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Abstract—We perform the first study of database server ransom
scams, a class of attacks where attackers scan for database
servers, log in by leveraging the lack of authentication or
by using guessed credentials, drop the database contents, and
demand a ransom to return the deleted data. To enable our
study, we leverage 5,792 unique ransom notes collected by an
Internet scanning engine from 27,750 compromised ElasticSearch
and MySQL database servers over a period of two years. We
propose a novel automated three-step clustering approach. First,
it leverages similarity of the ransom notes text to identify servers
infected by the same campaign. Then, it identifies campaigns run
by the same threat group by merging note similarity clusters that
reuse IOCs (i.e., Bitcoin payment addresses, email addresses, Tor
onion addresses). Finally, it merges IOC reuse clusters whose
notes contain Bitcoin addresses co-spent in Bitcoin transactions.
This process groups the 27,750 database server infections into 94
clusters, identifying a dominant threat group that is responsible
for 49% of the infections.

I. INTRODUCTION

Database servers are a key asset of digital services as they
store the data required for the services to operate. Given
the large amount of data they store and the criticality of
that data, database servers are a valuable target for attackers.
Compromising a database server allows attackers to block the
server owners from accessing their data, and to demand a
ransom to restore access to the data.

Compared to ransomware attacks that encrypt or block ac-
cess to data stored in desktop computers or mobile devices [1],
[2], [3], [4], [5], attackers targeting database servers do not
need to employ social engineering techniques to convince
victims to install their malware. Instead, they can identify
targets by scanning the IPv4 address space for Internet-
connected vulnerable database servers [6] or leverage the
information obtained from Internet scanning engines [7], [8],
[9]. Furthermore, popular database software (e.g., MySQL,
ElasticSearch) can run on top of different platforms (e.g.,
Linux, Windows, MacOS, FreeBSD, UNIX) enabling attackers
to target database servers regardless of the underlying operat-
ing system the server uses.

In this work, we perform the first study of database server
ransom scams. In this class of attacks, the attacker identifies
target database servers by scanning the IPv4 address space or
by using Internet scanning engines. Once a target is located,
the attacker tries to log in to the database server by leveraging
the lack of authentication, using default credentials, or guess-
ing weak credentials. If the attacker manages to log into the
database server, it examines the databases the compromised

account has access to, drops the content of those databases,
and leaves a ransom note (e.g., by creating a new database
table with a catchy name) that tells the victim how to get the
data back. The note provides ransom payment details (e.g., a
Bitcoin address and the ransom amount) or a contact method
to request the payment details (e.g., email address, Tor hidden
service address).

We consider such attacks scams, as opposed to ransomware,
because the data is deleted rather than encrypted and because it
is highly unlikely that the victim can get the deleted data back,
even if the ransom is paid. For the attacker to be able to return
the data, it needs to have exfiltrated the data before its deletion.
Whether such exfiltration is possible depends on the privileges
of the compromised account. We have searched for reports
of database server ransom scams in abuse databases [10]
and using search engines. So far, we have not found any
report stating that the data was recovered after paying the
ransom. In contrast, the recent DeadBolt server ransomware,
which encrypts data stored in network-attached storage (NAS),
releases the decryption key after the ransom is paid [11].

Database server ransom scams are not new, e.g., a campaign
in January 2017 infected 28K MongoDB servers that lacked
authentication [12]. However, database server ransom scams
have not yet been systematically analyzed, arguably due to the
difficulty of obtaining sizable data about them. To enable our
analysis of database server ransom scams we leverage publicly
available data independently collected by the LeakIX Internet
scanning engine [9]. LeakIX has vulnerability plugins that scan
for popular database servers that lack authentication. From
those vulnerable servers, it collects the ransom notes left by the
attackers. From LeakIX data, we extract 5,792 unique ransom
notes collected from 27,750 compromised ElasticSearch and
MySQL servers over two years (May 2021 - May 2023).

One challenge when analyzing scams is how to identify
which victims may have been affected by the same scam
campaign and which campaigns may be run by the same group
of attackers. To address this challenge, we propose a novel
three-step automated clustering approach. The first step groups
ransom notes by the similarity of their text. A note similarity
(NS) cluster captures a scam campaign whose ransom notes
follow the same template, allowing for small changes in the
note text such as different payment addresses or minor text
structure modifications. The second step extracts indicators
of compromise (IOCs) from the ransom notes (i.e., Bitcoin
addresses, email addresses, Tor onion addresses) and merges
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NS clusters that share IOCs into IOC reuse (IR) clusters. This
step allows to identify campaigns that are run by the same
group, but use different ransom note templates. The third step
augments the Bitcoin addresses extracted from the ransom
notes with information extracted from the Bitcoin blockchain
to generate the co-spending or multi-input (MI) clusters [13],
[14], [15], [16]. If two Bitcoin addresses in the same MI cluster
have been extracted from notes in different IR clusters, those
IR clusters are merged, as they are operated by the same group.
The produced clusters capture threat groups managing one or
multiple scam campaigns.

