower that the acoustic emission one in order to partially compensate for the slow

response of the calorimeter.

Fig. 1(c) shows an example of the energies Ek at times tk of the avalanches recorded

by the AE setup. The full run analyzed in this work consists of 85, 460 signals. Note also

that the total number of AE signals is much larger than the number of signals extracted

from calorimetric data. Moreover the energies of the signals are much bigger for the

calorimetric data than for the AE data. It is difficult to compare both energy magnitudes

since it is not clear what fraction of the energy of an avalanche is released as acoustic

waves and what fraction is released into heat. Moreover, only a tiny fraction of the

radiated acoustic energy is recorded by the transducer. We speculate that most probably,

only extremely big events or overlaps of many events are recorded by the calorimeter. In

the next section we will show that very similar statistical results have nevertheless been

obtained by both techniques. This is a robust indication of the existence of criticality:

results do not depend on the observation scale.

3. Avalanche rate and energy distribution

The avalanche process is not homogeneous during the phase transition. Fig. 2 shows a

comparison of the avalanche activity λcal and λAE (expressed as the number of recorded

signals per kelvin) as a function of temperature, obtained by calorimetry and AE

respectively. Note that the scales for both experimental techniques (left and right) differ

by a factor one hundred. Note also that the variations of the rate during the transition

show a profile that can be fitted by the superposition of two Gaussian functions and that

the experimentally measured values of λcal and λAE span several orders of magnitude.

The two curves show a similar behaviour, suggesting a reasonable proportionality. The

fact that the second peak (at high temperatures), detected by AE is much smaller than

the second peak detected by calorimetry, can be atributed to the high attenuation of

the AE signals when the sample is partially transformed.

From the analysis of the full sequences we have also computed the distribution of

energies p(E) (Gutenberg-Richter-like laws). Fig. 3 shows the normalized histograms

corresponding to calorimetry and AE in log-log scale. The straight line corresponds to

the exponent ϵ = 2.15 from Ref. [13]. This value is consistent with the present data,
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Figure 1. (a) Example of voltage signal from the calorimeter during a heating

ramp (b) Corresponding sequence of calorimetric avalanches. (c) Acoustic emission

avalanches. The correlation with the above sequence cannot be expected since the AE

and calorimetric experiments are not performed simultaneously.

although other calorimetric experiments have found and slightly smaller exponent [17].

This exponent is not strongly universal since it is known to depend on the symmetry of

the low temperature martensitic phase, the driving rate [21] and the driving mechanism
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Figure 2. Activity (number of avalanches above threshold per kelvin) during

the heating ramp corresponding to calorimetric avalanches (right scale) and to AE

avalanches (left scale). The bins are 0.423K for AE and 0.436K for calorimetric data.

The dashed lines show fits obtained by the sum of two Gaussian functions.

[10]. Note that there are ten orders of magnitude separating the largest AE signals from

the smaller calorimetric signals. The apparent vertical offset of the two histograms is due

to the fact that both are normalized independently. Both sets of energy values are hardly

comparable because one corresponds to the energy recorded from the ultrasonic waves

reaching the AE transducer and the other corresponds to the latent heat dissipated by

the avalanches.

4. Time correlations

Beyond the non-homogeneity of the avalanche activity, which is a characteristic feature

of the kinetics of martensitic phase transitions, it has been suggested that after the

nucleation of a domain in the cubic phase and during its growth, local heterogeneities

in the stress tensor can cause some kind of interdependence between closely recorded

signals [22, 23]. A similar phenomenon, reported more than one century ago by Omori

[16], is observed in seismology: the occurrence of big earthquakes, called mainshocks

(MS), at time tMS can trigger a sequence of aftershocks (AS) in a neighboring region

with an activity rate rAS that decays in time as a power-law

rAS(t− tMS) =
K

(c− t− tMS)p
, (1)

where p is an exponent close to 1 for the case of earthquakes and c andK are independent

of time. Moreover, according to the so called Productivity Law [24] of aftershocks, the

stronger the mainshock the more aftershocks it will trigger. Thus the numerator K is

expected to depend on the the energy of the MS as K ∝ E
2α/3
MS with the productivity

exponent α ≃ 0.8 (see Ref. [24]). This behavior has been reported in other intermittent

processes [25] as well as in numerical simulations [26].
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Figure 3. Energy distribution of AE and calorimetric avalanches during the full

heating process. Bins are logarithmic and increase by a factor 3/2. Axes for AE

(calorimetry) are left and bottom (right and top).

