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Abstract
In this work, a detailed multibody model of an electric kickscooter is presented. The model
includes toroidal wheels as well as rear and front suspensions. The equations of motion are
derived and linearized along the steady forward motion of the vehicle. Using an efficient
linearization approach, suitable for complex multibody systems with holonomic and non-
holonomic constraints, allows for obtaining the reduced linearized equations of motion as
a function of the geometric, dynamic, wheels’, and suspensions’ parameters. The proposed
electric kickscooter multibody model is validated with the stability results of a previously
presented electric kickscooter benchmark. Since the resulting eigenvalues are parameterized
regarding the design parameters, a detailed linear stability analysis of the system is per-
formed. In particular, the influence on the stability of the toroidal geometry of the wheels,
the elliptic cross-section of the toroidal wheels, the rider model, the steering axis inclination
angle, the inertia tensor of the front frame, and the rear and front suspensions is analyzed.
The model presented, together with the linearized equations of motion obtained in this work,
enables a systematic analysis of the stability of these vehicles, which helps design new elec-
tric kickscooters with improved vehicle safety conditions and oriented to a wider range of
potential users.

Keywords Electric kickscooter · Nonholonomic system · Linearization · Stability analysis

1 Introduction

Personal transportation in urban areas has been evolving in recent years, with more and
more people increasingly opting for light and nonpolluting means of transport. Among the
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advantages that users find are economic savings, physical exercise, and respect for the en-
vironment [1]. In addition to these advantages, there is a growing problem in the centers of
large and medium-sized cities, where the high number of motorized vehicles causes high
pollution and permanent traffic jams. Many municipalities have already limited the use
of combustion-engine vehicles in city centers, and this restriction is expected to become
increasingly widespread and restrictive. Therefore, the use of light, nonpolluting, single-
person vehicles such as bicycles or scooters is emerging as a widely used alternative. More-
over, the use of these vehicles is being boosted introducing electric motors. Electric bicycles
and scooters allow covering longer distances (or with greater slopes) while reducing the
required physical effort of the rider, thus making them accessible to more people. Among
the light unipersonal electric vehicles, one can find the bicycle, the scooter, the Segway,
or the skateboard, with the electric bicycle being the most widespread among them. How-
ever, given its lightness, small size, and low physical effort required, the electric kickscooter
(hereafter referred to as an e-scooter) is presented as a present and future alternative to the
bicycle.

In vehicle dynamics, bicycles and motorcycles have been research subjects for more
than 120 years. The work by Whipple [2], in 1899, was the first paper devoted to the sta-
bility analysis of bicycles. Linear and nonlinear dynamics aspects of a simplified bicycle
model, together with some experiments, were presented by Åström et al. [3], and Limebeer
et al. [4] considered simple and complex models to perform a review of different bicycle
and motorcycle aspects. Meijaard et al. [5] presented, in 2007, a remarkable work with
a well-acknowledged benchmark bicycle model with a complete list of validated parame-
ters. This benchmark has been extensively used in several experimental [6] and theoretical
works [7–10] devoted to multibody dynamics. The linear stability of the steady forward and
circular motions of the bicycle benchmark was meticulously analyzed by Basu-Mandal et
al. [7] and Xiong et al. [9, 11]. Furthermore, more advanced models of frames, tires, and rid-
ers were introduced in different extensions of the bicycle benchmark [12–17]. To describe
the interaction of the electric drive components on the driving characteristics of electrically
assisted bicycles, simulations of the driving behavior of bicycles with different positions of
battery and motor in open- and closed-loop tests can be found by Bolk et al. [18]. With re-
gard to motorcycles, Sharp [19] was one of the first authors to publish his stability studies by
computing the eigenvalues of a motorcycle under different conditions, describing the three
most characteristic linear modes of two-wheeled vehicles. Cooper [20] showed the impor-
tance of aerodynamic effects on the stability of motorcycles when traveling at high speeds,
and Jennings [21] showed that the stability of a motorcycle is sensitive to suspension damp-
ing. Next, Sharp [22] studied the effect of accelerations and decelerations on stability, and
Roe et al. [23] analyzed the effect of torsional stiffness on stability improvement. Spler-
ings [24] studied the gyroscopic effect on stability, and Nishimi et al. [25] compared the fre-
quencies and modes computed by eigenvalue calculation of a motorcycle model with those
obtained with experimental modal analysis. A sensitivity analysis to assess the stability of
the motorcycle, based on eigenvalue calculation and experimental work, was performed by
Sharp [26]. The comparison of a modal analysis using eigenvalue computation and exper-
imental results was also carried out by Cossalter et al. [27], and the stability analysis of a
scooter was presented in [28].

The number of works devoted to the study of e-scooters has rapidly increased in re-
cent years. The potential of e-scooters as a hybrid mode of transport, combined with public
transport in large cities, was confirmed by Kostrzewska et al. [29]. Several studies related
to safety and injuries exist. Unkuri et al. [30] focus on injuries in children and teenagers
on e-scooters, and Griffin et al. [31] compare the severity of injuries in children (aged 2–12
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years) between traditional and motorized scooters. Mebert [32] carried out in Switzerland a
study on injuries in adults aged 16-80 years, showing that the number of cases has increased
in recent years. In the same way, a recent review performed by Kowalczewska et al. [33]
concluded the rising number of accidents and injuries involving e-scooters. Moreover, the
analysis of the stability and maneuverability of these vehicles to ensure the safety of the
driver and other road users can be found in other works. García-Vallejo et al. [34] presented
an e-scooter benchmark based on the SEAT eXS Kickscooter ES2, with its corresponding
set of parameters. Using the linear equations of the bicycle benchmark by Meijaard et al. [5],
in [34], it was shown that, for the numerical values of the presented e-scooter benchmark pa-
rameters, these vehicles are completely unstable in the velocity range 0–10 m/s. Next, Paudel
et al. [35] presented the range of design parameters in the current designs of e-scooters and
analyzed their performance in terms of self-stability, braking effect, and steady-state turn-
ing. Despite finding some self-stability velocity range, the results showed that the current
e-scooter designs are not as stable as bicycles, and these vehicles were found unstable within
the most common range of legislated riding velocity. Klinger et al. [36] carried out simula-
tion studies and on-road tests for two scenarios of particular interest from a vehicle safety
perspective: straight-line stability and emergency braking. Concerning the driver’s comfort,
Asperti et al. [37] studied the vertical dynamic behavior by presenting a model that accounts
for the mechanical impedance of the driver, and Cano-Moreno et al. [38] quantitatively as-
sessed, based on the velocity and quality of the road, the effects of vibrations on the comfort
and health of the e-scooter driver. Garman et al. [39], by designing a test course simulat-
ing an urban environment, performed a successful characterization of the e-scooter rider
kinematics and vehicle dynamics. Brunner et al. [40] analyzed the impact of hand signals
and rear blind spot checks on e-scooters stability, and Dozza et al. [41] introduced a frame-
work for a data-driven evaluation of micro-mobility vehicles (bicycles and e-scooters) in
field tests. Nevertheless, to the best of authors’ knowledge, a detailed e-scooter multibody
model for methodologically analyzing the stability of these vehicles has not yet been pre-
sented.

