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impact in terms of change in habitat quality to inform criterion A3 on future population
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as the difference between the current and the future species climatic niche, defined based
on current and future bioclimatic variables under alternative model algorithms, dispersal
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terion A3 if they cannot disperse beyond their current range in the future. Categories
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comprehensiveness of IUCN Red List assessments.
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INTRODUCTION

The International Union for Conservation of Nature (IUCN)
Red List of Threatened Species is the most authoritative
and comprehensive source of information to monitor species’
extinction risk and a central tool for guiding biodiversity con-
servation and sustainable development (Betts et al., 2020). More
than 150,000 species have been categorized on the IUCN Red
List and over 42,000 of them are threatened with extinction
(IUCN, 2022). On the list, species are placed in different extinc-
tion risk categories. The categories are based on 5 quantitative
criteria that measure specific symptoms, such as small pop-
ulation size, population declines, and restricted ranges. Each
species assessment description is accompanied by required doc-
umentation, such as a geographic range map and a list of
threats to species {UCN, 2013). The IUCN Red List influences
global conservation planning and spending (Betts et al., 2020,
Rodrigues et al., 2000) and is used to measure the progress
of international strategic plans and agreements (Brooks et al.,
2016; Mace et al,, 2018) and the potential biodiversity impact
of development projects (Bennun et al., 2018). Thus, it is cru-
cial that IUCN monitor all drivers of extinction consistently and
comprehensively.

Climate change is a major threat to biodiversity (Armstrong
McKay et al.,, 2022; Bellard et al., 2012; Kemp et al., 2022;
Urban, 2015), the impact of which could surpass that of land-
use change over the coming decades (Di Marco et al., 2019;
Newbold, 2018). Numerous species and systems have already
been affected by climate change (Parmesan & Yohe, 2003). In
fact, certain traits, such as low reproductive rates, low dispersal
ability, or diet specialization, are expected to increase species’
extinction risk because they hinder the ability of species to cope
with rapidly changing climatic conditions (Foden et al., 2013;
Pacifici et al., 2017; Santini et al., 2016). When this is the case,
species might contract their range due to the loss of climatically
suitable areas (Pacifici et al., 2020), causing a reduction in pop-
ulation size that can lead to a species qualifying as threatened
(IUCN Standards & Petitions Committee, 2022).

Despite the recent, and projected, acceleration of climate
change globally, the use of climate projections to quantify pop-
ulation trends for application of TUCN Red List criteria remains
difficult and limited to a minority of species. Similatly, the per-
centage of species for which climate change is documented as
a threat, based on the IUCN Red List Threats Classification
Scheme, differs among taxa: 30% for threatened and near-
threatened birds compared with 11% for reptiles TUCN, 2022).
The TUCN Red List Threats Classification Scheme is applied
separate from the red-list criteria. Thus, such differences do not
necessarily imply that climate change was considered differently
in the application of the criteria. However, they may suggest dif-
ferences in expert knowledge of groups. For example, reptiles
are expected to be particularly sensitive to climate change due to
high dependency on temperature for activity and reproduction
and low-range shifting ability (Thurman et al., 2020). Projec-
tions of changes in species distribution obtained from species
distribution models, including those determined by climate, can

be used to infer “population reduction” under red-list criterion
A or “continuing decline” under criteria B or C2 (respectively,
decline in species extent of occurrence or area of occupancy and
small population size) IUCN Standards & Petitions Commit-
tee, 2022). Although best practices for developing such models
have been proposed (e.g;, Araujo et al., 2019), data preparation,
modeling approaches, and parameter settings still vary sub-
stantially across authors, hampering modeling output reliability
and comparability (Santini et al., 2021). Additionally, occur-
rence data needed to build species distribution models are not
evenly available across taxonomic groups (e.g,, Global Biodiver-
sity Information Facility points) (Troudet et al., 2017). The lack
of standardization of species distribution modeling techniques
comes from multiple sources, such as the use of background
versus pseudoabsence sampling, uneven data availability, and
reporting of model uncertainty. All these factors can affect red-
list assessments when distribution models ate used to assess the
impact of climate change (see section 12.1.12 “Using Bioclimate
Models” in IUCN Standards & Petitions Committee [2022]).
Moreover, the development of such models requires advanced
technical skills that assessors might not possess and might not
have access to when performing red-list assessments (e.g., dur-
ing thematic workshops). This generates an implementation gap
between the volume of data and modeling approaches available
and their application into the red-listing process (Cazalis et al.,
2022). Therefore, a standard framework that produces ready-to-
use estimates of species’ symptoms that assessors can modify
based on species-specific information could be of great value in
reducing this gap.

