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Abstract

In this letter, we stress the essential role played by gas inertia in the breakup of gas bubbles. Our

results reveal that, whenever the gas to liquid density ratio Λ = ρg/ρl is different from zero, tiny

satellite bubbles may be formed as a result of the large gas velocities that are reached close to pinch-

off. Moreover, we provide with a closed expression for the characteristic satellite diameter, which

decreases when decreasing Λ and which shows order of magnitude agreement with the micron-sized

satellite bubbles observed experimentally.
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The breakup of an air bubble in water is one of the most common processes of daily life.

The detailed analytical description of bubble formation and subsequent breakup started over

a decade ago with two landmark papers by Longuet-Higgins et al [1] and Oguz and Prosperetti

[2]. However, our understanding of such ubiquitous phenomenon is not yet fully satisfactory

compared with the analogous problem of drop breakup in air [3]. One of the aspects that

still deserves further study is the description of the time evolution of the region near the

minimum radius at instants close to pinch-off [3], which will be useful, among other things,

as an intermediate step to scale the high-speed Worthington jets formed when rain drops [4],

or a solid object [5] impact on a free surface, a phenomenon also observed in the collapse of

a cylindrical air cavity [6], or in the breakup of bubbles injected from an underwater nozzle

within a liquid co-flow [7].

Previous studies regarding the breakup of inviscid liquid drops in air [8–10] found that

the minimum radius decreased in time as R0 ∝ (t0 − t)α, with t0 the pinchoff time and

α = 2/3. The 2/3 exponent, which is universal and independent of initial conditions, arises

as a consequence of the fact that the local dynamics is governed by a balance between surface

tension and liquid inertia. The same exponent might be expected to describe the pinch-off

of bubbles as well. However, Burton, Waldrep and Taborek [11] showed that the exponent

describing the time evolution of the minimum radius for the (common) case of breakup of air

bubbles in water, is very close to α = 1/2 and also reported, for the first time, the formation

of micron-sized satellites. Albeit the deviation from the α = 2/3 exponent had been already

predicted by [1, 2], a great interest arose as a consequence of further experimental evidence,

which demonstrated that α varied between 0.59 and 0.55 [5, 12, 13], what was interpreted as

a sign of non-universality.

In what follows it will be shown that, as the singularity is approached, gas inertia comes

into play no matter how small the inner to outer density ratio is, provoking the first pinch

of the bubble to take place at z 6= 0 in spite of the initial mirror symmetry of the bubble

and boundary conditions around z = 0. The main consequences of this fact are: i) the

experimental observation of tiny satellites in the inviscid breakup of bubbles [11–13], which

lacked of explanation, can be now understood and attributed to the finiteness of gas density,

ii) the very final stages of the time evolution of α are not predicted neither by the theory

presented in [14] nor in that of [15], iii) the experimentally measured values of α correspond

to an intermediate asymptotic limit before the satellite begins to form.

In the numerical simulations reported below, the bubble is placed symmetrically within a
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straining flow, as done in [16, 17]. The type of outer flow imposed leads to bubble breakup

for a sufficiently large value of the Weber number (fixed to 48) but does not affect to the local

dynamics near pinch-off. Figure 1, where axial and radial distances are made dimensionless

using the initial (spherical) bubble radius, shows the time evolution of the bubble surface for

Λ = 0.005 (four times the air to water density ratio). The striking result of this figure is that

an elongated satellite bubble (in agreement with experimental observations by [13]) begins to

form at exceedingly small radial and axial length scales. Note that, as explained below, the

critical radius, rc, defined here as the one at which the (time dependent) curvature at z = 0

reaches a maximum, decreases dramatically as the density ratio is lowered. This is the reason

why the generation of satellites was previously reported in the case of drop breakup [9, 10, 16]

but not in the numerical and analytical studies of bubble breakup.

In order to explain the mechanism leading to the symmetric type of breakup (in the sense

given in [17]) to form satellites, it proves convenient to plot both the liquid normal velocities

and the tangential gas velocities at the bubble free surface (see Fig. 2). As depicted from

figure 2a, the absolute value of the normal velocities present a maximum at z = 0 for a value

of R0 = 0.0196 (R0 is defined here as the radius at z = 0). Nevertheless, as the collapse

process advances, the maximum of the absolute value of the normal velocity is displaced

from z = 0 (see the curve for R0 = 0.00425). The reason for this displacement can be

found in Fig. 2b, where it is shown that gas velocities increase with the axial distance z

in an approximate linear way until a maximum is reached. Indeed, in order to accelerate

the gas longitudinally, there must exist a maximum in the pressure at z = 0, being the

gas pressure difference given by pg(0) − pg(`) ∼ ρg v2
g(`). In the previous expression, the

subscript g denotes ’gas’ and vg(`) the maximum of the longitudinal gas velocity occurring

at a characteristic axial length scale `. Note that continuity demands that 2πR0`dR0/dt '
πR2

