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1  |  INTRODUC TION

Traits are defined as characteristics of individual organisms that can 
be measured at any relevant level of biological organization (Dawson 
et al., 2021). They reflect species adaptations to the main selective 
forces in their natural habitats, and therefore have a (more or less di-
rect) link with species' performance – that is, functional traits – and/

or ecosystem processes (de Bello et  al.,  2021). Thus, functional 
traits represent an essential tool for ecologists and ecophysiologists 
worldwide to describe the diversity of organisms' form and function 
in relation to any aspect that might influence a species' biology.

Classical studies have hypothesized that species adaptations to 
the environment might have evolved around few theoretical strategic 
axes (Greenslade, 1983; Grime, 1977; Pianka, 1970; Westoby, 1998). 
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Abstract
Aim: Functional trait space analyses are pivotal to describe and compare organ-
isms' functional diversity across the tree of life. Yet, there is no single application 
that streamlines the many sometimes-troublesome steps needed to build and analyse 
functional trait spaces.
Innovation: To fill this gap, we propose funspace, an R package to easily handle bi-
variate and multivariate functional trait space analyses. The six functions that consti-
tute the package can be grouped in three modules: ‘Building and exploring’, ‘Mapping’ 
and ‘Plotting’. The building and exploring module defines the main features of a func-
tional trait space (e.g. functional diversity metrics) by leveraging kernel density-based 
methods. The mapping module uses general additive models to map how a target 
variable distributes within a trait space. The plotting module provides many options 
for creating flexible and publication-ready figures representing the outputs obtained 
from previous modules. We provide a worked example to demonstrate a complete 
funspace workflow.
Main Conclusions: funspace will provide researchers working with functional traits 
across the tree of life with a new tool to easily explore: (i) the main features of any 
functional trait space, (ii) the relationship between a functional trait space and any 
other biological or non-biological factor that might contribute to shaping species' 
functional diversity.

K E Y W O R D S
data imputation, functional diversity, functional traits, general additive models, kernel density, 
principal component analysis, trait space
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Subsequent research has attempted to characterize such axes using 
functional traits for fish (Winemiller & Rose, 1992), corals (Darling 
et al., 2012), and vascular plants (e.g. Diaz et al., 2004), among other 
groups of organisms. The implication of having a handful of axes de-
scribing species' strategies implies that the diversity of organisms' 
form and function must be constrained by trade-offs among traits 
(Pianka,  1970 for animals; Greenslade,  1983 for insects; Westoby 
et al., 2002 for vascular plants). Nowadays, we know that pervasive 
trade-offs between traits constrain organisms' form and function 
along (relatively) few trait dimensions that are often independent, 
thus limiting possible trait combinations within two – or highly di-
mensional spaces, also called functional trait spaces, across the tree 
of life (Bueno et al., 2023; Carmona, Bueno, et al., 2021; Carmona, 
Tamme, et  al.,  2021; Chelli et  al.,  2024; Díaz et  al.,  2016; Junker 
et al., 2023; Mouillot et al., 2021; Westoby et al., 2021; Winemiller 
et al., 2015). Expressing the diversity of organisms' form and func-
tion within functional trait spaces of a reduced number of dimen-
sions allows for robust generalization and quantification of species' 
strategic axes of trait variation (see Mouillot et al., 2021). Thus, func-
tional trait spaces represent indispensable tools to describe organ-
isms' functional diversity across the tree of life.

Different approaches allow building multivariate functional trait 
spaces. The most common quantitative tool is Principal Component 
Analysis (PCA), as it allows reducing a trait dataset to few indepen-
dent trait dimensions defined by the inherent relationships between 
traits. However, other approaches for dimensionality reduction that 
allow considering both quantitative and categorical trait data, such 
as Principal Coordinates Analysis (PCoA) or nonmetric multidimen-
sional scaling (NMDS) are also widely used. Recent methodological 
advances have permitted to explore additional features of func-
tional trait spaces besides the trait dimensions that define them. 
In particular, kernel density analyses (Carmona et  al.,  2016, 2019; 
Duong,  2007) have revealed that species occupy functional trait 
spaces differentially, resulting in species clumping around some trait 
combinations that are much more frequent than others (Carmona, 
Bueno, et al., 2021; Díaz et al., 2016; Puglielli et al., 2021 for vascu-
lar plants; Carmona, Tamme, et al., 2021; Cox et al., 2021; Toussaint 
et al., 2021 for different animal groups). As a result, kernel density 
estimates are nowadays widely employed to estimate different 
properties about the way in which different species and groups of 
species occupy a functional trait space, including aspects such as 
the amount of space occupied (functional richness) or the degree 
to which species in a group have different trait combinations (func-
tional divergence), among other indices of functional diversity (see 
Mammola et al., 2021 for a review).

A first pitfall arising when using PCA (but also distance-based 
ordinations approaches depending on the dissimilarity metric con-
sidered) is that missing values are not allowed in the dataset. This 
is especially the case of large-scale analyses, where the unprece-
dented trait availability provided by global databases contrasts with 
the use of disparate trait frameworks across studies and disciplines, 
resulting in large databases including many traits but with missing in-
formation for many of the species (e.g. the TRY plant trait database, 

Kattge et al., 2020). This has pushed research towards developing 
imputation methods (e.g. Penone et al., 2014; Schrodt et al., 2015; 
Stekhoven & Bühlmann,  2012) that mostly use machine-learning 
techniques to impute missing trait values based on trait–trait cor-
relations sometimes improved by accounting for species' phyloge-
netic information (Penone et al., 2014). A key point to consider is that 
missing trait information is not distributed randomly within datasets. 
For example, across mammals, big species with large range areas are 
generally better informed than small species or species with small 
ranges (González-Suárez et al., 2012); similar biases have been de-
scribed for plants (Carmona, Bueno, et al., 2021; Sandel et al., 2015). 
Recent research is increasingly suggesting that imputation can 
largely correct these biases, so that functional diversity patterns in-
ferred from imputed datasets are much closer to the real ones than 
those that would be estimated using only species with complete trait 
information (Penone et al., 2014; Stewart et al., 2023).