The objectives of this paper are to present a detailed multibody model of an e-scooter,
obtain the linearized equations along the steady forward motion as a function of the main
design parameters of the vehicle, and conduct a detailed linear stability analysis. The pa-
per presents several contributions. First, an e-scooter multibody model, which considers the
numerical values of the e-scooter benchmark by García-Vallejo et al. [34] and is based on
the SEAT eXS Kickscooter ES2, is presented. First, compared to previous works existing
in the literature, the model includes toroidal wheels instead of hoop-shaped wheels and rear
and front suspensions. Second, another major contribution is the derivation of the reduced
linearized equations of motion of the uncontrolled e-scooter multibody model along the
steady forward motion. In the works by García-Vallejo et al. [34] and Paudel et al. [35],
the linear stability analysis is conducted using the linear lean and steer equations of the bi-
cycle benchmark by Meijaard et al. [5], which involve ad hoc linearization as opposed to
linearization of fully nonlinear equations. The linearized equations by Meijaard et al. [5],
based on the work by Papadopoulos [42], are derived using angular momentum balance
about various axes and are not based on a systematic linearization of fully nonlinear equa-
tions of motion. In contrast, this paper develops a detailed nonlinear model of the e-scooter.
An efficient linearization approach [43], previously used with the bicycle benchmark [43]
and the waveboard [44] multibody models, is used in this work. With this linearization ap-
proach, the analytical expressions of the linearized equations are obtained not only as a
function of the geometric and inertial parameters of the benchmark by Meijaard et al. [5]
but also as a function of the toroidal wheels’ and suspensions’ parameters of the e-scooter.
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Lastly, since the eigenvalues are parameterized in terms of these design parameters, a de-
tailed linear stability analysis is performed by considering a wide range of scenarios. In
this way, studying the influence of the different design parameters on the stability of these
vehicles will help develop new e-scooters with improved vehicle safety conditions and ori-
ented to a wider range of potential users, including elderly and physically impaired individ-
uals.

The following structure is considered. After the Introduction part, Sect. 2 describes the
e-scooter multibody model in detail. Particular attention is paid to describing the model of
toroidal wheels and the front and rear suspensions, and the nonlinear equations of motion are
derived. Next, Sect. 3 presents the linearized equations of motion along the steady forward
motion. In Sect. 4, the linear stability results are shown and discussed, and finally, Sect. 5
summarizes the main conclusions obtained from this work.

2 Description of the e-scooter multibody model

In this section, the e-scooter multibody model is presented. The model considers the ge-
ometric and dynamic parameters of the e-scooter benchmark proposed by García-Vallejo
et al. [34], corresponding to the SEAT eXS Kickscooter ES2. The modeling of the toroidal
wheels and the rear and front suspensions are described in detail, and the nonlinear equations
of motion are presented.

2.1 Description of the multibody model

The multibody model presents seven rigid bodies: the rear and front wheels are bodies R and
F , respectively; the rear body and frame assembly, which includes a rigid rider, is body B;
the front handlebar is designated as body H ; the rear and front suspensions are represented
as bodies SR and SF , respectively; and lastly, the global reference frame is denoted as body
1. The origin of the global frame is O1, and the origins of the body reference frames are
located at the respective centres of mass Gj , with j = {R,F,B,H,SR,SF }.

To describe the system, a set of n = 15 coordinates is used, with the n × 1 vector of
coordinates x given by:

x = (
xb yb zb ψb φb θb δ s θSR

θR θF ξR ξF ηR ηF

)T
. (1)

The coordinates xb , yb , and zb are Cartesian coordinates that locate the centre of mass GB ;
ψb is the yaw angle; φb is the lean angle; and θb is the pitch angle. The triplet {ψb,φb, θb}
allows orientating body B in space. The steering angle δ corresponds to the rotation of the
handlebar with respect to body B . The coordinate s represents the distance between GH

and GF and considers the spring elongation of the front suspension, and θSR
represents

the rotation of body SR with respect to body B , due to the rear suspension. The rotations
of the rear and front wheels are given by θR and θF , respectively. Lastly, ξR , ξF , ηR and
ηF are angular coordinates used to describe the toroidal geometry of the wheels. Figure 1
shows the numbering of the bodies, the set of generalized coordinates of the system and the
body reference frames, and a lateral view of the multibody model with the main geometric
parameters is depicted in Fig. 2.

The list of parameters of the e-scooter, classified into geometric, dynamic, wheels’ and
suspensions’ parameters, is shown in Table 1 of Appendix A. The numerical values of these
parameters correspond to those of the SEAT eXS Kickscooter ES2. To obtain the moment
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Fig. 1 Multibody model of the SEAT eXS Kickscooter ES2: numbering of the bodies and body reference
frames. The generalized coordinates of the multibody system, presented in Eq. (1), are shown, except for the
coordinate θSR

, shown in Fig. 4 (b); the coordinate s, depicted in Fig. 5 (b); and the angular coordinates ξR ,
ξF , ηR and ηF , which are shown in detail in Fig. 6. The rigid rider is represented in a simplified manner to
facilitate the visualization of the multibody model

of inertia tensors of the bodies, a CAD model of the e-scooter, shown in Fig. 3, is created.
Figure 3 (a) shows a view of the e-scooter without including the rider, and Fig. 3 (b) depicts
the vehicle with the rider model. A rigid rider with mass mh = 75 kg is considered in this
work. As detailed in Table 1 of Appendix A, the mass of body B includes the masses of the
deck, md = 2.5 kg, and the rider, and is given by mB = md + mh = 77.5 kg. Note that, in
Figs. 1 and 2, the shape of the rider has been simplified in order to ease the visualization of
the multibody model. The orientation matrices of the body reference frames, expressed as a
function of the elemental rotation matrices, are given by:

RB (x) = Rψb
Rφb

Rθb
, RSR

(x) = RBRθSR
, RR (x) = RSR

RθR
, (2)

RH (x) = RBRνRδ, RSF
(x) = RH , RF (x) = RSF

RθF
, (3)

where Rν considers the steer axis tilt angle denoted by ν in Fig. 1.
A detailed view of the rear suspension is shown in Fig. 4. In particular, Fig. 4 (a) shows

a view of the rear suspension of a SEAT eXS Kickscooter ES2, and Fig. 4 (b) illustrates
a scheme with body SR and the coordinate θSR

. Note that, as shown in Fig. 4 (b), the rear
suspension is modeled by means of a torsion spring, with stiffness constant kr , and a damper
with damping coefficient dr . Similarly, Fig. 5 (a) shows the front suspension of the SEAT
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Fig. 2 Lateral view of the e-scooter multibody model with the main geometric parameters. A detailed list of
the parameters with their numerical values can be found in Table 1 of Appendix A

Fig. 3 CAD model of the e-scooter SEAT eXS Kickscooter ES2, with a rigid rider of mass mh = 75 kg

eXS Kickscooter ES2, and Fig. 5 (b) presents a scheme with body SF and the coordinate s.
The front suspension is modeled as a linear spring with stiffness constant kf and a damper
with damping coefficient df .
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Fig. 4 Rear suspension of the e-scooter multibody model

Fig. 5 Front suspension of the e-scooter multibody model

The position vectors of the centres of mass Gj , expressed in the global reference frame,
are computed as follows:

rGB
= (

xb yb zb

)T
, rA = rGB

+ RB r̄GBA,

rGSR
= rA + RSR

r̄AGSR
, rGR

= rA + RSR
r̄AGR

, (4)

rI = rGB
+ RB r̄GBI , rGH

= rI + RH r̄IGH
,

rGF
= rGH

+ RH r̄GH GF
, rGSF

= rGF
+ RH r̄GF GSF

,
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where rA and rI are the position vectors of points A and I , shown in Fig. 2. In Eqs. (4),
r̄GBA, r̄AGSR

, r̄AGR
, r̄GBI , r̄IGH

, r̄GH GF
and r̄GF GSF

are vectors, expressed in the body
reference frames, given by:

r̄GBA = (
d − xB 0 RR − zB

)T
, r̄AGSR

= (−d/2 0 0
)T

,

r̄AGR
= (−d 0 0

)T
, r̄GBI = (

xI 0 0
)T

, (5)

r̄IGH
= (

0 0 −b
)T

, r̄GH GF
= (

0 0 −s
)T

,

r̄GF GSF
= (

0 0 e
)T

,

where xB and zB are the horizontal and vertical distances, respectively, between the centre
of mass GB and the rear contact point P ; xI is the horizontal distance between GB and the
auxiliar point I ; b is the distance between I and the centre of mass GH ; d is the distance
between the auxiliar point A and the centre of mass GR ; e is the distance between GF and
GSF

; and RR is the radius of the rear wheel. These parameters are shown in Fig. 2, and their
numerical values are presented in Appendix A.

