
Damage initiation and propagation
in composite materials. Boundary 

element analysis using weak
interface and cohesive zone models

Ph.D. Thesis  by 
Luis Arístides Távara Mendoza

P
h.D

.  Thesis  by  Luis Távara 
U

niversidad de S
evilla  -

2010

June 2010

Damage initiation and propagation in composite materials. Boundary 
element analysis using weak interface and cohesive zone models

The present thesis deals with: 

• The development and implementation of different fracture mechanics models in 
Boundary Element Method codes, used as a numerical tool to solve elastic problems. In 
particular, in this thesis a linear elastic-brittle (weak) interface model and a cohesive 
zone model are implemented.

• The study of some mechanical properties of composite materials and different damage 
and/or failure mechanisms on macro, meso and micro scale that can be developed in 
these materials and their adhesively bonded joints.

The long-term and general objective of this thesis is to contribute to the development of 
physically based failure criteria for composite materials and their joints.
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Chapter 1

Introduction

The present thesis has been developed in the Grupo de Elasticidad y Re-
sistencia de Materiales, Departamento de Mecánica de Medios Continuos,
Teoría de Estructuras e Ingeniería del Terreno de la Universidad de Sevilla
(Group of Elasticity and Strength of Materials, Department of Continuum
Mechanics at the University of Seville).

The work is included in two fundamental research lines of the Grupo de
Elasticidad y Resistencia de Materiales:

(i) The development and implementation of different fracture mechan-
ics models in some Boundary Element Method (BEM) codes, used as a
numerical tool to model the elastic problem. In particular, in this thesis a
linear elastic-brittle (weak) interface model and a cohesive zone model are
implemented.

(ii) The study of some mechanical properties of composite materials and
different damage and/or failure mechanisms on macro, meso and micro scale
that can be developed in these materials and their adhesively bonded joints.

The long-term and general objective of this thesis is to contribute to the
development of physically based failure criteria for composite materials and
their joints.

In the last years, many Finite Element Method (FEM) codes try to in-
clude some Cohesive Zone Models (CZM) to solve fracture problems. The
CZM is characterized by a non-singular stress field in the crack tip neigh-
borhood allowing for an efficient modeling of crack onset and growth using
(quasi) uniform meshes. Thus, the initial motivation of the present study
was to develop a numerical tool based on the BEM that included some
non-singular fracture mechanics models, including CZM and possibly other
models. Due to the fact that all the non-linearities that arise in the use of
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cohesive zone models are located in the boundary, the BEM seemed to be
a nice tool to solve the corresponding non-singular fracture problems.

1.1 Damage and Failure of Composite Materials.

Motivation

The use of composite materials in the manufacturing of engineering com-
ponents and structures has increased significantly during the last years.
Composites versatility leads to their use in a wide variety of industries such
as aeronautical, automobile, naval, wind energy and others where high tech-
nology is needed. In general, it can be said that technical composites are
a combination of materials with final properties different, and superior in
some sense, than those of the initial materials.

In composites reinforced by long fibres, the fibres are oriented in the
direction where a greater stiffness and strength is needed. Composite mate-
rials are a preferable option for structural applications where a high values
of the strength/weigth and stiffness/weigth ratios are required. In particu-
lar this is the reason why the use of fibre reinforced composites is becoming
more extended in the manufacturing of aeronautical structures. Nowadays,
composites are included in critical parts of aircrafts, giving a higher respon-
sibility to this kind of materials.

A better and physically based knowledge of the damage and failure of
these materials has become more important. Some of the most important
damage and failure mechanism take place at different scales of the compos-
ite. At macro scale the onset and propagation of cracks in the adhesive
layers that join the composite laminas is an important issue to be stud-
ied. Similarly, at meso scale the delamination problem between differently
oriented plies in a composite laminate is another important damage mech-
anism. At micro scale, of the order of fibre radius size approximately, first
the breakage of a single fibre when the load is applied in the direction of
the fibre has been studied in the last years. Also as mentioned before, it is
usual that fibre reinforced composites are designed to work specially in the
fibre direction (longitudinal direction), thus a common failure mechanism
occurs in the direction transversal to the fibres.

The present knowledge on damage and failure mechanisms in composite
materials is not deep enough to allow for developing physically based fail-
ure criteria. Nevertheless, the use of composites is getting more and more
extensive. These facts make specially interesting to carry out research in
this area. The use of alternative models with different assumptions in com-
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parison with the classical Linear Elastic Fracture Mechanics, seems to be
a promising tool to, first, understand the different problems described and
their failure mechanisms and, then, to carry out the design of composite
structures.

1.2 Non-singular fracture mechanics models: Co-
hesive Zone Models and Linear Elastic-Brittle
(Weak) Interface Model. Background

The majority of methods used to simulate crack propagation, based on
the classical Linear Elastic Fracture Mechanics (LEFM), made difficult the
study of crack initiation occurring in the first step of fracture process, since
they assume the presence of a crack. Recently, other models have been
intensively developed, e.g., cohesive crack models [12, 32, 33, 34, 35, 82,
106, 124, 128] and linear elastic interface models [58, 68, 69, 80, 92].

In particular, Cohesive Zone Models (CZM) assume different hypothe-
ses to those adopted in LEFM avoiding the presence of stress singularity at
the crack tip. During the sixties the cohesive zone like models were used to
simulate two different behaviors: brittle fracture [12] and ductile fracture
[55]. In CZM a tension softening in front of the traction-free crack tip is
assumed, in the so-called fracture process zone. In the simplest, most usual
formulation of the CZM, all the body volume remains elastic, and linear
elasticity may be used to solve the response of the media surrounding the
crack. The nonlinearity is included in the boundary conditions along the
crack line [6, 15]. The CZM has been widely used to model the behavior
of quasi brittle materials, especially concrete-like materials [34, 35, 36], by
means of the Finite Element Method (FEM). Needleman used the CZM
to study the decohesion along a fibre-matrix interface [124], introducing an
exponential law that is extensively used nowadays. Ortiz and co-workers
[32, 128] also presented works regarding CZM. More recently, Maier in-
troduced the CZM into a Symmetric Galerkin Boundary Element Method
(SGBEM) code, by means of the linear complementary problem concept.
The CZM has also been used to study the delamination problem in compos-
ite materials [33]. Although, in its beginnings the CZM was used to study
the behavior of concrete-like materials, its recent use in composites open a
wide range of research topics at different scales. Thus, as mentioned before,
at the micromechanical scale the behavior of fibre-matrix interfaces can
be studied, at the meso scale the delamination among composite laminas
can be modeled and, finally, at the macro scale the behavior of adhesively
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bonded joints can be analyzed.

