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ABSTRACT 

Numerical simulations have been carried out to examine the axisymmetric formation of drops of 

Newtonian liquid injected from a vertical orifice under constant flow conditions into ambient air. 

The numerical simulation was performed by solving axisymmetric Navier–Stokes equations with 

a coupled level-set and volume-of-fluid (CLSVOF) method. In this work, the dynamics of the 

formation of drops are investigated over a range of the Ohnesorge number Oh=0.01, 0.023 and 

0.13, and the Bond number Bo=0.33, 0.5 and 2.205, as the Weber number We increases. The 

different responses of drop formation such as period-1 dripping with (P1S) or without satellite 

drops (P1), complex dripping (CD) and jetting (J) are discussed. The different responses of drop 

formation were identified quantitatively from the time history of growing length of drop at the 

orifice. The transition of different responses is shown on the map which exhibits the variation of 

limiting length of drop at breakup or the volume of the detached primary drop with We while 

keeping Oh and Bo fixed. The numerical investigation of liquid jet formation in terms of the 

evolution of growing length of jet under different computational grid sizes was discussed. It is 

proposed that the stable liquid jet formation can be found as the mesh size decreases. The accuracy 

of the present computed results is assessed by comparisons with the previous investigations.  

Furthermore, it is shown that at high Bo=2.205, low Oh=0.023 and We=0.0177, the system 

exhibits period-2 with satellite drop (P2S) response which was not reported before in literature.   
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1. Introduction 

Drop formation is of great interest for various applications such as spraying and ink-jet printing 

technologies (Shield et al., 1987), separation and extraction processes (Heideger and Wright, 
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1986), and among others (Basaran, 2002). On the other hand, the study of drop formation has been 

a topic of scientific research interest due to the richness of underlying physics (Eggers, 1997).  

Most commonly, drops are produced by injecting a liquid through a nozzle or an orifice into 

ambient air. Many investigations of the basic case of drop formation were reviewed by Eggers 

(1997), Clift et al. (1978), Kumar and Kuloor (1970) and Eggers and Villermaux (2008). The 

subject of drop formation from capillary tube under the influence of gravity has been extensively 

investigated both experimentally (Wilson, 1988;  Peregrine and Shoker, 1990; Zhang and Basaran, 

1995; Henderson et al., 1997; Clanet and Lasheras, 1999; Ambravaneswaran et al., 2000; 

Ambravaneswaran et al., 2004; Subramani et al., 2006) and numerically (Eggers and Dupont, 

1994; Ambravaneswaran et al., 2000; Ambravaneswaran et al., 2002; Ambravaneswaran et al., 

2004; Yildirim et al., 2005; Subramani et al., 2006; Schulkes, 1994; Zhang and Stone, 1997; 

Wilkes et al., 1999; Zhang, 1999; Gueyffier et al., 1999; Chen et al., 2002; Che et al., 2011; Pan 

and Suga, 2006; Delteil et al., 2011)  and among others. In this paper, we present a computational 

study of drop formation by the injection of a liquid from a vertical orifice into the ambient air 

under constant flow conditions.  

     There are two responses of drop formation discussed in most previous investigations. These are 

the dripping and jetting. At low and moderate liquid flow rates at the orifice, drops are formed 

close to the orifice which is known as dripping. At high flow rates, the drops are created far 

downstream from the orifice exit and a long column of continuous liquid jet formation can be 

observed known as jetting. At very small flow rates, the primary drops and much smaller 

secondary drops (satellites) are formed periodically in time (Peregrine and Shoker, 1990; Zhang 

and Basaran , 1995; Henderson et al., 1997; Eggers and Dupont, 1994;  Ambravaneswaran et al., 

2000; Ambravaneswaran et al., 2002; Ambravaneswaran et al., 2004; Yildirim et al., 2005; 

Subramani et al., 2006; Schulkes, 1994; Zhang and Stone, 1997; Wilkes et al., 1999; Zhang, 1999; 

Gueyffier et al., 1999). This regime is known as period-1 dripping with satellites (hereafter 

referred to as P1S). When the liquid flow rate is increased to a critical value, above which the 

primary drops without satellite drops formation can be observed known as period-1 dripping 

(Clanet and Lasheras, 1999; Ambravaneswaran et al., 2000; Ambravaneswaran et al., 2002; 

Ambravaneswaran et al., 2004; Yildirim et al., 2005; Subramani et al., 2006; Schulkes, 1994; 