Using the collected dataset and the produced clusters, we
answer the following research questions.
(RQ1) How prevalent are database server ransom scams?
We found 27,750 infected database servers (identified by their
IP address). This number is a lower bound given that LeakIX
only collects ransom notes from unauthenticated MySQL and
ElasticSearch database servers. Our prevalence estimate does
not include database servers using other database software
(e.g., Oracle, MongoDB), as well as MySQL and ElasticSearch
databases with some, but weak, authentication, which may
have been compromised through credential guessing.
(RQ2) How many groups are responsible for the database
server infections? Our clustering groups the 27,750 infections
into 94 group clusters, and identifies one dominant group
responsible for 49% of all infections. This group runs multiple
campaigns over time and targets different geographical loca-
tions (captured by the use of ransom notes written in English
and Chinese).
While this research is work-in-progress, we can already report
some contributions:

• We perform the first analysis of database server ransom
scams, where the attackers target database servers with
weak or no authentication, drop the database contents,
and demand a ransom to recover the data.

• We develop a novel three-step automated clustering ap-
proach to group database server infections into campaigns
launched by the same threat group.

• We apply our clustering to 27,750 infected database
servers, producing 94 group clusters. We identify a dom-
inant group responsible for 49% of the infections.

II. DATABASE SERVER RANSOM SCAMS

Attackers running database server ransom scams typically
perform four actions: (1) identify target database servers;
(2) break into the database servers; (3) drop the database
contents; and (4) place a ransom note. To identify target
database servers, attackers can scan the IPv4 address space
on default database ports (e.g., 3306/tcp for MySQL, 9200/tcp
for ElasticSearch), or leverage Internet scanning engines such
as Shodan [8], Censys [7], and LeakIX [9]. Once a target
server has been identified, the attacker tries to access it
by exploiting a vulnerability or compromising an account
by guessing account credentials. While some recent server
ransomware families have leveraged zero-day vulnerabilities
to compromise servers [17], [18], public reports on database

server ransom scams mention the attacker guessing credentials
to log into the server [19]. The guessed credentials can corre-
spond to database accounts or server accounts (e.g., accounts
with SSH access).

Next, the attacker executes the payload, i.e., exfiltrate
data (optional) and drop the database contents. Exploiting a
vulnerability or compromising an SSH account with enough
privileges may allow users to run their own code on the server.
On the other hand, compromising a database account may
not provide the attackers with the ability to run code, but
allows them to perform other actions that violate data integrity
such as dropping the database tables, adding a new user to
the database, or modifying the stored data. Most often, the
attacker simply executes database commands and there is no
malware installed on the server [20]. The lack of malware
makes attributing the scam harder and motivates our automated
clustering approach.

Finally, the attackers place a ransom note to tell the database
server administrator that the data was purposefully deleted
and how to pay a ransom to get the data back. Alternatively,
they provide a contact method (e.g., an email address) for the
victim to obtain the ransom payment details. If the attackers
only compromised a database account, they may be limited to
placing the ransom note in a database table, e.g., creating a
new table with a name such as “README: how to recover
your data”.

Such attacks are often called ransomware because the at-
tacker demands a ransom for the victim to recover its data.
However, it is more accurate to consider them scams, as there
is no evidence that the attackers exfiltrated the data, and they
are able to return it upon payment. Even if the data could
be exfiltrated, the attackers may decide that it is not worth
the effort as the exfiltration may take a long time, it requires
significant data storage resources from the attacker, and makes
it easy to identify the attacker’s server receiving the data.
Furthermore, if the victim pays, returning the data to the
compromised server would be too risky as that server would
likely be monitored at that point. Placing it on a Tor hidden
service is a better option, but if the data is large the attacker
still needs to invest in storage.