A different way to describe the behavior of (adhesively) bonded solids
is to model an (adhesive) elastic layer, sometimes called interphase, as a
continuous distribution of linear elastic springs with appropriate stiffness
parameters. The introduction of this model is attributed to Goland and
Reissner [69], and is called Linear Elastic Interface, Weak Interface or Im-
perfect Interface [58]. Klarbring [92] and Geymonat et al. [68], assuming
small thickness and small stiffness of the elastic layer, developed asymp-
totic expansion methods to obtain a simplified model (linear elastic interface
model) in which the elastic layer is treated as a material surface, disappear-
ing from a geometrical point of view but being represented by its energy
of adhesion. A comprehensive review of pioneering works in this kind of
interface models is given in [68]. Benveniste and Miloh [16] and Hashin [80]
developed novel approaches for the deduction of general constitutive laws
for imperfect interfaces, not requiring small stiffness of the elastic layer in
comparison with the adjacent solids.

An in-depth analysis of a crack within a linear elastic interface between
two isotropic half planes subjected to remote uniform stresses was presented
by Lenci [102]. Lenci obtained the integral equation that governs this prob-
lem and solved it numerically using classical solutions for elastic isotropic
half-planes subjected to a point force as Green functions. Lenci also com-
puted the ERR rate of a crack as the stored energy in the unbroken spring
situated at the crack tip. This fact was also independently shown later by
Carpinteri et al. [37].

With reference to this model, similar approaches by means of Finite Ele-
ment Method (FEM) were developed. Particularly worthy of mention is the
numerical implementation of imperfect interfaces developed and discussed
by Nairn [122]. More recently, Lebon and Zaittouni [97] have modeled a
soft thin elastic layer under unilateral contact and dry friction conditions,
using asymptotic expansions.

1.3 Boundary Element Method. Background

Although the application of Boundary Integral Equations (BIEs) to the so-
lution of problems governed by partial differential equations was developed
long time ago, it is widely accepted that the Boundary Element Method
(BEM), as an approach to the numerical solution of the BIEs, applied to
the elastic problem in its direct formulation, starts with the fundamental
contribution of Rizzo and Cruse [144]. The BEM acquired a bigger rele-



1.3 Boundary Element Method. Background 5

vance in the 1970s and 1980s, in engineering, as an alternative to the Finite
Element Method (FEM).

The principal advantage of BEM against FEM is that the geometry dis-
cretization is substantially easier, as only the boundaries are meshed. This
fact makes BEM specially interesting to study fracture mechanics prob-
lems. Less data preparation time is usually needed. Also, a high accuracy
of stresses computed by BEM is advantageous for engineering applications.
Nevertheless it has some drawbacks, in its traditional formulation, as it is
limited to a less number of applications and that the non-symmetric matri-
ces generated are fully populated for single domain problems.

There are two basic procedures that are generally used to reduce the
continuous boundary integral equations to a finite system. The simpler
procedure is collocation, wherein the fulfilment of the boundary integral
equations is explicitly enforced at a finite set of points. In its simplest
form, these collocation points are chosen to be the nodes used to discretize
the boundary [5, 10, 39, 120, 131] and the final matrix obtained is non-
symmetrical. The advantages of the traditional collocational approach in-
clude a simpler formulation and implementation, reliable results guaranteed
by a large experience in the solution of engineering problems. Among its
drawbacks, it is noticeable that it is insufficient to solve fracture mechanics
problems efficiently. In order to solve this problem several modifications of
the collocational approach have been proposed.

In contrast to collocation, the Galerkin approach does not require that
the integral equations are satisfied at any point. Instead the equations are
enforced in a weighted average sense. The symmetric-Galerkin formulation
was introduced by Sirtori [159] and studied by Hartmann et al. [78], and
then extensively developed by Maier and co-workers [95, 107, 109, 160]. Ex-
cellent reviews of SGBEM can be found in [27, 95, 161]. Recent applications
of SGBEM to the solution of domain decomposition problems by enforcing
coupling conditions in a weak form can be found in [172].

In general, Galerkin is more accurate than collocation, and also provides
a more elegant treatment of boundary corners [161]. A symmetric linear
system with positive and negative defined blocks in the diagonal allows an
efficient solution in terms of time and memory computing. The problem of
extra unknowns, that sometimes is presented in the collocational approach,
disappears. An easy and efficient treatment of cracks is obtained. The as-
sociated unknown, in the BIEs used to discretize the crack, is the jump of
displacements between the crack faces inside an homogeneous material. Its
main drawback is the more complex theoretical formulation and implemen-
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tation due to the double integration needed and the use of the hypersingular
boundary integral equation (HBIE).

1.4 Objectives of the thesis

The Grupo de Elasticidad y Resistencia de Materiales started to study frac-
ture problems in composite materials and to develop suitable BEM tools at
the beginning of 1990s. Thus, at the beginning of this thesis a well based
knowledge of different composite material problems was already established
in the research group. The aim of the present thesis is the study and devel-
opment of non-singular fracture mechanics models and their implementation
in BEM codes, applied to some particular problems of damage and failure
in composites. The long term objective of this research is to contribute
to the generation of physically based failure criteria at a macro, meso and
micro scale for composite materials.

The tasks carried out to contribute to fulfill these general objectives are
described in the following.

Development of theoretical formulation and codes implementation:

∙ Cohesive Zone Model, to study the crack onset and growth inside
homogeneous materials and at interfaces, including:

– Suitable implementation of a cohesive zone model into a 2D Sym-
metric Galerkin BEM code for the analysis of plane problems.

– The development and use of arc-length algorithms, to solve non-
linear problems in presence of Cohesive Zone Models, with sev-
eral variants.

∙ Linear Elastic-Brittle Interface Model, to study the crack onset and
growth at interfaces, requiring:

– Suitable implementation of linear elastic-brittle model into the
collocational BEM code for the analysis of plane and axisymmet-
ric problems, that allows the use of non-conforming meshes and
contact zones.

– The development and use of a sequentially linear solving algo-
rithm.

– A computing time improvement by the use of an efficient linear
solver in the collocational BEM code.
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∙ Application of BEM to the solution of 3D problems of composite ma-
terials, involving:

– The development of general and efficient expressions of the fun-
damental solutions and its derivatives for transversely isotropic
materials.

– Implementation of the fundamental solutions and its derivatives
in a collocational 3D BEM code.

Study of relevant particular cases of damage mechanisms, in form of
cracks onset and growth, in composite materials at macro, meso and micro
scale by means of the Linear Elastic-Brittle Interface Model introduced.

∙ Analysis of a crack in a thin adhesive layer in a DCB specimen (macro
scale).

