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Abstract

In this paper we deal with an eigenvalue problem in an interface elliptic equation. We characterize the set 
of principal eigenvalues as a level set of a concave and regular function. As application, we study a problem 
arising in population dynamics. In these problems each species lives in a subdomain, and they interact in a 
common border, which acts as a geographical barrier; but unlike previous results, we consider the case of 
different growth rates in each subdomain.
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Fig. 1. A possible configuration of the domain � = �1 ∪ �2 ∪ �.

1. Introduction

Recently, the following semilinear interface problems have been analyzed

⎧⎨
⎩

−�ui = λfi(x,ui) in �i , i = 1,2,

∂νui = γi(u2 − u1) on �,

∂νu2 = 0 on 	,
(1)

where � is a bounded domain of IRN with

� = �1 ∪ �2 ∪ �,

with �i subdomains, with internal interface � = ∂�1, and 	 = ∂�2 \�, νi is the outward normal 
to �i , and we call ν := ν1 = −ν2 (see Fig. 1 where we have illustrated an example of �).

In (1), ui represents the density of a species inhabiting in �i , and they interact on � under 
the so called Kedem-Katchalsky conditions (see [7]), and it means that the flux is proportional 
to the jump of the function through � (see [3], [4], [5], [6] and references therein). Here, fi :
�i × IR �→ IR are regular functions, γi > 0 stands for the proportional coefficient of the jump and 
1/λ, λ > 0, is a real parameter representing the diffusion coefficient of the species, the same in 
both subdomains. It seems natural to consider two different diffusion coefficients, one for each 
species, that is, a problem as

⎧⎨
⎩

−�ui = λifi(x,ui) in �i,

∂νui = γi(u2 − u1) on �,

∂νu2 = 0 on 	,
(2)

with λi ∈ IR. Although mathematically it makes sense to consider λi as a real parameter, its usual 
meaning is that 1/λi is the diffusion coefficient in �i , λi being a positive parameter in such a 
case.

As a first step towards the study of (1), it is necessary to analyze the eigenvalue problem

⎧⎪⎪⎨
⎪⎪⎩

−�ui = λmi(x)ui in �i,

ui > 0 in �i,

∂νui = γi(u2 − u1) on �,

∂ u = 0 on 	,

(3)
ν 2
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where mi ∈ L∞(�i), mi �≡ 0 in �i . (3) has been analyzed in [9] in the self-adjoint case γ1 = γ2. 
For that, the authors used variational arguments to prove the existence of principal eigenvalue 
as well as its main properties. The general case γ1 �= γ2 was studied in [8] using a different 
argument. In [8], to study (3), the authors first analyze the problem

⎧⎨
⎩

−�ui + ci(x)ui = λui in �i,

∂νui = γi(u2 − u1) on �,

∂νu2 = 0 on 	,
(4)

where ci ∈ L∞(�i). They prove the existence of a unique principal eigenvalue of (4), denoted 
by 
1(c1, c2). Hence, the study of (3) is equivalent to find the zeros of the map

λ ∈ IR �→ f (λ) := 
1(−λm1,−λm2).

The main goal of this paper is to study the following generalized eigenvalue problem:

⎧⎪⎪⎨
⎪⎪⎩

−�ui = λimi(x)ui in �i,

ui > 0 in �i,

∂νui = γi(u2 − u1) on �,

∂νu2 = 0 on 	.

(5)

Motivated by [8], to study (5) we analyze the zeros of the map

(λ1, λ2) ∈ IR2 �→ F(λ1, λ2) := 
1(−λ1m1,−λ2m2),

that is, we analyze the set

C := {(λ1, λ2) ∈ IR2 : F(λ1, λ2) = 0}.
We show that F is a regular function, concave and F(0, 0) = 0. Hence, for instance, fixed λ1, 
there exist at most two values of λ2 such that F(λ1, λ2) = 0. Moreover, due to the concavity of 
F , it is well known that the set {(λ1, λ2) ∈ IR2 : F(λ1, λ2) ≥ 0} is convex. In any case, the study 
of the set C depends strongly on the signs of mi . It is obvious that the case where the functions 
mi have a definite sign, for example they are positive, is a simpler case than the case where one 
or both of them change sign.

We summarize the main results.
Our first result deals with the case both mi non-negative and non-trivial functions (see Fig. 2).

Theorem 1.1. Assume that mi � 0 in �i , i = 1, 2 and define

M0
i := �i \ {x ∈ �i : mi(x) > 0}

and assume that ∂M0
i is regular and

M0
i ⊆ �i. (6)

Then, there exist positive values 
+, i = 1, 2 such that:
i
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Fig. 2. Case m1 and m2 both non-negative and non-trivial verifying (6): we have represented in the plane λ1 − λ2 the 
curve F(λ1, λ2) = 0, as well as, the regions where F is negative and positive. In this case, C = {(λ1, λ2) : λ2 = H(λ1)}.

1. Assume that λ1 ≥ 
+
1 . Then, F(λ1, λ2) < 0 for all λ2 ∈ IR.

2. Assume that λ1 < 
+
1 . There exists a unique λ2 := H(λ1) such that F(λ1, λ2) = 0 and

F(λ1, λ2) < 0 for λ2 > H(λ1), F (λ1, λ2) > 0 for λ2 < H(λ1).

Moreover, the map λ1 �→ H(λ1) is continuous, decreasing, H(0) = 0 and

lim
λ1→−∞H(λ1) = 
+

2 , lim
λ1→
+

1

H(λ1) = −∞.

The values 
+
1 and 
+

2 will be defined in Section 2.
In the next result we analyze the case m1 non-negative and non-trivial and m2 changing sign 

(see Fig. 3).

Theorem 1.2. Assume that m1 � 0 in �1 and verifies (6) and m2 changes sign in �2. There 
exists λmax

1 ≥ 0 such that:

1. If λ1 > λmax
1 , then F(λ1, λ2) < 0 for all λ2 ∈ IR.

2. If λ1 = λmax
1 , then there exists a unique λ2 such that F(λmax

1 , λ2) = 0 and F(λmax
1 , λ2) < 0

for all λ2 ∈ IR \ {λ2}.
3. For all λ1 < λmax

1 , there exist λ−
2 = H−(λ1) < λ+

2 = H+(λ1) such that

F(λ1, λ
−
2 ) = F(λ1, λ

+
2 ) = 0,

and

F(λ1, λ2)

{
< 0 for λ2 > H+(λ1) or λ2 < H−(λ1),

> 0 for λ ∈ (H−(λ ),H+(λ )).
2 1 1

497



B.B.V. Maia, M. Molina-Becerra, C. Morales-Rodrigo et al. Journal of Differential Equations 390 (2024) 494–524
Fig. 3. Case m1 � 0 and verifying (6), m2 changing sign and
∫
�2

m2 < 0.

Fig. 4. Case m1 � 0 and verifying (6), m2 changing sign and
∫
�2

m2 > 0 (left) and
∫
�2

m2 = 0 (right).

Moreover, the map λ1 �→ H+(λ1) (resp. H−(λ1)) is continuous, decreasing (resp. increas-
ing) and

lim
λ1→−∞H±(λ1) = 
±

2 and lim
λ1→λmax

1

H±(λ1) = λ2.

4. Finally,
(a) If 

∫
�2

m2 < 0, then λmax
1 > 0 and λ2 > 0.

(b) If 
∫
�2

m2 > 0, then λmax
1 > 0 and λ2 < 0.

(c) If 
∫
�2

m2 = 0, then λmax
1 = λ2 = 0.