4.1. Aftershock sequences

The analysis of aftershock-like sequences requires a precise definition of an AS within

the event series. For our calorimetric and AE data series, we adopt the same definition

used within the seismology context, taking into account that we do not have access to

the information of the spatial location of the events. Thus, we will consider our sample

as a unique spatial region for the analysis.

Every event occurring at time tMS with energy EMS is considered to be a mainshock.

We study the activity rate rAS (number of events per time interval) as a function of the

time after the MS, ∆t = t − tMS, until an event with energy E > EMS is found. This

indicates the end of the aftershock sequence. Averages of the AS rates ⟨rAS(∆t)⟩ are

performed by considering all the sequences corresponding to MS within the windows

Ei−1 < EMS < Ei. One then divides the time axis in (logarithmic) bins and counts

the number of AS in every bin, from all sequences, and normalizes it by the number of

sequences reaching that bin.

The results of this analysis are shown in Fig. 4. The legend indicates the different

windows (Ei−1, Ei) for EMS. The time ∆t = t − tMS has been transformed into a

temperature increase by using ∆T = R∆t where R is the heating rate (RAE or Rcal).

The minimum ∆T values corresponding to the aftershock sequences obtained by AE

and calorimetry are separated by one order of magnitude. This is a consequence of the

difference in statistics between both measurement techniques. Both AE and calorimetric

data show a slight but clear decay in the production of aftershocks with an exponent
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Figure 4. Comparison between the production of aftershocks in both Acoustic

Emission and Calorimetry data as a function of the temperature variation after a

mainshock ∆T . The straight line shows the power law behavior corresponding to an

exponent p = 0.15. Note that if the avalanches were fully uncorrelated these plots will

be flat.

p ∼ 0.15 and a negligible dependence on EMS. This may suggest a very low productivity

exponent α. The immediate conclusion deduced from this result is the existence of

weak correlations between avalanches. Thus, a local Poisson process is expected to be

unsuitable to depict the avalanche process during the MT.

4.2. Bi-test

In order to get a more robust proof of the previous results we endeavor to show that

the studied avalanche processes are non-Poissonian, even when one considers small time

windows in order to correct for the non-stationary behavior. We follow Bi, Börner and

Chu [18] who introduced a method to refute the null-hypothesis of local Poissonity in a

point process.

Consider the sequence of events at {tk} depicting a point process. The Bi-

test is based on the joint evaluation of the waiting time to the closest event δtk =

min{tk − tk−1, tk+1 − tk} and the consecutive waiting time δτk in the same temporal

direction, i.e.: δτk = tk−1 − tk−2 if δtk = tk − tk−1 or δτk = tk+2 − tk+1 if δtk = tk+1 − tk.

From the data pairs {δtk, δτk} we can build the statistic variable

Hk =
δtk

δtk +
1
2
δτk

, (2)

that takes values between 0 and 1.
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If data are indeed drawn from a random process which is locally Poissonian, the

values δtk and δτk will be statistically independent. The interval δtk will be exponentially

distributed according to the probability density P (δt) = 2λk exp (−2λkδtk) and the

second one δτk will be distributed according to P (δτ) = λk exp (−λkδτk) where λk

would be the local Poissonian rate at time tk. Consequently, doing simple algebra [18],

it can be shown that the variable Hk would be uniformly distributed (p(H) = 1 for

0 < H < 1), with ⟨H⟩ = 1/2, and independent of the local Poisson rate λk.

Deviations from the uniform distribution indicate the existence of clustering effects.

If p(H) shows an excess on low and high values ofH, it means that there exist big silences

between groups of clustered signals. On the other hand an excess only over values close

to 2/3 denotes some ordering where δτ is systematically smaller than 2δt (see Ref. [27]).

To understand this last statement, note that if the events are drawn from an almost

regularly spaced pattern we will get δtk ≃ δτk and thus the variable H will distribute

sharply around ⟨H⟩ = 2/3.
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Figure 5. Kolmogorov-Smirnov test of the uniformity of the variable H obtained from

the Bi-Test evaluated from the signals for AE (a) and calorimetry (b) that have energies

above a certain threshold as indicated by the legend. The labels of the horizontal

colored regions correspond to the p values for rejection.