∙ Delamination cracks in [0/90] symmetric laminates (meso scale).

∙ The single fibre fragmentation test (micro scale).

∙ Micro-mechanical behavior of cracks between matrix and fibre under
transversal loads (micro scale).

1.5 Organization of the thesis

The present thesis is organized in 14 Chapters. Leaving aside the present
introduction and the last chapter of conclusions and future developments,
it can be divided in three parts:

Part 1: Revision of different damage and failure mechanisms:
A brief introduction and bibliographic review of some damage and fail-
ure mechanisms of composite materials and their joints are presented in
Chapter 2.

Part 2: Development of models and numerical tools: Chapter 3
to Chapter 9 and the Appendix A are included in this part. Chapters 3
and 4 introduce the non-singular fracture mechanics models that will be
used to study the particular problems detailed in Chapter 2. Thus, some
of the principal cohesive models are described in Chapter 3, including some
slight modification of one of them. The new linear elastic-brittle interface
formulation is introduced and explained in Chapter 4. The BEM has proved
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to be an efficient tool to study fracture problems, thus the Boundary Integral
Equations as well as the BEM and its two main approaches are described in
Chapter 5. In Chapter 6 the implementation of an efficient linear solver in
BEM codes are discussed. Also non-linear solving algorithms, in particular
a sequentially linear analysis and an arc-length algorithm are described in
this chapter. This algorithms are necessary due to nonlinearities introduced
by the non-singular fracture mechanics models employed. The formulation
and implementation of a cohesive zone model in the 2D SGBEM code is
presented in Chapter 7, along with some numerical results for the validation
of the present SGBEM implementation. In Chapter 8, the implementation
of the linear elastic-brittle interface formulation in the collocational BEM
code is described and verified, using an analytic and numerical study of
cracks in an adhesive layer between orthotropic materials modeled by means
of the linear elastic-brittle interface formulation. Finally, in Chapter 9 the
formulation and implementation of transversely isotropic materials in 3D
BEM is shown, presenting some numerical examples in order to validate
the fundamental solutions developed and their implementation.

Part 3: Study cases of damage and failure in composite materials
at micro, meso and macro scale: In this part, particular problems
related to damage and failure of composite materials are studied by means
of the linear elastic-brittle interface formulation implemented in the 2D and
axisymmetric collocational BEM code. The interlaminar fracture toughness
test of composite materials is modeled in Chapter 10, where a comparison of
experimental data with some numerical results is also presented. An initial
study of delamination cracks in [0/90] symmetric laminates is presented
in Chapter 11. Some numerical results for the single fibre fragmentation
test are presented in Chapter 12. Finally, the micro-mechanical behavior
of cracks between matrix and fibre under transversal loads is studied in
detail in Chapter 13. First, an isolated fibre embedded in a matrix under
transversal uni-axial tension loads or biaxial transverse loads model (either
tension-tension or tension-compression) is studied. Thus, an initial study
of a fibre cluster embedded in a large matrix (multi-fibres problem) is also
presented.



Chapter 2

Some damage and failure
mechanisms of composite
materials and their joints

In this thesis some of the relevant failure modes in composite materials
are going to be studied. In the present chapter a revision of some damage
and failure mechanisms of composite materials reinforced by long fibres and
their joints (at macro, meso and micro scale) is presented as well as most
important previous contributions are commented.

2.1 Interlaminar Fracture Toughness Test (Macro

scale)

A good understanding and characterization of the adhesive layer behav-
ior is very important in the quality evaluation of adhesively bonded joints,
and particularly in determining the parameters that characterize their re-
sistance to fracture and failure. These parameters can then be used in
the design and quality control of the production processes. The quality of
an adhesive joint between composite laminates is usually evaluated by the
Interlaminar Fracture Toughness Test, where an estimation of the critical
interlaminar fracture energy (GIc) is obtained. The tests used to evaluate
the interlaminar fracture toughness in composite-composite joints are per-
formed by well-known standard procedures [2, 87]. The specimen usually
used is the Double Cantilever Beam (DCB), formed by two laminates joined
by an adhesive layer. This test method can serve to establish quantitatively



10 Chapter 2. Failure mechanisms of composites and their joints

the effect of fibre surface treatment, local variations in fibre volume frac-
tion, and processing and environmental variables on GIc in an adhesively
bonded joint of a particular composite material. A set up of this test in the
laboratory can be seen in Fig. 2.1.

Figure 2.1: Interlaminar fracture toughness test set-up.

The interlaminar fracture toughness test is also used as a prediction
method for delamination growth and to compare the performance of dif-
ferent composite laminates [67]. The test method for mode I delamination
was suggested by Wilkins et. al. [176] using again a double cantilever beam
(DCB) similar to that used for the adhesive joint. A comprehensive review
of several works considering the delamination process and the DCB test can
be found in [67, 164].

Tools of the classical Fracture Mechanics Principles have often been
employed in the analysis of delamination in composites, by means of the
Virtual Crack Closure Technique. However, there are alternatives to Frac-
ture Mechanics, such as damage mechanics and different interfacial models.
The analysis of delaminations depends heavily on computational methods,
particularly finite elements [164]. Recent efficient formulations that more
accurately capture the stress and strain state near the delamination front
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are now available. These numerical tools, coupled with well-designed ex-
periments, should greatly enhance our understanding of the delamination
behavior in composites.

An analysis of this problem by means of the Linear Elastic-Brittle In-
terface Model will be studied in Chapter 10.

2.2 Delamination cracks in [0/90] symmetric lam-
inates (Meso scale)

The characterization of the mechanism of failure of cross ply laminates is
still an open topic. A comprehensive review of state of the art of the present
problem was done by Garg [67]. In particular, several aspects related with
causes of delamination, i.e. free edge effect, impact and transversal cracking,
are discussed in [67].

Particularly, for the damage in a [0/90] laminate, it is generally accepted
that it appears in accordance with the following steps: the application of
tension load generates almost immediately the appearance of transverse
microcracks in the 90∘ ply; the coalescence of these microcracks leads to the
appearance of a transverse macrocrack that can propagate in the 90∘ ply
towards the interface with the 0∘ ply; once reaching the interface, it may
initiate single or double deflection at the ply interface, then propagating
along the interface as a delamination crack. Many relevant contributions to
the understanding of this damage mechanism have recently been reviewed in
an excellent paper by Berthelot [17]. A picture of a cracked [0/90] laminate,
is represented in Fig. 2.2.