Remark 1.3.

1. In Fig. 4 we have represented the cases m1 � 0 in �1 verifying (6), m2 changes sign in �2, ∫
m2 > 0 and 

∫
m2 = 0.
�2 �2
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Fig. 5. Cases mi changing sign.
∫
�1

m1 < 0 and:
∫
�2

m2 < 0 (left),
∫
�2

m2 > 0 (center) and
∫
�2

m2 = 0 (right).

2. Of course, by symmetry, a similar result holds for m1 changing sign in �1 and m2 non-
negative, non-trivial and verifying (6).

Finally, we deal with the case of both mi changing sing.

Theorem 1.4. Assume that mi changes sign in �i . Then, there exists a closed curve C ⊂ IR2, 
such that F(λ1, λ2) = 0 if and only if (λ1, λ2) ∈ C. Moreover,

F(λ1, λ2) > 0 if and only if (λ1, λ2) ∈ int (C),

and

F(λ1, λ2) < 0 if and only if (λ1, λ2) ∈ Ext(C).

Remark 1.5. The form and structure of C depends strongly on the sign of the integrals of mi . In 
all the cases, (0, 0) ∈ C.

In the following result, we complete the above Theorem, see Fig. 5.

Theorem 1.6. Assume that mi changes sign for i = 1, 2. There exist λmin
1 ≤ 0 ≤ λmax

1 such that

1. If λ1 < λmin
1 or λ1 > λmax

1 , then F(λ1, λ2) < 0 for all λ2 ∈ IR.
2. If λ1 = λmax

1 (resp. λ1 = λmin
1 ) then there exists a unique λ2 (resp. λ2) such that 

F(λmax
1 , λ2) = 0 (resp. F(λmin

1 , λ2) = 0) and F(λmax
1 , λ2) < 0 (resp. F(λmin

1 , λ2) < 0) for 
all λ2 ∈ IR \ {λ2} (resp. λ2 ∈ IR \ {λ2}).

3. If λ1 ∈ (λmin
1 , λmax

1 ) there exist unique λ−
2 = H−(λ1) < λ+

2 = H+(λ1) such that F(λ1, λ
±
2 ) =

0. Moreover,

F(λ1, λ2)

{
< 0 for λ2 > H+(λ1) or λ2 < H−(λ1),

> 0 for λ2 ∈ (H−(λ1),H+(λ1)).

Finally,

lim
λ →λmin

H±(λ1) = λ2, and lim
λ1→λmax

H±(λ1) = λ2.

1 1 1
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We apply these results to the nonlinear problem

⎧⎨
⎩

−�ui = λimi(x)ui − u
pi

i in �i,

∂νui = γi(u2 − u1) on �,

∂νu2 = 0 on 	,
(7)

with λi ∈ IR, mi ∈ L∞(�i) and pi > 1. Again, we consider the general case λi ∈ IR and 
mi ∈ L∞(�i) but of course from a biological point of view only some cases are interesting. 
For example, when m1 ≡ 1 in �1, λ1 represents the growth rate of the species u1, which could 
be positive or negative. When m1 changes sign, only the case λ1 > 0 should be considered.

We prove (Theorem 5.1) that (7) possesses a positive solution if and only if

F(λ1, λ2) < 0.

Moreover, in such a case, the solution is the unique positive solution. Hence, we can give the 
following consequences:

1. Assume that m1 and m2 are non-negative and non-trivial functions.
(a) For λ1 large (λ1 > 
+

1 ), there exists a positive solution for all λ2 ∈ IR.
(b) For λ1 < 
+

1 , there exists a value λ2 = H(λ1) such that (7) possesses a positive solution 
for λ2 > H(λ1).

In both cases, for λ1 > 0 we have that there exists a positive solution for negative growth rate 
(λ2) of u2. In the case without interface, this is not possible, that is, even if the population 
has negative growth in one part of the domain, the interface effect makes it possible for the 
species to persist throughout the domain.

2. Assume that m1 is non-negative and non-trivial and m2 changes sign. Then, if λ1 is large, 
then there exists positive solution for all λ2 ∈ IR. However, for λ1 < λmax

1 , then there exists 
positive solution for λ2 < H−(λ1) or λ2 > H+(λ1).

3. Assume that m1 and m2 change sign. There exist λmin
1 < λmax

1 such that for λ1 > λmax
1 or 

λ1 < λmin
1 , (7) possesses a positive solution for all λ2 ∈ IR. However, for λ1 ∈ (λmin

1 , λmax
1 ), 

there exist H−(λ1) < H+(λ1) such that (7) possesses a positive solution only for λ2 <

H−(λ1) or λ2 > H+(λ1).

An outline of the paper is: in Section 2 we include some preliminary results related to scalar 
eigenvalue problems. Section 3 is devoted to show some general properties of F(λ1, λ2). The 
main results concerning to the eigenvalue problem (5) are proved in Section 4. Finally, in Sec-
tion 5, we analyze (7).

2. Preliminary results

2.1. Scalar eigenvalue problem

In this section we recall some results concerning to scalar eigenvalue problems, see [2] for 
example.

Here G is a C2,α , α ∈ (0, 1), domain of IRN , ∂G = 	1 ∪	2, where 	1 and 	2 are two disjoint 
open and closed subsets of ∂G and ν is the outward unit normal vector field. For c ∈ L∞(G), 
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h ∈ C(	1), g ∈ C(	2), we denote by σG
1 (−� + c; N +h, N + g) the principal eigenvalue of the 

problem

⎧⎪⎪⎨
⎪⎪⎩

−�φ + c(x)φ = λφ in G,

∂φ
∂ν

+ hφ = 0 on 	1,

∂φ
∂ν

+ gφ = 0 on 	2,

and by σG
1 (−� + c; N + h, D) that of the problem

⎧⎪⎨
⎪⎩

−�φ + c(x)φ = λφ in G,
∂φ
∂ν

+ hφ = 0 on 	1,

φ = 0 on 	2.

We will quote some important properties of σG
1 (−� + c; N + h, N + g) and σG

1 (−� + c; N +
h, D). We denote the boundary operator

B(φ) =
{

∂νφ + hφ = 0 on 	1,
∂νφ + gφ = 0 on 	2,

or B(φ) =
{

∂νφ + hφ = 0 on 	1,
φ = 0 on 	2.

Proposition 2.1.

1. The map c ∈ L∞(G) �→ σG
1 (−� + c; B) is continuous and increasing.

2. It holds that

σG
1 (−� + c;N + h,N + g) < σG

1 (−� + c;N + h,D).

3. Assume that there exists a positive supersolution, that is, a positive function u ∈ W 2,p(G), 
p > N , such that

−�u + c(x)u ≥ 0 in G, B(u) ≥ 0 on ∂G,

and some strict inequalities, then

σG
1 (−� + c;B) > 0.

Now, we define

μ(λ) := σG
1 (−� − λc;B), λ ∈ IR.

The main properties of μ(λ) are stated in the next result.

Proposition 2.2.

1. Assume that c �≡ 0 in G. Then, λ ∈ IR �→ μ(λ) is regular and concave.
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2. Assume that c � 0 in G, define

C0 := G \ {x ∈ G : c(x) > 0}, (8)

and assume that

C0 ⊆ G. (9)

The map λ �→ μ(λ) is decreasing and

lim
λ→+∞μ(λ) = −∞, lim

λ→−∞μ(λ) = σ
C0
1 (−�;D).

3. Assume that c changes sign, then

lim
λ→±∞μ(λ) = −∞.

