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A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity, V , exceeds 

the so called critical velocity for splashing, i.e., when V > V ∗. Under these circumstances, the very thin 
liquid sheet ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of 

the aerodynamic forces exerted on it. Subsequently, the growth of capillary instabilities break the toroidal rim 
bordering the ejecta into smaller droplets, violently ejected radially outwards, provoking the splash [1]. In this 
contribution, the effect of the growth of the boundary layer is included into the splash model presented in [1], 

obtaining very good agreement between the measured and the predicted values of V ∗ for wide ranges of liquid 
and gas material properties, atmospheric pressures and substrate wettabilities. Our new description also modifies 

the way the instant of time at which the liquid sheet is first ejected, which can now be determined in a much 
more straightforward manner than that proposed in [1]. 

 

 

I. INTRODUCTION 

 

Current technological applications such as coating, clean- 

ing, cooling, combustion, microfabrication through droplet 

deposition or the generation of aerosols, require a precise 

knowledge of the conditions under which a drop hitting a 

solid substrate, either conserves its integrity after the im- 

pact, or disintegrates into smaller parts [2]. The relevance of 

droplet splashing in many natural and engineering processes, 
and even in forensic sciences [3], together with the advances 

produced in high speed imaging [2], have stimulated the ap- 

pearance, during the past twenty years, of a vast number of 

experimental, numerical and theoretical studies on the sub- 

ject [4–18]. It is our purpose here to improve the agreement 

between the critical velocities for splashing predicted by the 

model presented in [1] with the experimental data. It has been 

recently reported that the model in [1], R&G in what follows, 

is able to quantitatively predict V ∗, namely, the critical veloc- 
ity for splashing, in a wide variety of experimental conditions 
[19–21], being this the reason why we believe that the im- 
provements to the R&G model described here could be useful 

for researchers working on the description of droplet splash- 

ing. Here, we will only refer to the problem of splashing 

caused by the impact of a drop onto a solid substrate, being 

the analogous physical situation of drop splashing by impact 

onto a liquid film, the subject of other recent contributions 

[22–27], to which the interest reader is directed. 

The starting point of the model proposed by R&G is to de- 

termine the ejection time of the lamella Te, as well as the ini- 
tial values of the thickness and the velocity of the edge of 

liquid sheet, Ht(T = Te) and Vt(T = Te) (see Figure 1). 

Following R&G, R, V , R/V and ρV 2 are, respectively, the 

characteristic length, velocity, time and pressure used to de- 
fine the different dimensionless variables, written in lower- 

 
 
 
 
 
 

 
FIG. 1. (color online) Sketch of the lamella for T > Te for V > 

V ∗ i.e., for impact velocities above which the lamella dewets the 
substrate. The regions in which the pressure is larger or smaller than 

the reference atmospheric pressure are indicated with either a plus or 
a minus sign. The lift force responsible of droplet splashing results 

from the integration of the pressure distribution along the edge of the 
lamella. This figure also illustrates the definitions of the different 

variables needed to describe the position of the rim. 
 

 

2. The velocity at which the lamella is initially ejected is 

vt(te) ȧ(te)  = 1/2 3/te, with dots denoting time 

derivatives. 

3. The thickness of the edge of the lamella at the instant 

of ejection is ht  ha = 2 t3/2/(
√

3π) (see the supple- 
mentary material in R&G). 

4. Since a˙ = vt at t = te and the lamella can only be 

ejected if its tip advances faster than ȧ ,  te is calcu- 
lated imposing that the deceleration of the edge of the 

lamella, v˙t, coincides with the deceleration of the wet- 

ted area, ä .  

In R&G, the ejection time, which is determined imposing the 

condition v˙t = ä ,  yields the following equation for te: 

c1 Re−1 t−1/2 + Re−2 Oh−2 = ä h2 = c2t3/2 , (1) 
case letters to differentiate them from their dimensional coun- e t e 

terparts. Here, R indicates the droplet radius, V is the impact 

velocity and ρ is the liquid density. Some of the main findings 
in R&G can be summarized as follows: 

 
1. The radius of the circular wetted area illustrated in Fig- 

ure 1 evolves in time as a = 3t (see R&G). 

where Re = ρV R/µ and Oh = µ/
√

ρR σ denote, respec- 

tively, the impact Reynolds and Ohnesorge numbers, σ is the 

interfacial tension coefficient and c1 3/2 and c = 1.1 
are constants adjusted experimentally; the Weber number is 

defined here as We = ρV 2 R/σ = Re2 Oh2. Equation (1) 

expresses that, in the limit Oh  1, te ∝ We−2/3, whereas, 
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a = 2 lg + lµ + 2   lg − lµ + lglµ 

b = 2 lg + lµ lg − lµ + lglµ . 