Even when there are no missing data, another pitfall is decid-
ing how many dimensions to retain to maximize the information 
contained in the dataset while minimizing information redundancy. 
In the case of PCA, this is usually done by retaining the first two 
Principal Components (PCs) since they capture most of the variance 
in a dataset. However, if the intrinsic dimensionality of the consid-
ered trait dataset is higher, this approach might lead to the loss of 
biologically relevant information (Laughlin, 2014). Several methods 
have been proposed to determine the number dimensions (Mouillot 
et al., 2021; Peres-Neto et al., 2005). In the context of PCA, the par-
allel analysis method proposed by Horn  (1965) is one of the most 
precise methods in identifying the correct number of PCs to retain 
(Peres-Neto et  al.,  2005), and one of the most widely used. This 
method contrasts eigenvalues produced through a PCA on n random 
data sets of uncorrelated variables with the same dimension of the 
original dataset to produce eigenvalues for components that are ad-
justed for the sample error-induced inflation. Apart from some large 
cross-species studies (e.g. Carmona, Bueno, et al., 2021; Carmona, 
Tamme, et  al.,  2021; Díaz et  al.,  2016; Guillemot et  al.,  2022; 
Toussaint et al., 2021), the two described pitfalls of using PCA are 
hardly considered when building functional trait spaces. We argue 
that this might mostly depend on lack of knowledge of the existence 
of specific procedures, and likely, on the potential difficulties when 
implementing them. However, the most common practices when 
building functional trait spaces remain choosing the first two PCs 
and/or dropping observations with missing values, with the inevita-
ble loss of biological information.

Another aspect that deserves attention is how to use functional 
trait spaces as a ground to test the relationship between species' 
trait strategies and additional variables. This includes analyses such 
as exploring the relationship between species' ecological strategies 
(i.e. their position in the functional trait space) and climatic features 
at a species' habitat, or to explore how extinction risk (Carmona, 
Tamme, et al., 2021), as well as any other adaptive syndrome (Chelli 
et al., 2024; Pavanetto et al., 2023; Puglielli et al., 2022), is related 
to species traits. However, analysing these multidimensional rela-
tionships is inherently complex (Villéger et al., 2011). One layer of 
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complexity is provided by the need to use the multiple dimensions 
defining the functional trait space as predictors in models attempt-
ing to link multidimensional species strategies to other ecological 
dimensions (e.g. climate). Another problem is that more than often 
we do not have any previous knowledge on the functional form (e.g. 
linearity) of the relationship linking the target dimension to species' 
strategies. In addition, visualizing such relationships is not straight-
forward, and we often rely on separately analysing relationships be-
tween response variables and single trait dimensions (e.g. a single 
PC). These difficulties can be overcome by considering functional 
trait spaces as a set of coordinates that we can use to build maps of 
any response variable of interest. General additive models (GAMs), 
used to estimate smooth functional relationships between predic-
tor variables and a response (Pedersen et al., 2019), provide a solu-
tion to do that. Accordingly, they have been consistently used for 
fitting and mapping, for instance, species distribution models' pre-
dictions in spaces defined by geographical coordinates (e.g. Naimi 
& Araújo, 2016). GAMs allow expressing the models' predictor as a 
multidimensional smoother, allowing to use the functional trait space 
dimensions as a single predictor (see Carmona, Tamme, et al., 2021; 
Chelli et al., 2024; Pavanetto et al., 2023; Puglielli et al., 2022 for 
examples). In the case of functional trait spaces, GAMs provide a 
sound and flexible modelling solution because they operate using 
piecewise functions adapting to the local conditions within the func-
tional trait space, so that GAMs behaviour in a particular portion 
of the data point cloud does not overall alter the global behaviour 
of the model (Pedersen et al., 2019; Venables & Dichmont, 2004). 
While this comes at the cost of the interpretability of the coeffi-
cients, spline regressions are more easily interpreted from a graphi-
cal point of view rather than through the values of their coefficients 
(Venables & Dichmont, 2004). Thus, GAMs become particularly use-
ful to visualize and test patterns of how target variables vary within 
functional trait spaces.

Despite functional trait spaces are widely used in disparate re-
search fields spanning ecology, plant science, animal ecology, evo-
lutionary ecology – for example, searching the term ‘trait space’ in 
Web of Science returned 11,440 documents – there is no single R 
package for building, exploring, mapping and plotting functional 
trait spaces. To fill this gap, we propose funspace, an R package to 
handle functional trait space analyses using bivariate or multivariate 
trait data. Due to the very little difference between using funspace 
with pairs of traits or considering a multivariate ordination as input 
(Figure 1), here we present the package functionalities in the context 
of PCA-based analyses, and we refer to funspace documentation 
and examples for other cases, including raw trait data or other or-
dination methods (e.g. NMDS). The package consists of three main 
interconnected modules (Figure 1; Table 1):

1.	 Building and exploring module: it consists of multiple functions 
to build the functional trait space from bivariate or multi-
variate input data using multivariate kernel density methods, 
and to analyse the main features of a functional trait space 
(e.g. functional diversity indexes, testing against null models). 