III. DATASETS

We obtain our data from the LeakIX [9] Internet scanning
engine. LeakIX has plugins that check for specific server
vulnerabilities, and provides a search API to obtain the events
produced by each plugin. Among others, LeakIX provides
plugins for identifying unauthenticated databases (e.g., Elas-
ticSearch, MySQL). These plugins offer an infected field that
identifies events where LeakIX identified an unauthenticated
database that contains a ransom note. To identify ransom
notes, LeakIX applies regular expressions to the names of files,
collections, and tables in the database. The regular expressions
look for keywords in the names of ransom notes (e.g., readme,
hacked, infected). This approach may miss infections that do
not use the expected keywords to name the ransom note.
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Plugin Events IP Port CC ASN Notes Addr.
Elastic 84,746 20,104 37 107 1,229 3,557 67
MySQL 38,158 7,691 7 102 922 2,235 209
All 122,904 27,750 41 124 1,745 5,792 272

TABLE I: LeakIX dataset summary.

Fig. 1: Daily number of infection events.

We build a dataset by querying LeakIX for events with the
infected flag set for the ElasticSearchOpen and MysqlOpen
plugins, which collect the ransom note text. We query LeakIX
once a month for 6 months between November 2022 and
April 2023. We obtain 204,257 initial events, of which only
60.2% contain a ransom note, 52.9% of the ElasticSearch
infected events, and 86.5% of the MySQL infected events. We
discard events without a ransom note. The regular expressions
used by LeakIX for identifying ransom notes can occasionally
introduce false positives, e.g., detect as a ransom note a
database table with configuration information. To address this
issue, we filter 0.64% of the events whose notes do not contain
at least one keyword associated with ransom (e.g., hacked,
backed, BTC, bitcoin).

Table I summarizes the filtered dataset, which contains
122,904 events with valid ransom notes obtained from 27,750
infected IP addresses running ElasticSearch or MySQL ser-
vices on 41 ports. The IP addresses are hosted in 124 countries
and belong to 1,745 ASNs. We use the number of IP addresses
to approximate the number of infected database servers. This
may overestimate the infected servers as the same server
could appear multiple times in the dataset under different
IP addresses. An infected server stays marked as such in
LeakIX until it is cleaned (i.e., LeakIX regular expressions no
longer detect an infection). When we queried the LeakIX for
ElasticSearch or MySQL infected servers, we notice infection
events that date back to 25th of May 2021, over a year earlier
than our data collection start date. In Figure 1 we report the
number of daily infection events.

ElasticSearch and MySQL software can run on a variety of
platforms. LeakIX was able to identify the OS in 88.9% of
the ElasticSearch events and 98.5% of the MySQL events. Of
the ElasticSearch events, 87.4% correspond to Linux servers,

Clustering type All Non-singl. Singl. Max. Med. Mean
Note similarity 408 94 (94.6%) 314 3,507 5 58.3
+IOC reuse 99 62 (99.4%) 37 4,046 10 92.8
+MI clust. (Groups) 94 59 (99.4%) 35 4,073 10 97.8

TABLE II: Clusters obtained after each clustering step. Bottom
row corresponds to the final clustering. Percentage is over
number of notes.

1.5% to Windows, and the remaining 0.03% include Mac
OS, FreeBSD, OpenBSD, Solaris, and UNIX. Of the MySQL
events, 78.9% are for Linux servers, 18.9% for Windows
servers, and 0.7% are for other OSes.

The dataset contains 5,792 unique ransom notes (identified
by SHA256 hash), and the same ransom note appears on
average in 35.3 events, from one or multiple IP addresses.
Occasionally, the same IP shows multiple ransom notes, likely
because it was re-infected. For MySQL, the ransom notes are
in plain text, while for ElasticSearch they are in JSON format
with the attackers placing the ransom note in a field that entices
to read its content (e.g., Readme, readThis). We find notes in
two languages: English (89.0%) and Chinese (10.7%). The
remaining 0.3% notes are too short to identify the language.

IV. CLUSTERING

Server infections in the dataset may come from a variety
of campaigns run by the same or different threat groups. We
apply a novel clustering approach to group server infections
belonging to campaigns run by the same group. Our clustering
comprises three steps. The first step clusters unique ransom
notes by computing their text similarity. We call the result-
ing clusters note similarity (NS) clusters. This step captures
ransom notes that belong to the same campaign and thus use
a common template in the campaign’s ransom notes. Since
attackers may run multiple campaigns, this step may produce
multiple NS clusters (e.g., one per campaign) that are operated
by the same attackers. The second step merges NS clusters that
share IOCs, namely Bitcoin addresses, email addresses, and
onion addresses. We call the resulting merged clusters IOC
reuse (IR) clusters. This step identifies different campaigns
run by the same group that reuse indicators. The third step
analyzes the Bitcoin blockchain to further merge IR clusters
if they contain addresses that belong to the same multi-input
(MI) cluster [13], [14], [15], [16]. We call the resulting clusters
group clusters. This step identifies campaigns run by the same
group that do not reuse contact indicators across campaigns,
but aggregate the profits from different campaigns before
cashing out. For each group cluster, we obtain the associated
LeakIX infection events where the note appears to produce
clusters of server infections.