t t ∝ 

 

λ0 µg ρg0 

(×10−9 m) (×105 Pa s) (kg m−3) 

The different coefficients in (4) and the dimensionless vari- 

ables in (5) are defined as 

Helium 180 1.98 0.16 
Air 65 1.85 1.18 

Krypton 55 2.51 3.42 
C1 = 

2 l¯µ 

ab 
, C2 = 

1 − C1 b 
b − a , C3 = − (C1 + C2) , (6) 

SF6 39 1.53 6.04 
 

 

l̄ µ = lµ/H0 and l¯g = lg/H0 . 

 
TABLE I. Physical properties of the gases used in the experiments 
of Figure 9(b) for Tg0 = 298.15 K and pg0 = 105 Pa. Therefore, 

for arbitrary values of the gas temperature Tg and pressure pg, λ = 
λ0 (Tg /Tg0) (pg0/pg ) and ρg = ρg0 (Tg0/Tg ) (pg /pg0). 

 

 

in the moderate to high values of the Ohnesorge number, 

te Re−1/2. We also demonstrate in the supplementary ma- 
terial of R&G that, under the potential flow assumption and, 

for impact velocities such that V > V ∗, the thickness of the 
lamella and the liquid velocity at r = 3t i.e., at the radial po- 
sition where the drop intersects the substrate, are respectively 
given by 

ha = 2 t3/2/(
√

3 π) and  va = 
√

3/t. (2) 

Equations (2) were also deduced in [28] in a rather different 

way to that followed in R&G for the analogous case of the 
entry of a solid object into a liquid [29–33]. 

In R&G it is also shown that, once the sheet is ejected, its 

edge experiences a vertical lift force per unit length 

FL = Klµg Vt + Ku ρg V 2 Ht , (3) 

Here, H0 = Ht/4, lg × 1.2λ is the slip length of the gas 

[34], λ = kB Tg/( 2πd pg) is the mean free path between 

gas molecules, kB is Boltzmann constant, Tg and pg are the 
gas temperature and pressure respectively, and d indicates the 

effective diameter of gas molecules -values of λ, µg and ρg for 
different gases are provided in Table I- Differently to R&G, 

where l¯µ in equation (5) was set to zero, yielding 

K = (6/ tan2(α)) 
(7) 

(ln [8lg/Ht] − ln [1 + 8lg/Ht]) , 

here, we will retain the complete expression of Kl given by 

(4), with lµ = Ht µg/µ (see the supplementary material in 
[1] for details). 

The vertical velocity at which the lamella is initially ex- 
pelled, Vv(Te), can be deduced from the force balance pro- 

jected in the vertical direction, ρH2V˙v  FL = Ku ρg V 2 + 
Kl µg Vt, from which it can be deduced that 

Vv(Te) ∝ 
√

FL/ (ρ Ht) . (8) 

The splash criterion in [1], results from imposing that the 

vertical velocity (8) is such that β = Vv/VTC with VTC = 
which results from the addition of the lubrication force exerted 
by the gas in the wedge region located between the advancing 

lamella and the substrate -see Figure 1-, Klµg Vt, and the suc- 

 
 

2σ/ρ Ht 
0.14. 

the capillary retraction velocity [35, 36] and β × 

tion force exerted by the gas at the top part of it, Ku ρg V 2 Ht Equation (4) reveals that the lift force exerted by the lu- 

[1]. Here, the subscript g represents gas quantities, K is a constant determined numerically and 

t 

u × 0.3 brication layer located beneath the advancing front, depends 
logarithmically on the ratio λ/Ht, with λ mean free path of 

Kl is deduced us- 
ing lubrication theory once it is assumed that the front part of 
the advancing liquid sheet can be approximated to a wedge of 

constant angle α  60◦ while it is in contact with the sub- 
strate. The origin of the constant wedge angle α, relies on the 

fact that the no slip condition provokes the edge of the liquid 
sheet to be convected further downstream than the region in 
contact with the solid, being this argument in agreement with 

the experimental observations in [20], where it is also reported 
that the substrate wettability does not appreciably affect the 

splash threshold velocity through α. 