2.2 Description of the toroidal wheels

The wheels of the e-scooter are modeled as tori with elliptic cross-section. To parameterize
the surfaces of the toroidal wheels, the angular coordinates ξi and ηi , presented in Eq. (1),
with i = {R,F }, are used. The toroidal wheels present a major radius ρi and a minor radius
ai , verifying the following relation:

ρi + ai = Ri, (6)

where Ri is the radius of the hoop-shaped wheel of equivalent radius.
In the elliptic cross-section, the minor axis of the ellipse is bi , and the major axis corre-

sponds to the previously mentioned minor radius of the torus ai . The elliptic profile ri , in
polar form relative to its centre, is given by:

ri (ηi) = aibi√
(bi cos (ηi))

2 + (ai sin (ηi))
2
. (7)

Note that the elliptic profile is parameterized in terms of the coordinate ηi . Figure 6 (a)
presents a three-dimensional view of the toroidal wheel, with the coordinates ξi and ηi , and
Fig. 6 (b) represents a cross-section of the wheel, where the geometric parameters ρi , ai ,
and bi can be seen.

The geometry of the wheel is completely described by defining the nondimensional pa-
rameters μi and σi , with i = {R,F }:

μi = ai

ρi

, σi = bi

ai

, (8)

where μi is the torus aspect ratio, given by the ratio of the minor to the major radius of the
wheel, and σi is the aspect ratio of the elliptical cross-section, defined as the ratio of the mi-
nor to the major radius of the ellipse. Note that the hoop-shaped wheel case of the e-scooter
benchmark in Ref. [34] is also captured with this model and is obtained by degenerating the
tori for μi = σi = 0, leading to ρi = Ri . The inertia tensors of the rear and front wheels used
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Fig. 6 Model of the toroidal wheel. A three-dimensional view of the wheel is shown in Fig. 6 (a), which
depicts the angular coordinates ξi and ηi , with i = {R,F }, that describe the toroidal geometry. The local
reference frames, the centre of mass Gi , the centre of the torus tube Ci , and the contact points with the
ground, denoted as P and Q for the rear and front wheels, respectively, are also shown in Fig. 6 (a). A cross-
section of the wheel is depicted in Fig. 6 (b), illustrating the major radius of the torus, ρi , and the minor and
major axes of the elliptic cross-section, bi and ai , respectively

in the e-scooter benchmark [34] are substituted by the inertia tensors of an elliptic torus,
parameterized in terms of the cross-section parameters ρi , ai , and bi , whose expressions can
be found by Diaz et al. [45]:

Iixx = Iizz = 1

8
mi

(
4ρ2

i + 3a2
i + 2b2

i

)
, (9)

Iiyy = 1

4
mi

(
4ρ2

i + 3a2
i

)
, (10)

with i = {R,F }.
The contact of the e-scooter wheels with the ground leads to the following set of holo-

nomic constraints:

C (x) = (
rPZ

rQZ
n · tLR

n · tTR
n · tLF

n · tTF

)T = 0, (11)

where rPZ
and rQZ

are the Z-components of the position vectors of the contact points, rP

and rQ; tLi
and tTi

are the longitudinal and transversal tangent vectors to the contact points;
and n is the normal vector to the ground surface. These vectors are given by:

rP = rGR
+ RR r̄GRP , rQ = rGF

+ RF r̄GF Q,

tLR
= RR

∂ r̄GRP

∂ξR

, tTR
= RR

∂ r̄GRP

∂ηR

, (12)

tLF
= RF

∂ r̄GF Q

∂ξF

, tTF
= RF

∂ r̄GF Q

∂ηF

.
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In Eqs. (12), r̄GRP and r̄GF Q are position vectors, expressed in the local reference frames of
bodies R and F , respectively, and computed as follows:

r̄GRP = RξR

(
ρR + RηR

rR

)
, r̄GF Q = RξF

(
ρF + RηF

rF

)
,

ρR = (
ρR 0 0

)T
, ρF = (

ρF 0 0
)T

,

rR = (
rR (ηR) 0 0

)T
, rF = (

rF (ηF ) 0 0
)T

, (13)

where Rξi and Rηi
are the rotation matrices corresponding to the coordinates ξi and ηi .

The wheels are assumed to roll without slipping, which leads to the following nonholo-
nomic constraints:

Cnh

(
x, ẋ

) = (
vPx vPy vQx vQy

)T = 0. (14)

In Eq. (14), vP and vQ are the velocity of the contact points P and Q, respectively, computed
as follows:

vP = vGR
+ RR

(
ω̄R × r̄GRP

)
, vQ = vGF

+ RF

(
ω̄F × r̄GF Q

)
, (15)

where vGR
and vGF

are the absolute velocities of GR and GF , and ω̄R and ω̄F are the angular
velocities of the rear and front wheels, respectively, expressed in the local reference frames
of bodies R and F .

Therefore, the e-scooter multibody model presents n = 15 coordinates, m = 6 holonomic
constraints and l = 4 nonholonomic constraints, which results in ng = n−m− l = 5 degrees
of freedom.

2.3 Description and characterization of the suspensions

As shown in Fig. 4 (b), the model of the rear suspension consists of a torsion spring and
damper, with stiffness constant kr and damping coefficient dr , respectively. The torques
acting on bodies B and SR due to the rear suspension, expressed in the corresponding body
reference frames, are given by:

M̄
B = M̄

B

e + M̄
B

d , M̄
SR = −M̄

B
, (16)

where M̄
B

e is the elastic torque due to the torsion spring, and M̄
B

d is the torque due to the
damper:

M̄
B

e = (
0 kr

(
θSR

− θ∗
SR

)
0
)T

, M̄
B

d = (
0 dr θ̇SR

0
)T

. (17)

In Eq. (17), θ∗
SR

is the value of the coordinate θSR
when the torsion spring presents its natural

length. In the present work, it is assumed that θ∗
SR

= 0◦.

The generalized force vectors associated with the torques M̄
B

and M̄
SR are obtained as:

QB = GT
BM̄

B
, QSR

= GT
SR

M̄
SR

, (18)

where the matrices GB and GSR
are computed as follows:

GB = ∂ω̄B

∂ẋ
, GSR

= ∂ω̄SR

∂ẋ
. (19)
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In Eq. (19), ω̄B and ω̄SR
are the angular velocities of bodies B and SR , respectively, ex-

pressed in their corresponding body frames.
With regard to the front suspension, the model consists of a linear spring and a damper,

with stiffness constant kf and damping coefficient df . The forces acting on bodies H and
SF due to the front suspension, expressed in the global frame, are denoted as FH and F SF

,
respectively, and computed as follows:

F H = RH

(
F̄

H

e + F̄
H

d

)
, F SF

= −F H , (20)

where F̄
H

e is the elastic force, and F̄
H

d is the damping force. The expressions of F̄
H

e and

F̄
H

d , expressed in the body frame H , are given by:

F̄
H

e = (
0 0 −kf (s − s∗)

)T
, F̄

H

d = (
0 0 −df ṡ

)T
. (21)

In Eq. (21), s∗ is the value of the coordinate s when the spring presents its natural length. In
the present work, s∗ is computed as follows:

s∗ = l − b, (22)

where b was defined after Eq. (5), and l is the distance between the auxiliar point I , shown
in Fig. 2, and the centre of mass GF in the rigid case. The expression of l can be found in
Appendix A.