We devised a method for estimating climate change impact
for use in red-list assessments across taxonomic groups. The
method is meant to support the work of assessors by provid-
ing information on climate change impact in terms of change in
habitat quality in a way that complies with the IUCN Red List
guidelines. Although to evaluate a large number of species we
had to make some assumptions that differ from what is spec-
ified by these guidelines, our approach is theoretically simple
to understand and easy to customize to incorporate relevant
ecological knowledge of the species by red-list assessors. Specif-
ically, our aim was to inform the application of criterion A3
to future population declines, although our framework can be
adapted for application to criterion A4 on past and future
population declines.

METHODS

We developed a method to estimate change in future habi-
tat quality due to climate change (Figure 1) and tested it on
1493 nonvolant tetrapod species (amphibians, reptiles, and non-
volant mammals) with available estimates of generation length,
reproductive traits, and geographic distribution. We used 2 of
the most commonly applied species distribution modeling algo-
rithms, generalized linear model (GLM) and MaxEnt, to predict
the potential future distribution of each of these species from
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FIGURE 1 Modeling steps taken to fit and project the species distribution models and to apply International Union for Conservation of Nature Red List

criterion A3. The steps are the same for each global circulation model and representative concentration pathway. The fat-tailed pseudantechinus (Psexdantechinus

macdonnellensis) is shown as an example (photo by loz88woz licensed under http://creativecommons.org/licenses /by-nc/4.0/; photo modified for graphical

purposes).

bioclimatic vatiables. We ran our models under 2 representa-
tive concentration pathways (RCPs) (4.5 and 8.5) and 4 different
global circulation models (GCMs) (ACCESS1-3, CESM1-BGC,
CMCC-CM, and MIROCS). We also considered 2 alternative
dispersal scenarios, one in which species could not disperse out-
side their currently suitable area (no-dispersal scenario) and one
in which species were able to disperse to newly suitable ateas in
their geographic range and in species-specific areas around that
geographic range (here after buffer area) (maximum dispersal
scenario). Overall, we fit 32 models per species (2 algorithms X
2RCPs X 4 GCMs X 2 dispersal scenarios). We used our predic-
tions to assess species red-list categories based on criterion A3.
We also estimated uncertainty in categories based on the above
combination of fitted models.

Selection of species and distribution data

We focused on terrestrial nonvolant tetrapods with rela-
tively available data and varying degrees of climate sensitivity
according to the current IUCN Red List database. Nonvolant
tetrapods represent a good study case because they have a large

number of species for our purposes and sufficient data; there
are published assumptions related to dispersal (Newbold, 2018);
and they include species for which criterion A is relatively less
applied (i.e., amphibians and reptiles). From all species with
available distribution ranges in the ITUCN Red List spatial data
repository (# = 22,710), we excluded all species categorized
as data deficient, extinct in the wild, or extinct on the TUCN
Red List (excluding 3654 species). We then selected species
with available information on generation length, age at first
reproduction, and dispersal to predict future climate risk. Due
to lack of dispersal data for amphibians and reptiles, we also
included all the species with available reproductive or gener-
ation length data but with no data on dispersal based on the
assumption of a fixed dispersal rate per year (see below) (1659
species: 491 amphibians, 1065 mammals, and 103 reptiles). We
excluded all species with a range size of <250 km? (excluding
166 species) because the resolution we used to retrieve climate
data from the species’ ranges was too coarse to assess those
species (see below). Our final sample included 1493 species (413
amphibians, 1005 mammals, and 75 reptiles).

To ensure equal data availability across all species, we gen-
erated species occurrences from species’ geographic range
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polygons (Hof et al., 2018; Newbold, 2018; Newbold et al.,
2020; Visconti et al., 2016). Although range maps were too
coarse to capture the influence of small-scale factors, for a large
number of species, they offered a sufficient approximation to
estimate the species climatic niche at global scale (Visconti et al.,
2016). Although such an approach would not be acceptable
for official IUCN Red List assessments, which require actual
species’ presence points, we chose this approach so our anal-
yses would be comparable across species because databases of
species occurrence points are inherently biased toward popular
and well-studied taxa (Meyer et al., 2016; Troudet et al., 2017).
Our purpose here was to provide a representation of species
distributions, which one can derive for any species with a spa-
tial distribution polygon provided in the IUCN Red List. We
converted the range vector polygons into rasters of 0.049° res-
olution (~5 km at the equator), matched the resolution of the
bioclimatic rasters (see below), and extracted each grid cell’s
centroid as an occurrence point. We assumed each cell was
occupied by the species (Hof et al., 2018; Newbold, 2018; New-
bold etal., 2020; Visconti et al., 2016). We then generated a set of
background and pseudoabsences for each species that was used
in turn to run the algorithms (background points for MaxEnt
and background and pseudoabsences for GLM [see below]).
We randomly sampled the background points in the ecoregions
(Olson et al.,, 2001) where the species’ ranges occurred. We
sampled pseudoabsences by selecting points outside the species
range and in the same biogeographical realm (from Olson et al.
[2001]) with the decay function of Hof et al. (2018):