If specified, all these analyses can be iterated across levels 
of a grouping variable (e.g. within groups such as families or 
populations, etc.).

2.	 Mapping module: it consists of one function that uses GAMs to 
statistically test for the link between a target variable at the spe-
cies level (such as extinction risk) and the position of species 
within the functional trait space. The function handles multiple 
groups as well.

3.	 Plotting module: it consists of a generic plot function that can 
receive as input the objects built in either of the previous mod-
ules. In case the input is the object built in module 1 (building and 
exploring), the function prints a bivariate (or pairs of dimensions 
in case of multivariate) functional trait space displaying bivariate 
kernel density estimates (for single or multiple groups). If the input 
is an object built in module 2 (mapping module), then the function 
prints a heatmap depicting how a target variable is distributed 
within the functional trait space (for single or multiple groups). All 
plots can be customized and new features can readily be added 
after plotting.

2  |  MODULE 1:  BUILDING AND 
E XPLORING A FUNC TIONAL TR AIT SPACE

funspace includes three functions to build and explore a func-
tional trait space: funspaceDim(), impute(), and funspace() (Table 1; 
Figure 1). Here we only illustrate the main features of the functions 
when the input is a PCA object and refer to the funspace documen-
tation for full details on the functions' arguments and input data. 
However, note that the same exact procedures can be applied to any 
bivariate trait data (i.e. pairs of raw traits, or scores of species on a 
different type of ordination). An example of how to use the func-
tions constituting module 1 is reported in Box 1.

funspaceDim() allows the user to identify the number of di-
mensions that are needed to build a functional trait space. The 
identified dimensions are those that minimize redundancy while 
maximizing the information contained in the trait data based on the 
method proposed by Horn  (1965) (see Introduction). Briefly, this 
method contrasts the eigenvalues produced through PCAs run on 
(30 * (number of variables)) random datasets with the same num-
ber of variables and observations as the input dataset. Eigenvalues 
>1 are retained in the adjustment. funspaceDim() implements 
the Horn test via the paran() function of the R package paran 
(Dinno,  2018). A trait matrix is the only input needed to run the 
function. funspaceDim() returns the number of dimensions to be 
retained from the subsequent PCA (Figure 1) and prints this infor-
mation in the R console. Note that funspaceDim() can be used 
only when the user wants to pass a PCA object as argument of fun-
space(). In the case of PCoA as the input object, the dimensions 
are iteratively identified by the analysis and depend on the choice 
of the distance measure used (e.g. Euclidean distance) together with 
the number of input variables. For NMDS, the user can specify the 
number of dimensions (k argument of vegan::monoMDS(), see 
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below) before running the analysis, and the best value of k needs 
to be determined using the model stress, a measure of the model's 
goodness of fit obtained by comparing distances in the original dis-
similarity matrix to the fitted one in the ordination space.

If the input trait matrix (either bivariate or multivariate) contains 
missing data, the user can fill the gaps using the impute() function. 
By default, impute() fills the gaps in the dataset using information on 
trait–trait relationships using random forest models as implemented 
in the missForest R package (Stekhoven & Bühlmann,  2012). 
Optionally, a phylogenetic tree (an object of class phylo) can be 
included to improve the imputation procedure by accounting for 
species phylogenetic relatedness together with the information on 
trait–trait relationships (Penone et al., 2014). Briefly, a given number 
of phylogenetic eigenvectors derived from the tree (specified by the 
argument nEigen, default is 10) are added to the original trait matrix, 

and the resulting dataset is then used in the above-mentioned ran-
dom forest-based procedure. The addingSpecies argument allows 
the user to add to the phylogeny those species that are only present 
in the trait matrix. If TRUE (default is FALSE), the phytools::add.
species.to.genus() function (Revell, 2012) is used to add species 
to the root of the genus if there are congeneric species in the tree. 
Those species that cannot be added to the phylogeny are imputed 
without taking phylogenetic information into account. Users who 
want to make use of the multiple options available in add.species.
to.genus() should modify their phylogenetic tree beforehand. The 
impute() output is a list containing the imputed version of the trait 
matrix and its non-imputed counterpart.

After having defined the number of dimensions that define the 
functional trait space, and having ran a PCA, PCoA or NMDS, the 
user can build the functional trait space using funspace(), the 