Zhang and Stone, 1997; Zhang, 1999) (hereafter referred to as P1). In P1S and P1 responses, equal 

sized primary drops in succession with constant frequency can be observed. As the flow rate is 

increased further, the period-1 dripping gives way to complex dripping (Clanet and Lasheras, 

1999; Ambravaneswaran et al., 2000;  Ambravaneswaran et al., 2004; Subramani et al., 2006) 

(hereafter referred to as CD) where nonlinear dynamics of drop formation (period-2, period-3, 
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period-4 and chaotic responses) are observed. The period-2, period-3 and period-4 responses 

(hereafter referred to as P2, P3 and P4) are characterized by regularly repeating two, three and 

four distinct drop volumes and formation periods, respectively. On the other hand, the dynamics 

of drop formation can not be predicted with time when the system response is chaotic. At 

sufficiently high flow rates, the drops are created from the ends of a long column of continuous jet 

due to the well known Rayleigh instability (Rayleigh, 1879), which is known as jetting (Clanet 

and Lasheras, 1999; Ambravaneswaran et al., 2004; Subramani et al., 2006; Pan and Suga, 2006; 

Delteil et al., 2011) (hereafter referred to as J). In dripping, the dynamics of drop formation is 

governed by the interplay of inertial, viscous, gravity and surface tension forces. However, at 

sufficiently low flow rates, the volume of detached drop is determined by the balance of surface 

tension and gravity forces and the drop volume is independent of liquid flow rates (Kumar and 

Kuloor, 1970; Wilson, 1988;  Peregrine and Shoker, 1990; Zhang and Basaran , 1995; Henderson 

et al., 1997;  Clanet and Lasheras, 1999; Yildirim et al., 2005; Schulkes, 1994; Zhang and Stone, 

1997; Wilkes et al., 1999; Zhang, 1999; Che et al., 2011). This response is also known as quasi-

static response.   

     According to Wilson, (1988) and Zhang and Basaran (1995), there are two main stages of the 

drop formation process in dripping, namely the expansion stage and the collapse stage. During the 

expansion (first) stage, the volume of the drop grows slowly and the detaching forces are weak 

compared with attaching forces. This stage ends with equilibrium of forces. When the equilibrium 

of forces is lost the collapse (second) stage starts. During the collapse (second) stage, the 

detaching forces dominate over the attaching forces. In this stage, the drop is attached at the 

orifice through neck formation. At the end of this stage, the neck is pinched off and the drop is 

detached from the orifice. The prediction of the growth and detachment of drop formed from an 

orifice using 1D slender jet approximations to the Navier-Stokes equations was investigated by 

Eggers and Dupont(1994). This model was successfully applied to study the dynamics responses 

(Ambravaneswaran et al., 2000;  Ambravaneswaran et al., 2004; Subramani et al., 2006) of P1S, 

P1, CD and J, and the transition from dripping to jetting (Ambravaneswaran et al., 2004; 

Subramani et al., 2006). Aside from experimental and numerical investigations based on 1D 

slender jet approximations, few studies have been reported using full Navier-Stokes equations 

(Schulkes, 1994; Zhang and Stone, 1997; Wilkes et al., 1999; Zhang, 1999; Gueyffier et al., 1999; 

Chen et al., 2002; Che et al., 2011; Pan and Suga, 2006; Delteil et al., 2011) on the problem of 

liquid drop formation into air. Numerical solutions of axisymmetric Navier-Stokes equations with 

boundary integral method of potential flow (Schulkes, 1994) and Stokes flow (Zhang and Stone, 

1997), finite-element method (Wilkes et al., 1999; Chen et al., 2002) and volume-of-fluid method 
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(Zhang, 1999; Gueyffier et al., 1999) were successfully compared with experimental results. 