1

P - s
distance from range?

©)

sampling =

which exponentially decreases the probability of sampling a
point as the distance from the range boundary grows. This
approach favors the contrast of presence areas with unoccupied
areas that can be reached by the species, in contrast to areas
that are unlikely to be colonized in the short term, remaining in
the biogeographic realm domain. We set a maximum number
of 10,000 pseudoabsence and background points to be sam-
pled. We then extracted the values of the bioclimatic vatiables
from each background and pseudoabsence point for 2022 and
for the future based on 10 years or 3 times generation length
of the species. We used the presence (1) and pseudoabsence
or background (0) status as a binary response variable for our
models.

Selection of bioclimatic variables

We selected primary climatic variables (mean precipitation, min-
imum temperature, maximum temperature) from CHELSA
database (Karger et al., 2020) for each month from 2013 to
2100. The CHELSA database provided monthly rasters of
primary climatic variables calculated using 4 different GCMs
(ACCESS1-3, CESM1-BGC, CMCC-CM, MIROCS) under 2
different RCPs (4.5 and 8.5) in a WGS84 geographic coordi-
nate system with a spatial resolution of 0.049° (~5 km at the

equator). We used these primary variables to calculate 19 bio-
climatic variables (Appendix S1) for each year (2013-2100).
Bioclimatic variables should be selected based on the biology
of the species to avoid including spurious correlates (Fourcade
et al., 2018; Santini et al., 2021; Synes & Osbotrne, 2011). How-
ever, to demonstrate the application of our framework on a
large number of species, we used the same set of standard bio-
climatic variables across all because we did not have access to
species-specific expertise for all 1493 species. We represented
the climatic condition experienced by each species in a given
year by averaging the annual bioclimatic variables of the 10
previous years (Lucas et al., 2023 [preprint]). We extracted the
values of the bioclimatic variables from each presence and back-
ground or pseudoabsence point for the present (year 2022) and
for the future based on 10 years or 3 times generation length of
the species (whichever was longer, as per criterion A3). Our aim
was to demonstrate the application of a standardized climate
risk assessment in IUCN Red List assessments across many
species. To do so, we extracted climate variables from within the
entire species’ ranges despite [UCN Red List guidelines suggest-
ing use of a filter based on habitat variables. Such an approach
would likely have reduced the generalizability of our framework
(e.g,, land-use preferences are available for only some groups
[Powers & Jetz, 2019]).

Species distribution modeling

We ran species distribution models with 2 different algorithms:
GLM and MaxEnt (Phillips & Dudik, 2008). These 2 algo-
rithms are widely used in species distribution modeling because
they have consistently good performance relative to other avail-
able models (Elith et al., 2000; Santini et al., 2021; Wisz et al.,
2008). Moreover, for climate change analysis, it is advisable to
use models that reduce overfitting; thus, we used these algo-
rithms over other more complex machine learning approaches
(Merow et al., 2014). We used the same methodological frame-
work for both algorithms (Figure 1). We excluded collinear
variables among the present bioclimatic variables (year 2022)
with a variance inflation factor (VIF) >3 (Figure 1, data prepa-
ration). We repeated the VIF calculation and excluded 1 variable
at a time (that with highest VIF) until none of the variables
exceeded the threshold (Santini et al, 2021). We followed
previous work that showed the GLM and MaxEnt perform
better when the proportion of background points is higher
than the number of presences (Santini et al., 2021). There-
fore, we set a 1:10 proportion for presences:background. For
the GLM, we weighted the response variable by assigning a
different weight to the presences and the background so that
the sum of their weights was equal. We also included second-
order polynomial features to consider nonlinear relationships
between the predictors and the response variable. We applied
the Akaike information criterion to select the best model. For
MaxEnt, we also included linear and quadratic features and
we scaled the regularization function iteratively by 0.5, 1, 2,
and 10 to calibrate the model (Radosavljevic & Anderson,
2014).
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We petrformed a spatial block validation to evaluate model
performance (Figure 1). We divided the sampled data set into
blocks with 1° sides (~111-km side at the Equator) and system-
atically aggregated blocks into 5 groups (Roberts et al., 2017).
We iteratively ran our algorithms on a training set consisting of
all data in 4 of the groups, leaving 1 group out for validation.
We then validated the GLM and MaxEnt models on a test set
based on the data from the remaining group. This procedure
was not applicable to species with a narrow range (e.g;, because
most points were included in a single block), and we proceeded
with a random 5-fold cross-validation in that case. To make pre-
dicted probabilities binary (presence or absence), we selected
the probability threshold that maximized the true skill statistic
(TSS) (Allouche et al., 2000).