The generalized force vectors associated with the forces FH and F SF
are given by:

QH = H T
H F H , QSF

= H T
SF

F SF
, (23)

where the matrices HH and H SF
are computed as follows:

HH = ∂rGH

∂x
, H SF

= ∂rGSF

∂x
. (24)

To obtain the numerical values of the stiffness constants kr , kf and the damping coef-
ficients dr , df , a series of tests have been carried out. To this end, a special test bed was
built in the laboratory of Mechanical Engineering of the University of Seville; see Fig. 7 (a).
The stiffness and damping constants were obtained by conducting quasi-static and dynamic
tests, respectively. The loads were applied using a servo-hydraulic axial actuator, which was
controlled by software. The load capacity of the actuator and the load cell was 12 kN. The
load was applied using a spherical joint over a rigid flat surface (Fig. 7 (b)) to avoid mo-
ments at the load application points and, at the same time, uniformly distribute the load at
the applied section. Figures 7 (c) and (d) show the e-scooter during the tests, with the load
being applied at different locations. The tests provided the following results:

kf = 122.05 N/mm, df = 221.61 N s/m, (25)

kr = 1202.18 Nm/rad, dr = 12.28 Nm/(rad/s). (26)

Table 1 summarizes the geometric, inertial, wheels’ and suspensions’ parameters of the e-
scooter multibody model, with their corresponding numerical values. It is important to note
that these numerical values correspond to the SEAT eXS Kickscooter ES2. Currently, the
numerical values of the parameters vary due to the existence of numerous e-scooter designs.
These design differences result in variability in scooter performance as well as overall rider
experience.
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Fig. 7 Pictures of the e-scooter during the quasi-static and dynamic tests for stiffness and damping parameter
estimation: (a) test bed built for stiffness and damping tests; (b) details of the load cell and spherical joint, c)
e-scooter during the tests with the load applied close to rear axis; and (d) e-scooter during the tests with the
load applied close to front axis

2.4 Equations of motion of the e-scooter multibody model

The equations of motion of the e-scooter are given by the dynamic equations, which are de-
rived as explained by Schiehlen [46]; the holonomic constraints (11); and the nonholonomic
constraints (14), leading to the following index-3 Differential-Algebraic Equations (DAE)
system:

M (x) ẍ + DT (x)� = Q
(
x, ẋ

) + Qext (x) , (27)

C (x) = 0, (28)

Cnh

(
x, ẋ

) = B (x) ẋ = 0. (29)

In Eqs. (27)–(29), � is the (m + l) × 1 vector of Lagrange multipliers; M (x) is the n × n

mass matrix; and B (x) and D (x) are l×n and (m+ l)×n matrices, respectively, computed
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as:

B (x) = ∂Cnh

(
x, ẋ

)

∂ẋ
, D (x) =

(
Cx (x)

B (x)

)
, (30)

where Cx = ∂C
∂x

. Moreover, in Eq. (27), Q
(
x, ẋ

)
is the n × 1 vector of generalized forces,

given by:

Q
(
x, ẋ

) =Qg (x) + Qv

(
x, ẋ

) + QB

(
x, ẋ

) + QSR

(
x, ẋ

)

+ QH

(
x, ẋ

) + QSF

(
x, ẋ

)
, (31)

where Qg (x) is the generalized gravity force vector; Qv

(
x, ẋ

)
is the quadratic-velocity

inertia term, associated with the inertia forces that are quadratic with respect to the sys-
tem velocities (centrifugal and Coriolis forces); and QB

(
x, ẋ

)
, QSR

(
x, ẋ

)
, QH

(
x, ẋ

)
and

QSF

(
x, ẋ

)
are the generalized force vectors due to the rear and front suspensions, presented

in Eqs. (18) and (23). Lastly, in Eq. (27), Qext (x) is the n × 1 vector of generalized forces
due to the external actuations exerted by the rider.

3 Linearization of the equations of motion

In this section, the steady forward motion of the uncontrolled e-scooter (considering
Qext (x) = 0) is described, and the linearized equations of motion along this reference mo-
tion are derived.

3.1 Description of the reference motion

The steady forward motion of the e-scooter is expressed as:

x0 = (
x0

b y0
b z0

b ψ0
b φ0

b θ0
b s0 θ0

SR
θ0
R θ0

F ξ 0
R ξ 0

F η0
R η0

F

)T
, (32)

with

x0
b (t) = vt, θ0

SR
(t) = θ0

SR
,

y0
b (t) = 0, θ0

R (t) = v

RR

t,

z0
b (t) = z0, θ0

F (t) = v

RF

t,

ψ0
b (t) = 0, ξ 0

R (t) = ζ 0
R − θ0

R (t) , (33)

φ0
b (t) = 0, ξ 0

F (t) = ζ 0
F − θ0

F (t) ,

θ0
b (t) = θ0, η0

R (t) = 0,

δ0 (t) = 0, η0
F (t) = 0,

s0 (t) = s0.
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In Eqs. (33), v is the forward speed and z0, θ0, s0, θ0
SR

, ζ 0
R and ζ 0

F are constants. The reference
solution (32) verifies the equations of motion (27)–(29):

M
(
x0

)
ẍ0 + DT

(
x0

)
�0 = Q

(
x0, ẋ0

)
, (34)

C
(
x0

) = 0, (35)

Cnh

(
x0, ẋ0

)
= B

(
x0

)
ẋ0 = 0, (36)

where �0 is the vector of Lagrange multipliers in the reference motion.
First, using the first, second, third, and fifth of the holonomic constraints (35), the con-

stants z0, s0, ζ 0
R and ζ 0

F are determined:

z0 = f1

(
θ0, θ

0
SR

,p
)
, (37)

s0 = f2
(
θ0, θ

0
SR

,p
)
, (38)

ζ 0
R = π

2
− θ0 − θ0

SR
, (39)

ζ 0
F = ν + π

2
− θ0, (40)

where the functions f1 and f2 can be found in Appendix B, and p represents the set of
parameters of the multibody model, summarized in Table 1.

In addition, the dynamic equations (34) allow obtaining the equilibrium values θ0, θ0
SR

and the Lagrange multipliers associated with this reference motion, �0, with:

�0 = (
�0

1 �0
2 01×8

)T
. (41)

In Eq. (41), the nonzero values of �0
1 and �0

2 are obtained by solving the third and sixth
dynamic equations (34):

�0
1 = χ1

(
θ0, θ

0
SR

, s0,p
)

χ3

(
θ0, θ

0
SR

, s0,p
) , (42)

�0
2 = χ2

(
θ0, θ

0
SR

, s0,p
)

χ3

(
θ0, θ

0
SR

, s0,p
) . (43)

Moreover, the equilibrium values θ0 and θ0
SR

are obtained from solving the following non-
linear system of equations:

f3
(
θ0, θ

0
SR

,p
) = 0, (44)

f4

(
θ0, θ

0
SR

,p
) = 0, (45)

where the functions χ1, χ2, χ3, f3 and f4 can be found in Appendix B.
If the suspensions are infinitely rigid (kr → ∞, kf → ∞), the constants z0, θ0, θ0

SR
, s0,

ζ 0
R and ζ 0

F of Eqs. (33) verify:

z0 = zB, θ0 = 0,

θ0
SR

= 0, s0 = s∗, (46)
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ζ 0
R = π

2
, ζ 0

F = ν + π

2
. (47)

3.2 Computation of the linearized equations of motion

The linearization of the equations of motion (27)–(29) is performed along the steady forward
motion (33). To this end, the linearization approach [43], which showed an excellent com-
putational efficiency with the bicycle benchmark [43] and the waveboard [44] multibody
models, is used.