However, they only studied the dynamics of drop formation from a vertical capillary tube under 

the condition of very small liquid flow rates. Che et al. (2011) studied the growth and breakup of a 

pendant drop from a capillary using level-set method by solving three-dimensional Navier-Stokes 

equations. Pan and Suga (2006) investigated the formation of laminar liquid jets into the quiescent 

air using three-dimensional Navier-Stokes equations. The dynamics of the evolving interface was 

captured by the level-set method. To the best of the authors’ knowledge, numerical studies to 

investigate the nonlinear dynamics of drop formation into the ambient air using full Navier-Stokes 

system are still lacking in the literature, a fact which motivated our present study. For this 

purpose, we have used an in-house interface capturing code based on a coupled level-set and 

volume-of-fluid (CLSVOF) method (Chakraborty et al., 2009; Chakraborty et al., 2011; 

Chakraborty et al., 2013) governed by three-dimensional but axisymmetric Navier-Stokes 

equations for the simulations of two-phase flows. Chakraborty et al.(2009) and Chakraborty et 

al.(2011) studied the dynamics of bubble formation from an orifice submerged in the quiescent 

liquid over a wide range of gas flow rate regimes.   

     Our objective in this work is to elucidate the effects of Weber number (liquid flow rate at the 

orifice) on the dynamics of drop formation process into air when Bo=0.5 and Oh=0.01 given by 

Ambravaneswaran et al.(2004),  Bo=0.33 and Oh=0.13 given by Subramani et al.(2006), and 

Bo=2.205 and Oh=0.02. We focus our studies on the growth history of drop in terms of growing 

length at the orifice, the volume of the detached primary drops and the limiting lengths measured 

from the orifice to their tips at the moment of breakup. We study the dripping, jetting and the 

transition of different responses.    

 

2. Formulation of the problem 

2.1 Problem description 

Complete numerical simulation of the drop formation process was performed in an axisymmetric 

coordinate  z,r  as shown in Fig.1. It is convenient to use a cylindrical coordinate system  ,z,r , 

where r  is the radial coordinate, z  is the axial coordinate measured in the direction of gravity g 

and   is the azimuthal coordinate. The origin of the coordinate system  ,z,r  is placed at the 

centre of the orifice. In this paper, the dynamics are assumed to be axisymmetric and the problem 

is independent of the azimuthal coordinate  . A Newtonian liquid of density l  and viscosity l  

is injected at a constant flow rate Q  through a single orifice of radius oR  into still air of density 

a  and viscosity a as shown in Fig.1. We assume t air and the liquid filling the drop to be 
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incompressible with isothermal conditions. The surface tension   of the liquid-air interface is 

spatially uniform and constant in time. In this paper, the drop base is assumed to be pinned with 

the orifice and the effect of contact angle is not considered.  
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Fig. 1. Schematic of axisymmetric formation of drop from a vertical orifice and computational 

domain. 

 

2.2. Governing equations and dimensionless groups 

In this study, the liquid and ambient gas phases are modeled as single fluid with variable physical 

properties taking into account the influence of surface tension at the interface. Both phases are 

immiscible and incompressible fluids. This single fluid takes the properties of the liquid within the 

drop and those of air within t. It is assumed that the flow in each phase is axisymmetric. The 

problem is governed by the single set of the governing equations which are the continuity equation 

as  

0V. 


                                    (1) 

and momentum equation as  

    












 ~VV)~(.g)~(pV.V
t
V)~(

T


               (2)            

Here,  v,uV 


 is the velocity vector where u and v stand for radial and axial components of the 

velocity vector, respectively. p  is the pressure, )g,0(g  is the gravitational acceleration and t is 

the time. The influence of surface tension   is incorporated into the momentum equation 
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following the continuum surface force (CSF) model of Brackbill et al. (1992). Here, ~  is the 

smoothed void fraction field, which is defined using a Heaviside function (Chakraborty et al., 

2013; Sussman and Puckett, 2000),  H , as 

H ( )
1
1 1 s i n2 2 2
0






        
    




  
  

    
  

   



                                                         (3) 

where   is the level set function, which is maintained as the signed distance function from the 

interface. Here,   is zero at the interface and has positive values in the liquid region and negative 

values in the gas region. Here, 2  is the interface thickness over which the fluid properties are 

interpolated. The present simulations were performed using r5.1  , where r is the size of the 

computational cell as discussed in detail in Chakraborty et al. (2013). The density )~(  and 

viscosity )~(  can be expressed from a Heaviside function  H  as 

    )~1(~)~( al                                                                     (4) 

    )~1(~)~( al                                                                     (5) 

The local curvature of the interface is computed as 

                



 .                                     (6) 

In the CLSVOF method (Chakraborty et al., 2013; Sussman and Puckett, 2000; Son and Hur, 

2002), the advection for the liquid volume fraction   and the level set function   are,  

       0V.
t



 

                                           (7) 

     0.V
t



 

                       (8) 

respectively.  