Figure 2.2: [0/90] laminate with damage produced by a longitudinal load.
Taken from [24].
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Since this review, several papers have appeared shedding more light on
the understanding of this basic problem. A significant number of papers is
devoted to the numerical modeling of this kind of damage and its connection
with different scales of modeling. The study of the effect of the spatial
distribution of the transverse cracks has also been addressed, as well as
some particular questions regarding the effect of fatigue, the influence of
mixed mode fracture and the effect of residual stresses [130].

Transversal cracking analysis is an important issue because these cracks
reduce the effective stiffness and strength of the laminates. Transversal
cracks induce local stress concentrations at the crack tip and could originate
an important delamination along the interface of the 90∘ ply with 0∘ ply.
Longitudinal cracks of the matrix and rupture of the fibre in the 0∘ ply are
only activated at very high values of load in the case of static loading or for
a high number of cycles in the case of fatigue loading [23].

The presence of transversal cracks in the matrix in the 90∘ ply leads
to a redistribution of the load in the adjacent plies (0∘). That is why,
laminates with 90∘ and 0∘ plies usually have the 0∘ plies in the outer parts
of the laminates. Under static loading most transversal cracks go through
the whole 90∘ ply thickness. For this reason, the reduction of the whole
problem to the stress and strain distribution analysis using a 2D model of
an elemental cell between two consecutive cracks seems to be a reasonable
approximation. This elemental cell is characterized by the distance between
the transversal cracks and the thicknesses of the plies. One of the first 2D
models was developed by Berthelot [17].

In Chapter 11, an initial study regarding this topic is done by means of
the Linear Elastic-Brittle Interface Model introduced herein.

2.3 Single fibre Fragmentation Test (Micro scale)

Single fibre fragmentation test is an experimental technique widely used
to characterize fibre–matrix interface in composite materials. In this test
a small sample containing one sufficiently long fibre embedded in a resin
matrix is loaded in the direction of the fibre. The aim of the test is to obtain,
as a result of the applied load, a series of fibre cracks which split the fibre
into an increasing number of fragments and debonding cracks that appear
at the ends of the fibre cracks and grow along the fibre-matrix interface
(see, e.g., Kelly and Tyson [91] for fundamentals of this test method and
Graciani et al. [72] for an analysis of the different mechanisms of failure
that can be observed in the sample). In the present thesis we will focus on
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the study of the SFFT in a glass-epoxy composite material.

As the fibre presents brittle fracture behavior, and the maximum allow-
able strain is much lower in the fibre than in the matrix, after reaching a
certain value of the applied load the fibre breaks at its weakest location.
After breaking, the axial stress in the fibre decays to zero at the plane of
failure, as depicted in Fig. 2.3(a). After this first failure occurs, a slight
increase on the applied load results in the successive fragmentation of the
fibre, as shown in Fig. 2.3(b). In addition, due to the high amount of energy
released, after the fibre breakage takes place, small debond cracks appear
in the fibre-matrix interface. In the final stage, depicted in Fig. 2.3(c), the
debond cracks grow rapidly and, consequently, axial stress in the fibre is not
high enough to cause the appearance of new fragments and an increase on
the applied load causes only a further debond growth. On the other hand, if
the matrix and the interface are tough enough, the second and third stages
of the test may not take place. In this case, as the fragmentation process
progresses, the amount of fibre which is subjected to high axial stresses di-
minishes, and consequently, saturation is reached when the fragment sizes
are too small to allow that the axial stress in the fibre reaches a value high
enough to cause new fragments in the fibre, as shown in Fig. 2.3(d).

Figure 2.3: SFFT stages: (a) First fibre failure. (b) Fragmentation process.
(c) Debond growth. (d) Saturation without debond growth. Taken from
[71].

There are distinct approaches for characterizing interface failure proper-
ties from the results of the single fibre fragmentation test. Differences arise
in the use of analytical, experimental or numerical techniques for estimating
the stress state in the sample, and also in the use of failure criteria based on
the interface strength or failure criteria based on fracture mechanics [71].

The exact solution of stresses at the interface contains shear singular
stresses in the vicinity of the crack tips when modeled by means of the Lin-
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ear Elastic Interfacial Fracture Mechanics, considering a perfectly bonding
between fibre and matrix ahead of the crack tip. For this reason, the en-
ergy approach is considered more appropriate for the characterization of the
interface failure in presence of singular stress states [170]. This approach
considers that crack propagation would take place when the total energy
released per unit length during the propagation, i.e. the Energy Release
Rate (ERR), equals the work needed to create the new unit crack surfaces.
As the propagation takes place under pure mode II, failure of the interface
is characterized by the interface fracture toughness, which is the critical
value of the mode II ERR (usually denoted as GIIc) [72].

As the problem is axially symmetric, assuming that fragments are long
enough and evenly distributed, the elastic solution in the vicinity of each
fibre break is repetitive and can be obtained from the axi-symmetric analysis
of the piece of sample corresponding to one half of a fragment.

This problem is solved by means of the axisymmetric BEM code and
the Linear Elastic-Brittle Interface Model as will be detailed in Chapter 12.

2.4 Fibre matrix debonding under transversal loads

(Micro scale)

Composite unidirectional laminates usually exhibit a failure mechanism
called matrix failure or interfibre failure when they are subjected to loads
transverse to the fibres. This failure mechanism is characterized by the
debonding of some fibres when the tension loads are driving the failure pro-
cess. The connection between the initial debonds and the final macro crack
has several steps: the onset and growth of the debonds (as fibre-matrix in-
terface cracks), the kinking of some of these cracks into the matrix and the
final coalescence of the cracks kinked from different fibre-matrix interfaces,
see París et al. [132], Correa et al. [47, 46] and Mantič et al. [113]. Fig. 2.4
represents a micrograph of the damage observed in a part of the composite.

The problem of an elastic circular (in 2D) or cylindrical (in 3D) inclu-
sion embedded in an elastic matrix with a partial debond at their interface
(modeled as an interface crack) subjected to a remote uniaxial load at in-
finity has been intensively studied in the past. A theoretical basis for any
analysis of this problem was established by the seminal work of Toya [169],
where the perfect fibre-matrix interface model and the open model of inter-
face cracks were assumed. Toya deduced analytical expressions for stresses,
displacements and the total Energy Release Rate (ERR) as a function of
the debond angle and applied the latter in a fracture criterion to assess the
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Figure 2.4: Damage in a composite material under tension transverse to the
fibres. Taken from [46].

debond growth along the fibre-matrix interface.