F I G U R E  1 funspace workflow by package module. Functions classification according to package modules is highlighted by colour coding. 
Input data are shown in grey. In case the input trait matrix has missing trait data, the user might want to gap-fill the bivariate or multivariate 
trait matrix using the impute() function, with the option to account for phylogenetic information in the imputation process. The second step 
is running an ordination (PCA, PCoA, NMDS) before using the other funspace functions. In the case of a PCA object, the user can select 
the number of principal components to be retained in the analysis, by using a the multivariate trait matrix to funspaceDim(). The double-
headed arrows indicate that the dimensions retained using fuspaceDim() are those that should be extracted from the subsequent PCA as 
well as those used to build the trait space using funspace(). In cases where the user decides to identify the trait space dimensions using 
funspaceDim(), and to pass the target PCs to funspace() instead of the PCA object, at this point the workflow follows the same path as 
that of any bivariate trait matrix. That is, the user can directly use a bivariate trait matrix (including coordinates obtained from any ordination 
method) to run funspace(). Because funspace is strongly focused in providing graphical representations of functional spaces, in cases 
when the functional space has higher dimensionalities, two dimensions at a time have to be selected within the funspace() function. 
Finally, an object TPD::TPDs() or TPD::TPDMeans() can be passed as argument of the funspace() function, and we refer to Carmona 
et al. (2016, 2019) for building TPDs objects. Once the funspace() object has been defined, the user can plot the output (i.e. bivariate 
functional trait space with kernel density estimates) using the plot() function. In case the user wants to test the observed functional trait 
space against a multivariate normal or a uniform distribution, the funspace() object can be passed to funspaceNull(). funspaceGAM() 
allows assessing how an additional target variable (e.g. temperature, extinction risk, an additional trait non included in the trait space, etc.) 
is distributed within the functional trait space previously obtained with funspace(). The resulting map of the target variable within the 
functional space can then be represented graphically as a heatmap using plot(). All the modules can handle multiple groups. The package 
also includes a generic summary() function that can be used to print the output of funspace(), funspaceNull(), and funspaceGAM(). 
Function descriptions are reported in Table 1. A full worked example is shown in Boxes 1–3.
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core function of the package. By default, the function needs only 
one object to run: either an ordination object (either a PCA obtained 
using the base::princomp() function, or a PCoA obtained using 
the vegan::capscale() function, or a NMDS obtained using the 
vegan::monoMDS() or vegan::metaMDS() functions), or a TPDs 
object obtained with the TPD::TPDs() or the TPD::TPDsMean() 
functions, or a data frame including species coordinates in any other 
type of ordination (as well as any multivariate trait data) (Figure 1). By 
default, funspace() uses the first two dimensions of the provided 
space, but the user can plot any pairs of dimensions by modifying the 
PCs argument. We recommend users to set the pairs of PCs based on 
the output of funspaceDim(). With this input, funspace() esti-
mates the probability of occurrence of trait combinations within the 
space defined by pairs of dimensions using kernel density estimation 
with unconstrained bandwidth selectors combining the functional-
ities available in the R packages ks (Duong, 2007) and TPD (Carmona 
et  al.,  2019). The grid size for computing multivariate kernel den-
sity estimates is defined by the n_divisions argument that sets 
the total number of divisions of each dimension or trait; since the 
resulting functional space is bidimensional, the total number of cells 
in which the functional trait space is divided is equal to n_divi-
sions. Note that increasing n_divisions results in longer time for 
computing the functional trait space (this can be an issue particularly 
when the funspaceNull() is used), but it increases the smoothness 
of the space edges in subsequent plotting (see Module 3). When the 
input is an ordination object, funspace() uses by default the range 
of the selected axes to build the grid limits in which estimating the 
multivariate kernel density estimates, but user-defined ranges can be 
used for calculations as well. The probability threshold used for multi-
variate kernel density estimates (i.e. the boundaries of the trait prob-
ability density function) can be set using the threshold argument 
(default = 0.999 corresponding 99.9% of the trait probability density 
function being retained). If the dataset includes a categorical variable 
(for example containing the family to which each species belongs), the 

same procedure can be applied to each level of the grouping variable 
by specifying it in the group.vec argument. In this case, by default, 
funspace() constraints group bandwidths for plotting to the global 
bandwidth, to avoid kernel density estimates of each group to ex-
ceed the borders of the functional trait space defined using the whole 
dataset. However, group-specific bandwidths can be generated by 
specifying fixed.bw = FALSE.

Other than the information that is later used for plotting, and 
when the input data is a PCA object, funspace() also returns a table 
reporting the loadings of the traits in the provided PCA (eigenvectors 
multiplied by the square root of eigenvalues) (Table 2). In this sense, 
it is important to note that the ‘loadings’ returned by base::prin-
comp() are actually eigenvectors, which do not provide information 
about the amount of variance contained within each PC. The squared 
loadings are used to estimate the proportion of the original variance 
of each trait that is explained by each selected component (speci-
fied in the PCs argument) as well as by the two selected components 
(Table 2, Box 1). This information can help understanding how well 
each trait is represented by the selected functional space. In addi-
tion, and independently of the data input (ordination object, TPDs 
object, or matrix), funspace() always returns a table reporting the 
functional richness and functional divergence of the dataset (Mason 
et  al.,  2005) (Table  3, Box  1). Functional richness represents the 
amount of functional trait space (i.e. the area in a two-dimensional 
context) occupied by the set of species. Functional divergence quan-
tifies how much the TPD function is distributed towards the edges of 
the functional trait space occupied by an assemblage. These indexes 
are calculated using the trait probability density approach (Carmona 
et al., 2016, 2019) across the whole dataset, and, if specified, per each 
level of a grouping variable. The user can retrieve all the funspace() 
output(s) using the summary() function (Box 1).

Finally, the function funspaceNull() allows the user to test how 
the area (i.e. functional richness) of the observed functional trait space 
differs from that of a null model. Two null models are implemented. (i) 

TA B L E  1 funspace functions by module.

Module Function Description

Building & exploring funspaceDim() Identifies the number of dimensions that are needed to build a functional trait space.

impute() Imputes missing data in a trait matrix using trait–trait relationships and, if specified, 
phylogenetic information.

funspace() Builds a functional trait space including multivariate kernel density at different quantiles. 
Multi-group option available.

funspaceNull() Tests for statistical difference between the observed functional trait space area versus 
theoretical areas generated using either a multivariate normal or a uniform distribution.