   The governing equations are cast in dimensionless form by using the orifice radius oR  as length 

scale, the capillary time 
 3

olR as time scale, the capillary pressure  
oR

 as pressure scale and 

the capillary velocity 
olR

 as velocity scale. The resulting equations are the continuity 

equation: 

0V.  


                             (9) 
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and the modified momentum equation: 

        












 



 ~VV)~(.OhBo)~(pV.V

t
V)~(

T*




              (10) 

where the variables with * denote the dimensionless variables. In Eq. (10), the density and 

viscosity of the single fluid continuum are computed by 

    )~1(~)~(                                                                        (11) 

    )~1(~)~(                                                                        (12) 

It is observed from Eqs. 10–12 that there are four dimensionless parameters: the Bond number 





2
olgRBo which measures the relative importance of gravity to surface tension forces; the 

Ohnesorge number 





ol

l

R
Oh which measures the relative importance of  the viscous to 

surface tension forces; the density ratio la / ; and the viscosity ratio la / . 

Additionally, the fifth dimensionless parameter Weber number 



 o

2
avgl Rv

We ,which measures 

the relative importance of  inertial to surface tension forces, arises due to the liquid inflow rate Q  

at the orifice. Here, the average inflow velocity of liquid at the orifice inlet is 2
oavg R/Qv  .   

 

2.3 Numerical method 

The numerical technique used in the present study is a coupled level-set and volume-of-fluid 

(CLSVOF) method (Chakraborty et al., 2013; Sussman and Puckett, 2000; Son and Hur, 2002) 

for capturing the movement of interface between two immiscible fluids. In this method, the 

governing equations (1 and 2) are discretized using the explicit finite-difference method on an 

axisymmetric coordinate with equidistant grid in the radial and axial directions. The convection 

and the viscous terms are discretized by a second-order ENO method (Son and Hur, 2002) and 

central differencing, respectively. The discretized equations are solved on a fixed staggered grid 

with scalars ( p ,   and  ) located at the cell centers and velocity components ( V


) at the center of 

the cell faces using MAC method (Harlow and Welch, 1965). Based on the new velocity field, the 

level set function   (Osher and Sethian, 1988) (from Eq. (7)) and volume of the fluid fraction   

(Hirt and Nichols, 1981) (from Eq. (6)) are determined using a coupled second order operator split 

scheme as discussed in Chakraborty et al. (2013) and references therein. The evolution of the 

interface is captured using level-set function   and the mass is conserved using volume-of-the 
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fluid fraction   due to the evolving interface. The stability of the solution is confirmed by 

choosing the time step which satisfies CFL, capillary, viscous and gravitational time conditions 

reported by Chakraborty et al., 2013. A more detailed description of the numerical method are 

available in Chakraborty et al.(2013). 

 

2.4 Computational Domain and Boundary Conditions 

The computational domain for the axisymmetric formation of drops is shown in Fig. 1. Numerical 

simulations were carried out to find the effect of side and outflow boundaries at low to high 

Weber numbers. In the present problem, the computational domain with the width at oR5R  in 

radial direction and the height at oR30Z  in axial direction were chosen so that the effect of side 

and outflow boundaries on the drop formation process can be ignored.  

    The  symmetry or slip boundary conditions at the left or right boundaries, no-slip boundary 

condition at the wall and Neumann boundary condition at the outflow are imposed. At the orifice 

inlet, a liquid is injected into an ambient air with a parabolic profile of Poiseuille flow 

(Chakraborty et al., 2009) in z direction. At the orifice inlet, the Reynolds number 
l

oavgl
l

Dv
Re




  

based on the liquid properties is deployed according to the laminar pipe flow condition 

( 2300Rel  ), where oD  is the orifice diameter. The drop is initially assumed to be pinned with a 

hemisphere of radius equal to the orifice radius. Initially, the gas and the liquid phases are 

assumed to be quiescent and at uniform pressure. 