The coefficient Kl in (3) is deduced using lubrication the- 
ory in the supplementary material of R&G, yielding 

 

Kl = −(6/ tan2 α)

 

C2

 
a ln(1 + a) − a ln a

 
 

the gas. It will be shown below that the ratio λ/Ht could be 

of order unity or even larger, being this the reason why the 

splash threshold velocity is sensitive to small changes of Ht. 
Motivated by this fact and, in order to account for the effect 
of the boundary layer developing upstream the ejected liquid 
sheet, the equations for the ejection time (1) and for the thick- 

ness of the lamella, Ht, will be slightly changed with respect 
to the corresponding expressions derived in R&G. 

 

 
II. INFLUENCE OF THE BOUNDARY LAYER ON THE 

EJECTION TIME 

 

The large values of the Reynolds number characterizing the 
splashing of a droplet impacting against a wall suggests to de- 

 
 

 
with 

+ C3

 
b ln(1 + b) − b ln b , 

(4) scribe the tangential deceleration of the fluid at the solid sub- 

strate by means of boundary layer theory. As a first step, the 

results of the type of simulations describing the impact of a 

drop against a shear free wall described in [37] and illustrated 
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in Figures 2(a)–(b), provide the velocity field at the solid sub- 
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computed using potential flow theory corresponds to the far 

 field boundary condition for the velocity component tangent 

(5) 
strate for different instants of time: the radial velocity field 
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1.5 

erence moving at ȧ ,  namely, the speed at which the root of the 

lamella, located at r = a, propagates radially. Interestingly 

enough, Figure 3(a) shows that, in agreement with potential 
flow theory [28, 30–32] and by virtue of the Euler-Bernoulli 
equation applied in the moving frame of reference [1], the ve- 
locity entering into the lamella in the moving frame of refer- 
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ence is a˙ once the lamella is ejected i.e., the velocity of fluid 

particles entering into the lamella is 2a˙ in the fixed frame of 

reference. Figure 3(a) also indicates that fluid particles enter- 
ing into the lamella come from a very narrow region, located 

between r = rs, which is the radial position of the stagna- 
tion point of the flow in the moving frame of reference, and 
the root of the lamella. Therefore, the relevant spatial region 
to describe the boundary layer flow of interest here, is the 

one located between rs < r < 
√

3t, where radial velocity 

(b) 5 field computed using potential flow theory [37], notably dif- 

fers from that assumed in previous studies [17, 38–41], as it 
 

4 
will be shown below. 

First, Figure 3(b) shows that 
    
3t−rs(t) = cn ha(t) ∝ t , 

with cn = 1.5, a result which is consistent with equation (6) 

3 

vr 

for the velocity in the relative frame of reference provided in 

the supplementary material of [1] 

2 
vr − a  ̇ex =  (9) 

1 
 2a  

— 
π
√

a − r 
sin (θ/2) er + cos (θ/2) eθ

 
− a˙ ex , 

0 
0.0 0.5 1.0 1.5 2.0 
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FIG. 2. (color online) (a) Computed shapes of a drop using the po- 

from which it can be deduced that 

−1/2  

√
2a 4 

(a − rs) 
π 

= a˙ =⇒ (a − rs) = 
π

 ha , (10) 

tential flow numerical code described in [37] for a value of the Weber 
number We = 100. The inset indicates the position of the stagnation 
point existing in the flow in a relative frame of reference translating 
with a velocity a˙ for different instants of time. (b) Comparison be- 

tween the computed values of the radial velocity vr (r, z = 0) corre- 

sponding to the different drop shapes depicted in figure (a) (continu- 
ous lines) and the radial velocity field assumed ad hoc in [38] (dashed 
lines). The origin r = 0 corresponds to the impact point. The 

vertical l i√n e s  indicate the radial position of the root of the lamella, 

Figure 4 shows that, in agreement with equation (9), the ra- 
dial velocity in the fixed frame of reference varies with the 

distance to the root of the lamella as (a r)−1/2 for r  rs 
and, even more interestingly, Figure 4 shows that the radial 
velocity field for rs(t) < r < a(t) can be well approximated 
by 

v × a˙ 1+  
r − rs

  