Finally, we fitted the models on the full data set. For GLM
and MaxEnt, we ran the model selection as we did for the val-
idation. Then, we predicted species climatic suitability for the
present (year 2022) and for the future based on the generation
length of the species for each GCM and RCP. We used the aver-
aged thresholds resulting from the spatial 5-block validation or
the 5-fold cross-validation to make the predicted probabilities
binaty (1, presence; 0, absence). As a sensitivity test, we also
repeated GLM with pseudoabsences rather than background
points to evaluate the difference in predictions between 2 alter-
native sampling strategies (both adopted for GLMs) (Santini
etal., 2021).

Scenarios of climate adaptability via dispersal

We measured the current versus future species bioclimatic range
size under 2 alternative assumptions of species’ adaptability to
climate change (Figure 1, prediction). First, we calculated the
proportional change in bioclimatic range between the present
(2022) and the future without considering dispersal, which com-
plies with the strictest definition of climate change exposure as
the difference between present and future climatic conditions in
the species’ range (Foden et al., 2019). We considered only the
areas classified as suitable in the current species’ range and mea-
sured the proportion of such areas that were retained or lost
in the future. In this case, we assumed that the currently suit-
able areas could be lost to climate change and that new areas
(currently unsuitable) could not be colonized within the time
frame of ITUCN Red List assessments (i.e., 10 years or 3 gen-
erations, whichever is longest, see below). In other words, the
species could only retain its current distribution or lose part of
it in the short term (no-dispersal scenario).

We then calculated the proportional change in species ranges
between the present (2022) and the future under the assump-
tion that species can disperse toward newly suitable areas in
their existing range and in a buffer around that range (maxi-
mum dispersal scenario). We selected 3 species traits to calculate
the buffer for species: generation length, dispersal distance, and
age at first reproduction. We retrieved generation length data
from TUCN Red List {UCN, 2022) and other traits from public
databases: COMBINE (Soria et al., 2021) for mammals, Lucas
et al. (2023 [preprint]) for amphibians, and Etard et al. (2020)

for reptiles. We used the age at first reproduction in combina-
tion with dispersal to determine the maximum distance that a
species can disperse within a single generation (Bateman et al.,
2013; Pacifici et al., 2020; Schloss et al., 2012). We used genera-
tion length to represent the time horizon of climatic projection
and population trend, which is in line with the IUCN Red List
guidelines for examining change in the course of “three genet-
ations or 10 years, whichever is the longest.” We then assumed
that species can expand their range by up to 1 dispersal buffer
for each reproduction event:

max (10 years, 3 generation length)

buffer = X dispersal.

)

For this scenario, we calculated the proportional range

age at first reproduction

change as the difference between total suitable area in the future
(in the range and in the buffer) and suitable area in the present,
divided by the latter. This way we accounted for originally suit-
able areas and newly suitable areas (i.e., area gained). Due to
the lack of reproductive and dispersal data for amphibians and
reptiles, we assumed a 0.5-km dispersal distance per year for
both groups (Newbold, 2018) and used it as a buffer around
the species’ range. Generation length is also available for a few
amphibian species. We excluded all amphibians with body mass
>4 kg or no data on body mass, and for the remaining sample,
we assumed a 3 times generation length of 10 years if the species
had no data on generation length.

These 2 dispersal scenarios are extreme and unrealistic,
although similar to those applied in previous assessments
(Thuiller et al., 2019). One is based on the assumption of
no range shift and the other on the assumption of maximum
dispersal potential. We considered these scenarios plausible
boundaries (minimum and maximum) around habitat loss
predictions.