 

2.5 Resolution tests and Validation 

To ensure grid independence of the solution, first the mesh refinements studies were carried out to 

examine the effects of grid resolution on the results as shown in Figs. 2 and 3. The grid 

independence tests were conducted using 7525 , 15050 , 24080  and 300100  grid meshes 

for the time evolution of dimensionless growing drop length )R/L(L o
*   for four consecutive 

drops at 13.0Oh  , 33.0Bo   and 119.0We   as shown in Fig. 2. Here, the dimensional 

growing drop length is denoted by L . Figure 2 shows that the drop formation reaches a stable 

state after first drop detachment. It is observed that the growth history of drop length for 15050 , 

24080  and 300100  grid meshes are almost identical, while for 7525  grid mesh yields 

differences. In addition, the time evolution of drop formation profiles using the same grid meshes 

is presented in Fig.3. The results of Fig.3 show that the satellite drop is formed for 7525 , 
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15050  and 24080 grid meshes whereas no satellite drop formation can be observed for 

300100  grid mesh. Subramani et al.(2006) experimentally and numerically using 1-d  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Effect of mesh size on the temporal variation of dimensionless growing drop length 

)R/L(L o
*   for four consecutive drops under the conditions of 13.0Oh  , 33.0Bo  , 

119.0We  , 410961.8   and 410165.3  . 

approximation found that the dynamics of drop formation process exhibits period-1 without 

satellite drop (P1) response using the same operating parameters as our present case. Therefore, in 

this present work, the computations were performed on 300100  grid mesh without losing the 

accuracy of the computational results. The values of the dimensionless grid size both in r and z  

directions and the dimensionless time step are 05.0zr **   and 4* 10t  , respectively. 

However, the corresponding values are used to compute the drop formation process accurately for 

the dynamics of P1 and CD responses whereas the dynamics of P1S and J  were conducted using 

finer grid size as discussed later. 

     Figure 4 illustrates the comparison of the drop shape at the incipience of breakup predicted by 

the present computed result superimposed on the experimental result of Subramani et al.(2006) 

using the same parameters as in Figs. 2 and 3. Excellent agreement has been found by comparing 

our computed result (red line ) to the experimental result of Subramani et al.(2006). The values of 

dimensionless limiting length )R/L(L od
*
d   and dimensionless detached primary drop volume 
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)R/V(V 3
od

*
d   of Fig.4 were determined (see also Fig. 2) to make quantitative comparison 

between our predicted results, and experiment and computation results of Subramani et al.(2006). 
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Fig. 3. Effect of mesh size on the drop formation process for the cases of  (a) 7525  grid mesh, 

(b) 15050  grid mesh, (c) 24080  grid mesh and (d) 300100  grid mesh with the same 

parameters as in Fig. 2. 
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Here, the dimensional limiting drop length and dimensional detached primary drop volume are 

denoted by dL  and dV , respectively. The experimental and numerical values of *
dL  and *

dV  

obtained from the work of Subramani et al.(2006) are 1.06.8L*
ex,d   and 3.04.17V*

ex,d  , and 

65.8L*
D1,d   and 5.18V*

D1,d  , respectively. The corresponding values obtained from our present 

computation are 62.8L*
d   and 42.17V*

d  , resulting in errors of about 1% in *
dL  and 1% in *

dV  

relative to the experimental values. It is observed that the values of our predicted *
dL  and *

dV  are 

in reasonably good agreement with the experimental results compared to the computed results 

obtained from 1D simulation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The comparison of the experiment result of Subramani et al. (2006)  with the present 

computed result (red line) on the incipience of drop breakup using the same parameters as in Figs. 

2 and 3. 

 

3. Results and discussions 

In this section, the different responses and the transitions of the dynamics of drop formation into 

an ambient air have been presented. It is our purpose here to find the comparisons between the 

present computed results and the results obtained in Ambravaneswaran et al.(2004) and 

Subramani et al.(2006). The values of the governing dimensionless parameters numbers examined 

for the simulations are listed in Table 1.  
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Dimensionless Parameter                                       Range 

       Bo                                                                 33.0 , 5.0  and 2.205 

       Oh                                                                 01.0 , 0.023 and 13.0  

       We                                                                14 100.7108.1          

                                                         410961.8  , 3100.1   31010.1     

                                                       410165.3  ,  3101.7  , 31020.2    

 

Table 1: Dimensionless parameters covered  for numerical simulations 

 

3.1 Dripping 

We report the numerical results of dripping response at 01.0Oh   and 5.0Bo   by varying the 

Weber numbers (liquid flow rates) as shown in Figs. 5 and 6. Figures 5 (a) and 5 (b) show the time 

evolution of drop formation and growing drop length at the orifice for four consecutive primary 

drops in P1S response when 019.0We   and P1 response when 055.0We  , respectively. It is 

observed from Fig. 5 that all consecutive drops have the same limiting length *
dL . The results 

from Fig. 5(a) show that in P1S response a liquid thread is formed and the liquid thread breaks 

into small satellite drop due to the imbalance force of surface tension. However, as We increases 

to We=0.055 the satellite drop formation is suppressed and P1 response without satellite drops 

formation can be observed as shown in Fig. 5(b).  