0vg(`) and, consequently, pg(0) − pg(`) ∼ ρg(`/R
2
0)

2 (dR2
0/dt)2. Due to the fact that the

liquid convective acceleration can be estimated as ∼ ρl(1/R
2
0) (dR2

0/dt)2, with the subscript

l indicating ’liquid’, the ratio ρl (1/R
2
0) (dR2

0/dt)2/[pg(0) − pg(`)] ∼ ρl/ρg(R0/`)
2. The fact

that the local bubble shape becomes more and more slender as the singularity is approached

[14, 15, 17] implies that (R0/`)
2 decreases in time and, therefore, ρl/ρg(R0/`)

2 becomes of order

unity at some instant previous to pinch-off. Moreover, as observed by comparing the last two

profiles in Fig. 2a, there exists a range of values of R0 for which the gas overpressure at z = 0

is able to decelerate the inward radial motion of the liquid, whereas the lower pressure at z ∼ `

is able to accelerate inwards the liquid through the suction mechanism described in [17]. Note
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also that the deceleration at z = 0 can be quite strong as observed in Fig. 2 and this might lead

to the development of a Rayleigh-Taylor instability. This qualitative description is supported

by the result in Fig. 2c, where the ratio ρl v
2
n/ρg v2

g , with vn the maximum normal liquid

velocity and vg the maximum axial gas velocity, decreases when decreasing R0. Moreover, it

is also observed in this figure that the typical radius for which ρl v
2
n/ρg v2

g ∼ O(1) decreases

dramatically as Λ decreases and, therefore, the smaller the density ratio is, the smaller is the

length scale for which the satellite bubble begins to form.

The fact that gas inertia must come into play at some instant previous to pinch off is

also reflected in the time evolution of the instantaneous exponent α [15], as depicted in Fig.

3. Here we compare the numerically calculated value of α with α1 = 1/2 (1 + 1/(4 ln R0))
−1

[5, 14, 17] which, for τ À 1, being τ = − ln(t0 − t), is such that α1 → 1/2 + 1/(4 τ) and

α2 = 1/2 + 1/(4
√

τ) [15]. Note from this figure that the numerical solution lies between both

asymptotic expressions but is quite closer to that given by [15] during a finite and intermediate

range of times. Nevertheless, α drops to zero for sufficiently small values of R0 as a consequence

of the increasingly larger pressures at z = 0 needed to accelerate the gas longitudinally.

It is now our purpose to develop a simple model which, retaining the dominant physical

mechanisms described above, permits us to both reproduce the time evolution of the exponent

α in Fig. 3 and to scale the size of the satellite bubbles obtained as a function of Λ. For

this purpose, and as suggested by the good agreement depicted in Fig. 3, we will simply

complement equations (4)-(6) in [15] by adding the effect of gas inertia.

Under the slenderness approximation, gas velocity can be calculated using continuity which

demands, at leading order in z,

vg(z) = − 1

R2
0

dR2
0

d t
z . (1)

On the other hand, the integration between z = ` and a generic axial position z of the in-

compressible, slender and inviscid momentum equation projected in the longitudinal direction

yields, at leading order in z,

pg(0) = p(`) + ρg

[
2

R4
0

(
dR2

0

d t

)2

− 1

R2
0

d2 R2
0

d t2

]
`2

2
, (2)

and

pg(z) = p(0)− ρg

[
2

R4
0

(
dR2

0

d t

)2

− 1

R2
0

d2 R2
0

d t2

]
z2

2
. (3)

Taking into account that ` =
√

R0 Rc = (R0/d
2R/d z2|z=0)

1/2
, with Rc the radius of curvature

of the interface at z = 0 [5, 14, 15] and d2R(z)/d z2|z=0 = 1/Rc, the following coupled set of
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equations for α and the aspect ratio a′′ ≡ d2 R2
0/d z2|z=0 = 2 R0/Rc is obtained, [15]:

(
ατ + α− 2α2

)
ln (Γ1/a

′′) = −α2 − 4Λ/a′′
(
ατ + α + 2α2

)
(4)

(
δτ + δ − 2δ2

)
ln (Γ2/a

′′) = −3α2 + 2 α− 2αδ + 2ατ + 4Λ/a′′
(
ατ + α + 2α2

)
(5)

ln (a′′)τ = −2δ , (6)

with Γ1 and Γ2 order unity constants and the subscript τ denoting τ derivatives. In addition,

note that δ is simply an intermediate variable that couples α with Rc/R0. It is simple to verify

that the system (4)-(6) has two time independent solution located at [α, δ, ln (a′′)] = ((2 +