Zhang et al. [184] presented experimental results for transverse single-
fibre specimens, and Varna et al. [170] studied the debond growth along the
fibre-matrix interface modifying Toya’s [169] ERR based fracture criterion
in order to take into account an increasing participation of the shear frac-
ture mode when the debond grows. París et al. [134] and Varna et al. [171]
compared different aspects of Toya’s [169] solution and the elastic solu-
tion obtained by the collocational Boundary Element Method (BEM) [5,
10, 39, 120, 131] using a contact algorithm [25]. Recently, Mantič [112]
applied Toya’s solutions for stresses and ERR to characterize the debond
onset by means of a coupled stress and energy criterion. A study of ma-
trix crack growth across clusters of circular inclusions was presented by
Williams et al. [177] and Roberts et al. [146] using a Symmetric Galerkin
BEM code [161].

With reference to fibres embedded in a matrix, many works considered
that the condition of perfect bonding at the undamaged fibre-matrix inter-
face is often inadequate in describing the physical nature and mechanical
behavior of this interface. See Gao [66] and Hashin [80] for a review of
related works modeling the fibre-matrix interface as an elastic layer with
vanishing thickness. Hashin [79] and Gao [66] obtained closed-form solu-
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tions of a circular inclusion problem, assuming an undamaged linear-elastic
interface, under remote uniform shear and tension, respectively. Recently,
Wang et al. [174] obtained a solution for an elliptical inclusion under remote
tension, generalizing the solution obtained in [66]. Another generalization
of the solution for a circular inclusion introduced in [66] was presented by
Bigoni et al. [18] considering a general remote load. According to [18, 66],
the stresses are homogeneous inside the circular inclusion, with an undam-
aged linear-elastic interface under remote loads when the stiffnesses of the
continuous spring distribution in radial and tangential directions are equal.
A study of the interaction of a matrix crack and a circular inclusion with an
undamaged linear-elastic interface was also introduced in [18]. An efficient
numerical approach to solve the problem of an infinite isotropic elastic plane
containing a large number of randomly distributed circular elastic inclusions
with imperfect interfaces was introduced by Mogilevskaya and Crouch [119].
They used a Galerkin method to solve a complex hypersingular integral
equation with the unknown tractions and displacement discontinuities at
each circular boundary approximated by truncated complex Fourier series.

Some other works made use of the well known cohesive models to repre-
sent the behavior of the inclusion-matrix interface. Needleman [124] devel-
oped a cohesive model to study the debonding of a spherical inclusion using
FEM. Han et al. [76] used a softening decohesion model to describe the evo-
lution of interfacial failure in fibre-reinforced materials. Xie and Levy [182]
studied a circular inclusion embedded in an unbounded matrix subjected
to different remote load configurations, using the cohesive law introduced
by Needleman. The role of the fibre size on the instability phenomena
(e.g. snap-back) in fibrous metal matrix composites was studied by Carpin-
teri et al. [38], by means of a cohesive model, describing both decohesion
and contact at bi-material interfaces. The influence of different parameters
of the PPR (Park-Paulino-Roesler) potential-based cohesive model on the
macroscopic behaviour of a composite with cylindrical inclusions, account-
ing for inclusion-matrix debonding, was recently studied by Ngo et al. [125],
where also an approach for the determination of the cohesive model param-
eters from a real macroscopic behaviour of a composite was introduced.

An analysis of crack onset and propagation in this problem by means of
the Linear Elastic-Brittle Interface Model will be presented en Chapter 13.



Chapter 3

Cohesive Zone Models

The majority of methods used to simulate crack propagation, based on
the classical Linear Elastic Fracture Mechanics (LEFM), made difficult the
study of crack initiation occurring in the first step of fracture process, since
they assume the presence of a crack. Recently, other models have been
intensively developed, like energetically based delamination model [93, 147]
or cohesive crack models [32, 33, 34, 35, 82, 106, 124]. In particular, cohe-
sive crack models assume hypotheses different to those adopted in LEFM
avoiding the presence of stress singularity at the crack tip. These models
are suitable to study both the crack initiation and crack propagation.

3.1 Review of some holonomic cohesive models

In a number of engineering situations, especially when the main external
actions vary with a monotonically increasing load factor, irreversible behav-
iors such as local unloading in damaged zones can a priori be assumed to
play a minor role in the overall structural response. In such cases non-linear
material behaviors which actually are irreversible (i.e. history-dependent,
nonholonomic) may be interpreted as reversible i.e. holonomic [152].

Cohesive Zone Models (CZM) combine the Fracture Mechanics formula-
tion with Strength of Materials for both crack initiation and propagation. In
a cohesive zone formulation, displacement discontinuities across the crack,
�i (i = 1, 2, 3), are related to the traction vector, ti, in a zone located ahead
of the actual crack tip [32, 40, 128], see Fig. 3.1. A physically justified
constitutive law is required for modeling the behavior of the material in the
process zone.

The constitutive law of a holonomic CZM may be formally written
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Figure 3.1: Cohesive crack model in mode I with the boundary conditions
along the central line: zero stress along the broken part, softening law
along the cohesive zone and zero relative displacements along the uncracked
ligament.

as t = t(�). This relation is in its essence a non-linear and non-invertible
relation. This law is called holonomic, as it may work only when exter-
nal loads are monotonically increasing and no secondary effects (friction,
among others) may cause local unloadings. A fundamental aspect in the
formulation of the constitutive model is the requirement that the energy
dissipated during crack propagation must be equal to the fracture energy,
i.e., the following relation must be satisfied:

Gc =

3∑

i=1

∫ �fi

0
tid�i (3.1)

where �fi is the "final" value (not necessarily finite) of the relative displace-
ment leading to the vanishing of cohesive forces.

Some of the most important cohesive zone models, in their holonomic
form, are briefly described in the following. Nevertheless, it is important
to notice that all these models can be generalized to a non-holonomic form
considering a suitable unloading-reloading path.
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Hillerborg´s model

It appears that Hillerborg and coworkers [82] were the first proposing ex-
plicit relations between cohesive tractions and relative displacements with
a softening branch. These relations are very simple, including relations
with an initial plateau, see Fig. 3.2(a) and Fig. 3.2(b). A linear softening
monotonic curve is assumed for pure fracture mode I.

(a) (b)

(c)

Figure 3.2: Examples of possible assumptions of variation of normal stress
t1 with crack opening �1 as assumed by Hillerborg et. al. [82].

At �1 = 0 the maximum normal traction t1 equals the tensile strength,
�c. The cohesive traction vanishes at �1 = �c, the critical opening dis-
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placement in mode I. As discussed in [82], it seems that for many materials
the best choice, among the laws presented therein, is the law depicted in
Fig. 3.2(c). The linear softening curve of this law is described by the rela-
tions:

t1 = �c

(
1− �1

�1c

)
(3.2)

�1c = 2
GIc
�c

(3.3)

This cohesive law requires two material parameters, �c and GIc for in-
stance. Neither damage nor unloading-reloading are considered. It is no-
ticeable that the value of the fracture toughness in mode I, GIc, is usually
the most used parameter to characterize a cohesive zone model. Modifi-
cations of this linear model which includes mixed mode propagation have
been developed in the last years [33, 50, 56].