     Figure 6 illustrates the time sequence of drop formation and the time history of growing drop 

length in P2 response when 091.0We   (see Fig. 6(a)), P3 response when 245.0We   (see Fig. 

6(b)) and P4 response when 333.0We   (see Fig. 6(c)), respectively. The results from Fig. 6 

show that  drops of two different *
dL  in P2 response, three different *

dL  in P3 response and four 

different *
dL  in P4 response are formed successively. Here, satellite drops formation cannot be 

observed. The similar observations have been found by Ambravaneswaran et al.(2000) and  

Ambravaneswaran et al.(2004). 
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Fig. 5. The computation results of drop formation in P1S and P1 responses at 01.0Oh  , 

5.0Bo  , 3100.1η   and 3101.7λ  for the cases of (a) the time evolution of the primary 

and secondary (satellite ) drops formation (left) and the growth history of drop length (right) in 

PIS response for 019.0We   and (b) the time evolution of the primary drops formation (left) and 

the growth history of drop length (right) in P1 response for 055.0We  . 
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Fig. 6. The computation results of the time instant of the primary drops at the incipience of 

breakup (left) and the growth history of drop length (right) in P2, P3 and P4 responses at 

01.0Oh  , 5.0Bo  , 3100.1η   and 3101.7λ   for (a) 091.0We  in P2 response, (b) 

245.0We  in P3 response and (b) 333.0We  in P4 response. 

 

3.2 Jetting  

First, we present the results of the growth history of liquid jet length in jetting response at 

01.0Oh   and 5.0Bo   when 4536.0We  . The liquid jet length variations with time were 

reported experimentally by Clanet and Lasheras (1999), and numerically by Pan and Suga(2006) 
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and Delteil et al. (2011). It was observed from their investigations that the limiting length of jet 

fluctuates with time. Therefore, the discussion of grid convergence study is necessary to achieve  
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Fig. 7. (a) Computation results of the time evolution of growing drop length in jetting response 

using different grid mesh sizes and (b) Instantaneous profile of three consecutive drops at the 

incipience of breakup in jetting response. The pertinent input parameters are 01.0Oh  , 5.0Bo  , 
3100.1η  , 3101.7λ   and 4596.0We  . The limiting length is approximately 00.8L*

d  . 

 

the dynamics of stable liquid jet formation. This study was performed by using four different grid 

meshes. Figure 7(a) shows the time evolution of growing length of jet for six consecutive drops 

using grid meshes of 450150  with 0333.0zr **  , 600200  with 025.0zr **  , 

750250  with 02.0zr **   and 900300  with 0167.0zr **  . The results from Fig. 

7(a) show that the limiting length at breakup of the jet reaches stable as the grid mesh size 

decreases whereas the limiting length increases with time for coarser grid meshes. It can be 
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observed that the growing length reaches unstable after four consecutive drops formation for 

02.0zr **   and after five consecutive drops formation for 0167.0zr **  . Therefore,  it 

can be stated that much finer grid mesh would be necessary to achieve the stable jet formation and 

the time step has to be small enough to obtain the steady jet formation. However, our simulations 

are unable to find stable liquid jet formation for long time growth history due to limiting 

computational resources. Finally, time sequence profiles of three consecutive drops at the 

incipience of breakup in jetting regime are shown in Fig. 7(b) for 900300  grid mesh with 

0167.0zr **  . 

 

3.3 Transition from Dripping to Jetting 

The variation of limiting length *
dL  with Weber number under the conditions of 01.0Oh  , 

5.0Bo  , and 13.0Oh  , 33.0Bo   is shown in Figs.8(a) and 8(b), respectively.  
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Fig. 8. Computed results that show the variation of limiting length with We for the cases of (a) 

01.0Oh  , 5.0Bo  , 3100.1η   and 3101.7λ  . The results also exhibit the transition from 

dripping to jetting, and (b) 13.0Oh  , 33.0Bo  , 410961.8η   and 410165.3λ  . The 

results also identify the transition of different responses. 