, (11) 

r = a = 3t. n  a 

 

 
to the solid, vr, in the boundary layer equations. Interestingly, 

Figure 2(b) reveals that the stagnation-point type of flows used 

with cn = 1.5 ≈ 4/π, see Figure 3(b) and equation (10). Due 

to the fact that in the spatial region rs < r < a, vr/r ∼ vr/a 
and ∂vr/∂r ∼ vr/ha, it can be deduced that, for t   1, 
vr/r   ∂vr/∂r because a(t)   ha(t) (a ∝ t1/2 and 

in previous studies [38–40], are in clear disagreement with 

the real ones. More precisely, Figure 2(b) reveals that, in the 
neighborhood of the spatial region from which the lamella is 

ejected, r = a(t) =  3t, the computed radial velocity at 

ha  t3/2). Therefore, the continuity and momentum equa- 
tions describing the radial and normal components of the ve- 
locity field within boundary layer developing in the spatial 
region rs < r < a can be simplified to 

z =  0 is much larger than the corresponding velocity corre- 

sponding to a stagnation-point type of flow, vr ≈ r/t. This  
 

∂Vr 
+ 

∂Vz 
= 0 ,

 

 
that the relevant outer velocity field for the development of 

 V
 ∂Vr 

+ V 
∂Vr 

= V
 dVext 

+ ν 
∂ Vr 

.
 

 

is not the one considered in [17, 41] either. 

Indeed, Figure 3(a) represents the radial velocity field com- 
puted using potential flow simulations [37] in a frame of ref- 

In equation (12), the variable X = R(r − rs) has been defined 

to describe the boundary layer flow between rs = a − cn ha 
and r = a =  3t, Vext = V ȧ (1 + (r − rs) /(cn ha)) is 
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≈ analytical form of the radial velocity, vr r/t, is used, for 

instance, in references [38–40]; it will also be shown below (12) 

the boundary layer flow entering the ejected thin liquid sheet 
ext 
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reference translating at a velocity a˙ = 1/2 3/t. The values of the 

the distance to the root of the lamella, r a. Notice that the relative 

radial velocity is a˙ at r = a and is zero at r = rs, with rs indicating 
∂x̄ ∂z̄  
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FIG. 4. (color online) Log-log plot of the radial velocity as a function 
of the distance to the root of the lamella. In agreement with equation 

(9), the radial velocity decays as (a − r)−1/2 for r & rs. 
 

 

V 2 ȧ2 / (Rha), the order of magnitude of the ratio of the local 
and the convective acceleration terms in the momentum equa- 

tion is Tr/T0 t 1 and, thus, the flow in the boundary 

layer region rs < r < a can be considered quasi-steady. 

In terms of the new dimensionless variables 

0.0 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

(r − rs)/(cn ha) 

x̄ = 
X 

R cn ha 
V 

, z̄  = 

V 

Z 

R cn ha 
(Re cn) 

1/2 
(a˙ ha)1/2 , 

(13) 

FIG. 3. (color online) (a) Time evolution of the values of the radial 

v¯r =  r , 
V a˙ 

v z̄ =  z 
V ȧ 

(Re cn)1/2 (a˙ ha)1/2 , 

velocity profiles depicted in Figure 2(b) r e√pres ented in a frame of the system (12) reads 

radial velocity are normalized by a˙ and are represented as function of 
 

 

 ∂v̄ r + 
∂v̄z 

= 0 
 

the radial position of the stagnation point in the relative frame of ref-  v̄  
∂v̄r 

+ v̄  
∂v̄r 

= 1 + x̄  + 
∂ v̄ r 

. 

linearly between r = rs and r = a, namely, the spatial region lo- 

cated between the stagnation point of the flow in the relative frame of 
reference and the root of the lamella. Indeed, notice that distances are 
normalized here by rs a = cn ha(t), with cn = 1.5 a constant (see 
the inset). The relevant region for the development of the boundary 
layer flow entering into the lamella is 0 < (r rs) / (cn ha) < 1, 

whereas the region (r rs) / (cn ha) > 1 corresponds to that of the 

ejected liquid sheet, which can be described using a ballistic approx- 
imation [37, 42] 

 

 

defined in equation (11) and the quasi steady Euler-Bernoulli 

equation has been used to compute the pressure gradient in 

the boundary layer region.  Indeed, the local acceleration 

 
The system (14) describes the growth of a boundary layer 
within an outer potential flow which imposes a favorable pres- 
sure gradient: indeed, the pressure reaches a maximum at the 
stagnation point existing in the flow in the relative frame of 

reference, located at r = rs, where p = pa + 1/2ρV 2 ȧ2 
and pressure decreases downstream to match the atmospheric 

pressure, p = pa at the radial position from which the thin 

liquid sheet is ejected, r  a, see Figure 5. 