We explored the relative influence of species’ dispersal dis-
tance, generation length, and range size on the predicted habitat
change. We expect species characterized by short dispersal, long
generation times, and small geographic ranges (generally nar-
row niche) to be those with the highest proportional habitat
loss. Conversely, we expected species with small ranges, short
generations, and long dispersal to potentially exhibit the highest
habitat gain.

Application of IUCN Red List criterion A3

We used estimates of species climate risk to apply criterion
A3c, which is based on “population (size) reduction projected,
inferred or suspected to be met in the future (up to a max-
imum of 100 yeats)” based on subcriterion ¢ that refers to
“a decline in area of occupancy (AOO), extent of occurrence
(EOO) and/or habitat quality” (IUCN Standards & Petitions
Committee, 2022) (Figure 1). We assumed a linear relationship
between habitat loss and population decline (IUCN Standards
& Petitions Committee, 2022). Although this relationship is not
always true, in absence of species-specific information it is an
allowable assumption IUCN Standards & Petitions Committee,
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2022). We did not have this information for all 1493 species;
thus, we used the same assumption for the entire sample to
ensure the consistency of the approach among all species. For
example, a species’ habitat change of —30% corresponded to
a 30% decline in population size in our analyses; this is the
threshold to trigger the vulnerable category under criterion A3.
Because there is no quantitative threshold for near threatened
category, we assumed habitat losses of 20-30% represented near
threatened category because this is close to the 30% threshold
for vulnerable under criterion A3. For 14 reptile species, the 3-
generation period used to apply criterion A3 exceeded the time
range of climatic data available until 2100 (see above). For these
species, we assigned a category based on a linear extrapolation
(IUCN Standards & Petitions Committee, 2022). This is based
on the assumption that a species lost the same amount of habi-
tat every year from the year until we had data (year 2100) to the
end of the 3-generation period, based on the habitat reduction
rate (or habitat expansion rate for the dispersal scenatio) calcu-
lated from the present (2022) to 2100. Therefore, if a species
with a 30-year generation length had its habitat reduced by 30%
over 78 years (i.e., from 2022 to 2100), we assumed it would
lose an additional ~0.4% area every year until the end of the
3-generation period (90 years), up to a maximum of 100 years.

To ease visualization and interpretation of the results, we
averaged the proportion of bioclimatic range change between
the 2 algorithms (GLM and MaxEnt), the 2 RCPs, and the 4
GCMs. This resulted in separate estimates of habitat change
(and category) for each dispersal scenario, provided that the TSS
of the 2 algorithms was >0.5. If only 1 of the algorithms had a
TSS >0.5, we used only that as our prediction. We used only pre-
dictions based on background sampling to ensure comparability
among the results. We also reported prediction uncertainty for
each species (min and max estimates of risk across all 32 predic-
tion settings). We then produced a scatterplot of the averaged
prediction for dispersal and no-dispersal scenarios for GLM to
test the difference between predictions based on background
and pseudoabsence sampling,

All spatial analyses were petformed in GRASS GIS 7.8.6
(GRASS Development Team, 2020), and all statistical analyses
were performed in R 4.2.1 (R Core Team, 2022) with RStudio
2022.2.0.443 (RStudio Team, 2022) and the following pack-
ages: caret (Kuhn, 2022), data.table (Dowle & Srinivasan, 2021),
ggbreak (Xu et al,, 2021), MASS (Venables & Ripley, 2002),
maxnet (Phillips, 2021), patchwork (Pedersen, 2022), raster
(Hijmans, 2022), scales (Wickham & Seidel, 2022), tidyverse
(Wickham et al., 2019), and usdm (Naimi et al., 2014).

RESULTS
Climate change impact assessment

Both modeling algorithms had acceptable performance on aver-
age across all GCMs and RCPs. The average TSS for the GLM
was 0.56 (SD 0.22), and the average TSS for Maxent was 0.57
(SD 0.22). For 989 species out of 1493 analyzed (322 amphib-
ians, 613 mammals, and 54 reptiles; 66% of the total), the
average TSS for the GLM or the average TSS for Maxent was

>0.5, and it was possible to make a prediction. Therefore, all
analyses were based on this subset of species. A table of all pre-
dictions for each GCM, RPC, algorithm, and dispersal settings
is in Appendix S9.