 

Figure 9 reports the bifurcation diagrams, showing  the variation of *
dL with We  and *

dV  with 

We , that compare the present computed results with the results given by Subramani et al.(2006), 

when 13.0Oh  and 33.0Bo  . As shown in Fig. 8(a), the transition point from dripping to jetting 

occurs at jWeWe   beyond which the limiting length suddenly increases to a large value and the 
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system signals jetting response. Figure 8 (b) known as bifurcation diagram determines the 

transition points between P1S and P1 which occurs when sWeWe  beyond which the satellite 

drops formation cannot be observed, P1 and complex dripping (CD: P2) denoted by dWeWe  , 

and CD:P2 and P1 denoted by cWeWe  . It is observed that when dWeWe   and cWeWe  , P1 

                                                

         Transition Weber                      Experiment                   Computation                  Present work  

             numbers                                                                         1-D model             

      

            sWe                                             ------                                036.0                           0425.0          

            dWe                                            07.0                                  -----                             0682.0          

            jWe                                             48.0                                  80.0                              40.0  

 

Table 2: Comparison between present results, and experiment (Ambravaneswaran et al., 2004) 

and computation results based on 1-D model (Ambravaneswaran et al., 2002; Ambravaneswaran 

et al., 2004) . Here, sWe , dWe  and jWe are the critical Weber numbers which signal the 

transition from P1S to P1, P1 to CD and CD to J, respectively. The pertinent input parameters are 

01.0Oh  , 5.0Bo  , 3100.1η   and 3101.7λ  . 

 

response gives way to CD:P2 and CD:P2 returns again to P1, respectively. As the Weber number 

is further increased beyond cWe  another critical value is found at jWeWe   defined the 

transition from P1 to J, and the system signals to jetting beyond a jWeWe  . A summary of the 

comparison of the critical values of Weber numbers is presented in Tables 2 and 3. Figure 8 (a) 

and Table 2 show that the critical value of Weber number from dripping to jetting occurs at 

4.0We j   whereas the experimental measured value is 48.0We exp,j   (see Fig. 3, in 

Ambravaneswaran et al.(2004)). The value of critical Weber number based on 1D approximations 

is 8.0We D1,j   as shown in Fig.2(a) of Ambravaneswaran et al.(2004). It depicts that the present 

computed jWe  is more accurate than that of D1,jWe . As shown in Fig.9, the predicted results of 

limiting length, primary drop volume and critical Weber number (see also in Table 3) match quite 

well with the experimental results compared to the results obtained from 1D simulation of 

Subramani et al.(2006). However, the predicted critical value of Weber number from P1S to P1 at 
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sWeWe  is higher than the results obtained from experiments (Ambravaneswaran et al., 2004; 

Subramani et al., 2006) and computations (Ambravaneswaran et al., 2002; Ambravaneswaran et 

al., 2004; Subramani et al., 2006) as given in Table 2 and 3. The accuracy of the predicted sWe  

may be found if the grid mesh size is decreased. It is observed from Fig. 9 that for the 

dimensionless mesh sizes of 05.0r*   and 025.0r*   the critical values of sWe  are 0.05 and 

0.045, respectively. When the dimensionless grid size is decreased to 0125.0r*   the 

computation becomes very expensive which is unable to find sWe  due to limiting computation 

resources. 
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Fig. 9. Bifurcation diagram that shows comparison of computationally determined results with (a) 

experimentally results and (b) computation results based on 1D simulation of Subramani et 

al.(2006) for limiting length variation with We (left) and detached primary drop volume with We 

(right) under the conditions of 13.0Oh  , 33.0Bo  , 410961.8η   and 410165.3λ  . 
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         Transition Weber             Experiment                 Computation                       Present work  

             numbers                                                             1-D model                                                         

      

             sWe                                  034.0                              030.0                                045.0                  

             dWe                                  17.0                                196.0                               17.0  

             cWe                                  268.0                              268.0                                268.0  

             jWe                                   284.0                             327.0                               285.0  

 

 

Table 3: Comparison between present results, and experiment and computation results based on 

1-D model of Subramani et al.(2006) . Here, cWe is the critical Weber number which signals the 

transition from CD to P1. The pertinent input parameters are 13.0Oh  , 33.0Bo  , 
410961.8η   and 410165.3λ  . 