The parabolic system of equations (12), which needs to be 

solved subjected to the following boundary conditions 

 x̄ = 0 , v̄ r = v̄ r0(z̄ ) 

term has been neglected in the system (12) due to the fact 
that the residence time Tr of fluid particles in the spatial 

region rs < r < a is Tr  Rha/ (V ȧ )  (R/V ) t2, 
whereas the characteristic time of variation of the flow field 

in this region is T0 (R/V ) t. Consequently, since the 
process of droplet splashing described here takes place for 

z̄  = 0 , v̄ r = 0  

 z¯ → ∞ , v¯r → 1+ x̄ 

admits a solution of the type 

df 

(15) 

t  1, and O (∂Vr/∂T ) ∼ (V ȧ)/T0  and O (Vr∂ Vr/∂X) ∼ v̄ r = (1 + x̄) 
dz̄  

(z̄ ) , v̄ z = −f (z̄ ) , (16) 
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ȧ
 

(v
r 
−

 

ȧ
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FIG. 5. (color online) Sketch of the flow developing between the 

stagnation point in the relative frame of reference and the root of the 
lamella. 

 

 

with f given by the solution of the Falkner–Skan-type of equa- 
tion [43] 

0.5 
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df/dz¯ 

 
FIG. 6. (color online) Solution of equation (17) subjected to the 
boundary conditions given in equation (18). 

 

d3f 

dz¯3 
+1  − 

df  2 

dz¯ 

d2f 
+ f 

dz¯2 
= 0 , (17) 

satisfying the following boundary conditions 
 

f (0) = 
df 

dz̄  
0 

= 0 and z̄  → ∞ , 
df 

dz  ̄
→ 1 . (18) 

Since the system of equations is parabolic, the downstream 

evolution of the velocity profiles lose memory of the initial 

condition at x̄ = 0, a fact favoring the solution convergence 

to that provided by equation (17) [44]. The solution of equa- 
tion (17) subjected to the boundary conditions (18), which is 
represented in Figure 6, reveals that the shear force per unit 

length Fτ exerted at the wall in the region rs < r < a and the 

thickness of the boundary layer δ, are respectively given by 

 

 
FIG. 7. (color online) Sketch of the forces decelerating the advancing 
front of the lamella. 

 

 

In the usual limit δ/Ha  1, the fluid within the ejected 

liquid sheet will be decelerated only by the action of inter- 
facial tension forces. This assertion is true except in a very 

 
Fτ = µ 

∫ R(a−rs) 
 
∂Vr dX

 
narrow region of thickness δ Ha located nearby the wall, 
where viscous stresses also contribute to decelerate the liquid. 

 
 

0 ∂Z Z=0 
2 

Excluding the effect of this very thin region, the ejection con- 

dition v˙t = ä [1], with dvt/dt the deceleration of the edge of 
3 1/2 d f 

 
  

 µV Re1/2a˙ (a˙ h )1/2 the lamella sketched in Figure 7 reads, 

 

 

and 

× 1.1µV Re , 
 

(19) 

 

ρH2V˙T ∼ −2σ =⇒ 
We−1 

v˙t ∝− 
h2

 

 
, (21) 

δ 1/2 

R 
× z∞ cn 

ha  
1/2 

a˙ 

 
Re 

 

−1/2 
yielding the following expressions for both the ejection time 

and for the initial thickness of the lamella 

× 2.45 
  

ha
  1/2  

Re−1/2 , v˙t ∝ −We /ha ∝ ä  
(22) 

a˙ 

where use of the values z¯∞ × 2 (see Figure 6), c1/2 = 
√

3/2 

=⇒ te ∝ We−2/3 , ha(te) ∝ t3/2 ∝ We−1 . 

The scalings in (22), which have been verified numerically 

and d2f/dz̄2(0) = 1.23 3/2 has been made. 

Making use of the estimation of the boundary layer thick- 

ness in equation (19) and of equation (2), it can be concluded 

in [37], are valid only if 

δ 

 

 
−1/2 

 
 
 
−1/2 

that, at the ejection time te, H  
× 4.34 Re te < 1 

δ 

H  
× 4.34 Re 

 

t−1/2 . (20) 

=⇒ 4.34 Re−1/2 We1/3 = 4.34 Re1/6 Oh2/3 < 1 

=⇒ Re1/6 Oh2/3 . 0.25 , 

(23) 
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good agreement with experiments for sufficiently low values 

of the Ohnesorge number, the deviations between the predic- 

tions of equation (1) and measurements are apparent for the 
case of higher viscosity fluids. 