Mapping funspaceGAM() Fits GAMs using a target variable as the response variable and functional trait space axes as a 
two-dimensional smoother predictor. Returns GAM model predictions within a functional 
trait space. Multi-group option available.

Plotting plot() If a funspace() object is passed as argument, the function prints a functional trait space with 
multivariate kernel density estimates. If a funspaceGAM() object is passed as argument, 
the function returns a GAM map (i.e. heatmap) of how a target variable distributes within 
the functional trait space. Multi-group option available.

Building & exploring 
and mapping

summary() Gives a summary of the main features and results of objects created with the funspace(), 
funspaceNull(), and funspaceGAM() functions.
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6 of 14  |     CARMONA et al.

BOX 1 Using funspace module 1

We use one of the funspace example dataset to illustrate the package workflow. The dataset is a subset of Carmona, Bueno, 
et al. (2021) dataset, containing trait information for the traits defining the Global Spectrum of Plant Form and Function (GSPFF, Díaz 
et al., 2016, namely plant height, seed mass, specific stem density, leaf area, leaf nitrogen content on a mass basis and specific leaf 
area) for >10,000 vascular plant species. Trait data was compiled from the TRY database (Kattge et al., 2020).

# Load the package

library(funspace)

# Load example data (traits already log10-transformed and scaled)

data.aux <− funspace::GSPFF_missing

The dataset contains missing trait information, so we use the impute() function, coupled with phylogenetic information to impute 
missing trait data. The phylogenetic tree was retrieved using the V.Phylomaler R package (Jin & Qian, 2019) and is contained in 
the phylo object that is loaded with funspace. Note that, when using user-specified data, the trait dataset provided must include 
species names as row names; the same naming convention should be used in the phylogenetic tree (if provided).

# Load the example tree (it must be an object of class phylo)

phylo.tree <− funspace::phylo

# Imputing missing data (Because there are >10 k species, it takes long to run!)

GSPFF_imputed <− impute(traits = data.aux, phylo = phylo.tree, addingSpecies = TRUE) # Output is a list

# Save the imputed trait data in a separate object:

imputed.traits <− GSPFF_imputed$imputed

# Testing the number of dimensions defining the functional trait space

funspaceDim(imputed.traits) # two dimensions retained

# Run PCA

pca.trait <− princomp(imputed.traits, cor = TRUE)

# Building the functional trait space (using the first two PCs)

trait_space_global <− funspace(x = pca.trait, PCs = c(1,2), n_divisions = 300)

funspace example datasets also include a data frame with taxonomic information for the species in our GSPFF subset. We will use 
this information to illustrate how to deal with groups when using funspace Module 1.

# Loading the taxonomic information

tax_inf <− funspace::GSPFF_missing_tax

# Defining a group to include four major families

selFam <− c(“Pinaceae”, “Poaceae”, “Fabaceae”, “Lauraceae”)

selRows <− which(tax_inf$family %in% selFam)

tax_subset <− droplevels(tax_inf[selRows,])

# Creating a subset of the GSPFF to retain target groups

GSPFF_subset <− imputed.traits[selRows, ]

# Run PCA on the subset

PCA_subset <− princomp(GSPFF_subset)

A grouping variable can be specified in funspace() by passing a vector including the variable to the group.vec argument.

# Building the functional trait space (using the first two PCs) including groups

trait_space_families <− funspace(x = PCA_subset, PCs = c(1,2), group.vec = tax_subset$family, 

n_divisions = 300)

# We can print the outputs for both spaces:
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    |  7 of 14CARMONA et al.

The first null model generates data following a bivariate normal distri-
bution (null.distribution = ‘multnorm’) with the same mean and 
variance–covariance structure as the original data. This null model cor-
responds to the expectation that some trait combinations, specifically 
those towards the centre of the space, are more likely than others, and 
the resulting space has the approximate shape of an ellipse (Carmona, 
Bueno, et al., 2021). (ii) Another null model generates a dataset with vari-
ables following a uniform distribution (null.distribution = ‘uni-
form’), creating a functional trait space where all trait combinations 
within the range of the observed functional trait space axes are equally 
possible, and the space assumes the approximate shape of a rectan-
gle (Díaz et al., 2016). Given a funspace() object as input, funspa-
ceNull() generates a vector of null model areas across a user-defined 
number of iterations. Then, using the function as.randtest from 
the ade4 R package (Dray & Dufour, 2007), it tests for the statistical 

difference between the observed value of functional richness and the 
null expectation (considering in both cases the probability threshold 
value used in the funspace() object input). Hypothesis testing op-
tions follow the as.randtest() specifications. To get meaningful 
comparisons with the original functional trait space, funspaceNull() 
builds the trait probability density functions at each iteration using the 
same grid size and bandwidth for computing kernel density estimates 
as the funspace() object. funspaceNull() returns: the observed 
functional richness, the average functional richness of the null model 
across iterations, and the p-value and standardized effect size associ-
ated to the hypothesis test. This information can be retrieved using the 
summary() function. Note that funspaceNull() is meant to test the 
global space against null models, so it does not handle multiple groups.

3  |  MODULE 2:  MAPPING A FUNC TIONAL 
TR AIT SPACE

funspace includes the function funspaceGAM() that automatizes 
GAM modelling steps needed for mapping patterns of a target 

summary(trait_space_global)

summary(trait_space_families)

In this example, the summary() function applied to the object trait_space_global returns the proportion of variance explained 
for each trait by each of the selected components of the PCA (Table 2) and the functional diversity indexes describing the global 
space (Table 3). In the multi-group case (i.e. trait_space_families object), functional indexes are returned per each level of the 
grouping variable as well (Table 3). Note that functional diversity indexes (for single or multiple groups) are returned independently 
of the funspace() input.