 

3.4 Drop formation dynamics at high Bond number 

The formation of drops at high Bond number has received little attention in literature. The 

dynamics of the dripping response,  jetting response and the transition from dripping to jetting can 

be found in details in the literature (Ambravaneswaran et al., 2000;  Ambravaneswaran et al., 

2004;  Subramani et al., 2006), but only for two different values of Bo=0.33 and 0.5. Furthermore, 

Subramani et al .(2006) reported numerical results of drop formation for 2.1Bo6.0  when 

Oh=0.1 and We=0.05. Therefore, in this subsection, the new computation results are presented on 

the dynamics of drops formation by varying the Weber numbers in which the Bond number is kept 

high at Bo=2.205 and the Ohnesorge number is Oh=0.023. Figure 10 shows the time evolution of 

growing drop length in (a) P1S response when We=0.0133, (b) chaotic response when 

We=0.0146, (c) P2S response when We-0.0177 and (d) J response when We=0.02. Figure 11 also 

illustrates the time evolution of drop formation in (a) P2S response and (b) J response. It can be 

seen from the results of Figures 10 (c) and 11 (a) the existence of new dynamics P2S in the 

dripping regime which was not discussed earlier in the literature. It is observed that in P2S 

response the primary drops of two different limiting length 1.06.5L*
d  and 1.01.4L*

d  with 

satellite drop are formed successively. The time  evolution illustrating *L  in Figure 10(d) shows 
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that when 45t*  , drops are formed in dripping response. However, at 45t*  the growing drop 

length *L undergoes an abrupt change and increases to a large value where the system exhibits J  
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Fig. 10. Time evolution of growing drop length at each value of We  when 

023.0Oh  , 205.2Bo  , 31010.1η   and 31020.2λ  : (a) P1S at 0133.0We  ,(b) chaotic 

at 0145.0We  , (c) P2S at 0177.0We  for 105t0 *   (left) and 101t72 *   (right; zoom 

view of left part) (d) J at 020.0We  .  

 

response. The results of Figure 10(d) that at 50t*  the column of liquid fluctuates with time and 

the average limiting length of the almost stable liquid jet is 20L*
avg,d   with minimum and 

maximum values of 15L*
min,d  and 25L*

max,d  . This result is similar to that observed by Clanet 
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and Lasheras(1999), and numerically by Pan and Suga(2006), and Delteil et al. (2011). Most 

importantly, the result of Figure 10(d) also indicates that the system exhibits the transition from 

dripping to jetting and the transition occurs when We=0.02. The detailed analysis of the dynamics 

of the formation of drops including dripping, jetting, the transition from dripping to jetting and the 

hysteresis at high Bond numbers will be addressed experimentally and numerically further in our 

near future work. 
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Fig. 11. (a) Time sequence of drop profiles in P2S response at 0177.0We  , and (b) drop 

formation in J response at 020.0We  . The pertinent input parameters are 023.0Oh  , 
3101.1η  and 31020.2λ  . 

 

Conclusions 

We have presented a numerical study on the dynamics of the formation of drops into air using a 

CLSVOF method governed by axisymmetric Navier-Stokes equations. The numerical simulations 

have been carried out for a wide range of non-dimensional parameter Weber number, 
14 100.7We108.1    while keeping constant values of Oh = 0.01, 0.023 and 0.13, Bo = 

0.33, 0.5 and 2.205, 410961.8η  , 3100.1  and 3101.1  , and 410165.3λ  , 31020.2  and 
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3101.7  . In this work, the rich dynamics of dripping response, jetting response and the transition 

of different responses were discussed. The present results are demonstrated after careful grid 

refinement investigations.    

     The present computations were focused to validate the predicted numerical results of the 

axisymmetric formation of drops with the experimental and 1D simulation results of 

Ambravaneswaran et al. (2004) and Subramani et al. (2006). The predicted results with respect to 

limiting length of drop at breakup and the volume of the detached primary drop show good 

agreement with the experimental results. It is observed that in the regime of nonlinear dynamics of 

drop formation, the predictions of the present computed results show much better accuracy than 

that of the 1D simulation results. Based on our numerical results, we can stress that the three 

dimensional but axisymmetric governing equations can be used to ensure good accuracy of the 

dynamics of drop formation for a wide range of dimensional parameters. Furthermore, our 

computation results reveal the existence of new dynamics period-2 with satellite drop (P2S) 

response which was not observed at low to moderately high Bond numbers before in literature.    
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