The thickening of the lamella provoked by the development 

of a boundary layer between the stagnation point and the root 
of the ejected sheet, can be approximately quantified impos- 
ing that the flow rate entering into the lamella coincides with 

that predicted by potential flow theory. Assuming a velocity 
profile within the boundary layer increasing linearly with the 
distance to the wall, the thickness of the root of the lamella, 

h+ when the effect of the boundary layer is taken into account 

-see the sketch in figure 1-, is given by 

log10(Re) h v  = v

  

h+ − 
δ
  

+ 
 δ  

v 

 
FIG. 8. (color online) Continuous lines represent the values of te 

a a a a 

 
+ 

R 2 R  a 
√   

(26) 

calculated either as te = 1.05 We−2/3 for Re1/6Oh2/3 < 0.25 or 

as te = 0.6 Re−1/3 for Re1/6 Oh2/3 > 0.25. Dashed lines repre- 
sent the values of te obtained solving equation (1). The numerical 
values associated with each symbol represent 1000 Oh. The value 

of the Ohnesorge number is Oh = 2.3 10−3 for the case of the 
experiments reported in [10]. 

 

 
where use of equations in (2), (20) and (22) has been made. 

=⇒ ha × ha  1+  2.2/  Re te  , 

with δ given in equation (19) and ha given by equation (2). 
In order to improve the agreement with experiments for the 
smaller values of the Reynolds number, and due to the fact 

that, in the limit  Re te  1, the result in equation (26) can 
be very well approximated by 

+  ha  

In view of equation (22), the ejection time is given by te 
We−2/3 if Re1/6Oh2/3 < 0.25. However, when the thick- 

ha × 
1 − 2.2/

√
Re t 

, (27) 

nesses of the boundary layer is similar to that of the lamella, 

namely, Re1/6Oh2/3 & 0.25, fluid particles entering the 

ejected liquid sheet will also be decelerated by the action of 

we alternatively use here the following expression to calculate 

h+: 

+  ha  
the viscous shear force per unit length acting on a region of 

length ∼ Ha ∼ Fτ with Fτ calculated in equation (19) (see 

ha = 
1 − K /

√
Re t 

, (28) 

Figure 7). Consequently, 

ρH2V˙T × −Fτ − 2σ 

× −µV Re1/2
 

1+ O
 
Re−3/2 Oh−2

 
 

× −µV Re 

=⇒ v˙t ∝ −Re−1/2/h2 . 

 
 

 
(24) 

where Ka is a constant which will be determined by matching 

the predictions with the experimental data and whose precise 

value will be very close to our prediction in equation (27). In 
addition, to account for the thickening of the rim produced 
by the capillary retraction during the first instants after the 

ejection of the lamella (see the numerical shapes in Figure 
2 for illustrative purposes), the thickness of the edge of the 
advancing lamella will be calculated here as 

The final result expressed by equation (24) has been deduced  ha  
neglecting the term Re −3/2 Oh−2 

.  This is done based on 
ht = Kh ha = Kh 

1 − K /
√

Re t , (29) 

the fact that, in the regimes for which δ ∼ Ha, namely, a e 

Re1/6Oh2/3 & 0.25, the Ohnesorge number satisfies the con- 

dition Oh & 0.03 (see Table II). Therefore, for the usual 
range of Reynolds numbers for which millimetric droplets 

splash namely, Re  102  103, Re−3/2 Oh−2 < 1. Finally, 
it can be concluded that the ejection time te in the regime 

Re1/6Oh2/3 & 0.25 can be calculated as 

v˙t = ä =⇒ −Re−1/2 ∝ ä h 2  ∝ −t3/2 

a very similar expression to that suggested by the experiments 

in [1], where we found that ht  2.8 ha. 

Figure 9 show the comparison between the experimental 

values of the splash threshold velocities satisfying the condi- 

tion Re1/6Oh2/3 < 0.25 and the theoretical ones, determined 

using 

  
F 

  1/2 
a e 

=⇒ te ∝ Re−1/3 . 
(25) 

L = 0.14 , (30) 
2σ 

Figure 8 shows good agreement between the ejection times 

predicted by equations (22) and (25) and the experimental 

ejection times reported in [1] and in [10]. Notice also that, 

while the ejection times predicted by equation (1) are also in 

with FL given by equation (3), te and ht calculated through 

equations (22) and (29) respectively, lµ = Ht µg/µ, Ka = 
2.8, and the same values for the rest of the parameters as in 

[1]: vt = 
√

3/2 t−1/2, α = 61◦, Kh = 2.5 and H0 = Ht/4. 