The variations with respect to the reference solution x̃, ˙̃x, ¨̃x and �̃ are introduced:

x̃ = x − x0, ˙̃x = ẋ − ẋ0
, ¨̃x = ẍ − ẍ0

, �̃ = � − �0. (48)

Following Ref. [43], given that the multibody model presents m = 6 holonomic constraints,
a coordinate partition of the vector x of n = 15 coordinates into n − m = 9 admissible
position coordinates, grouped in xa , and m = 6 dependent coordinates xd , is made. The
set of admissible position coordinates xa spans the domain of admissible positions of the
multibody system. This partition is represented as x = (

xa xd

)T
. Furthermore, the l = 4

nonholonomic constraints allow the partition of the time derivative of the admissible position
coordinates ẋa in l = 4 dependent and n − m − l = 5 independent admissible velocities,
given by the vectors ẋad and ẋai , respectively, and therefore ẋa = (

ẋai ẋad

)T
. The same

partition can be used at position level, with the coordinate vector finally partitioned as x =(
xai xad xd

)T
. Therefore, the vector of variations x̃ can be written as:

x̃ = (
x̃ai x̃ad x̃d

)T
. (49)

A possible coordinate partition in the e-scooter multibody model is:

x̃ai = (
x̃b φ̃b δ̃ s̃ θ̃SR

)T
, x̃ad = (

ỹb ψ̃b θ̃R θ̃F

)T
, (50)

x̃d = (
z̃b θ̃b ξ̃R ξ̃F η̃R η̃F

)T
,

where the Cartesian coordinate xb , the lean angle φb , the steering angle δ and the coordinates
s and θSR

, associated with the front and rear suspensions, respectively, have been chosen as
independent coordinates, as many as number of degrees of freedom (ng = 5).

The following linear ODE system is obtained:

¨̃xai = J 21x̃ai + J 22
˙̃xai + J 23x̃ad , (51)

˙̃xad = J 31x̃ai + J 32
˙̃xai + J 33x̃ad , (52)

where the expressions of the matrices J 21, J 22, J 23, J 31, J 32 and J 33 can be found in

Ref. [43]. Defining X̃ =
(

x̃ai
˙̃xai x̃ad

)T
, the linearized equations of motion (51)-(52)

can be written as a first-order system of the form:

˙̃
X = JX̃, (53)

where J is the resulting Jacobian matrix built as follows:

J =
⎛

⎜
⎝

0(n−m−l) I (n−m−l) 0(n−m−l)×l

J 21 J 22 J 23

J 31 J 32 J 33

⎞

⎟
⎠ . (54)
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The size of the Jacobian matrix J in Eq. (54) is (2n − 2m − l) × (2n − 2m − l) = 14 × 14.
Therefore, the linearized equations of motion of the e-scooter are given by the following
fourteen equations:

˙̃xb = ṽxb
, (55)

˙̃
φb = ω̃φb

, (56)

˙̃
δ = ω̃δ, (57)

˙̃s = ṽs , (58)

˙̃
θSR

= ω̃θSR
, (59)

˙̃vxb
= �1s̃ + �2θ̃SR

+ �3ṽs + �4ω̃θSR
, (60)

˙̃ωφb
= �5φ̃b + (

�6 + �7v
2
)
δ̃ + �8vω̃φb

+ �9vω̃δ, (61)

˙̃ωδ = �10φ̃b + (
�11 + �12v

2
)
δ̃ + �13vω̃φb

+ �14vω̃δ, (62)

˙̃vs = �15s̃ + �16θ̃SR
+ �17ṽs + �18ω̃θSR

, (63)

˙̃ωθSR
= �19s̃ + �20θ̃SR

+ �21ṽs + �22ω̃θSR
, (64)

˙̃yb = γ1vδ̃ + γ2ω̃φb
+ γ3ω̃δ + γ4vψ̃b, (65)

˙̃
ψb = γ5vδ̃ + γ6ω̃δ, (66)

˙̃
θR = γ7ṽxb

+ γ8ṽs + γ9ω̃θSR
, (67)

˙̃
θF = γ10ṽxb

+ γ11ṽs + γ12ω̃θSR
. (68)

In the system of equations (55)–(68), �k , with k = 1 . . .22, are the coefficients of the lin-
earized dynamic equations, and γp , with p = 1 . . .12, are the coefficients associated with
the linearized nonholonomic constraints. The analytical expressions of these coefficients
have been obtained in terms of the geometric, inertial, wheels’ and suspensions’ parameters.
Their expressions, which are overly long to be shown here, are available to the reader on
request. Some comments about the linear system of equations (55)–(68) are included below.

Among the linearized equations of motion (55)–(68), Eqs. (61) and (62) are the lean and
steer equations, respectively. In the works by García-Vallejo et al. [34] and Paudel et al. [35],
the linearized lean and steer equations of the e-scooter were obtained by particularizing
the linear equations of the bicycle benchmark by Meijaard et al. [5] for the parameters of
different e-scooters designs. The lean and steer equations derived by Meijaard et al. [5] are
given by:

M1q̈ + vC1q̇ + (
gK0 + v2K2

)
q = f , (69)

where q = (
φ δ

)T
is the generalized coordinates vector, including the lean and steering

angles; M1 is the inertia matrix; C1 is the velocity dependent ‘damping’ matrix; K0 is the
gravitational stiffness matrix; and K2 includes the gyroscopic and centrifugal effects. Lastly,
f is the generalized torque vector, including the lean disturbance torque Tφ and the steering
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torque Tδ , with f = (
Tφ Tδ

)T
. For f = 0, Eq. (69) can alternatively be written as:

¨̃
φ = β1φ̃ + (

β2 + β3 v2
)
δ̃ + β4 v

˙̃
φ + β5 v

˙̃
δ, (70)

¨̃
δ = β6φ̃ + (

β7 + β8 v2
)
δ̃ + β9 v

˙̃
φ + β10 v

˙̃
δ. (71)

The structure of the lean and steer equations (61) and (62) obtained in the present work is the
same as that of the benchmark equations (70) and (71) by Meijaard et al. [5]. In particular,
the coefficients �k , particularized for the hoop-shaped wheels case (μi = σi = 0), the rigid
case (kr → ∞, kf → ∞) and the undamped scenario (dr = df = 0), are the same as the
coefficients βs , with s = 1 . . .10, of Eqs. (70) and (71). Nevertheless, the linearized lean and
steer equations (69) of the bicycle benchmark by Meijaard et al. [5] are computed in a differ-
ent way from the linearized equations (61) and (62). The linearized equations by Meijaard
et al. [5] involve ad hoc linearization instead of systematic linearization of the nonlinear
equations of motion and are derived based on Papadopoulos [42] using angular momentum
balance about various axes. Furthermore, only the linearized equations associated with the
lateral dynamics of the bicycle are obtained by Meijaard et al. [5]. In contrast, the linearized
equations (55)–(68) derived in this work are obtained from the linearization of the nonlinear
equations of motion (27)–(29). Using the linearization approach of Ref. [43], the analytical
expressions of the linearized equations are obtained not only as a function of the geometric
and dynamic parameters of the benchmark by Meijaard et al. [5] but also as a function of
the toroidal wheels’ and suspensions’ parameters of the e-scooter.

In the work by García-Vallejo et al. [34], the equation associated with the forward motion
is v̇xb

= 0, being decoupled from the remaining equations. Nevertheless, in the present work,
the addition of the rear and front suspensions (and subsequently the coordinates θSR

and s)
leads to Eq. (60), where it can be seen that the forward motion is coupled with the suspen-
sions coordinates and their velocities. This coupling found in the model with suspensions is
associated with the squat, representing the effect of the inertia on the suspensions.

4 Results and discussion

In this section, a detailed linear stability analysis is performed by resorting to the linearized
equations of motion (55)–(68). The evolution of the eigenvalues with the forward speed
is studied for different scenarios of interest. The chart of Fig. 8 summarizes the scenarios
considered in the linear stability analysis of the e-scooter.