When combining all predictions to define an average value
of habitat change for each species, more species were at risk
compared with any single combination of RCPs, GCMs, and
algorithms. In the no-dispersal scenario, 155 species were pre-
dicted to lose 20—30% of habitat (82—120 species for individual
combinations of models and scenarios [Appendix S9]). Further,
144 species were predicted to lose more than 30% of habi-
tat (Figure 2) (99-201 species for individual combinations of
models and scenarios [Appendix S9]). In the dispersal scenario,
18 species were predicted to lose 20-30% of habitat (23-35
species according to different combinations of models and sce-
natios [Appendix S9]), and 16 species were predicted to lose
30% or more of their habitat (25-72 species for individual com-
binations of models and scenarios [Appendix S9]). Overall, 282
species out of 989 (125 amphibians, 143 mammals, and 14 rep-
tiles) were predicted to reduce their habitat in the dispersal and
the no-dispersal scenarios (Figure 2) (225-291 species for indi-
vidual combinations of models and scenarios [Appendix S9]).
Conversely, 707 species were predicted to gain habitat under
the dispersal scenario (Figure 2) (599—685 species for individ-
ual combinations of models and scenarios [Appendix S9]). A
sensitivity test with GLM using pseudoabsences showed qual-
itatively similar results but a generally higher contraction of
habitat, especially in the no-dispersal scenario (Appendix S2).

Application of criterion A3

Overall, 171 species (17% out of 989 retained) were predicted
to have their category worsen in the no-dispersal scenario, the
dispersal scenario, or both scenarios based on criterion A3
(116-185 species for individual combinations of models and
scenarios [Appendices S3 & S5]). Among them, 138 are cur-
rently classified as least concern, 21 as near threatened, 8 as
vulnerable, and 4 as endangered (Figure 3). Climate change was
only documented as a relevant threat for 23 of these species
(~13%) in the IUCN Threats Classification Scheme.

For 168 species in our sample, red-list assessors documented
climate change as a threat in their application of the TUCN
Threats Classification Scheme (Figure 4). For the majority of
these (# = 167), our analysis predicted the category least con-
cern under criterion A3 in the dispersal scenario. This is not
necessarily inconsistent (threats can be documented in the clas-
sification scheme as locally affecting least concern species), but
nonetheless a surprising mismatch.

Relative influence of species and range
characteristics on impact assessment

Predicted habitat loss was affected by several species’ biolog-
ical traits (Figure 5; Appendices S4-S8). Species with long
generation length and large dispersal exhibited large habitat
change proportions (habitat gained) in the dispersal scenario
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(Appendix S5), whereas short-generation-length and short-
dispersal species did not show considerable habitat changes
(values around 0) (Figure 52). Species with small range size and
long generation length lost the most habitat (Figure 5b). Species
with large dispersal and small range gained the most habitat
(Figure 5¢). Short-generation-length and short-dispersal species
with small range size had the lowest percentage of habitat
changes (Appendix S5). With the no-dispersal scenario, species
with long generation length had the most habitat contraction
(Appendices S4 & S06), whereas species with large range size
and short generation length had the least habitat contraction
(approximately —0.2 to 0 [Appendix S8]). Slow-reproducing
species had the most habitat contraction in the no-dispersal
scenario (Appendix S7).

DISCUSSION

Our results showed that our framework can be used to estimate
the impact of climate change on species under different mod-

eling approaches, climate adaptability scenatios, and emission
scenarios. This can be adapted to provide a widely applicable
framework for assessors to use species distribution modeling
outputs in a formal red-list assessment. Although we conducted
a generic test with a large number of species, actual red-list
assessments must use actual species occurrence points as pres-
ences (instead of points randomly sampled across the species
range as we did) and species-specific information to select
predictor variables IUCN Standards & Petitions Committee,
2022).

We predicted that most species will not lose a major portion
of habitat due to climate change in the next 10 years or 3 gen-
erations, yet multiple species may lose more than 30% of their
habitat and could therefore be classified as threatened under cri-
terion A3. The species predicted to lose more habitat due to
climate change often did not have climate change documented
as a threat in the IUCN Threats Classification Scheme, and sev-
eral of the species with climate change documented as a threat
had limited predicted exposure. Inconsistent identification of
threats to species might result in climate change being under-
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documented, and not listed for species potentially facing high
climatic vulnerability. However, we did not provide a full evalu-
ation of vulnerability, and it is possible that species facing high
climate exposure have low climate sensitivity and do not have
climate listed as a threat for legitimate reasons. Expert assess-
ment is therefore key in evaluating our results in the broader
red-list context. We also found small-ranged, long-generation,
and short-dispersal species were predicted to lose the most
habitat.