Our clustering groups the 5,792 unique ransom notes into 94
group clusters, each characterizing infection campaigns run by
the same group. Table II summarizes the clusters obtained after
each step and Table IV the top 5 clusters by number of notes
at each clustering step. Next, we detail the three clustering
steps using these tables.
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Clusters
Threshold Total Non-singleton Singleton Precision
5 553 106 447 100.00%
6 408 94 314 100.00%
7 321 82 239 99.98%
8 252 77 175 99.98%
9 216 71 145 98.84%
10 184 65 119 81.27%

TABLE III: Note similarity threshold evaluation. The best
threshold is 6 because it provides perfect precision while
minimizing the number of clusters.

A. Note Similarity

We first cluster the 5,792 ransom notes by the similarity
of their text into 408 NS clusters. The goal of this step is
to capture ransom notes that have very similar text such as
those having the same text template with different indicators
(e.g., different Bitcoin ransom payment addresses) or different
names of databases dropped (specific to the victim server),
as well as those with minor differences in their text. To
capture text similarity we use SimHash [21], a fuzzy hash
that produces similar digests for similar inputs. SimHash is
designed to detect near-duplicate data more efficiently than
classical pairwise similarity metrics, like the Jaccard index,
which has quadratic complexity. It is Google’s preferred algo-
rithm for detecting near-duplicate web pages when crawling
the Web [22]. We compute the SimHash of each note and add
the digests to an index where digests with similarity above a
threshold are placed in the same bucket, i.e., NS cluster.

We evaluate different threshold values. Since we have no
ground truth, for each threshold value, we manually examine
the 10 largest clusters, which contain 70%–85% of all notes
depending on the threshold. We examine each of the entries in
the top 10 clusters classifying them as false positives (FPs) if
they are not similar to the rest of the cluster, and true positives
(TPs) otherwise. TPs and FPs are aggregated across the 10
clusters and we compute Precision = TP/(TP + FP ).
Table III summarizes the threshold selection evaluation. As the
threshold increases, the precision decreases and the number of
clusters reduces. We cannot compute the recall as we lack a
ground truth to identify the false negatives. But, the fewer
clusters with perfect precision the higher the recall will be.

We select 6 as threshold because it produces the smallest
number of clusters (408) with perfect precision. The first row
in Table II captures the results of the note similarity clustering.
Of the 408 clusters, 94 contain multiple notes and 314 are
singletons. Excluding the singleton clusters, the median cluster
size is 5 notes with a mean of 58 notes, and the largest cluster
has 3,507 notes. Manual examination shows that NS clusters
are very tight containing small variations of the same template
introduced by replacing indicators (e.g., Bitcoin addresses,
emails) in the text or by performing small modifications to the
text. All NS clusters contain notes written in a single language.

Table IV details the 5 largest clusters for each clustering
step. For each cluster, it shows an identifier and a label;
the number of notes; the number of Bitcoin addresses, email

addresses, onion addresses, and ransom amounts in the notes;
the number of events; the number of IP addresses and DB
plugins in the events (i.e., MySQL, ElasticSearch, or both);
and the number of NS clusters merged into the cluster.

For each cluster, we compute the longest common subse-
quence (LCS) of the notes in the cluster. From the produced
sequence of substrings, we remove all the substrings with
less than 4 characters and add a separator (“[...]”) between
the substrings. This produces a pattern that captures the
common template for the notes in the cluster. For example,
for cluster NS4 in Table IV the LCS string is: “All your
data was backed up from your server. You need to email us
at rambler+[...]@onionmail.org to recover your data. If you
dont contact us we will reach the General Data Protection
Regulation, GDPR,”. This template captures that all notes in
the cluster start with the same prefix and contain contact emails
with the same structure starting with “rambler+” and using
the onionmail.org mail service. The cluster label column in
Table IV, shows the initial part of the cluster’s LCS string.
Notes in clusters NS1 and NS5 start with the same prefix “All
your data is backed up. You must pay”, suggesting that they
belong to the same campaign, even if their notes had enough
differences to be placed in different NS clusters. Next, we
address such cases, as well as identify different campaigns of
the same group, by merging clusters that share IOCs.