Bilinear softening model

This model is a generalization of the linear model described previously, see
Fig. 3.2(c). The bilinear softening branch with break point has been found
to approximate accurately mode I experimental results concerning concrete-
like materials and seems to be advocated by several researchers in the field,
see [56, 138] and references therein.

Figure 3.3: General bilinear softening cohesive function.

The dependence of t1 on �1 is defined by four material parameters.
These are, e.g. the tensile strength �c, the coordinates of the “break point”
and the critical opening displacement �c, see Fig. 3.3, above which full
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traction-free separation of the crack faces appears. Instead of this last
parameter, the fracture energy GIc can be taken. An alternative choice of
material parameters, in order to express the bilinear law in terms of a linear
complementarity problems, is presented in [152].

This law has also been used to study problems involving composite ma-
terials and mixed mode propagation [50].

Xu-Needleman model

The relation between tractions and relative displacements in this model
arises from an expression of free energy density per unit deformed area [183].
This idea was initially based on a study of void nucleation appearing at
atomic level.

Figure 3.4: Normal tractions across the cohesive surface as a function of �1
with �2 = 0 in Xu-Needleman CZM [183].

The final expressions of this cohesive law, see Fig. 3.4 and Fig. 3.5, take
the form for normal tractions:

t1 = e�ce
−

�1
�1c

{
�1
�1c

e
−

�22
�2
2c +

1− q

r − 1

[
1− e

−
�22
�2
2c

][
r − �1

�1c

]}
(3.4)

and for tangential tractions:

t2 = e�c

(
2�2�1c
�22c

){
q +

(
r − q

r − 1

)
�1
�1c

}
e
−

�1
�1c e

−
�22
�2
2c (3.5)

where, e ≃ 2.718 is the base of the natural logarithm, �c is the maximum
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Figure 3.5: Shear tractions across the cohesive surface as a function of �2
with �1 = 0 in Xu-Needleman CZM [183].

cohesive normal traction in mode I, �c is the maximum cohesive tangential
traction in mode II, �1c is a characteristic normal opening displacement in
correspondence with the value �c, �2c is a characteristic tangential displace-
ment in correspondence with the value �c, �c is reached when ∣�2∣ =

√
2�2c/2.

The parameters q and r are defined as:

q =

√
1

2e

�c�2c
�c�1c

and r =
�∗1
�1c

where �∗1 is the normal opening displacement in correspondences with the
complete shear sliding with t1 = 0 (a sort of “measure of dilatancy").

It appears that this model served as a motivation to Ortiz and coworkers
[32, 128] to develop another somewhat simpler CZM. In fact, the solution
for mode I, described by (3.4), coincides with the corresponding expression
obtained in the model due to Ortiz and Pandolfi [128] in the positive nor-
mal traction part. The Ortiz and Pandolfi model will be described in the
following in more details because it is the one that has been implemented
in the present thesis.

3.2 Ortiz-Pandolfi model

The Ortiz-Pandolfi model [128] has been implemented and used in the
present thesis. The reason for this choice was the simplicity of this model,
with only a few parameters. In fact only two parameters associated to
mode I and one parameter characterizing sensitivity to a fracture mode
mixity are required to be defined. This fact makes easy to adjust the values
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of the model parameters. It should be mentioned that, a small modification
of the Ortiz-Pandolfi model has been introduced for mode I in the present
thesis to cover in a reasonable way the compressive behavior ahead of the
crack tip.

The relation between tractions and relative displacements in the cohesive
zone proposed in [32, 128] requires the definition of the effective opening
displacement �:

� =
√
�21 + ��22 . (3.6)

Different weights are assigned to the normal opening displacement (�1) and
sliding (tangential) displacement (�2) through the parameter �. Following
[32, 128], the existence of a free energy density per unit undeformed area,
�, is postulated. In isothermal conditions, under the assumption of an
isotropic material, it has the form:

� = �(�, q ), (3.7)

where q is a suitable collection of internal variables which describe the
elastic processes participating in the decohesion process. From the first and
second laws of thermodynamics, it is possible to show that the cohesive law
takes the form:

t = grad�[�]. (3.8)

Finally, the evolution of internal variables is governed by a set of kinetics
relations of the general form:

q̇ = f(�, q), (3.9)

if it is assumed that the free energy � depends on � only through the effective
opening displacement. This implies that:

t = grad�[�] =
∂�

∂�

∂�

∂�1
n1 +

∂�

∂�

∂�

∂�2
n2 =

∂�

∂�

(
�1
�
n1 + �2

�2
�
n2

)
, (3.10)

where ni is the unit vector in the i-direction (i = 1 normal and i = 2
tangential). If no unloading is considered, (∂�/∂�) may be taken to be
independent of q . In such a case a simple expression for the potential � is
furnished by the Smith and Ferrante universal binding law [128]:

�(�) = e�c�c

[
1−

(
1 +

�

�c

)
e−

�
�c

]
, (3.11)
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where e ≈ 2.718 is the base of the natural logarithm, �c is the maximum
cohesive normal traction and �c is a characteristic opening displacement.
From (3.11) it is easy to get:

∂�

∂�
(�) = t = e�c

�

�c
e−

�
�c , (3.12)

where t = ∣t ∣ is the modulus of the traction vector. It is interesting to
specify the final expression of the cohesive law, obtained combining (3.12)
and (3.10):

t1 = e�c
�1
�c
e−

�
�c , t2 = �2e�c

�2
�c
e−

�
�c . (3.13)

The normal traction, t1, as funtion of �1 is shown in Figure 3.6, while
the shear traction, t2, as funtion of �2 is shown in Fig. 3.7.

For computer implementation purposes it is also important to calculate
the values of tangential stiffnesses kij that appear in the following relation,
obtained from (3.13):

ṫi = kij �̇j (3.14)

where ṫi and �̇j are rates of the tractions and displacements.By differentiat-
ing expressions in (3.13) the following expressions for kij can be obtained:

k11 =
�c(��c − �21)e

(

1− �
�c

)

��2c
, (3.15)

k12 = k21 =
�2�c�1�2e

(

1− �
�c

)

��2c
, (3.16)

k22 =
�2�c(��c − �2�22)e

(

1− �
�c

)

��2c
. (3.17)

Notice that the matrix kij is symmetric, thus the cohesive law has some
symmetry implications when it is written in its rate form.