Moreover, there exists λ0 ∈ IR such that μ′(λ0) = 0, μ′(λ) > 0 for λ < λ0 and μ′(λ) < 0 for 
λ > λ0.

We can describe exactly the sign of the map μ(λ).

Corollary 2.3.

1. Assume that c � 0 and the set C0 satisfies (9). Then, there exists a unique zero of the map 
μ(λ), we denote it by λ+

1 (G, c; B), and as consequence,

μ(λ)

⎧⎨
⎩

> 0 if λ < λ+
1 (G, c;B),

= 0 if λ = λ+
1 (G, c;B),

< 0 if λ > λ+
1 (G, c;B).

2. Assume that c changes sign.
(a) If μ(λ0) < 0, then μ(λ) < 0 for all λ ∈ IR.
(b) If μ(λ0) = 0, then λ0 is the unique zero of the map μ(λ).
(c) If μ(λ0) > 0, then there exist two zeros of the map μ(λ), we call them λ−

1 (G, c; B) <
λ0 < λ+

1 (G, c; B). As a consequence,

μ(λ)

⎧⎨
⎩

> 0 if λ ∈ (λ−
1 (G, c;B), λ+

1 (G, c;B)),

= 0 if λ = λ−
1 (G, c;B) or λ = λ+

1 (G, c;B),

< 0 if λ < λ−
1 (G, c;B) or λ > λ+

1 (G, c;B).

2.2. Interface eigenvalue problem

First, we fix some notations that will be used throughout the paper. For convenience, we write 
u = (u1, u2) with ui defined in �i and similarly c = (c1, c2). In order to simplify the notation 
we write the boundary conditions as
502
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{
∂νui = γi(u2 − u1) on �,

∂νu2 = 0 on 	,

}
⇐⇒ I(u) = 0 on � ∪ 	.

We write

I(u) � 0 on (�,	) ⇐⇒
⎧⎨
⎩

∂νu1 ≥ γ1(u2 − u1) on �,

∂νu2 ≤ γ2(u2 − u1) on �,

∂νu2 ≥ 0 on 	.

We consider the Banach spaces

Lp := {u : ui ∈ Lp(�i)} , p ≥ 1,

H 1 := {
u : ui ∈ H 1(�i)

}
,

W 2,p := {
u : ui ∈ W 2,p(�i)

}
, p ≥ 1.

The norm of a function u is defined as the sum of the norms of ui in the respective spaces.
On the other hand, given u = (u1, u2) we write u ≥ 0 in � if ui ≥ 0 in �i for i = 1, 2 and 

u > 0 in � if both ui > 0 in �i for i = 1, 2, and finally u �= 0 in � if ui �= 0 in a subset of positive 
measure of �i for some i = 1, 2.

Given ci ∈ L∞(�i), we denote by 
1(c) = 
1(c1, c2) the principal eigenvalue of (see [9])

{
−�ui + ci(x)ui = λui in �i,

I(u) = 0 on � ∪ 	.
(10)

First, we recall some properties of 
1(c1, c2), see [8].

Definition 2.4. Given u ≥ 0 in �, u = (u1, u2), u ∈ W 2,p , p > N , is a strict supersolution of 
(−� + c, I) if

−�u + c(x)u ≥ 0 in �, I(u) � 0 on (�,	),

and some of these inequalities are strict.

Proposition 2.5.

1. Assume that c ≤ d in �. Then, 
1(c) ≤ 
1(d). Moreover, if c �= d in �, 
1(c) < 
1(d).
2. Assume that cn → c in L∞, then 
1(cn) → 
1(c).
3. It holds that


1(c) < min{σ�1
1 (−� + c1;N + γ1), σ

�2
1 (−� + c2;N + γ2,N)}.

4. The map c ∈ L∞ �→ 
1(c) is concave.
5. 
1(c) > 0 if and only if there exists a strict positive supersolution u of (−� + c, I).
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3. Generalized interface principal eigenvalue: first properties

The main goal in this paper is to analyze the eigenvalue problem

⎧⎨
⎩

−�ui = λimi(x)ui in �i,

ui > 0 in �i,

I(u) = 0 on � ∪ 	,
(11)

where mi ∈ L∞(�i), mi �≡ 0 in �i , i = 1, 2. It is obvious that

(λ1, λ2) is an eigenvalue of (11) if and only if 
1(−λ1m1,−λ2m2) = 0.

Hence, we define F : IR2 �→ IR by

F(λ1, λ2) := 
1(−λ1m1,−λ2m2).

The following result addresses the concavity of 
1(c1, c2) in each component.

Proposition 3.1. Fix c2 ∈ L∞(�2). Then, the map c1 ∈ L∞(�1) �→ 
1(c1, c2) ∈ IR is concave.

Proof. Denote G(c1) := 
1(c1, c2), take ci
1 ∈ L∞(�1), i = 1, 2 and t ∈ [0, 1]. Then,

G(tc1
1 + (1 − t)c2

1) = 
1(tc
1
1 + (1 − t)c2

1, c2) = 
1(tc
1
1 + (1 − t)c2

1, tc2 + (1 − t)c2)

= 
1(tc + (1 − t)d),

where c = (c1
1, c2) and d = (c2

1, c2). Using now Proposition 2.5 4., we get that

G(tc1
1 + (1 − t)c2

1) = 
1(tc + (1 − t)d)

≥ t
1(c) + (1 − t)
1(d)

= t
1(c
1
1, c2) + (1 − t)
1(c

2
1, c2)

= tG(c1
1) + (1 − t)G(c2

1).

This completes the proof. �
As a consequence, we deduce the concavity of the map F(λ1, λ2).

Corollary 3.2. Fixed λ1 ∈ IR, λ2 �→ F(λ1, λ2) is concave, and then, there exist at most two values 
of λ2 such that F(λ1, λ2) = 0. A similar result holds when we fix λ2.

In order to simplify the notation, we denote (recall Corollary 2.3)


±
1 := λ±

1 (�1,m1;N + γ1), 
±
2 := λ±

1 (�2,m2;N + γ2,N). (12)

Observe that if we denote by μ(λ) = σ
�1
1 (−� − λm1; N + γ1), then μ(0) > 0. Hence, if m1

changes sign the existence of 
−
1 < 0 < 
+

1 is guaranteed by Corollary 2.3. If m1 � 0 in �1

then 
−
1 = −∞.

The first result provides upper bounds of F(λ1, λ2).
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Lemma 3.3. It holds:

F(λ1, λ2) < min{σ�1
1 (−� − λ1m1;N + γ1), σ

�2
1 (−� − λ2m2;N + γ2,N)}, (13)

and

F(λ1, λ2) ≤
−λ1

∫
�1

m1 − λ2

∫
�2

m2 + (γ1 + γ2)|�|

|�1| + |�2| . (14)

Proof. (13) follows from Proposition 2.5 3.
Let ϕ = (ϕ1, ϕ2) be a positive eigenfunction associated to F(λ1, λ2). Observe that

−�ϕi − λimi(x)ϕi = F(λ1, λ2)ϕi in �i ,
I(ϕ) = 0 on � ∪ 	.

Multiplying by 1/ϕi , integrating and adding the two resulting equations, we obtain

F(λ1, λ2)(|�1| + |�2|) = −λ1

∫
�1

m1 − λ2

∫
�2

m2 −
⎛
⎜⎝∫

�1

|∇ϕ1|2
ϕ2

1

+
∫
�2

|∇ϕ2|2
ϕ2

2

⎞
⎟⎠

+
∫
�

(ϕ2 − ϕ1)

(
γ2

ϕ2
− γ1

ϕ1

)
.