Among the 989 species in our final subset, 171 (13%) may
qualify for uplisting under criterion A3 based on predictions of
habitat reduction due to future climate change; 159 of these
may qualify for uplisting from least concern or near threat-
ened to threatened. Although these results do not represent
actual red-list assessments, they can be combined with asses-
sors” knowledge of species biology and threats. For example,
the blue ridge dusky salamander (Desmognathus orestes) is cur-
rently least concern, and climate change was not listed as a
threat in the last assessment. However, our model predicted
that it might lose habitat in both averaged adaptability scenatios
(20% under the dispersal scenario and 30% under no-dispersal
scenario), and it may thus qualify for vulnerable under crite-
rion A3 if assessors consider it unlikely to disperse in currently

unoccupied sites, based on their knowledge on the species and
region. Our method also provides important information on
many species predicted to lose a relatively small proportion
of habitat, which can be combined with information on the
effects of other threats. For example, we predicted that the red-
eyed green treefrog (Litoria chloris), a least concern Australian
amphibian, may lose 2-8% of its habitat. This is insufficient to
reassess the species as threatened under criterion A3, but it has
lost habitat in the range due to megafires that recently burned
western Australia (Ward et al., 2020). Such a threat might lead
to declines that can add to, or even exacerbate, declines induced
by climate change (Di Marco et al., 2019; Guo et al., 2018; Jetz
et al., 2007). Thus, our method might help in the categoriza-
tion of many species facing climate change and land-use change
(e.g., mammals [Baisero et al., 2020]) or climate change and dis-
ease (e.g, amphibians and chytridiomycosis [Sopniewski et al.,
2022)).

For most of the species, we predicted a possible expansion
of habitat when the potential adaptive capacity of the species to
track climate was considered (dispersal scenario). A predicted
positive effect of climate change does not imply species will be
moved to a lower risk category. In case of contrasting categories,
the guidelines clarify that the highest category is retained TUCN
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Standard & Petition Committee, 2022). Species with limited dis- generally lacks adaptive capacity due to their short dispersal
petsal were more prone to proportional habitat contraction, ability (Smith & Gtreen, 2005).
consistent with studies that showed the dispersal capacity of Predictions of new habitat do not mean the species will be

species is an important feature for predicting future impact of able to disperse to these areas. For example, we predicted the
climate change (Pacifici et al., 2015; Santini et al., 2016, 2017). long-eared hedgehog (Femiechinus anritus), currently classified as
This result is critical for many amphibians because this group least concern, would lose 24% of its habitat in the no-dispersal
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scenario and gain 26% under the dispersal scenario. Red-list
assessors, with their knowledge of the species, the region where
it occurs, and the threats it faces, should be able to evaluate the
real accessibility of dispersal areas to the species, depending on
the habitat, population conditions, and tolerance. Species with
highly specific habitat requirements and sensitivity to fragmen-
tation may be unable to colonize new areas outside their current
range. In this case, assessors may rely on the more precautionary
prediction (no-dispersal scenario). For example, assessors may
combine species land-use preferences with the climate suitabil-
ity maps produced using our framework (Figure 1) to exclude
areas predicted to be climatically suitable but not accessible to
the species (Visconti et al., 2016). This way they could better
estimate population change from change in available habitat. In
our analyses, for simplicity, we assumed that any range loss is
equivalent over the entire species range, but an expert of the
species would know whether losing a portion of the range in a
certain area (e.g, north of the range) would be more severe than
losing the same portion in another area (e.g, south of the range).
If red-list assessors apply our framework, they can estimate the
population loss nonlinearly based on the spatial distribution of
where the habitat is predicted to be lost and where it is predicted
to increase.

Overall, species with slow reproductive cycles and small
ranges were predicted to lose relatively more habitat, support-
ing the importance of range size in assessing species’ extinction
risk (Bohm et al., 2016; Lucas et al., 2019, 2023 [preprint]).
We were not able to evaluate the impact of climate change on
very range-restricted species because the resolution of the bio-
climatic raster we used to extract climate information was too
coarse (5 km at the equator) and because we included species
with available traits, which are less threatened (Gonzalez-Suarez
et al,, 2012). Most likely narrow-range and less-studied species
will be the most affected by climate change. However, narrow-
range species can be evaluated based on other criteria, such as
criterion B, which addresses restricted geographic range, and cri-
teria C and D, which address small population size. Most likely
those species are already considered threatened under these cri-
teria. Additionally, out approach might overestimate the risk for
those species. They will likely be species with major habitat gain
in the dispersal scenario. In fact, availability of new habitat was
higher when range was small and dispersal was large. Our results
are consistent with results from previous comparative extinc-
tion risk analyses (Cartdillo et al., 2005; Purvis et al., 2000) in
that species with slow reproduction cycles were generally more
threatened. This suggests that the application of criterion A3
based on climate change information may be particularly rele-
vant for long-generation species. These species are expected to
be more sensitive to climate change (Pacifici et al., 2015; Pacifici
etal., 2017).