Nevertheless, the compressive behavior in mode I obtained by using
(3.13), see Fig. 3.6, is not satisfactory from a physical point of view. An
expected and physically more reasonable behavior was obtained for example
in Xu-Needleman’s approach presented previously, see Fig. 3.4. Thus, a
modification of the Ortiz-Pandolfi CZM for fracture mode I problems is
proposed in what follows. The final expression of the normal cohesive law
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Figure 3.6: Normal traction across the cohesive surface as a function of �1
with �2 = 0 according to (3.13) in the Ortiz-Pandolfi CZM.

Figure 3.7: Shear traction across the cohesive surface as a function of �2
with �1 = 0 and � = 0.707 according to (3.13) in the Ortiz-Pandolfi CZM.

is:

t1 = e�c
�1
�c
e−

�
�c

Sign[�1], (3.18)

where Sign[ ] is the signum function. By using (3.18) an expected mode I
behavior can be obtained.

In Fig. 3.8 the mode I behavior obtained with the original Ortiz-Pandolfi
law and the behavior obtained with the modified law proposed herein is
presented.

The k11 term for the modified Ortiz-Pandolfi cohesive model takes the
form:
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k11 =
�c(��c − Sign[�1]�

2
1)e

(

1−Sign[�1]
�
�c

)

��2c
. (3.19)

Figure 3.8: Normal traction across the cohesive surface as a function of �1
with �2 = 0 using the equation (3.13), dashed line (original Ortiz-Pandolfi
CZM), and using (3.18), continuous line (modified Ortiz-Pandolfi CZM).



Chapter 4

Weak interface. A Linear
Elastic-Brittle Interface Model

In many practical situations, the behavior of adhesive joints can be de-
scribed by modeling the thin adhesive layer as a continuous distribution of
linear elastic springs [58] with appropriate stiffness parameters. This model
of adhesive layer is usually called weak interface, imperfect interface or elas-
tic interface [16, 68, 80, 102]. In the present thesis a linear elastic-brittle
constitutive law is adopted for the springs representing the weak interface
in order to allow an easy modeling of crack propagation along the interface.

In this chapter, firstly, some details of the linear elastic-brittle model
are shown and, secondly, a new interface failure criterion is introduced.

4.1 Constitutive law of the spring distribution

A linear elastic interface is considered as a simple and useful model of a
thin linear elastic (adhesive) layer between two surfaces. The undamaged
layer (considered as a linear elastic solid of Young’s modulus Eℓ, Poisson
ratio �ℓ, shear modulus �ℓ, Lame’s parameter �ℓ, length L, width w and a
small thickness ℎ) can be modeled by a continuous spring distribution.

It is useful to clarify relations between the isotropic elastic layer pa-
rameters (Eℓ, �ℓ, �ℓ, �ℓ), its thickness (ℎ) and the stiffness parameters of
the spring constitutive law written in terms of a normal stress-displacement
law, � − �n, and a tangential stress-displacement law, � − �t.

Consider an isolated portion of the adhesive layer, given by a prismatic
block of section L×w and height ℎ, subjected to either uniform normal or
shear stresses, � = �11 and � = �12 respectively, see Figure 4.1. � and �
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(a) (b)

Figure 4.1: Portion of a linear elastic layer under (a) normal stress, (b)
tangential stress.

can be related to normal and tangential strains as:

�11 = Eℓ"11 where "11 =
�n
ℎ
, (4.1)

�12 = �ℓ2"12 where 2"12 =
�t
ℎ
, (4.2)

where �n and �t represent relative normal and tangential displacements
between the top and bottom surfaces of the elastic layer.

Then, using (4.1), the following form of the normal stress-displacement
constitutive law is easily obtained:

� = kn�n, where kn =
Eℓ
ℎ
, (4.3)

and, in a similar manner, the use of (4.2) yields the tangential stress-
displacement law:

� = kt�t, where kt =
�ℓ
ℎ
. (4.4)

It has been assumed in the above considerations for normal compression
or tension in direction 1, that the adhesive layer is free to expand or contract
due to Poisson effect in directions 2 and 3. Nevertheless, if an adhesive layer
is placed between two elastic solids, and assuming relatively small thickness
and stiffness of the elastic layer with respect to the adjacent two elastic
solids, the mechanical behavior of the layer changes. Thus, the boundary
conditions that appear at the extremes of the arbitrary length, L, can be
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(a)

(b)

Figure 4.2: (a) Portion of an adhesive layer, (b) 2D layer modeled as a
continuous spring distribution. Constraints indicated are considered for
normal stresses only.

extended to any position (as indicated in Figure 4.2) due to a null expansion
in directions 2 and 3 being assumed in a thin layer between finite solids, i.e.,
u2 = u3 = 0, yielding "22 = "33 = 0. Then, using constitutive equations
of linear elasticity and applying conditions "22 = "33 = 0, the following
relation for stress and strain normal to the interface is obtained:

�11 = (2�ℓ + �ℓ)"11 =
E′
ℓ

(1− � ′2ℓ )
"11, (4.5)

where E′
ℓ = Eℓ/(1 − �2ℓ ) and � ′ℓ = �ℓ/(1 − �ℓ). Taking into account that

� = kn�n and "11 = �n/ℎ, the value of kn can be expressed as:

kn =
2�ℓ + �ℓ

ℎ
=

E′
ℓ

ℎ(1− � ′2ℓ )
=

Eℓ(1− �ℓ)

(1 + �ℓ)(1− 2�ℓ)
, (4.6)

while the value of kt is the same as in (4.4), as no Poisson effect is associated
to shear stresses.



30 Chapter 4. Weak interface. A Linear Elastic-Brittle Interface Model

Then from (4.4) and (4.6) the relation kn/kt becomes:

kn
kt

=
2�ℓ + �ℓ

�ℓ
=

2

1− � ′ℓ
=

2(1 − �ℓ)

1− 2�ℓ
(4.7)

which implies 2 ≤ kn/kt <∞. Sometimes it is useful to consider the inverse
ratio:

kt
kn

=
1− 2�ℓ
2(1− �ℓ)

(4.8)

where 0 ≤ kt/kn < 0.5, see Fig. 4.3.

Figure 4.3: Relation between kt/kn and �ℓ.

It is noteworthy that considering very thin adhesive layers with vanish-
ing thickness, ℎ → 0, a constant value of kn implies, see (4.6) and (4.4),
vanishing values of the adhesive Young’s modulus, Eℓ → 0, whereas con-
stant values of Eℓ imply increasing values of kn, kn → ∞.

A similar analysis for kn and kt was presented in [79] for fibre coated
composites and in [53] for adhesive lap joints. The above described behavior
was also proved mathematically by asymptotic analyses in [16, 80].