Observe that

∫
�

(ϕ2 − ϕ1)

(
γ2

ϕ2
− γ1

ϕ1

)
= (γ1 + γ2)|�| −

∫
�

γ1ϕ
2
2 + γ2ϕ

2
1

ϕ1ϕ2
,

whence we conclude (14). �
Corollary 3.4.

1. F(λ1, λ2) < 0 for λ1 ∈ (−∞, 
−
1 ] ∪ [
+

1 , +∞) or λ2 ∈ (−∞, 
−
2 ] ∪ [
+

2 , +∞).
2. Assume that F(λ1, λ2) = 0. Then,


−
1 < λ1 < 
+

1 and 
−
2 < λ2 < 
+

2 .

Proof. 1. Observe that if λ1 ∈ (−∞, 
−
1 ] ∪ [
+

1 , +∞), then, by Corollary 2.3, we get 
σ

�1
1 (−� − λ1m1; N + γ1) ≤ 0. Hence, by (13) we obtain that

F(λ1, λ2) < 0.
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2. Since F(λ1, λ2) = 0, by (13), we have that

0 < min{σ�1
1 (−� − λ1m1;N + γ1), σ

�2
1 (−� − λ2m2;N + γ2,N)},

and then σ�1
1 (−� − λ1m1; N + γ1) > 0 and σ�2

1 (−� − λ2m2; N + γ2, N) > 0, and hence 
the result concludes by Corollary 2.3. �

The following result will be very useful.

Proposition 3.5. Assume that mi � 0 in �i and that the set M0
2 verifies (6). Take two sequences 

{an} and {bn} such that

an → a∗ ∈ (−∞,∞), bn → −∞ as n → +∞.

Then, at least for a subsequence,

lim
n→∞F(an, bn) = min{σ�1

1 (−� − a∗m1;N + γ1), σ
M0

2
1 (−�;D)}.

Proof. Observe that

F(an, bn) < min{σ�1
1 (−� − anm1;N + γ1), σ

�2
1 (−� − bnm2;N + γ2,N)}.

By continuity,

σ
�1
1 (−� − anm1;N + γ1) → σ

�1
1 (−� − a∗m1;N + γ1),

and using Proposition 2.2 2., we get

σ
�2
1 (−� − bnm2;N + γ2,N) → σ

M0
2

1 (−�;D).

Hence, F(an, bn) is bounded.
Assume that

σ0 := σ
M0

2
1 (−�;D) < σ

�1
1 (−� − a∗m1;N + γ1). (15)

Consequently, we conclude that, for a subsequence,

F(an, bn) → F0 ≤ σ0 = σ
M0

2
1 (−�;D) < σ

�1
1 (−� − a∗m1;N + γ1) < ∞ as n → ∞.

Without loss of generality, we consider ϕn = (ϕ1n, ϕ2n) a positive eigenfunction associated to 
F(an, bn) such that ‖ϕn‖2 = 1. Then,∫

�

|∇ϕn|2 − an

∫
�1

m1ϕ
2
1n − bn

∫
�2

m2ϕ
2
2n +

∫
�

(γ1ϕ
2
1n + γ2ϕ

2
2n) − (γ1 + γ2)

∫
�

ϕ1nϕ2n

= F(an, bn) ≤ C,
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where we have denoted

∫
�

|∇ϕn|2 =
2∑

i=1

∫
�i

|∇ϕin|2.

Since bn < 0, m ≥ 0 in � and an → a∗ ∈ (−∞, ∞), we get that

∫
�

|∇ϕn|2 − (γ1 + γ2)

∫
�

ϕ1nϕ2n ≤ C. (16)

Using now the inequalities

∫
�

u1u2 ≤ 1

2

⎛
⎝∫

�

u2
1 +

∫
�

u2
2

⎞
⎠ , (17)

and that for any ε > 0 there exists C(ε) > 0 such that

∫
�

v2 ≤ ε

∫
�i

|∇v|2 + C(ε)

∫
�i

v2 ∀v ∈ H 1(�i), (18)

(see for instance Lemma 1 in [1]) and ‖ϕn‖2 = 1, wet get that

∫
�

ϕ1nϕ2n ≤ 1

2

⎛
⎝∫

�

ϕ2
1n +

∫
�

ϕ2
2n

⎞
⎠ ≤ 1

2

⎛
⎜⎝ε

⎛
⎜⎝∫

�1

|∇ϕ2
1n| +

∫
�2

|∇ϕ2
2n|

⎞
⎟⎠ + C(ε)

⎞
⎟⎠ ,

and then from (16) we get

∫
�

|∇ϕn|2 ≤ C.

Hence,

‖ϕn‖H 1 ≤ C0.

Thus,

ϕn ⇀ ϕ∞ = (ϕ1∞, ϕ2∞) ≥ 0 in H 1, ϕn → ϕ∞ in L2 and L2(�) with ‖ϕ∞‖2 = 1.

By definition of F(an, bn) we have that
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2∑
i=1

⎛
⎜⎝∫

�i

∇ϕin · ∇vi − an

∫
�1

m1ϕ1nv1 − bn

∫
�2

m2ϕ2nv2

⎞
⎟⎠+

+
∫
�

(ϕ2n − ϕ1n)(γ2v2 − γ1v1) = F(an, bn)

⎛
⎜⎝∫

�1

ϕ1nv1 +
∫
�2

ϕ2nv2

⎞
⎟⎠ , ∀vi ∈ H 1(�i).

(19)

First, we prove that

ϕ2∞ ∈ H 1
0 (M0

2 ). (20)

Since

H 1
0 (M0

2 ) = {u ∈ H 1(�2) : u = 0 in �2 \ M0
2 },

we claim that ϕ2∞ = 0 in �2 \ M0
2 .

By contradiction, assume that ϕ2∞ > 0 in D, for some D ⊂ �2 \ M0
2 and take v1 = 0 in �1

and v2 ∈ C∞
0 (D), v2 > 0 in D. Then, by (19)

−
∫
D

�v2ϕ2n − bn

∫
D

m2(x)ϕ2nv2 = F(an, bn)

∫
D

ϕ2nv2. (21)

If ϕ2∞ > 0 in D, then −bn

∫
D

m2(x)ϕ2nv2 → ∞ as bn → −∞, a contradiction with (21). Hence, 
we conclude that ϕ2∞ = 0 in D. This implies (20).

Taking v1 ∈ H 1(�1) and v2 = 0 in (19), taking limit, we get

∫
�1

∇ϕ1n · ∇v1 − an

∫
�1

m1ϕ1nv1 +
∫
�

(ϕ2n − ϕ1n)(−γ1v1) = F(an, bn)

∫
�1

ϕ1nv1,

then passing to the limit, taking into account (20) in the boundary integral,

∫
�1

∇ϕ1∞ · ∇v1 − a∗
∫
�1

m1ϕ1∞v1 + γ1

∫
�

ϕ1∞v1 = F0

∫
�1

ϕ1∞v1.

Hence, if ‖ϕ1∞‖2 �= 0, then F0 = σ
�1
1 (−� − a∗m1; N + γ1), an absurdum due to F0 ≤ σ0 and 

(15). Then, ‖ϕ1∞‖2 = 0. Hence,

‖ϕ2∞‖2 = 1.

Then, take v1 = 0 and v2 ∈ H 1
0 (M0

2 ) in (19), we obtain

∫
M2

∇ϕ2∞ · ∇v2 = F0

∫
M2

ϕ2∞v2,
0 0
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which yields that F0 = σ
M0

2
1 (−�; D) = σ0.