BOX 1 (Continued)

TA B L E  2 PCA output returned by funspace().

Trait Comp.1 Comp.2
Overall_
explained

Leaf area 25.21 41.49 66.70

Leaf nitrogen 
content

8.92 60.42 69.34

Plant height 79.94 5.72 85.66

Specific leaf area 25.24 59.93 79.17

Specific stem density 78.51 2.46 80.97

Seed mass 66.26 6.20 72.46

Note: A table summarizing the percentage of variance of each trait 
that is explained by each principal component (Comp.1 and Comp.2 in 
this example) and across components (Overall_explained). The table in 
this example is returned as part of the output of summary(trait _
space _ global), corresponding to the global spectrum of plant form 
and function using imputed trait information (see Module 1 and Box 1). 
From this output we can see that the first principal component is mainly 
explaining plant height, specific stem density and seed mass, whereas 
the second component is more strongly related to leaf traits (leaf area, 
leaf nitrogen content and specific leaf area). Finally, the Overall _
explained column reports the percentage of variance explained 
by the considered space (i.e. the sum of the variance explained by 
individual components). In this functional space, the quality of the 
representation of plant height, specific stem density and specific leaf 
area is better than that of leaf area and leaf nitrogen content. Note 
that the function output is slightly different since the table has been 
reorganized for presentation purposes.

TA B L E  3 Functional diversity indexes returned by funspace().

Set of species Threshold
Functional 
richness

Functional 
divergence

Global 99.90% 45.55 0.56

Fabaceae 99.90% 39.92 0.58

Lauraceae 99.90% 17.13 0.46

Pinaceae 99.90% 13.19 0.39

Poaceae 99.90% 28.50 0.40

Note: A table summarizing two functional indexes (functional richness 
and divergence, see Module 1) for the global set of species and for each 
group contained in the trait _ space _ families example (see 
Module 1 and Box 1). The quantile threshold at which the indexes are 
calculated is also returned in the output. The table is returned as part 
of the summary() output. In this example we can see that functional 
richness and functional divergence are larger for the Fabaceae family 
than for the other families, reflecting the fact that legumes include both 
herbaceous and tree species (see Figure 3), whereas species within the 
other families are generally more similar between them. Note that the 
function output is slightly different since the table has been reorganized 
for presentation purposes.
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8 of 14  |     CARMONA et al.

dimension within the functional trait space (Table 1, Figure 1). An 
example of how to use funspaceGAM() is reported in Box 2.

funspaceGAM() fits a GAM with a single response variable (de-
fined by the y argument) and a two-dimensional smoother defined 
by the functional trait space axes as the bivariate predictor. GAM 
specifications are set to the default ones (see mgcv::gam() func-
tion, Wood, 2017), only the family argument can be specified by the 
user. Functional trait space axes are inherited by the funspace() ob-
ject specified in the funspace argument of funspaceGAM(). Given 
a funspace() object, the function automatically defines the func-
tional trait space boundaries and grid size for generating GAM model 
predictions by inheriting the threshold and the grid size information 
from the funspace() object. Note that, the greater the grid size is, 
the longer the GAM computational time will be.

If a grouping variable is specified when running funspace() (see 
Module 1, Box 1), GAMs are also fitted per each level of the group-
ing variable and only within the portion of the space occupied by the 
data points of each subgroup (see details of fixed_bw argument 
of funspace() for different ways of estimating the bandwidth for 
each group). To avoid fitting models with not enough data, if there are 
fewer observations in a particular group than specified in the argu-
ment minObs (defaults to 30), the model is not fitted for that group, 
and a warning message is returned to inform the user. GAM sum-
mary statistics for all data pooled or, if specified, for each level of the 

specified grouping variable, can be retrieved using the summary() 
function. The output is not shown in the example below because the 
summary is equivalent to that of the function mgcv::summary().

4  |  MODULE 3:  PLOT TING A FUNC TIONAL 
TR AIT SPACE

funspace includes a generic plot() function that allows the user 
to plot objects of the funspace class created with the funspace() 
and funspaceGAM() functions (see Box 3 for a worked example).

By default, the only argument needed for plotting is an object of 
class funspace that is assigned to the x argument of the plot() 
function. If the plotting input was created with the funspace() 
function, the plotting function returns a functional trait space where 
coloured areas represent the density of occupation of the functional 
space by the considered species (i.e. the trait probability density 
function as described in Carmona et  al.,  2016, 2019; Figure  2a). 
When the input is the result of the funspaceGAM() function, the 
plot() function prints a heatmap in the functional space depict-
ing the predicted values for the response variable within the exter-
nal boundaries of the trait probability density function (Figure 2b). 
Note that, in both cases, the resulting plot(s) might appear more or 
less smooth depending on the number of n_divisions set when 
building the functional trait space using the funspace() function 
(Box 1). Larger values of n_divisions will result in smoother plots, 
but also in higher computational times. An important argument of 
the plot() function is the type argument. By default, this argu-
ment is set to ‘global’, and it allows the user to plot the func-
tional trait space for all data pooled (Figure 2a,b). However, if type 
is set to ‘groups’, and given that a grouping vector has been al-
ready specified when building the funspace() object (Box 1), the 
plot() function creates a plot for each level of the grouping vari-
able (Figure 3, see the fixed_bw argument of funspace()).