  Model 

Ref. [1] 

2. 9 

7. 3 

11. 4 

37. 1 

75. 3 

Ref. [10] 
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(a) 
 

6 
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4 
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0 
0 1 2 3 4 5 6 

V ∗ [m s−1 ] 

 

 

ρ σ µ V ∗ Re Oh Type 
Ref. Symb. (kg/m3) (mN/m) (cP) (m/s)  (-)  ( 103) 

(a) [1] 789 24.0 0.3  3.12 7677 2.4 G 

(b) [1]  1000 71.8 0.95 3.68 7583 2.5 G 
[1] 1000 71.8 0.95 3.70 6760 2.7 G 
[1] 1000 71.8 0.95 3.98 6832 2.8 G 

[1]  1000 67.5 0.9  4.13 6395 2.9 G 

(c) [1] 791 23.5 0.6  2.20 4507 3.5 G 
[1] 791 23.5 0.6  2.74 3878 4.2 G 

(d) [1]  789 22.6 1.0  1.77 2130 6.1 G 
[1]  789 22.6 1.0  2.19 1834 7.3 G 

(e) [1]  854 17.2 1.3  1.56 1400 9.1 G 
[1]  854 17.2 1.3  1.71  988 11.4 G 

(f) [1]  875 17.8 1.7  1.55 1062 12.0 G 
[1]  875 17.8 1.7  1.81  830 14.7 G 

(g) [1] 913 18.6 4.6  1.77  466 30.5 G 

(b) 100 

 

80 

 

60 

 

40 

 

20 

 
0 
0 1 2 3 4 5 6 7 8 

V ∗ [m s−1] 

 
FIG. 9. (color online). (a) Comparison between the critical veloc- 

ity V ∗ measured experimentally for the case Re1/6 Oh2/3 < 0.25 
and the corresponding velocities predicted by equation (30). The ma- 

terial properties of the different liquids used, the type of solid sub- 
strate, the radii of the impacting drops and the corresponding values 
of the Ohnesorge number, are summarized in Table II. The inset rep- 

resents the comparison between predicted and measured values of 

V ∗ when Re1/6 Oh2/3 > 0.25. In Figure (a), the surrounding gas 
is air at normal atmospheric conditions (see Table I). (b) Compari- 
son between the predicted and measured values of the critical splash 
velocity for the case of the experiments reported in [5]. In this case, 

Re1/6 Oh2/3 < 0.25 and the material properties of the gases and 

liquids used are provided in Tables I and III respectively. Continu- 

ous lines represent the predicted value of V ∗ for Kh =  2 and the 

corresponding values of V ∗ for Kh = 2.5, are represented in dashed 
lines. 

 

 

The agreement between the predicted velocities and the exper- 
imental ones is fairly good in view of the wide range of vis- 
cosities, drop diameters, values of the interfacial tension co- 
efficient, different substrate wettabilities [20], different gases 
and different gas pressures considered [5], and this agreement 

can be even improved if the constant Kh is set to Kh = 2 
in Figure 9(b). The splash threshold velocities for the case 

Re1/6Oh2/3 > 0.25, which are calculated in the same way 

as before, but making use of equation (25) to calculate te, are 

also in good agreement with the experimental data, as the inset 

in Figure 9(a) shows. 