A similar reasoning can be carried out when σ�1
1 (−� − a∗m1; N + γ1) < σ

M0
2

1 (−�; D).
This finishes the proof. �

4. Proofs of the main results

The main idea of the proof can be summarized as follows. Instead of looking for solutions of 
F(λ1, λ2) = 0 in the general form (λ1, λ2), we look for solutions in the particular form λ2 = μλ1, 
for all μ ∈ IR.

Hence, the following map plays an essential role in our study. Given μ ∈ IR, we define

fμ(λ1) := 
1(−λ1m1,−λ1μm2) = F(λ1, λ1μ).

In the following result we state that, for λ1 �= 0, it is equivalent to solve F(λ1, λ2) = 0 to 
fμ(λ1) = 0. Specifically, we have:

Proposition 4.1. Assume that F(λ0
1, λ

0
2) = 0 and λ0

1 �= 0, then fμ0(λ
0
1) = 0 for μ0 = λ0

2/λ
0
1.

Conversely, if fμ0(λ
0
1) = 0 then F(λ0

1, λ
0
2) = 0 for λ0

2 = μ0λ
0
1.

In what follows, we explore the particular case λ1 = 0.

Proposition 4.2. Assume that λ1 = 0 and denote

g(λ2) := F(0, λ2) = 
1(0,−λ2m2).

The map λ2 �→ g(λ2) is regular, concave, g(0) = 0 and

sign(g′(0)) = sign

⎛
⎜⎝−

∫
�2

m2

⎞
⎟⎠ . (22)

Moreover,

1. If m2 � 0 in �2 and M0
2 verifies (6), then λ2 �→ g(λ2) is decreasing and

lim
λ2→+∞g(λ2) = −∞ and lim

λ2→−∞g(λ2) = min{σ�1
1 (−�;N + γ1), σ

M0
2

1 (−�;D)}.

In this case, g(λ2) > 0 for λ2 < 0 and g(λ2) < 0 if λ2 > 0.
2. If m2 changes sign in �2, then

lim
λ2→±∞g(λ2) = −∞.

Moreover,
(a) If 

∫
�2

m2 = 0, then g′(0) = 0 and λ2 = 0 is the unique root of g(λ2) = 0. As a conse-
quence, g(λ2) < 0 for λ2 �= 0.
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(b) If 
∫
�2

m2 < 0, then g′(0) > 0 and there exists λ+
2 > 0 such that g(λ+

2 ) = 0. In this case,

g(λ2)

{
> 0 if λ2 ∈ (0, λ+

2 ),
< 0 if λ2 < 0 or λ > λ+

2 .

(c) If 
∫
�2

m2 > 0, then g′(0) < 0 and there exists λ−
2 < 0 such that g(λ−

2 ) = 0. Hence,

g(λ2)

{
> 0 if λ2 ∈ (λ−

2 ,0),
< 0 if λ2 < λ−

2 or λ2 > 0.

Proof. To begin with, the regularity of g follows by the regularity of the function F . On the 
other hand, by Proposition 3.1 follows that g(λ) is concave. It is obvious that g(0) = F(0, 0) =

1(0, 0) = 0. On the other hand, taking m = (0, m2) in Proposition 3.17 in [8], we conclude 
(22).

Finally, observe that by (13) we have

g(λ2) < σ
�2
1 (−� − λ2m2;N + γ2,N), (23)

whence we deduce that lim
λ2→+∞g(λ2) = −∞ from Proposition 2.2 2. and 3.

1. Assume that m2 � 0 in �2. In this case, g is decreasing. Moreover, by Proposition 3.5, taking 
an = 0, we conclude that

lim
λ2→−∞g(λ2) = min{σ�1

1 (−�;N + γ1), σ
M0

2
1 (−�;D)}.

2. Assume that m2 changes sign. Then, using (23) and Proposition 2.2 3., we deduce that

lim
λ2→−∞g(λ2) = −∞.

Now, from the sign of g′(0) in (22), we conclude the result. �
In the next result, we study in detail the map λ1 �→ fμ(λ1).

Proposition 4.3. Fix μ ∈ IR. Then, λ1 �→ fμ(λ1) is regular, concave, fμ(0) = 0 and

sign(f ′
μ(0)) = −sign

⎛
⎜⎝γ2

∫
�1

m1 + μγ1

∫
�2

m2

⎞
⎟⎠ . (24)

1. If m1 � 0 in �1, then

lim fμ(λ1) = −∞

λ1→+∞
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2. If m1 or m2 changes sign, then

lim
λ1→±∞fμ(λ1) = −∞.

Proof. It is clear that fμ(0) = 0. The regularity follows by the regularity of F , the concavity 
of fμ(λ1) follows by Proposition 2.5 4., and (24) follows taking m = (m1, μm2) in Proposition 
3.17 in [8].

On the other hand, by (13) we get

fμ(λ1) < min{σ�1
1 (−� − λ1m1;N + γ1), σ

�2
1 (−� − λ1μm2;N + γ2,N)},

and then lim
λ1→+∞fμ(λ1) = −∞, and if m1 or m2 changes sign, lim

λ1→−∞fμ(λ1) = −∞. �
For 

∫
�2

m2 �= 0, we define

μ∗ := −
γ2

∫
�1

m1

γ1

∫
�2

m2

, (25)

in such a way that f ′
μ∗(0) = 0.

4.1. Case mi � 0 in �i , i = 1, 2

Observe that in this case

μ∗ < 0.

Proposition 4.4. Assume that mi � 0 in �i and M0
i verify (6) for i = 1, 2.

1. If μ ≥ 0, the unique zero of fμ(λ1) is λ1 = 0.
2. If μ < 0, μ �= μ∗, there exists an unique λ1 = h1(μ) �= 0 such that fμ(λ1) = 0. Moreover,

h1(μ)

⎧⎨
⎩

< 0 if μ > μ∗ ,

= 0 if μ = μ∗,
> 0 if μ < μ∗.

3. The map μ ∈ (−∞, 0) �→ h1(μ) is continuous and decreasing. Moreover,

lim
μ↑0

h1(μ) = −∞, lim
μ→−∞h1(μ) = 
+

1 .

Proof. 1. Assume that μ ≥ 0. Then, since λ1 �→ fμ(λ1) is decreasing and fμ(0) = 0, the result 
follows.
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2. Assume that μ < 0. Recall that λ1 �→ fμ(λ1) is concave and fμ(0) = 0. If μ > μ∗ then 
f ′

μ(0) < 0, and hence there exists a unique h1(μ) < 0 such that fμ(h1(μ)) = 0. Similarly, 
when μ < μ∗ there exists a unique h1(μ) > 0 such that fμ(h1(μ)) = 0.

3. We will show that μ �→ h1(μ) is decreasing. Take now μ1 < μ2 < 0. Observe that −μ1λ1 >

−μ2λ1 if λ1 > 0 and −μ1λ1 < −μ2λ1 if λ1 < 0. Hence, we distinguish several cases:
(a) Assume that μ∗ ≤ μ1 < μ2 < 0. In this case, h1(μ2) and h1(μ1) are negative, and 

then we compare the functions fμ2 and fμ1 for negative values. Indeed, observe that 
fμ2(λ1) > fμ1(λ1) for λ1 < 0, and then h1(μ2) < h1(μ1).