Using the Bi-test, discrepancies to Poisson behavior can be quantitatively

evaluated by using a Kolmogorov-Smirnov test comparing the experimental Cumulative

Distribution Function Fn(H) to the expected Uniform cumulative distribution function

(F (H) = H) when the process is locally Poissonian. Fig. 5 shows the difference between

both cumulative distributions normalized by the corresponding amount of data n in each

sequence. The legend indicates the different energy thresholds used for the analysis.
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The resulting sinusoidal shaped curves, typical in other phenomena exhibiting

Omori-like production of avalanches, denote an excess of statistics in the region of

high and low values of H (note the two regions with positive slope of the difference

Fn(H) − H). The probabilities for a non-homogeneous Poisson process to exhibit

such distortions from the flat behavior (the so called P-values) are very small (PAE =

2.9× 10−8 and Pcal = 8.2× 10−7). Thus, we conclude in favor of the existence of some

Omori-like correlations that destroy the independence of the avalanche events.

By selecting signals above increasing thresholds of energy and repeating the Bi-test

analysis (see the legend in Fig. 5) we can check that, the more sparse the selected signals

are, the easier is to recover a Poissonian behavior. For instance, for the AE data, using

a threshold of E > 102.4 aJ we get differences Fn(H)−H that will clearly not allow to

refute the Poisson hypothesis since they enter in the 50% confidence level region.

4.3. Waiting Times

A third test to find evidence for the existence of correlations in a point process is the

analysis of the distribution of times between consecutive events, also called waiting times

δk = tk+1 − tk. The study of waiting times in earthquakes over different spatial regions,

with different sizes, different energy thresholds or different periods of time [19, 28, 29]

revealed the collapse of the waiting time distribution P (δ) into a scaling function, when

the distribution of waiting times is normalized by its mean

P (δ) =
1

⟨δ⟩Φ(δ/⟨δ⟩), (3)

where the mean ⟨δ⟩ depends on the studied region, on the studied period of time, on

the energy threshold used for the analysis, etc., but the function Φ does not. Thus Φ(x)

is referred as the Universal Scaling law and it has been checked that it describes the

scaling of earthquake data and also, more recently, data obtained from the compression

of porous materials [25]. Its shape displays power-law tails for the extreme values of x:

Φ(x) =

{
x−(1−ν) x ≪ 1,

x−(2+ξ) x ≫ 1.
(4)

Fig. 6 shows the collapse of AE data and calorimetric data by selecting different

energy thresholds. Note that this analysis differs from that done previously, since there

are no distinctions between mainshocks, aftershocks or foreshocks. The collapse of the

curves corresponding to the two experimental techniques and for different thresholds,

into a single Φ(x) curve is very good.

For a homogeneous Poisson process with a constant activity rate λ one would expect

an exponential behavior Φ(x) = e−x (dashed line). The effect of the non-homogeneous

character of the process is to transform the exponential decay for large x to a power

law decay Φ(x) ∼ x−(2+ξ). This decay has been explained in other contexts [25] as a

consequence of how the rate λ(t) departs or reaches 0 at the beginning and at end of



Avalanche correlations in the martensitic transition 12

P
(d

) 
<
d>

d/<d>

-(1-n) = -0.9

-(2+x) = -2.2

NHP

AE E>0.1 aJ

E>12.8 aJ

E>25.6 aJ

E>51.2 aJ

E>102.4 aJ

HP

cal E>0.01 mJ

E>0.16 mJ

E>0.32 mJ

E>0.64 mJ
10

-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
-4

10
-2

10
0

10
2

10
4

Figure 6. Collapse of the distribution of waiting times, according to the Unified

Scaling Law Hypothesis. The different symbols indicate the different sets of data

corresponding to AE (hollow symbols) and calorimetry (solid symbols) and different

energy thresholds. The dashed line indicates the behavior expected for a homogeneous

Poisson process. The thick gray continuous line indicates the expected behavior for

a Non-homogeneous Poisson process with a rate λ varying according to a Gaussian

function. The straight thick lines indicates the limiting exponents found for earthquake

data.

the transition. We have simulated such a non-homogeneous Poisson process considering

a Gaussian evolution of the rate λ(t). We have obtained the behavior indicated by

the thick gray continuous line. Simulations using a double Gaussian dependence like

those fittted in Fig.2 are indistinghuishable of the thick gray line. The NHP models

reproduce the observed decay of our collapsed data in the large x region with an exponent

2+ξ ∼ 2.2. The resulting value of ξ does not differ substantially from the value reported

for earthquakes and compression of porous materials, 2 + ξ = 2.45 (see Refs. [[29, 25]]).