B. IOC Reuse

A threat group may be responsible for multiple campaigns.
To identify campaigns run by the same threat group, we merge
clusters that share IOCs. For example, if notes in different
NS clusters request the victims to pay to the same Bitcoin
address, those campaigns should be run by the same group, as
the profits are being aggregated into the same Bitcoin address.
IOC extraction. To extract IOCs from the ransom notes
we use the iocsearcher IOC extraction tool [23]. iocsearcher
uses regular expressions to extract a large variety of IOCs
including addresses for a dozen different blockchains, email
addresses, and networking endpoints such as domains, URLs,
IP addresses, and onion addresses for Tor hidden services.
Compared to other IOC extraction tools, iocsearcher validates
the checksum embedded in blockchain addresses and Tor
onion addresses (version 3) avoiding FPs due to hashes that
are not valid Bitcoin or onion addresses.

The most common IOCs are email addresses (3,846) where
victims can contact the attacker, URLs (958), and Bitcoin
addresses (272) for the victim to pay the ransom. There are
also 3 Tor onion addresses, two version 3 addresses and one
in the deprecated version 2 format. Onion addresses are used
in notes that ask the victim to visit a Tor hidden service
and provide an identifier in the ransom note to obtain the
payment information. There is also one Monero payment ad-
dress. Addresses for other popular blockchain (e.g., Ethereum,
BitcoinCash, Cardano) are not present. Other extracted IOCs
are domain names (64) and universal unique identifiers (32).

The IOC reuse step focuses only on three IOC types:
blockchain addresses, email addresses, and onion addresses.
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Clustering ID Cluster Label Notes Addr. Email Onion Val. Events IP DB NSC

Note
similarity

NS1 All your data is a backed up. You must pay 3,507 38 3,481 0 15 27,803 7,798 2 1
NS2 To recover your lost databases and avoid leaking it 950 0 0 2 0 3,885 780 1 1
NS3 To recover your lost Database send 312 47 75 0 24 1,759 354 1 1
NS4 All your data was backed up from your server. 52 0 52 0 0 207 54 1 1
NS5 All your data is a backed up. You must pay 45 24 0 0 8 19,324 3,917 1 1

IOC reuse

IR1 (different ransom notes) 4,046 139 3,602 0 47 56,291 13,560 2 100
IR2 To recover your lost databases and avoid leaking it 973 0 0 2 0 3,960 795 1 24
IR3 (different ransom notes) 66 34 24 0 5 360 72 1 16
IR4 All your data was backed up from your server. 52 0 52 0 0 207 54 1 1
IR5 To recover your databases, visit http://godransm3nnlo... 51 0 0 1 0 239 49 1 11

Bitcoin
analysis (MI)

BC1 (different ransom notes) 4,073 142 3,606 0 47 56,421 13,586 2 109
BC2 To recover your lost databases and avoid leaking it 973 0 0 2 0 3,960 795 1 24
BC3 (different ransom notes) 66 34 24 0 5 360 72 1 16
BC4 All your data was backed up from your server. 52 0 52 0 0 207 54 1 1
BC5 (different ransom notes) 51 0 0 1 0 239 49 1 11

TABLE IV: Top 5 clusters at each clustering step. Addr. corresponds to Bitcoin addresses, Val. to unique ransom amounts,
DB to targeted databases (MySql, ElasticSearch), and NSC to the number of NS clusters merged into that cluster.

The other IOC types are not used because domains are often
benign, the URLs contain simply a domain with a scheme
(i.e., there is no resource), and each UUID only appears in
one note and thus cannot be used for merging.

Merging clusters by IOC reuse. This step first generates the
set of IOCs (i.e., Bitcoin, email, and onion addresses) extracted
from all the ransom notes in a NS cluster. Then, it merges NS
clusters that share IOCs. The merging process starts with an
empty set of IR clusters, and iterates on the list of NS clusters.
For each NS cluster, it checks if its IOC set has a non-empty
intersection (i.e., shares at least one IOC) with the IOC set of
any of the IR clusters. If the NS cluster shares IOCs only with
one IR cluster, the NS cluster is merged into that IR cluster. If
the NS cluster shares IOCs with multiple IR clusters, those IR
clusters as well as the NS cluster are merged together. If the
NS cluster is not similar to any IR cluster, a new IR cluster
is created for it. After the iteration on NS clusters completes,
the IR clusters are output.