[1] 913 18.6 4.6  1.69  313 37.1 G 

(h) [1] 1000 19.5 10.0 1.95  258 62.2 G 
[1] 1000 19.5 10.0 2.02  182 75.3 G 

[20] 989 56.4 1.23 3.83 3394 5.0 P 
[20]  982 48.1 1.50 3.54 2548 6.6 P 
[20]  975 42.7 1.82 2.79 1492 8.9 P 

[20] 969 38.0 2.14 2.87 1233 11.5 P 
[20] 935 30.2 2.85 2.50  738 17.9 P 

[20]  891 26.2 2.55 2.48  694 18.6 P 
[20]  843 23.8 1.88 2.34  840 14.8 P 
[20] 789 21.8 1.20 2.26 1186 10.2 P 

[20] 989 56.4 1.23 4.68 4146 5.0 G 
[20]  982 48.1 1.50 3.81 2740 6.6 G 
[20]  975 42.7 1.82 3.22 1724 8.9 G 

[20] 969 38.0 2.14 2.93 1259 11.5 G 

[20] 935 30.2 2.85 2.50  739 17.9 G 

[20]  891 26.2 2.55 2.50  700 18.6 G 
[20]  843 23.8 1.88 2.38  855 14.8 G 
[20] 789 21.8 1.20 2.28 1198 10.2 G 

[20] 989 56.4 1.23 4.08 3615 5.0 S 
[20]  982 48.1 1.50 3.98 2868 6.6 S 
[20]  975 42.7 1.82 3.15 1689 8.9 S 

[20]  969 38.0 2.14 2.90 1246 11.5 S 
[20]  935 30.2 2.85 2.21  654 17.9 S 

[20]  891 26.2 2.55 2.21  619 18.6 S 
[20]  843 23.8 1.88 2.18  783 14.8 S 
[20] 789 21.8 1.20 2.15 1127 10.2 S 

[15] 786 20.5 2.0  1.51  738 14.1 G 
[15]  805 22.3 1.38 2.32 1045 11.7 G 
[15]  805 22.3 1.38 1.68 1271 9.1 G 

[15] 1050 60.0 1.78 3.16 3096 5.5 G 
[15] 792 22.2 0.52 3.27 3893 4.4 G 

[15]  792 22.2 0.52 2.50 4576 3.6 G 

[15]  1000 70.8 1.00 3.61 6479 2.8 G 
 

 
TABLE II. (color online) Values of the material properties of the 

liquids, values of critical velocity for splashing V ∗, values of the 

corresponding Reynolds numbers Re = ρR V ∗/µ as well as the 

Ohnesorge numbers Oh = 
√

We/Re = µ/
√

ρ Rσ and type of 
solid substrate: G–Glass, P–Parafilm and S–Steel, used to plot 

Figure 9(a). (a) Acetone, (b) Water, (c) Methanol, (d) Ethanol, 

(e) Decamethyltetrasiloxane, (f ) Dodecamethylpentasiloxane, (g) 
Poly(Dimethylsiloxane) and (h) 10 cP Silicone Oil. 

 

Notice that, in the case of low viscosity liquids, and due to 

3 

2 
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0 
0 1 2 3 

P
 [

k
P

a
] 

V
 ∗ 

−
1

 
[m

 s
 
 

] 
th
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× 

× 
× 

−1/2 

t 

√ √ 

 
 

ρ σ µ Oh λ0 µg ρg0 

Gas (kg/m3) (mN/m) (cP) (  103) (nm) (cP) (kg/m3) 

(a) 789 22.4 1.04 6.0 180  0.0198 0.16 

(b)  789 22.4 1.04 6.0 65 0.0185 1.18 

(c)  789 22.4 1.04 6.0 55 0.0251 3.42 
(d)  789 22.4 1.04 6.0 39 0.0153 6.04 

(b)  791 23.5 0.54 3.0 65 0.0185 1.18 
(b) 786 21.0 2.04 12.2 65 0.0185 1.18 

 
TABLE III. (color online) Values of the material properties of the 
liquids used in [5], reproduced in Figure 9(b), and values of the 
Ohnesorge numbers Oh =  We/Re = µ/ ρ Rσ corresponding 

to R = 1.7 mm. The material properties of the different gases used 

in the experiments reported in [5], (a) Helium, (b) Air, (c) Krypton 

and (d) SF6, are provided in Table I. 

 
 

 

III. CONCLUDING REMARKS 

 

The model developed in [1] has been completed by 
taking into account the effects associated with the growth 
of the boundary layer which, when the velocity field is 
described in a moving frame of reference, develops between 
the stagnation point of the flow and the root of the ejected 

liquid sheet. Depending on the value of the ratio δ/Ht, 

with δ the thickness of the boundary layer and Ht the initial 
thickness of the advancing rim, the ejection time is calculated 

either as te   1.05 We−2/3 if Re1/6Oh2/3 < 0.25, or 
as te 0.6 Re−1/3 if Re1/6Oh2/3 > 0.25. Interestingly 
enough, the predictions for the ejection times for the larger 

the fact that −2/3 and since 3/2 −1, the values of the Ohnesorge number, te  ∝ Re−1/3, which 
te ∝ We ht ∼ te ∝ We contrast with t  ∝ Re in [1], are in better agreement 

height of the advancing liquid sheet can reach values close to 
the mean free path of gas molecules. Indeed, 

e 

with the experimental measurements. The predicted splash 
velocities are in fairly good agreement with experiments when 

 λ λ pg0

  
Tg

 
 both the modified ejection time and the thickening of the 

H 
∼ 

R 
We = Weλ = 

p
 

Tg0 
Weλ0 , (31) ejected lamella caused by the growth of the boundary layer, 

are included into the splash criterion (FL/2σ)1/2 = 0.14, 

with Weλ = ρV 2 λ/σ and λ0 the mean free path at normal 
pressure and temperature conditions, pg0 and Tg0 respec- 
tively. For instance, in the case of helium in Figure 9(b), 

V ∗ & 5 m s−1, σ × 20 × 10−3 N m−1, ρ × 780 kg m−3, 
λ0 × 180 × 10−9 m and, therefore, Weλ & 0.2. This result 

deduced in [1]. 
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