In the low δ region, the power-law behavior of the data Φ(x) ∼ x−(1−ν) cannot be

explained by the non-homogeneous character of the process. A possible explanation,

(as has also been proposed for the case of earthquakes) is the existence of Omori-like

correlations. We obtain an exponent 1 − ν, also similar to the one obtained from
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earthquakes and compression of porous materials 1− ν = 0.9.

Finally, we want to note that even the data obtained with high energy thresholds

that was compatible with a Poisson behavior when applying the Bi-test (see. Fig. 5),

is well collapsed in the scaling presented in Fig. 6. The explanation for this apparent

paradox is simply that for such small sets of data the statistics is not high enough to

reveal the power-law behavior at the small x region. Strictly speaking with this third

analysis technique we can see that the calorimetric data can hardly reveal the existence

of the power-law behavior for low values of x.

5. Conclusions

In conclusion, we have presented clear evidences of the existence of temporal correlations

within the avalanches during structural phase transitions. The results discard that

the kinetics of martensitic transitions follows a Poisson process, i.e. a sequence of

independent events.

Correlations have been evidenced from both Acoustic Emission and calorimetric

measurements. For this last technique, since the time resolution is lower, the simple

analysis of waiting times between avalanches is not enough to reveal the existence

correlations. One needs the Bi-test that incorporates information of two consecutive

waiting intervals to show that the process is indeed not Poissonian.

The measured correlations are similar to the Omori-like correlations in seismology,

although the physical mechanism behind them can be of very different origin. We can

speculate with three possible mechanisms: the most naive explanation will be that

long-range elastic forces trigger the nucleation of new domains after big transformation

domains occur. But other mechanisms could also be proposed. For instance we could

have a coexistence of more than one physical mechanisms (propagation of needle domains

and movement of wall kinks) giving rise to AE and calorimetric signals, as has recently

been suggested from numerical simulations [30, 31]. A third mechanism for correlations

(specialy at short waiting times) could be related to the heat propagation through the

sample. This mechanism has also been discussed within seismology associated to the

existence of foreshocks [32].
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[14] Ll. Carrillo, Ll. Mañosa, J. Ort́ın, A. Planes, and E.Vives Phys. Rev. Lett. 81, 1889 (1998).

[15] T. Utsu, Pure Appl Geophys. 155, 509 (1999).

[16] T. Utsu, Y. Ogata and R.S. Matsu’ura, J.Phy.Earth 43, 1 (1995).

[17] F.J. Romero, J. Manchado, J.M. Martin-Olalla, M.C. Gallardo and E.K.H. Salje, Appl. Phys. Lett.

99, 011906 (2011).

[18] H. Bi, G. Börner and Y. Chu, Astron.Astrophys. 218, 19 (1989).

[19] P. Bak, K. Christensen, L. Danon and T. Scanlon, Phys. Rev. Lett. 88 , 178501 (2002).
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[25] J. Baró, A. Corral, X. Illa, A. Planes, E.K.H. Salje, W. Schranz, D.E. Soto-Parra and E. Vives,

Phys. Rev. Lett.110, 088702 (2013).

[26] A. Helmstetter, S. Hergarten and D. Sornette, Phys. Rev. E 70, 046120 (2004).

[27] F. Lepreti, V. Carbone and P. Veltri, The Astronomical Journal 555, L133 (2001).

[28] A. Corral, Phys. Rev. Lett. 92, 108501 (2004).

[29] A. Corral, Physica(Amsterdam) 340A, 590 (2004).

[30] E.K.H. Salje, X. Ding, Z. Zhao, T. Lookman and A. Saxena, Phys. Rev. B 83, 104109 (2011).

[31] Z. Zhao, X. Ding, T. Lookman, J. Sun and E. K. H. Salje, Adv. Mat. 25 , 3244-8 (2013).

[32] Y.Ben-Zion, Review of Geophysics 46, RG4006 (2008).