Validation of the e-scooter multibody model presented in this work First, the model of the
present work is validated with the results presented by García-Vallejo et al. [34]. As previ-
ously mentioned, Eqs. (61) and (62), derived by linearizing the fully nonlinear equations of
motion, yield the linearized equations by Meijaard et al. [5], used in Ref. [34], when partic-
ularized for the hoop-shaped wheels case (μi = σi = 0), the rigid case (kr → ∞, kf → ∞)
and the undamped scenario (dr = df = 0). Obtaining the same results allows for validating
the multibody model presented in this work and the linearization performed, given that the
linear equations by Meijaard et al. [5] are computed using an ad hoc approach instead of
linearizing the nonlinear equations of motion. The evolution of the eigenvalues with the for-
ward speed is shown in Fig. 9 (b) and corresponds to the same linear stability results of the
e-scooter benchmark presented by García-Vallejo et al. [34]
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Fig. 8 Linear stability analysis of the e-scooter: eigenvalues sensitivity analysis

Fig. 9 Eigenvalues from the linearized speed analysis for the bicycle and e-scooter benchmarks. In contrast
to the bicycle, no self-stability velocity range exists for riding the e-scooter with hands-off
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Fig. 10 Influence of the moments of inertia of the front frame (body H): evolution of the real and imaginary
parts of the eigenvalues from the linearized speed analysis, varying the inertia tensor of the front handlebar.
The scenarios with α = 1, α = 0.5, and α = 0.1 are considered

As shown in Fig. 9 (a), the uncontrolled bicycle presents a self-stability velocity range,
given by vw < v < vc . The lower bound vw is the weave speed, corresponding to the sta-
bilization of the weave mode, and the upper bound is the capsize speed vc for which the
uncontrolled bicycle becomes unstable. In contrast, Fig. 9 (b) shows that for the numerical
values of the SEAT eXS Kickscooter ES2 (see Table 1 of Appendix A), the e-scooter is
completely unstable when ridden with hands-off.

Influence of the inertia tensor of the front frame First, the influence of the inertia tensor
of the front frame (body H ) on the stability is studied. To this end, the evolution of the
eigenvalues with the forward velocity v is computed for different moments of inertia of
body H . Taking as reference the inertia tensor ĪH shown in Table 1 of Appendix A, which
corresponds to the SEAT eXS Kickscooter ES2, the modified inertia tensor of body H ,
denoted by Ī

′
H , is given by:

Ī
′
H = αĪH , (72)

where α is a constant that allows for modifying Ī
′
H . In this case, the mass of body H is

assumed to be redistributed in such a way that the position of the centre of mass GH is not
modified.

The variation of the moments of inertia of the front frame greatly impacts on the stability
of the e-scooter. These variations could arise, for instance, from modifying the location
of the e-scooter battery, removing it from the handlebar. Figures 10 (a) and (b) show the
evolution of the real and imaginary parts of the eigenvalues with the forward velocity, for
the scenarios of α = 1, α = 0.5 and α = 0.1. Despite for α = 1 the e-scooter is completely
unstable, Fig. 10 (a) shows that a decrease in α leads to the appearance of a self-stability
velocity range. In particular, for α = 0.5, the self-stability velocity range is given by 6.22 <

v < 9.18 m/s, and for α = 0.1, this range broadens to 4.56 < v < 9.18 m/s.

Influence of the rider model (inertia tensor of body B) As described in Sect. 2.1, the body B

of the multibody model is comprised of the e-scooter deck and the rider. Due to the reduced
mass of the e-scooter compared to the rider’s mass, its modeling is of essential importance.
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Fig. 11 Influence of the moments of inertia of body B: evolution of the real parts of the eigenvalues with
the forward speed, considering the rider model in Table 1 (Bm) and an alternative inertia tensor of body B

presented by Paudel et al. [35] (Alt)

A single e-scooter design presents varying performance depending on the rider’s anthropo-
metric characteristics or their riding style.

To illustrate the rider’s influence on stability, the evolution of the eigenvalues with the
forward speed is computed for the rider model considered in the e-scooter benchmark by
García-Vallejo et al. [34] and in this study, as depicted in the CAD model shown in Fig. 3 (b)
and with the inertia tensor ĪB presented in Table 1 of Appendix A. This model is referred to
as ‘Bm’ in Figs. 11 (a) and (b). Additionally, the eigenvalues are computed for an alternative
rider model with standing posture, provided by Paudel et al. [35], which is designated as
‘Alt’ in Figs. 11 (a) and (b). The inertia tensor of the body B considered by Paudel et
al. [35], denoted by Ī

′
B , is given by:

Ī
′
B =

⎛

⎝
19.21 0 −0.037

0 Ī ′
Byy

0
−0.037 0 1.78

⎞

⎠kg m2. (73)

Note that the moment of inertia Ī ′
Byy

in Eq. (73) is not provided in Ref. [35], as it has no
influence on the lateral balancing of the e-scooter.

Figure 11 shows the evolution of the real part of the eigenvalues with the forward velocity,
considering both rider models. Two scenarios are studied: Fig. 11 (a) considers the inertia
tensor of the front frame shown in Table 1 (α = 1), and Fig. 11 (b) depicts the case of
α = 0.1. In Fig. 11 (a), it can be seen that the e-scooter is completely unstable for both riders’
models. In contrast, Fig. 11 (b) shows a self-stability velocity range for both inertia tensors
of body B . For the rider model considered in this study, the e-scooter is found to be stable for
4.56 < v < 9.18 m/s, and for the inertia tensor by Paudel et al. [35], 4.53 < v < 9.18 m/s.
It is important to note that the evolution of the eigenvalues in Fig. 11 (b), for the scenario
‘Alt’, is qualitatively the same as that shown by Paudel et al. [35].

Influence of the toroidal wheels The influence of the wheels’ parameters on the stability of
the e-scooter is analyzed. The toroidal geometry of the wheels is considered by means of
nonzero values of the tori aspect ratios μi . Figures 12 (a) and (b) show the evolution of the
real and imaginary parts of the eigenvalues with the forward speed in the hoop-shaped and
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Fig. 12 Influence of the tori aspect ratios μi : comparison of the evolution of the eigenvalues with forward
velocity, in the hoop-shaped and torus-shaped scenarios

Fig. 13 Influence of the tori aspect ratios μi : comparison of the evolution of the eigenvalues with forward
velocity, in the hoop-shaped and torus-shaped scenarios, considering the inertia tensor of body B presented
by Paudel et al. [35]

torus-shaped scenarios, respectively. The results in Fig. 12 are obtained for the numerical
values of the e-scooter parameters in Table 1.

In particular, the linearized speed analysis is performed for μR = μF = 0.3, which con-
stitute realistic values of e-scooter wheels. As shown in Fig. 12 (a), the toroidal geometry
greatly impacts on the evolution of the eigenvalues, and the results vary considerably with
respect to the hoop-shaped scenario. Nevertheless, despite the toroidal wheels, it can be seen
that the e-scooter remains completely unstable in all the velocity range.

Figure 13 (a) shows a comparison between the hoop and toroidal wheel scenarios, when
the inertia tensor of body B is considered by Paudel et al. [35]. Similar results as those of
Fig. 12 (a) are obtained, with the e-scooter being completely unstable. Lastly, Fig. 12 (b)
shows that the self-stability velocity range found in Fig. 11 (b), when a value of α = 0.1 was
considered, vanishes due to the destabilizing effect of the toroidal wheels.
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Fig. 14 Influence of the ellipses’ aspect ratios σi : comparison of the evolution of the eigenvalues with forward
velocity, for σi = 1 (circular cross-section), σi = 0.9 and σi = 1.1

Influence of the elliptic cross-section in the toroidal wheel The results presented so far cor-
respond to the case of a toroidal wheel with circular cross-section (σi = 1). An elliptic profile
of the wheel cross-section can be considered with σi �= 1. Figures 14 (a) and (b) show the
evolution of the real and imaginary parts, respectively, of the eigenvalues with the forward
speed. The scenarios of σi = 0.9 and σi = 1.1 are compared with the circular-cross section
case (σi = 1). It can be seen that the inclusion of the elliptic profile leads to variations in
the evolution of the eigenvalues, with a lower value of σ resulting in a stabilizing effect.
Note that, in any case, the e-scooter multibody model is unstable, existing eigenvalues with
positive real parts.