One of the difficulties of predicting the impact of climate
change for assessors is the uncertainty of climate predictions
(Murphy et al., 2004). To address this, we considered the uncer-
tainty of the predictions providing a range of results based on
RCPs, GCMs, and algorithms (Appendix S9). Incorporating
uncertainty in climate models through different global emis-
sions scenarios and multiple statistical models is critical to

having a range of plausible predictions (Thuiller et al., 2019).
The predictive ability of species distribution models is low on
average (Santini et al., 2021). Thus, examining different predic-
tions, instead of a single prediction, helps one cope with their
high variability (Aratjo & New, 2007). Another difficulty stems
from the potential to underestimate risk from climate change
in the future dispersal scenario associated with consideration of
species adaptive capacity. The measure of dispersal we used may
exceed the actual ability of a species to disperse.

Cazalis et al. (2022) highlighted a major gap between meth-
ods used to address extinction risk and their effective use by the
red-list assessors that is associated primarily with poor commu-
nication between researchers and practitioners. For example, the
methods proposed by researchers, usually a category-predictive
framework based on a set of biological or environmental vari-
ables (Darrah et al., 2017; de Oliveira Caetano et al., 2022),
do not align with the assessors’ need for methods that explic-
itly address the parameters used to apply red-list critetia (e.g,,
population trends). These methods might also fail to extrap-
olate predictions to newly assessed species (Di Marco, 2022).
Our method provides a protocol for estimating species popula-
tion trends that can be adapted for use in red-list assessments
based on criterion A3 and can guide the measure of climate
change impact. This may help address the uneven distribution
of IUCN climate change assessments and provide a helpful tool
with which to evaluate taxa less adaptive to changes in climatic
conditions (e.g., herptiles [Bickford et al., 2010; Winter et al.,
2016]). Moreover, our framework can be implemented in an
interactive platform (e.g., ShinyApp [Bachman et al., 2020]) that
can be easily accessed by all assessors. Although this framework
is not strictly compliant with the IUCN Red List guidelines, it
can be easily adapted for use in formal assessments. Assessors
can use actual species occurrence points, rather than ranges, as
presence points and their knowledge to identify important cli-
matic variables for the species assessed and species’ dispersal
ability.

Our framework is a compromise between the needs of
red-list assessors and the complexity of species distribution
modeling, and its results should be used in combination with
other information on species biology and threats. Our method
is not as complex as others (e.g., machine learning), and the out-
put it provides is a range of potential extremes in habitat loss
and gain. However, our framework is easy to understand and
is based on well-established methods. Even though our appli-
cation of the framework does not fully align with ITUCN Red
List guidelines (i.e., selection of species occurrences, selection
of explanatory variables, and use of land-use data [see “Meth-
ods™]), it can be adapted to assessors’ needs and potentially
applied directly in formal extinction risk assessments. However,
the framework is not exempt from future challenges. For exam-
ple, uncertainty in the dispersal scenario may be reduced with
new estimates of the variables we used to define the dispersion
buffer of the species: species dispersal ability, generation length,
and maturity (especially for herptiles). Similarly, the climate vari-
ables we used were the only high-resolution monthly projections
available. If new data become available, they should be used in
the framework. Because our framework was conceptualized to
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help assessors, if IUCN Red List guidelines change, the frame-
work would need modification as well. Moreover, as a result
of the application of this framework, nongenuine changes in
red-list categories could be generated (see section 2.2.1 “Trans-
fer between Categories” in IUCN Red List guidelines [[TUCN
Standards & Petitions Committee, 2022]), which we did not
originally consider. If assessors identify a more appropriate cat-
egory based on information provided by our framework, an
additional future challenge is to determine whether the species
was already threatened by climate change before the assessment.

The IUCN Red List is severely underfunded (Juffe-Bignoli
et al., 2016; Rondinini et al., 2014), despite its crucial role in
biodiversity conservation (Betts et al., 2020). Thus, low-budget
solutions to improve accuracy of assessments are needed. Our
method provides a standardized way to estimate future climate
change impacts that can be adapted for use in red-list assess-
ments. Assessors can use such estimates to consider the single
effect of climate change or the combined effects of climate
change and other threats to provide a comprehensive overview
of the extinction risk of the species.
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