(b) Assume that μ1 < μ∗ < μ2 < 0: in this case h1(μ2) < 0 < h1(μ1).
(c) Assume that μ1 < μ2 ≤ μ∗ < 0, then fμ2(λ1) < fμ1(λ1) for λ1 > 0, and then h1(μ2) <

h1(μ1).
This shows that μ �→ h1(μ) is decreasing.
We prove now the continuity. Take μn ∈ (−∞, 0) → μ0 < 0 and consider λn := h1(μn). 
Since 0 = fμn(λn) = F(λn, μnλn), by Corollary 3.4 we conclude that

λn < 
+
1 and μnλn < 
+

2 . (26)

Hence, there exists λ1 ∈ (−∞, +∞) such that λn → λ1. We have to show that

λ1 = h1(μ0).

Indeed, observe that

0 = fμn(λn) = 
1(−λnm1,−λnμnm2) → 
1(−λ1m1,−λ1μ0m2) = fμ0(λ1),

that is, fμ0(λ1) = 0. We separate now two cases:
(a) μ0 �= μ∗: In this case, we assert, that λ1 �= 0. Indeed, assume that λ1 = 0, that is, 

h1(μn) → 0. If, for instance, μ0 > μ∗, then there exists ρ1(μn) ∈ (h1(μn), 0) such 
that f ′

μn
(ρ1(μn)) = 0. Since h1(μn) → 0, then ρ1(μn) → 0, and as consequence, 

f ′
μ0

(0) = 0, a contradiction. This shows that λ1 �= 0. Then, since h1(μ0) is the unique 
nonzero root of fμ0(λ1) = 0, we have that λ1 = h1(μ0).

(b) μ0 = μ∗: in this case fμ∗(λ1) = 0 implies that λ1 = 0 = h1(μ
∗).

This concludes that λ1 = h1(μ0), and hence the continuity.
We claim that

h1(μn) → −∞ as μn → 0. (27)

Assume that |h1(μn)| ≤ C. Then, we can assume that, at least for a subsequence, h1(μn) →
h∗

1 < 0 and hence

0 = 
1(−h1(μn)m1,−μnh1(μn)m2) → 
1(−h∗
1m1,0) = 0,

a contradiction because 
1(−h∗
1m1, 0) > 0. This proves (27).

By (26), if μ → −∞ we can assume that h1(μ) → h∗ ≤ 
+
1 and h∗ > 0. Then, μh1(μ) →

−∞. Since
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0 = fμ(h1(μ)) = F(h1(μ),h1(μ)μ)

and by Proposition 3.5

0 = F(h1(μ),h1(μ)μ) → min{σ�1
1 (−� − λ∗m1;N + γ1), σ

M0
2

1 (−�;D)},
it follows that

0 = min{σ�1
1 (−� − λ∗m1,N + γ1), σ

M0
2

1 (−�,D)}.

Since σ
M0

2
1 (−�, D) > 0, we conclude that σ�1

1 (−� − h∗m1, N + γ1) = 0, that means that 
h∗ = 
+

1 , that is

lim
μ→−∞h1(μ) = 
+

1 .

This concludes the proof. �
Once we have studied the map μ �→ h1(μ), we need to analyze the map

μ ∈ (−∞,0) �→ h2(μ) := μh1(μ).

Proposition 4.5. Assume that mi � 0 in �i and M0
i verify (6) for i = 1, 2. The map μ ∈

(−∞, 0) �→ h2(μ) := μh1(μ) is continuous, increasing,

h2(μ)

⎧⎨
⎩

> 0 if μ > μ∗ ,

= 0 if μ = μ∗,
< 0 if μ < μ∗,

lim
μ→−∞h2(μ) = −∞, (28)

and

lim
μ→0

h2(μ) = 
+
2 . (29)

Proof. To start with, the continuity and the sign of the map h2(μ) follow directly from Proposi-
tion 4.4. Moreover, it is clear that

lim
μ→−∞h2(μ) = lim

μ→−∞μh1(μ) = −∞.

In order to prove (29) we can argue exactly as the proof of Proposition 4.4.
Finally, using that F is increasing, we prove that the map μ �→ h2(μ) is increasing. Take 

μ1 < μ2 and assume that h2(μ1) ≥ h2(μ2). Since h1(μ1) > h1(μ2), then

0 = F(h1(μ1), h2(μ1)) < F(h1(μ2), h2(μ1)) ≤ F(h1(μ2), h2(μ2)) = 0,

a contradiction. �
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Fig. 6. Case mi � 0 in �i and verifying (6) for i = 1, 2. We have represented the functions μ �→ h1(μ) (left) and 
μ �→ h2(μ) (right).

In Fig. 6 we have represented the functions μ �→ h1(μ), h2(μ). Now, we proceed to the proof 
of Theorem 1.1.

Proof of Theorem 1.1: (see Fig. 2)

1. Observe that by Corollary 3.4, we obtain

F(λ1, λ2) < 0 if λ1 ≥ 
+
1 or λ2 ≥ 
+

2 .

2. Take λ1 < 
+
1 . Then, by Proposition 4.4 there exists a unique μ = μ(λ1) < 0 such that 

λ1 = h1(μ). Take λ2 = h2(μ) = μh1(μ), then

F(λ1, λ2) = F(h1(μ),h2(μ)) = F(h1(μ),μh1(μ)) = fμ(h1(μ)) = 0.

We define the function

H(λ1) := h2(h
−1
1 (λ1)), λ1 < 
+

1 .

It is clear that H is well-defined (observe that h−1
1 exists due to that h1 is a decreasing 

function), is continuous and

F(λ1,H(λ1)) = 0.

Moreover, since fixed λ1, the map λ2 �→ F(λ1, λ2) is concave, it follows that F(λ1, λ2) > 0
for λ2 < H(λ1) and F(λ1, λ2) < 0 for λ2 > H(λ1).
Furthermore, by Propositions 4.4 and 4.5,

lim
λ1↑
+

1

H(λ1) = lim
λ1↑
+

1

h2(h
−1
1 (λ1)) = lim

μ→−∞h2(μ) = −∞,

and,
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lim
λ1↑−∞H(λ1) = lim

λ1↑−∞h2(h
−1
1 (λ1)) = lim

μ→0
h2(μ) = 
+

2 .

Finally, we prove that λ1 �→ H(λ1) is decreasing. Take λ1 < λ1 < 
+
1 and consider H(λ1)

and H(λ1). We are going to show that H(λ1) > H(λ1). Assume that H(λ1) ≤ H(λ1), then

0 = F(λ1,H(λ1)) > F(λ1,H(λ1)) ≥ F(λ1,H(λ1)) = 0,

a contradiction.

This concludes the proof. �
4.2. Case m1 � 0 in �1 and m2 changes sign in �2

In this case, the results depend on the sign of 
∫
�2

m2. We detail the case

∫
�2

m2 < 0,

similarly the other cases can be studied (see Remark 4.8). Observe that in this case

μ∗ = −
γ2

∫
�1

m1

γ1

∫
�2

m2

> 0.

Proposition 4.6. Assume that m1 � 0 in �1 and M0
1 verifies (6), m2 changes sign in �2 and ∫

�2
m2 < 0. Then, for each μ �= 0 there exists a unique h1(μ) ∈ IR such that fμ(h1(μ)) = 0. 

Moreover,

h1(μ)

⎧⎨
⎩

> 0 if μ > μ∗ ,

= 0 if μ = μ∗,
< 0 if μ < μ∗.

Furthermore, the map μ ∈ IR \ {0} �→ h1(μ) ∈ IR is continuous, and

lim
μ→±∞h1(μ) = 0, lim

μ→0
h1(μ) = −∞.