Influence of the steer axis tilt angle The influence of the steer axis tilt angle ν on the stability
is studied. As shown in Fig. 15 and described in Appendix A, the trail c, the position of the
centre of mass GH and the magnitudes xI , b and l are a function of the angle ν. Figure 15
shows, for an arbitrary steering axis angle ν, the variation of these magnitudes with respect
to the reference values shown in Table 1 (corresponding to ν∗ = 18◦ and represented with
the superscript ∗).

Figures 16 (a) and (b) show, for the hoop-shaped and toroidal wheel scenarios, respec-
tively, the evolution of the real part of the eigenvalues with the forward speed for three
different steering axis inclination angles: ν∗ = 18◦ (reference value), ν = 16◦ and ν = 20◦.
Note that an increase in ν results in a reduction of the real parts of the eigenvalues. Never-
theless, it can be seen that for the numerical values of the e-scooter parameters presented in
Table 1, the variation of the steering axis angle ν does not lead to any self-stability velocity
range; eigenvalues with positive real parts exist in all cases.

Influence of the rear and front suspensions So far, the results shown correspond to the rigid
case. The results of the multibody model considering rear and front suspensions are now
compared with the rigid scenario. In this case, the numerical values of the rear and front
stiffness constants, obtained with the quasi-static tests and provided in Eqs. (25) and (26),
are used instead of kr → ∞ and kf → ∞. Similarly, the null values of the rear and front
damping coefficients in the undamped case, dr = df = 0, are substituted by the numerical
values obtained with the dynamic tests and presented in Eqs. (25) and (26). In the rigid
case, the masses of the rear and front suspensions (mSR

and mSF
) are set to be null, and the
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Fig. 15 Variation of the parameters c, xI , b, l and position of GH with the steer axis tilt angle ν

Fig. 16 Influence of the steering axis tilt angle ν on the stability

numerical values of mB and mH are those found in Table 1 (mB = 77.5 kg and mH = 8 kg).
In contrast, in the scenario considering the suspensions, mSR

= mSF
= 0.5 kg and the masses

of bodies B and H are reduced, with mB = 77 kg and mH = 7.5 kg. Therefore, the total
mass of the e-scooter is the same in both scenarios. Furthermore, given the low influence of
the inertia tensors of bodies SR and SF on the stability, Ī SR

and Ī SF
can be assumed to be

negligible (see Table 1).
Figures 17 (a) and (b) show the evolution of the real part of the eigenvalues of the e-

scooter with hoop-shaped and toroidal wheels, respectively, considering the suspensions
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Fig. 17 Linearized speed analysis of the e-scooter multibody model with rear and front suspensions: com-
parison with the rigid case

and the rigid case. The most important aspect to highlight due to the introduction of the
suspensions is the appearance of two complex conjugate pairs of eigenvalues. The numerical
values of the real parts of these pairs, which can be seen in Figs. 17 (a) and (b) in the
suspensions’ scenario (labeled as ‘Susp’), are independent of the forward speed and are
strongly dependent on the damping coefficients dr and df . Moreover, the imaginary parts
of these complex conjugate pairs strongly depend on the stiffness constants of the rear and
front suspensions. Concerning the remaining eigenvalues, it can be seen that the rear and
front suspensions, for this particular set of numerical values of kr , kf , dr and df do not
lead to major differences with respect to the rigid scenario (labeled as ‘Rigid’ in Figs. 17
(a) and (b)). To illustrate the result of the linearization, the Jacobian matrix that leads to the
eigenvalues shown in Fig. 17 (b) is provided in Appendix C.

5 Conclusions

In this work, an e-scooter multibody model with toroidal wheels and suspensions has been
proposed. The model is based on the SEAT eXS Kickscooter ES2. With respect to previous
works in the literature, which compute the linearized lean and steer equations by using ad
hoc linearization [34, 35], the nonlinear equations of motion were linearized in this paper.
To this end, an efficient linearization approach, devoted to multibody systems with holo-
nomic and nonholonomic constraints, allowed the reduced linearized system of equations
along the steady forward motion of the e-scooter to be obtained. The linearized equations
were computed analytically as a function of the geometric, dynamic, toroidal wheels’ and
suspensions’ parameters of the e-scooter. The multibody model presented in this work was
validated by comparing the linear stability results along the steady forward motion with the
e-scooter benchmark results by García-Vallejo et al. [34]. The same eigenvalues from the
linearized speed analysis were obtained.

In contrast to bicycles, for the numerical values of the e-scooter parameters considered in
this work, the multibody model was shown to be completely unstable. The linear system of
equations presented in Sect. 3.2 allowed performing a detailed linear stability analysis. First,
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it was shown that the variation of the moments of inertia of the front frame (body H ) led to
significant changes in the stability of these vehicles. In particular, a reduction of the inertia
tensor of the front frame (associated, for instance, with removal of the battery from the
handlebar) gave rise to the appearance of a self-stability velocity range. Next, the influence
of the rider model, considered by modifying the inertia tensor of body B, was studied. For
both the rider model of the e-scooter benchmark [34] and Paudel et al. [35], no self-stability
velocity range was found. The combined effect of the inertia tensor of body B found by
Paudel et al. [35], together with the reduction of the inertia tensor of the front frame, led to an
evolution of the eigenvalues with the forward speed qualitatively similar to that of Ref. [35].
Furthermore, the inclusion of toroidal wheels in the multibody model allowed studying their
effect on the stability of the vehicle. In all the cases, the toroidal geometry resulted in no
self-stability velocity range. Regarding the geometry of the cross-section of the toroidal
wheel, a lower value of the ellipse aspect ratio results in a stabilizing effect. Similarly, the
unstable behavior remained in spite of the modification of the steer axis tilt angle. Lastly,
the introduction of the rear and front suspensions led to the emergence of two complex
conjugate pairs of eigenvalues. The real parts of these eigenvalues, which were shown to
be independent of the forward speed, are highly dependent on the damping coefficients of
the suspensions, while the imaginary parts are highly dependent on the stiffness constants
of the suspensions’ springs. For the particular set of numerical values of the stiffness and
damping constants, obtained from the quasi-static and dynamic tests, no remarkable changes
with respect to the rigid scenario were found in the remaining eigenvalues. The electric
kickscooter multibody model presented, together with the linearized equations of motion
obtained in this work, enables a systematic analysis of the stability of these vehicles, which
helps in designing new e-scooters with improved vehicle safety conditions and oriented to a
wider range of potential users.

In future work, the stability analysis could be extended to more complex trajectories,
such as periodic ones. Moreover, a key aspect that could be improved is the rider model,
considering different postures and riding styles, the relative motion of the upper body with
respect to the board, and the effect of the body support via the arms and hands on the
handlebar. Lastly, the influence of different tire models on stability could also be studied.

Appendix A: List of the e-scooter multibody model parameters

The list of parameters of the e-scooter multibody model is shown in Table 1. These param-
eters are classified into geometric, dynamic, wheels’ and suspensions’ parameters.