Many graphical parameters can be set for plotting. For example, 
if the input object comes from funspace(), when the argument 
quant.plot is set to TRUE (default is FALSE), contour lines are drawn 
at quantiles of the trait probability density function specified by the 
argument quant (by default these are the threshold argument that 
was used in funspace() and the 0.50 and 0.25 quantiles). If quant.
plot is set to TRUE when the input comes from the funspaceGAM() 
function, then the contour lines indicate the quantiles of the values 
of the response variable predicted by the GAM model. When quan-
tile lines are displayed, their features (e.g. type, colour) can be set 
using specific graphical parameters (e.g. quant.lty, quant.col). 
Independently of the input object, the gradient palette (with a num-
ber of colours specified by the ncolors argument, which defaults 
to 100) can be easily modified by specifying a vector including the 
two or more colours in the colours argument. Plot axes limits can 
be adjusted by modifying the base plot graphical parameters xlim 
and ylim. When the input used to create the funspace() object is 
a PCA, the user can also decide whether to plot arrows representing 
the trait loadings in the PCA by setting the argument arrows to TRUE 

BOX 2 Using funspace mapping module

For this example, we will consider the GSPFF dataset that 
contains information on six traits for the set of species with 
complete trait information. We will create a response vari-
able that increases as we move further from the origin of 
coordinates of the space and add some random normally 
distributed noise to avoid a perfect fitting.

# Creating the GSPFF functional space:

pca.gspff <− princomp(GSPFF, cor = TRUE)

trait_space_gspff <− funspace(x = pca.gspff, 

PCs = c(1,2), n_divisions = 300)

# Response variable we want to map

y <− abs(pca.gspff$scores[, 1] * pca.

gspff$scores[, 2]) + rnorm(nrow(GSPFF), 0, 1)

# Fitting GAM for all data pooled (It takes few seconds to 
run!)

fit.gam < − funspaceGAM(y = y, 

funspace = trait_space_gspff)

# To fit GAMs for each level of the grouping variable (not 
shown), we just have to run funspaceGAM() by imputing a 
funspace() object that was built by specifying the group.vec 
argument (e.g. the object ‘trait_space_families’ in Box 1).
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    |  9 of 14CARMONA et al.

(default is FALSE). Full details on plotting options (e.g. points display, 
etc.) can be found in the funspace documentation.

5  |  DISCUSSION

funspace provides users with an important tool for conducting func-
tional trait-space analyses from raw trait data and a way to increase 
the reproducibility of such analyses. The interconnected modules 
of the package provide in fact all the necessary steps to streamline 
sometimes troublesome operations, including imputation of missing 
data (Stewart et al., 2023) or the definition and analysis of functional 
spaces using multivariate kernel density (Mammola et  al.,  2021). 

funspace is explicitly based on the TPD framework (Carmona 
et al., 2016, 2019), which is not optimized for plotting. Thus, fun-
space extends the TPD functionalities in terms of plotting, and if 
the functions are defined within the same trait range (by setting the 
trait_range argument), the results of the two packages are fully com-
parable. This allows integrating funspace() outputs with additional 
analyses not included in the package, such as TPD-based dissimilar-
ity, redundancy, or uniqueness (Carmona et al., 2016). In particular, 
the main features of funspace include: (i) it requires minimum input 
from users, increasing its scope of application; (ii) it is optimized for 
graphical representation and visual exploration of functional trait 
spaces. In the following, we discuss how funspace integrates and 
expands the current landscape of functional diversity R packages.

BOX 3 Using funspace plotting module

For this example, we use the trait_space_families and fit.gam objects defined in Boxes 1 and 2 and generated using the 
funspace() and funspaceGAM() function, respectively.

# 1 – Plotting a functional space including a global (all data pooled) trait probability distribution. In this case, we will plot the trait_space_
families object.

plot(x = trait_space_families, # funspace object

type = “global”, # plot the global TPD

quant.plot = TRUE, # add quantile lines

arrows = TRUE, # add arrows for PCA loadings

arrows.length = 0.9) # make arrows a bit shorter than the default.

The output is shown in Figure 2a.

# Plotting an object created with the funspaceGAM() function: we will use the fit.gam object built in Box 2.

plot(x = fit.gam,

type = “global”,

quant.plot = TRUE,

quant.col = “grey80”) # a lighter tone for the quantiles

The output is shown in Figure 2b.

# To display the use of the ‘type’ argument, we also plot the functional trait space with an individual trait probability density function per 
each level of the grouping variable (Fabaceae, Lauraceae, Pinceae, Poaceae). The GAM output per each group is not shown, but it could 
be obtained replacing the trait_space_families object with the fit.gam one in the following code.

par(mfrow = c(2, 2), mar = c(2,2,1,1), mgp = c(1, 0.1, 0))

plot(x = trait_space_families,

type = “groups”, # a plot for each group (family)

quant.plot = TRUE,

globalContour = T, # The contour of the global TPD

pnt = T, # add points for species of each family

pnt.cex = 0.1, # points should be small

pnt.col = rgb(0.2, 0.8, 0.1, alpha = 0.2), # colour for points

axis.title.line = 1)

The output is shown in Figure 3.
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10 of 14  |     CARMONA et al.