IOC reuse clusters. Table II shows that the 408 NS clusters
are merged into 99 IR clusters. Of the 99 IR clusters, 62
contain more than one note, accounting for 99.4% of the 5,792
notes. The remaining 37 are singleton clusters with only one
note. Overall, IOC reuse reduces the number of clusters by
75%. The reduction is even more significant for singleton
clusters that decrease from 314 to 37 (12%). On average, an IR
cluster contains 50% more ransom notes than an NS cluster.
The median size of an IR cluster is 10 notes (mean of 92.8),
compared to a median of 5 (mean of 58.3) for NS clusters.

The group of rows in the middle of Table IV shows the
five largest IR clusters. The rightmost (NSC) column in the
table captures the number of NS clusters merged into that
IR cluster. For example, the IR1 cluster corresponds to 100
merged NS clusters including three of the top 5 NS clusters
(NS1, NS3, NS5). However, not all NS clusters are enlarged
through IOC reuse, for example, IR4 is the same as NS4. This
cluster contains 52 email addresses for victims to contact the
attackers for payment instructions, and it does not contain any
Bitcoin or onion addresses. None of the 52 email addresses is
present in any other NS cluster, and thus the cluster remains
unchanged. When multiple NS clusters are merged into an IR

cluster (e.g., IR1, IR3), the IR cluster may not have anymore
a common template for the ransom notes, as each NS cluster
uses a different template. In this case, we replace the cluster
label in Table IV with the string “(different ransom notes)”.

The IOC reuse step reduces the number of clusters by 75%.
Still, it is possible that some NS clusters from the same owners
did not reuse IOCs and have not been merged. To further
identify campaigns from the same owners that do not reuse
IOCs, we use the information from the Bitcoin blockchain.

C. Bitcoin Multi-Input Clustering

We leverage the public Bitcoin transaction data to further
merge IR clusters. For this, we use the open-source WatchY-
ourBack [24] platform to analyze the Bitcoin blockchain up
to block height 810,200, corresponding to October 1st, 2023.
First, we examine which payment addresses extracted from
the ransom notes have received funds. Of the 272 Bitcoin
addresses, 137 (50.4%) have received at least one deposit. We
call these 137 Bitcoin addresses the seeds.

Next, we expand the set of seeds using multi-input (MI)
clustering [13], [25], [15], [14]. MI clustering considers that
addresses that co-spend together in the same transaction
are under the control of the same owner since signing the
transaction requires access to the private keys of the input
addresses. We use previously proposed heuristics to exclude
CoinJoin transactions that do not satisfy this property [26],
[27]. Clusters are created transitively; if a transaction has
addresses A and B as inputs, and another transaction has B
and C as inputs, then A, B, and C are all considered to belong
to the same owner and thus belong to the same MI cluster
(MIC). If a seed corresponds to an online wallet in a service
like an exchange, then the MIC of that seed may incorrectly
include online wallets from other unrelated clients of the
service [11]. To avoid this problem, we identify online wallets
using the tag database in WatchYourBack. This step identifies
two seeds belonging to MICs from exchanges, one in Poloniex
and the other in Coinbase. We also ran the WatchYourBack
machine learning exchange classifier on the seeds, identifying
an additional 7 seeds on 6 untagged MI clusters belonging
to exchanges. Other addresses in the MICs of those 9 seeds
may belong to unrelated clients of the exchanges. Thus, for
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Clustering All Non-singl. Singl. Max. Med. Mean
Note similarity 408 94 (94.6%) 314 3,507 5 58.3
IOC reuse 281 141 (97.6%) 140 3,451 6 40.1
MI clustering 1,336 162 (79.7%) 1,174 2,977 5 28.5

TABLE V: Ablation study results for clustering the 5,792 notes
using each clustering step separately. The note similarity row
is the same as the first row in Table II.

those 9 seeds, we do not use their MICs and instead place
each seed by itself in its own MIC. Overall, the 137 seeds
belong to 122 MICs. Of those, 39 MICs contain at least two
addresses, and 83 are singletons (i.e., they only include one
seed). The 39 non-singleton clusters contain 57 additional non-
seed addresses that were not part of the LeakIX dataset, and
were discovered using the MI clustering.

Finally, we use the MICs to merge IR clusters that contain
addresses in the same MIC. The merging procedure is anal-
ogous as the one described in Section IV-B, but it requires
a non-empty intersection of MIC identifiers (instead of IOC
sharing) as a signal to merge clusters. As shown in the bottom
row of Table II, MI clustering of Bitcoin addresses further
reduces the number of clusters from 99 to the final 94 clusters.
The reduction is significantly smaller than the one obtained
with IOC reuse, which may be due to attackers avoiding MI
clustering on purpose, as recently pointed out [11]. Still, this
step eliminates 5 clusters and increases the average (non-
singleton) cluster size from 92.8 to 97.8 notes.