As consequence, there exists μmax > μ∗ such that

max
μ �=0

h1(μ) = h1(μmax) := λmax
1 .

Finally, the map μ ∈ IR \ {0} �→ h1(μ) ∈ IR is increasing in (0, μmax) and decreasing in (−∞, 0)

and (μmax, ∞).
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Proof. The proof of this result is rather similar to the proof of Proposition 4.4, hence we sketch 
the proof.

Since fμn(λ1(μn)) = F(h1(μn), μnh1(μn)) = 0, by Corollary 3.4 we get


−
2 < h1(μn)μn < 
+

2 ,

whence we conclude that h1(μn) → 0 as μn → ±∞.
Before proving the monotony, we claim that for any c ∈ IR there exist at most two values of μ

such that

h1(μ) = c.

We argue by contradiction. Assume that for μ1 < μ2 < μ3 we get h1(μi) = c for i = 1, 2, 3. 
Taking λi

2 = cμi we obtain

0 = F(c,λi
2), λ1

2 < λ2
2 < λ3

2,

a contradiction because, fixed c, the map λ2 �→ F(c, λ2) is concave.
Now, for instance, we show that h1(μ) is decreasing in (−∞, 0). Take μ1 < μ2 < 0 and as-

sume that h1(μ1) ≤ h1(μ2). Since h1(μ) → 0 as μ → −∞ and h1(μ) → −∞ as μ → 0. Then, 
there exists c < 0 such that h1(μ) = c possesses at least three solutions. This is a contradiction 
and proves that h1(μ) is decreasing in (−∞, 0). With a similar argument, it can be proved that 
h1(μ) is decreasing in (μmax, ∞) and increasing in (0, μmax). �

Again, we can deduce properties of the map h2(μ) = μh1(μ).

Proposition 4.7. Assume that m1 � 0 in �1 and M0
1 verifies (6), m2 changes sign in �2 and ∫

�2
m2 < 0. Then h2(μ) = μh1(μ) is continuous in μ �= 0, increasing and verifies

h2(μ)

⎧⎨
⎩

> 0 if μ > μ∗ or μ < 0,

= 0 if μ = μ∗,
< 0 if μ ∈ (0,μ∗),

and

lim
μ→0± h2(μ) = 
∓

2 , lim
μ→±∞h2(μ) = λ∗

2,

for some λ∗
2 ∈ (0, 
+

2 ).

Proof. Assume that μn → 0+, then since h2(μn) is bounded, at least for a subsequence, 
h2(μn) → λ2 < 0. Observe that since h1(μn) → −∞, by Proposition 3.5

0 = F(h1(μn),h2(μn)) → σ
�2
1 (−� − λ2m2;N + γ2,N) = 0,

and then λ2 = 
−. Analogously for μn → 0−.
2
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Fig. 7. Representation of the maps h1(μ) (left) and h2(μ) (right) in the case m1 non-negative, non-trivial and verifies 
(6), m2 changing sign and 

∫
�2

m2 < 0.

On the other hand, assume that μn → +∞ and h2(μn) → λ2 < 0. In this case, h1(μn) → 0, 
and then

0 = F(−h1(μn)m1,−h2(μn)m2) → F(0,−λ2m2),

whence λ2 = λ∗
2.

Observe that

0 = F(0,−λ∗
2m2) < σ

�2
1 (−� − λ∗

2m2;N + γ2,N)

and so λ∗
2 < 
+

2 .
Finally, with an argument similar to the one used in Proposition 4.6 we can conclude that the 

equation h2(μ) = c possesses at most a unique solution. Hence, the monotony of h2(μ) follows. 
This completes the proof. �

In Fig. 7, one may see a representation of the maps μ �→ h1(μ), h2(μ).

Remark 4.8.

1. In the case ∫
�2

m2 > 0

we can obtain a similar result switching μ by −μ (see Fig. 8).
2. When ∫

m2 = 0
�2
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Fig. 8. Representations of the maps h1(μ) (left) and h2(μ) (right) in the case m1 non-negative, non-trivial and verifies
(6), m2 changing sign and 

∫
�2

m2 > 0.

Fig. 9. We have represented the maps h1(μ) (left) and h2(μ) (right) in the case m1 non-negative, non-trivial and verifies 
(6), m2 changing sign and 

∫
�2

m2 = 0.

observe that f ′
μ(0) < 0 for all μ (see (24)), and then h1(μ) < 0 for all μ. The global behavior 

of h1(μ) at μ = 0 and μ → ±∞ is similar to Proposition 4.6 (see Fig. 9).

Proof of Theorem 1.2: (See Fig. 3.) Assume that 
∫
�2

m2 < 0 (see Fig. 7). We introduce the 
following notation:

h1(μ) :=
⎧⎨
⎩

h1
1(μ) if μ < 0,

h2
1(μ) if μ ∈ (0,μmax],

h3
1(μ) if μ > μmax.

1. If λ1 > λmax
1 , then there does not exist μ ∈ IR such that λ1 = h1(μ). Hence, F(λ1, λ2) �=

0 for all λ2 ∈ IR, in fact, F(λ1, λ2) < 0 for all λ2 ∈ IR. Indeed, if for some λ2 we have 
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F(λ1, λ2) > 0, then there exists at least λ0
2 such that F(λ1, λ0

2) = 0. Then, for some μ0 we 
have λ1 = h1(μ0), a contradiction.

2. If λ1 = λmax
1 , there exists a unique μmax > μ∗ such that λmax

1 = h1(μmax), and then λmax
2 =

h2(μmax) > 0 and F(λmax
1 , λmax

2 ) = 0.
3. We fix λ1 ∈ (0, λmax

1 ). Then (see Fig. 7), there exist μ2, μ3 with μ∗ < μ2 < μmax < μ3

such that hi
1(μi) = λ1 i = 2, 3. To these values correspond two different values of h2(μi). 

Moreover, as λ1 → 0, then μ2 → μ∗ and μ3 → +∞, and this case h2(μ2) = h2
2(μ2) →

h2
2(μ

∗) = 0 and h2(μ3) = h2
2(μ3) → λ∗

2.
4. On the other hand, when λ1 ∈ (−∞, 0). There exist μ1 < 0 < μ2 < μ∗ such that λ1 =

hi
1(μi) i = 1, 2, with μ1 → −∞ and μ2 → μ∗ as λ1 → 0. Then, h2(μ1) = h1

2(μ1) → λ∗
2

and h2(μ2) = h2
2(μ2) → 0.

Observe that when λ1 → −∞ then μ1 → 0− and μ2 → 0+, and hence h2(μ1) → 
+
2 and 

h2(μ2) → 
−
2 .

With this construction, we can define

H+(λ1) :=
{

h2((h
3
1)

−1(λ1)) if λ1 ∈ (0, λmax
1 ],

h2((h
1
1)

−1(λ1)) if λ1 ≤ 0,

and

H−(λ1) := h2((h
2
1)

−1(λ1)) if λ1 ≤ λmax
1 .

Observe that thanks to the monotony of the maps hi
1 for i = 1, 2, 3, H+ and H− are well defined. 

Moreover,

lim
λ1→0+ H

+(λ1) = lim
λ1→0+ h2((h

3
1)

−1(λ1)) = lim
μ→+∞h2(μ) = λ∗

2,

and

lim
λ1→0− H

+(λ1) = lim
λ1→0− h2((h

1
1)

−1(λ1)) = lim
μ→−∞h2(μ) = λ∗

2.

As a consequence, H+ is continuous.
On the other hand,

lim
λ1→λmax

1

H+(λ1) = lim
μ→μmax

h2(μ) = λ2,

lim
λ1→λmax

1

H−(λ1) = lim
μ→μmax

h2(μ) = λ2.