Table 1 List of the e-scooter multibody model parameters and numerical values

Symbol Numerical value

Geometric parameters

Wheel base w 0.925 m

Trail (ref. value) c 0.034 m

Steer axis tilt (ref. value) ν π/10 rad (18◦)

Distance A, GR d 0.15 m

Distance GSF
, GF e 0.1 m
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Table 1 (Continued)

Symbol Numerical value

Dynamic parameters

Position of centre of mass GB (xB, zB) (0.406,0.912) m

Rider’s mass mh 75 kg

Deck mass md 2.5 kg

Mass of body B (includes the
masses of the deck md and
rider mh)

mB = md + mh 77.5 kg

Inertia tensor body B ĪB =
⎛

⎜
⎝

ĪBxx 0 ĪBxz

0 ĪByy 0

ĪBxz 0 ĪBzz

⎞

⎟
⎠

⎛

⎜
⎝

13.54 0 −0.22

0 13.39 0

−0.22 0 1.03

⎞

⎟
⎠ kg m2

Position of centre of mass
GH (ref. values)

(xH , zH ) (0.733,0.696) m

Mass of body H mH 8 kg

Inertia tensor body H ĪH =
⎛

⎜
⎝

ĪHxx 0 ĪHxz

0 ĪHyy 0

ĪHxz 0 ĪHzz

⎞

⎟
⎠

⎛

⎜
⎝

0.42 0 −0.3

0 0.63 0

−0.3 0 0.23

⎞

⎟
⎠ kg m2

Mass of body R mR 0.65 kg

Inertia tensor body R ĪR =
⎛

⎜
⎝

ĪRxx 0 0

0 ĪRyy 0

0 0 ĪRxx

⎞

⎟
⎠ Eq. (9) and Eq. (10)

Mass of body F mF 1.5 kg

Inertia tensor body F ĪF =
⎛

⎜
⎝

ĪFxx 0 0

0 ĪFyy 0

0 0 ĪFxx

⎞

⎟
⎠ Eq. (9) and Eq. (10)

Mass of body SR mR 0.5 kg

Inertia tensor body SR ĪSR
� 0 kg m2

Mass of body SF mF 0.5 kg

Inertia tensor body SF ĪSF
� 0 kg m2

Wheels’ parameters

Rear wheel radius RR 0.096 m

Rear torus aspect ratio μR Variable

Rear ellipse cross section
aspect ratio

σR Variable

Front wheel radius RF 0.105 m

Front torus aspect ratio μF Variable

Front ellipse cross section
aspect ratio

σF Variable

Suspensions’ parameters

Rear suspension stiffness kr 1202.18 Nm/rad

Rear damping coefficient dr 12.28 Nm/(rad/s)

Front suspension stiffness kf 122.05 N/mm

Front damping coefficient df 221.61 N s/m



An electric kickscooter multibody model: equations of motion and linear stability analysis. . .

The expressions to obtain the trail c, the dimensions xI , xH , zH , b and l, as a function of
an arbitrary steer axis angle ν and other parameters of Table 1, are shown below:

c (ν) = RF tan (ν) , (74)

xI (ν) = w + c (ν) − xB − zB tan (ν) , (75)

xH (ν) = w − (l∗ − b∗) sin (ν) , (76)

zH (ν) = Rf + (l∗ − b∗) cos (ν) , (77)

b (ν) = 1

2 cos (ν)
((xH (ν) − w − c (ν)) sin (2ν) − zH (ν) cos (2ν) + 2zB − zH (ν)) , (78)

l (ν) = 1

2 cos (ν)
(2zB − RF − c (ν) sin (2ν) − RF cos (2ν)) , (79)

where b∗ and l∗ are obtained from Eqs. (78) and (79), particularized for the reference value
ν = ν∗ = 18◦. As specified, the numerical values of ν, c, xH and zH in Table 1 correspond
to these reference values.

Appendix B: Functions of the equilibrium configuration

The functions f1 and f2 of Eqs. (37) and (38) are given by:

f1

(
θ0, θ

0
SR

,p
) = RR − d sin

(
θ0 + θ0

SR

) + (zB − RR) cos (θ0)

+ (d − xB) sin (θ0) , (80)

f2

(
θ0, θ

0
SR

,p
) = f1

(
θ0, θ

0
SR

,p
) − RF + xI sin (θ0)

cos (ν − θ0)
− b. (81)

The expressions of χ1, χ2 and χ3, found in Eqs. (42) and (43), are:

χ1

(
θ0, θ

0
SR

, s0,p
) = − (

2
((

mB + mR + mSR

)
xI

+ (
mR + mSR

)
(xB − d)

)
cos (θ0)

−2
(
mR + mSR

)
(RR − zB) sin (θ0)

+2
((

mB + mR + mSR

)
b + mSF

e

+ (
mB + mH + mR + mSR

)
s0

)
sin (ν − θ0)

+ (
2mR + mSR

)
d cos

(
θ0 + θ0

SR

))
g, (82)

χ2

(
θ0, θ

0
SR

, s0,p
) = − (

2
((

mF + mH + mSF

)
xI

+ (
mB + mF + mH + mSF

)
(xB − d)

)
cos (θ0)

−2
(
mB + mF + mH + mSF

)
(RR − zB) sin (θ0)

+ (
2
(
mH + mF + mSF

)
b − 2mSF

e

+ 2
(
mF + mSF

)
s0

)
sin (ν − θ0)
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+ 2
(
mB + mF + mH + mSF

)
d cos

(
θ0 + θ0

SR

)

+mSR
d cos

(
θ0 + θ0

SR

))
g, (83)

χ3

(
θ0, θ

0
SR

, s0,p
) =2d cos

(
θ0 + θ0

SR

) + 2 (xB + xI − d) cos (θ0)

+ 2 (zB − RR) sin (θ0) + 2 (b + s0) sin (ν − θ0) . (84)

The functions f3 and f4 of Eqs. (44) and (45) are given by:

f3

(
θ0, θ

0
SR

,p
) = kf

(
s0 − s∗) − �0

2 cos (ν − θ0) − (
mF + mSF

)
g cos (ν − θ0) = 0, (85)

f4

(
θ0, θ

0
SR

,p
) = kr

(
θ0
SR

− θ∗
SR

) + �0
1d cos

(
θ0 + θ0

SR

)

+
(
mR + mSR

2

)
gd cos

(
θ0 + θ0

SR

) = 0, (86)

where �0
1 and �0

2 can be found in Eqs. (42) and (43).

Appendix C: Example of Jacobian matrix

The Jacobian matrix that leads to the eigenvalues shown in Fig. 17 (b), which corresponds
to the scenario with toroidal wheels as well as rear and front suspensions, is provided. This
Jacobian matrix is particularized for the numerical values of the e-scooter multibody model
parameters presented in Table 1 and is given as a function of the forward velocity v. The fol-
lowing numerical values for the masses mB , mH , mSR

and mSF
, and the wheels’ parameters

μR , μF , σR and σF , are considered:

mB = 77 kg, mH = 7.5 kg,

mSR
= 0.5 kg, mSF

= 0.5 kg,

μR = μF = 0.3, σR = σF = 1. (87)

The numerical values of the coefficients of the Jacobian matrix J are provided with four
decimal places due to space limitations.
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J
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
228

.1646
10

.8462
0

0
0

0
.4198

0
.1148

0
0

0
0

0
9
.1252

0
.1092+

0
.9589

v
2

0
0

0
−

0
.0077

v
0
.4283

v
0

0
0

0
0

0
0

13
.1585

12
.6236+

0
.0773

v
2

0
0

0
−

0
.4111

v
−

0
.8651

v
0

0
0

0
0

0
0

0
0

−
3290

.9887
5
.6658

0
0

0
−

6
.0215

0
.0215

0
0

0
0

0
0

0
342

.9771
−

1175
.6342

0
0

0
0
.3887

−
12

.1580
0

0
0

0

0
0

0
.4120

v
0

0
0

−
0
.9061

0
.0143

0
0

0
v

0
0

0
0

1
.0275

v
0

0
0

0
0
.0356

0
0

0
0

0
0

0
0

0
0

0
10

.4167
0

0
9
.6978

0
.6080

0
0

0
0

0
0

0
0

0
9
.5565

0
0

11
.9037

1
.4042

0
0

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(88)
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