It is worth noting that the 57 additional non-seed addresses
identified are not added to the final clustering, as they do
not come from any ransom note in our dataset. Instead, they
are kept as a separate MIC feature. Given a final cluster, we
can output what additional Bitcoin addresses from the same
owners the MIC discovered.

D. Ablation Study

We perform an ablation study to quantify how much our
three-step clustering improves compared to using each clus-
tering step in isolation. Table V summarizes the results of
the ablation study on the clustering results. Using only NS
clustering we obtain the same results in the first row of
Table II with 408 clusters (94 with more than one ransom
note). Clustering notes that share IOCs produce 281 clusters
(141 with multiple notes). To apply the MI clustering, we first
need to perform a lightweight IOC reuse clustering where we
group notes that contain the same Bitcoin address. Notes with
no Bitcoin addresses are placed in a singleton cluster. Next,
we calculate the MI clustering on the Bitcoin addresses and
merge clusters containing addresses in the same MI cluster.
This approach produces 1,336 clusters (162 with more than
one ransom note). The clustering step in isolation groups the
most is the one targeting the IOC reuse. In contrast, IOC reuse
of Bitcoin addresses combined with MI clustering groups the
least, suggesting that the reuse of email and onion addresses
is an important factor. To conclude, our three-step clustering
produces 94 clusters, less than half the minimum of 281
clusters when using any individual clustering step.

Fig. 2: Chinese note with same Bitcoin address observed in
English notes.

V. CLUSTER ANALYSIS

In this section we analyze more in detail selected clusters.

BC1. This is the largest cluster containing 4,073 notes (70.3%
of all notes) observed in 13,586 victim servers (49% of all
IP addresses). We observe activity associated to this cluster
for nearly two years, from May 2021 to the end of our
analysis. The long lifetime, together with the fact that the
cluster includes nearly half of the infected servers, indicates
that the group behind this cluster is a major player in the
database server ransom scam ecosystem. The cluster contains
109 NS clusters indicating that it runs a variety of campaigns
with different text in the ransom notes. Thus, there is not a
single template for the notes, The ransom notes are written
either in English (96.5%) or Chinese (3.5%) indicating that
they are targeting users in different geographical locations.
We manually examine the NS clusters confirming the link
between English and Chinese notes. For example, BTC ad-
dress 1J8jK64528P9CKJm8Sk5oY6eea2Qm5UHYK appears in
English notes like “All your data is backed up. You must pay
0.15 BTC to 1J8jK64528P9CKJm8Sk5oY6eea2Qm5UHYK
48 hours to recover it.” or “To recover your lost Database and
avoid leaking it: Send us 0.015 Bitcoin (BTC) to our Bitcoin
address 1J8jK64528P9CKJm8Sk5oY6eea2Qm5UHYK”, but
also in Chinese notes such as the one in Figure 2.

The 4,073 notes in the cluster contain 142 payment ad-
dresses (51.8% of all Bitcoin addresses), with 65 of them hav-
ing received deposits. The ransom amounts are low, ranging
from 0.0015 BTC up to 0.26 BTC. Such low amounts can be
an incentive for victims to pay, even when they have doubts
about whether their data can be recovered.

BC2. The second largest cluster is responsible for 795 infected
servers and contains 973 notes. All the notes share the same
LCS: “To recover your lost databases and avoid leaking it:
visit http://[...] and enter your unique token [...] and pay the
required amount of Bitcoin to get it back. Databases that we
have:[...]. Your databases are downloaded and backed up on
our servers. If we dont receive your payment in the next 9
Days, we will sell your database to the highest bidder or use
them otherwise.[...]”. None of the notes contain a Bitcoin or
email address. Instead, the attackers request the victim to visit
a Tor hidden service, and enter a token in the note to obtain the
amount to pay and the ransom address. Adding this level of
indirection prevents Internet scanning engines to observe the
ransom addresses, which in turn hinders the ability to analyze
them using the Bitcoin public transaction data. The cluster
contains two onion addresses; initially, the attackers used a
version 2 address hn4wg4o6s5nc7763.onion, that moved later

6

Clustering-Based Characterization of Database Server Ransom Scams

65



to a newer version 3 address o42xfh5kao7mrtesnok5jgdsfagj
sgzxlxdlpkpd2x6lpckhzk225yad.onion

We use the note LCS template to search for public reports
for the campaign captured by the cluster. We find reports
indicating that the cluster corresponds to a database server
ransom scam, rather than a real ransomware [19], [28]. The
attackers rely on brute force to exploit weak credentials on
MySQL servers. After gaining access, they drop the databases
and leave the ransom note, but they do not copy the data out
of the server. Thus, even if the victim pays the ransom, the
attackers have no way of returning the deleted data. While
the report mentions only MySQL servers being targeted and
English ransom notes, our clustering reveals that the same
attackers also run other campaigns targeting ElasticSearch and
using notes with text in Chinese.