Finally,

lim
λ1→−∞H+(λ1) = lim

μ→0+ h2(μ) = 
+
2 ,

and
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lim
λ1→−∞H−(λ1) = lim

μ→0− h2(μ) = 
−
2 .

We show that H+(λ1) is decreasing. Take λ1
1 < λ2

1.

1. When λ1
1 < λ2

1 < 0: then (h1
1)

−1(λ2
1) < (h1

1)
−1(λ1

1) < 0 and so h2((h
1
1)

−1(λ2
1)) <

h2((h
1
1)

−1(λ1
1)). This concludes that

H+(λ1
1) > H+(λ2

1).

2. Assume now that λ1
1 < 0 < λ2

1: in this case (h1
1)

−1(λ1
1) < 0 < (h3

1)
−1(λ2

1) and then 
h2((h

1
1)

−1(λ1
1)) > 0 > h2((h

3
1)

−1(λ2
1)), that is H+(λ1

1) > H+(λ2
1).

3. Finally when 0 < λ1
1 < λ2

1: in this case 0 < (h3
1)

−1(λ2
1) < (h3

1)
−1(λ1

1). Again, H+(λ1
1) >

H+(λ2
1).

We can argue in the same manner for H−. This completes the proof. �
Remark 4.9. Case 

∫
�2

m2 > 0 can be handled in an analogous way, but the case 
∫
�2

m2 = 0
deserves a comment. In this case, H+ and H− should be defined as follows:

H+(λ1) :=
{

h2((h
1
1)

−1(λ1)) if λ1 < 0,
0 if λ1 = 0,

and

H−(λ1) :=
{

h2((h
2
1)

−1(λ1)) if λ1 < 0,
0 if λ1 = 0.

4.3. Case mi changes sign, i = 1, 2

Consider in this case ∫
�1

m1 < 0,

∫
�2

m2 < 0,

and then

μ∗ < 0.

Proposition 4.10. Assume that mi changes sign for i = 1, 2 and 
∫
�1

m1 < 0, 
∫
�2

m2 < 0. Then, 
for each μ ∈ IR there exists a unique value λ1 = h1(μ) such that fμ(λ1) = 0. Moreover, the map 
μ ∈ IR �→ h1(μ) is continuous,

h1(μ)

⎧⎨
⎩

> 0 if μ > μ∗,
= 0 if μ = μ∗,
< 0 if μ < μ∗,
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Fig. 10. Functions h1(μ) (left) and h2(μ) (right) in the case m1 and m2 changing sign and 
∫
�1

m1 < 0 and 
∫
�2

m2 < 0.

and

lim
μ→±∞h1(μ) = 0.

As consequence, there exist μmin < μ∗ < μmax such that

h1(μmin) = min
μ∈IR

h1(μ) = λmin
1 < 0, h1(μmax) = max

μ∈IR
h1(μ) = λmax

1 > 0.

Finally, the map μ �→ h1(μ) is decreasing in (−∞, μmin) and (μmax, ∞) and increasing in 
(μmin, μmax).

For h2(μ), we can deduce the following

Proposition 4.11. Assume that mi changes sign for i = 1, 2 and 
∫
�1

m1 < 0, 
∫
�2

m2 < 0. Then, 
the map μ ∈ IR �→ h2(μ) is continuous,

h2(μ)

⎧⎨
⎩

> 0 if μ < μ∗ or μ > 0,

= 0 if μ = μ∗ and μ = 0,
< 0 if μ ∈ (μ∗,0).

Moreover,

lim
μ→±∞h2(μ) = λ∗

2.

As a consequence, there exists μmin ∈ (μ∗, 0) such that

h2(μmin) = min
μ∈IR

h2(μ) = λ∗
2 < 0.

We have represented in Figs. 10 and 11 some examples of the maps h1(μ) and h2(μ) in the 
case m1 and m2 changing sign and 

∫
m1 < 0 and 

∫
m2 < 0.
�1 �2
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Fig. 11. Functions h1(μ) (left) and h2(μ) (right) in the case m1 and m2 changing sign and 
∫
�1

m1 < 0 and 
∫
�2

m2 = 0.

Proof of Theorem 1.6: 1. By Proposition 4.10, we deduce that

F(λ1, λ2) < 0 if λ1 > λmax
1 , or λ1 < λmin

1 , or λ2 ≥ λ+
2 or λ2 ≤ λ−

2

2. Now, we introduce some notation:

h1(μ) :=
⎧⎨
⎩

h1
1(μ) if μ < μmin,

h2
1(μ) if μ ∈ [μmin,μmax],

h3
1(μ) if μ > μmax.

(a) When λ1 = λmax
1 , there exists a unique value of μ, μ = μmax such that h1(μmax) = λ1. 

The value h2(μmax) := λ2 verifies that F(λmax
1 , λ2) = 0.

(b) Take now λ1 ∈ (0, λmax
1 ). Then, there exist μ∗ < μ2 < μ3 such that λ1 = hi

1(μi) i = 2, 3, 
specifically, λ1 = h2

1(μ2) = h3
1(μ3).

Moreover, μ2 → μ∗ and μ3 → +∞ as λ1 → 0. For these values, h2(μ2) → 0 and 
h2(μ3) → λ∗

2. Observe that h2(0) = 0.
(c) Consider the case λ1 ∈ (λmin

1 , 0). There exists a unique value of μ1 < μ2 < μ∗ such that 
λ1 = hi

1(μi) i = 1, 2, in fact, λ1 = h1
1(μ1) = h2

1(μ2).
In this case, as λ1 → 0, then with μ1 → −∞ and μ2 → μ∗. Hence, h2(μ1) → λ∗

2 and 
h2(μ2) → 0.

(d) The case λ1 = λmin
1 is analogous to the first case.

Now, we define the maps

H+(λ1) :=
{

h2((h
3
1)

−1(λ1)) if λ1 ∈ (0, λmax
1 ],

h2((h
1
1)

−1(λ1)) if λ1 ∈ [λmin
1 ,0]

and

H−(λ1) := h2((h
2
1)

−1(λ1)) if λ1 ∈ [λmin
1 , λmax

1 ].

This completes the proof. �
5. Semilinear interface problems

In this section we study the semilinear problem (7).
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Theorem 5.1. Problem (7) possesses a positive solution if and only if F(λ1, λ2) < 0. In case the 
existence, the positive solution is unique.

Proof. Assume that there exists at least a positive solution (u1, u2) of (7). Then, using Proposi-
tion 2.5 1.,

0 = 
1(−λ1m1 + u
p1−1
1 ,−λ2m2 + u

p2−1
2 ) > 
1(−λ1m1,−λ2m2) = F(λ1, λ2),

whence we deduce that F(λ1, λ2) < 0.
On the other hand, assume that F(λ1, λ2) < 0. Let ϕ = (ϕ1, ϕ2) be a positive eigenfunction 

associated to F(λ1, λ2), then

u = (u1, u2) = ε(ϕ1, ϕ2), u = (u1, u2) = K(1,1),

it is a pair of sub-supersolution for ε small and K large. Indeed, K and ε must verify

Kpi−1 ≥ |λi |‖mi‖L∞(�i), εpi−1‖ϕi‖L∞(�i) ≤ −F(λ1, λ2) i = 1,2.

Clearly, we can take ε small and K large verifying both inequalities and such that u ≤ u in �.
The uniqueness follows by Theorem 4.3 in [8]. �
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