One advantage of funspace for users is its ability to generate 
functional spaces using only a matrix of functional features, eliminat-
ing the need for additional input data (i.e. abundance or presence/ab-
sence matrices) required by other packages that are mainly focused 
on community-level diversity indices. For example, both the BAT and 
betapart R packages (Baselga & Orme, 2012; Cardoso et al., 2015) re-
quire a community matrix to estimate the functional space. However, 
it should be noted that both packages are more focused on estimat-
ing alpha and beta diversity indices, including taxonomic, phyloge-
netic, and functional aspects, so their focus is different from that of 
our package. Moreover, and importantly, they do not include specific 
functions for visualizing or exploring functional spaces, nor any func-
tion to map external variables in such spaces.

Mapping different variables in a functional space is one of the 
main features of funspace, and this is done using the funspa-
ceGAM() function. funspaceGAM() requires as input an object 
created by the core funspace() function and the target response 
variable, allowing for mapping target variables in any trait space in 
a seamless and intuitive manner. Finally, the resulting plots can be 
easily customized, and, by default, they are publication ready. To 
the best of our knowledge, only two R functions perform similar 
operations. These are the envfit() and ordisurf() functions 
included in the vegan R package (Oksanen et  al.,  2022) and they 
allow for fitting multiple regression or GAM with a similar purpose as 

funspaceGAM(). However, envfit() and ordisurf() need the 
ordination axes as input. Thus, ordination axes need to be separately 
extracted from objects of ordination functions, requiring an addi-
tional step from the users. Moreover, those alternative functions, 
being more focused on modelling, provide default plots that are 
generally barebone, often requiring additional tuning from the users 
as well as additional packages to improve plotting (e.g. ggordiplots, 
Quensen et al., 2023). funspaceGAM() solves all these limitations 
by automatically retrieving ordination axes for modelling, thus pro-
viding a single-step solution for generating publication-ready plots, 
and associated statistical tests, of how target variables distribute 
within ordination analyses outputs.

Finally, the mFD R package (Magneville et  al.,  2022), a re-
cently released extension of the previous FD package (Laliberté 
et  al.,  2014), offers a wide range of functions to calculate trait-
based distances, construct multidimensional functional spaces, 
and compute various alpha and beta functional diversity indices. 
In addition, mFD allows for the construction of functional spaces 
using only a trait matrix. However, and this is the main difference 
with funspace, mFD relies on convex hull estimation to build 
functional spaces, an approach that may have limitations with 
specific types of data. For example, convex hulls are extremely 
sensitive to outliers and are not able to account for the differen-
tial distribution of data points within trait spaces (i.e. multivariate 

F I G U R E  2 plot() output by input object. (a) Plot of an object created with the function funspace() obtained using all data points 
in the GSPFF dataset. Colours indicate the probabilistic distribution of trait combinations in the functional trait space defined by a PCA 
(red = high probability; yellow = low probability). Contour lines indicate 0.99, 0. 50, and 0.25 quantiles of the probability distribution. 
The output shows that there are two hotspots (corresponding, from left to right, to herbaceous plants and angiosperm trees, see Díaz 
et al., 2016). The variance explained by each component and the loadings of the original traits are also shown. (b) Plot showing the GAM 
predicted values for a variable (see Box 3 for explanations) within the same functional space; the input was created using funspaceGAM(). 
The heatmap shows the predicted values for a variable with increasing values as we move away from the centre of coordinates of the 
functional space. Contour lines are the quantiles of the GAM predictions expressed in the same unit as the response variable. The code to 
reproduce each panel is available in Boxes 1–3.
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    |  11 of 14CARMONA et al.

density) (Mammola et  al.,  2021). This limitation of convex hulls 
becomes especially important in cases when missing data need 
to be imputed (Stewart et al., 2023). Additionally, mFD lacks sup-
port for external variable mapping within the functional spaces, 
although this falls outside the package's intended scope. In sum, 
mFD and funspace are complementary packages to broaden the 
set of tools for users to explore the diversity of organismal form 
and function across the tree of life.

6  |  CONCLUSIONS

funspace streamlines all the necessary steps to build, explore, 
map, and plot functional trait spaces, making such analyses readily 
accessible to any user interested in bivariate or multivariate func-
tional trait analyses. Importantly, funspace automatizes most of 
the procedures needed to run such analyses, and for this reason can 
be of use to inexperienced R users as well. This package provides a 

F I G U R E  3 Plot of a funspace object created with the function funspace() including groups for four major plant families (Fabaceae, 
Lauraceae, Pinaceae, Poaceae). For each family, its corresponding trait probability distribution is represented within the functional space; 
the 99.9% probability quantile of the global trait probability distribution (i.e. the one including all species from the four families together) is 
shown to provide a common reference and make comparisons easier. Colours, interpretation of contour lines and explanation of axes is the 
same as in Figure 2a. The code to reproduce this figure is available in Boxes 1 and 3.
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12 of 14  |     CARMONA et al.

standardized and reproducible set of procedures that can be used 
to increase comparability among studies involving functional trait 
space analyses at different scales and across disciplines. Moreover, 
this package, due to its easy usage, has the potential to increase the 
number of studies addressing research questions that require simul-
taneous consideration of multiple traits and their relationship with 
multiple ecological variables, such as climate (i.e. functional trait 
space-environment relationships). Lastly, funspace provides key 
outputs to interpret the main features of any functional trait space 
and publication-ready plots, increasing the usefulness and potential 
applicability of this package. We hope that funspace will provide 
the basic tool to build species' functional traits spaces across the 
tree of life, to explore the main features of such spaces, and to link 
them to any biological and non-biological factor that can influence 
species' functional diversity.
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