VI. RELATED WORK

Due to its privacy properties and poorly regulated legal
status in some countries, the Bitcoin ecosystem has attracted
cybercriminal operations such as ransomware [1], [2], [3], [4],
[5], thefts [16], scams [29], [30], [16], [31], [32], [33], human
trafficking [34], cryptojacking [35] hidden marketplaces [36],
[37], and money laundering [38]. In contrast, we investigate
database server ransom scams, which target database servers
without authentication, drop the data, and demand a ransom
to recover the deleted data.

Clustering. Many works automatically group similar mali-
cious instances such as scam websites [39], [40], [33], scam
emails [29], and malware samples [41], [42], [43], [44], [45],
[46], [47], [48]. Our work differs because it specifically targets
the clustering of ransom notes. Most related is the work by
Paquet-Clouston et al. [29] that clusters emails where the
last 50 words are similar, identifies sextortion emails through
keyword search, and then manually merges related email
clusters. In contrast, our clustering computes the similarity
of the whole ransom note and automatically merges related
clusters that reuse IOCs.

Ransomware. Due to its impact, ransomware targeting desk-
tops and mobile devices has attracted much research [1],
[2], [3], [4], [5], [49], [50], [51]. Instead, database server
ransom scams target servers. Recently, Gomez et al. [11]
investigated the DeadBolt ransomware that encrypts data in
network-attached storage (NAS) servers. In contrast, database
server ransom scams do not encrypt data, but delete it without
exfiltrating it. Thus, the victim has no means to recover the
data even after paying the ransom.

Scams. A variety of scams have been analyzed by prior work
including technical support scams [52], [53], sextortion [29],
romance scams [54], survey scams [55], pet scams [56], and
tax scams [57]. To the best of our knowledge, our work first
investigates database server ransom scams.

VII. DISCUSSION

Evasion. We observe two main evasion techniques. First, some
campaigns do not provide the ransom payment details in their

notes, instead providing Tor onion addresses or contact emails
to obtain them. Such indirection complicates the collection of
Bitcoin addresses. However, it may be possible to obtain the
Bitcoin addresses through scam-baiting techniques [52], [58]
such as automating the submission of identifiers to Tor hidden
services and the sending of initial contact emails. Second,
attackers try to hamper IOC extraction by removing spaces
and punctuation before or after the IOCs. Such evasion does
not work for blockchain and onion addresses if the extraction
verifies the embedded checksum. However, for other IOCs
such as emails and URLs, spurious text may be added at the
beginning or end. Obfuscating the IOCs to extraction tools also
obfuscates them for real victims, which may in turn prevent
them from paying even if they want to. As attackers become
aware of our approach they may incorporate other evasions
such as minimizing the reuse of IOCs across campaigns.
However, avoiding IOC reuse does not come for free as it
may require automated approaches to handle many IOCs.
Ethical considerations. We do not collect data from users
or infected servers ourselves. Instead, we leverage publicly
available data independently collected by the LeakIX scan
engine. In particular, LeakIX collects data from database
servers that have not set up authentication. From those servers,
they collect the name of database tables and the table content
for tables whose name matches their regular expressions for
ransom notes names. Since those regular expressions can
occasionally have false positives, we apply an additional filter
to eliminate data that does not look like a valid ransom note.
LeakIX does not modify any data in the server.

VIII. CONCLUSIONS

We present the first study of database server ransom scams,
a class of attacks targeting database servers with no authen-
tication or guessable credentials. We leverage the LeakIX
Internet scanning engine to collect 5,792 unique ransom notes
from 27,750 infected ElasticSearch and MySQL database
servers. We propose a novel approach to cluster infections
into campaigns run by the same threat group. Our clustering
leverages the similarity of the ransom note text to group notes
into campaigns. Then, it merges note similarity clusters that
reuse IOCs to identify campaigns run by the same group.
Finally, it combines the IOC reuse clusters using the MI
clustering extracted from the Bitcoin blockchain. Our approach
clusters the 27,750 infections into 94 groups, identifying a
dominant group responsible for 49% of the infections.
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