2Λe2)/(3− 8Λe2), 0,−2), and [α, δ, ln (a′′)] = (0, 0, C0), with C0 a constant. Nevertheless, the

former solution is unstable whereas the latter is stable but represents no evolution. Therefore,

as suggested in Fig. 3, the true solution for Λ ¿ 1 is the one such that, in the limits Λ = 0,

τ À 1 behaves as [15]

α ∼ 1/2 + 1/(4
√

τ) , δ ∼ 1/(4
√

τ) , ln (a′′) ∼ −√τ . (7)

As depicted in Fig. 4, the integration of the system (4)-(6), with the correct behaviors given

in (7) is able to accurately reproduce the time evolution of α and, therefore, it contains all the

essential ingredients of the inviscid bubble pinch-off in the incompressible approach. Moreover,

in order to estimate the typical dimensionless diameter of the satellite bubbles formed, db, it

proves convenient to define Φ = a′′/Γ1 which, in the limits Λ = 0, τ À 1 behaves as e−
√

τ .

Note that, once the correct behaviors of Φ and α for large τ are introduced into Eq. (4), the

characteristic value τc for which the ratio of liquid to gas momentum becomes of order unity

(ρl v
2
n/ρg v2

g ∼ O(1)) can be calculated by balancing the two terms on the right of Eq. (4) as

4Λ

Γ1 Φ
∼ 1

4
→ τc =

[
ln

(
16Λ

Γ∗

)]2

, (8)

where Γ∗ absorbs the proportionality factor in (8) (∼ 0.5). The estimate of the critical radius

as a function of Λ can be calculated as

rc = Ae−τcα(τc) = A e−
1
2
τc−

√
τc
4

+O(τ
− 1

2
c ) = A

(
16Λ

Γ∗

) 1
4

e−
1
2 [ln(

16
Γ∗Λ)]

2

, (9)

being A a constant that depends on initial conditions.

The inset in Fig. 4 shows that the transition radii obtained numerically for different values

of the Weber number and those predicted by Eq. (9) are in excellent agreement for Γ∗ = 2 if

A is fixed to 1; also observe the slight dependence on initial conditions (different initial Weber
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numbers). Note that other initial or boundary conditions may provide different values of Γ∗

and A. Finally, bubble diameter is given by, db ∼ (6 `c/rc)
1/3 rc ∝ rc, with the air ligament

aspect ratio obtained from the numerical simulations ranging from `c/rc ∼ 10−20. Note that,

from the data shown in the inset of Fig. 4, the size of the satellite bubbles ranges, depending

on the value of Λ ∈ (10−3, 10−2), between ∼ 10−5 to ∼ 10−3 times the initial bubble radius,

and this explains the tiny satellite bubbles (∼ O(1µ m)) observed experimentally [11–13].

Other factors, not taken into account in the deduction of Eq. (9), may influence quan-

titatively the size of the resulting satellites. These are: i) Compressibility effects [18], ii)

Satellite breakup [19], iii) The slow (logarithmic) convergence [14] to the asymptotic limit

favors the formation of satellites at a length scale which could be larger than the one at which

the asymptotic limit in [15] is reached. In that case, use of Eq. (9) is not justified [20].
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FIG. 1: Evolution of bubble shapes for times close to pinch-off showing that an elongated satellite

bubble is formed.
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FIG. 2: a) Axial variation of normal velocities at the interface for three different values of R0. b) Axial

distribution of tangential gas velocities for three different values of R0. c) Ratio of the maximum

value of the liquid convective inertia (ρl v
2
n) to the maximum value of gas convective inertia (ρg v2

g)
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FIG. 3: Time evolution of the numerically calculated instantaneous exponent α [15] (continuous line)

and the asymptotic predictions given in [14] (dotted-dashed line) and [15] (dashed line) shows that α

drops to zero for sufficiently small values of R0 as a consequence of the increasingly larger pressures

at z = 0 needed to accelerate the gas longitudinally.
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FIG. 4: Comparison of α(τ) calculated from the full numerical simulations (dots) and by solving the

system (4)-(6) (case of Λ = 0.001 in Fig. 3). Note that, for τ > 15, the numerical results are affected

by an instability triggered by the large gas velocities. Inset: numerical (dashed lines) and theoretical

(continuous line) values of rc vs Λ for two values of the initial Weber number. Note that the critical

radius, rc, is obtained from the numerical simulations as the one at which the time dependent axial

curvature reaches a maximum. The continuous line represents Eq. (9), with A = 1 and Γ∗ = 2. The

smaller value of Λ in this figure is Λ = 3× 10−3.
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