If an orthotropic adhesive layer is considered, the ratio kt/kn would not
have the above mentioned restrictions.

4.2 Interface failure criterion

The linear elastic interface model implies the absence of stress singularities
at the crack tip. In the present work, damage and/or rupture of a portion
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of this layer is modeled as an abrupt decrease (jump) of stresses in this
portion of the layer, subsequently leading to a free separation/sliding of
both surfaces when a point on the fracture locus (in (�, �) plane, as will be
shown later) is achieved in the portion of the layer. The threshold normal
and shear stresses (�c and �c) depend on the fracture mode mixity, which
can be characterized by different fracture mode mixity angles:  G energy
based angle,  � stress angle and  u relative displacement angle, which will
be defined in this section.

The continuous spring distribution that models the adhesive layer is
governed by the following simple linear elastic-brittle law written at an
interface point x, shown also in Figure 4.4:

L-E
interface

{
�(x) = kn�n(x)
�(x) = kt�t(x)

�n(x) ≤ �nc( G(x)) and
∣�t(x)∣ ≤ �tc( G(x))

Broken
interface

⎧
⎨
⎩

�(x) =

〈
0 �n(x) > 0
kn�n(x) �n(x) ≤ 0

�(x) = 0
(4.9)

where �(x) and �(x) are, respectively, the normal and tangential stresses in
the elastic layer, �n(x) and �t(x) are, respectively, the normal and tangential
relative displacements between opposite interface points. �n(x) and �t(x)
are sometimes referred to as the value of the opening and sliding between
the interface sides. kn and kt denote the normal and tangential stiffnesses
of the spring distribution.

Notice that all the critical variables �c( G), �nc( G), �c( G) and �tc( G)
are functions of the fracture mode mixity angle  G (which will be defined in
the following) at an interface point. Thus, different values of these critical
variables may be obtained at different interface points. We can thus define
that the “spring” at a point breaks when either �n or �t reaches its critical
value, �nc( G) or �tc( G). At this moment the tangential stiffness are set
to zero at this point and subsequently �( G(x)) is set to zero as well.

Regarding the normal linear elastic-brittle law once a portion of inter-
face is broken, a negative normal displacement, �n < 0, can be allowed
leading to an interface overlapping, or it can be restricted by using an elas-
tic friction-less contact condition, see (4.4) and Fig. 4.4(c). The use of
an elastic friction-less contact is based on the idea that once the assumed
interface layer is broken some portions of this layer remains on the interface
surfaces. Thus, when these surfaces enter in contact, it seems reasonable
that the portions of the layer could compress with the same stiffness in
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Linear Elastic-Brittle Interface

(a) �n(x) ≤ �nc( G) (b) ∣�t(x)∣ ≤ �tc( G)

Broken Interface

(c) (d)

Figure 4.4: (a) Normal and (b) tangential linear elastic-brittle law in the
undamaged interface, and (c) normal and (b) tangential linear elastic-brittle
law in the broken interface.

normal direction as it had before breaking.

The present linear elastic-brittle model of an interphase layer represents
a simple approximation of a real behavior of the layer. Some materials, for
example, present a softening branch which may affect the energy dissipa-
tion. Nevertheless, as the experience shows with other non-singular fracture
mechanics models as cohesive zone models, the (critical) fracture energy is
the most important parameter in this kind of model. In fact, using differ-
ent cohesive zone models but keeping constant the value of fracture energy



4.2 Interface failure criterion 33

frequently leads to similar results. Thus, even if a layer material behavior
presents a small softening branch, an acceptable result for the global be-
havior of a structure can be expected using the linear elastic-brittle model,
provided that the actual fracture energy is employed and the zone in which
a non-linear behavior is obtained is relatively small.

The interface failure criterion, proposed here, is based on the Energy
Release Rate (ERR) concept. The ERR in a linear interface model is defined
as the stored elastic strain energy per unit length in the unbroken “crack-tip
interface spring” (infinitesimal interface segment situated at the crack tip)
as shown in [102] and recently independently also in [37]. Thus, the ERR
of a mixed mode crack in a linear elastic interface is defined as:

G = GI +GII =
��n
2

+
��t
2
, (4.10)

It can also be defined in terms of crack tip stresses � and � or relative
displacements �n and �t

G =
�2

2kn
+
�2

2kt
=
�2nkn
2

+
�2t kt
2
, (4.11)

The definition GI = ��n/2 is only valid for � ≥ 0 (and �n ≥ 0), whereas for
� < 0 (and �n < 0) GI is considered to be zero.

As will be shown, the fracture mode mixity angle can be defined in three
ways. First, let us rewrite equation (4.10) as follows:

G = GI +GII = GI(1 + tan2  G), (4.12)

where

tan2  G =
GII
GI

. (4.13)

According to the definition of GI , for � ≤ 0 (and �n ≤ 0) this yields G = GII
and  G = 90∘. This definition of  G in (4.13) coincides with the definition
of the energy based fracture mode mixity angle  G in classical interfacial
fracture mechanics [117].

Expression (4.12) can also be written as:

G = GI +GII = GI(1 +
kn
kt

tan2  �) = GI(1 +
kt
kn

tan2  u), (4.14)

where

tan � =
�

�
and tan u =

�t
�n
. (4.15)
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It can be shown that for � ≥ 0,

tan � =

√
kt
kn

tan G, and tan u =

√
kn
kt

tan G. (4.16)

The angle  G defines the ERR based fracture mode mixity, and the angles
 � and  u the stress and relative displacement based fracture mode mixities
respectively. Thus  G = 0∘ ⇒  � =  u = 0∘ defines a pure fracture mode
I (opening mode) and  G = 90∘ ⇒  � =  u = 90∘ defines a pure fracture
mode II (shear mode).

Figure 4.5: Relation between fracture mode mixity angles  �,  u and  G
in the linear elastic constitutive law for different ratios of kn/kt.

The relation between  G,  � and  u for different values of the ratio
kn/kt can be observed in Figure 4.5.

It is assumed that a crack propagates when the ERR, G, reaches the
fracture energy Gc, that is:

G = Gc, (4.17)

A strong dependence on the mode mixity of Gc has been observed in ex-
tensive experiments by Evans et. al. [59] and Banks-Sills and Askhenazi [11]
among others. Thus,  G ( � and  u) are important parameters governing
the interface crack growth. From several phenomenological laws for Gc sug-
gested in the past [85], the following family of expressions of the fracture
energy (representing the fracture toughness) is considered to be representa-
tive of a large number of bimaterial systems:
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Gc = GIc[1 + tan2((1− �) G)], (4.18)

where

GIc =
�̄c�̄nc
2

=
�̄2c
2kn

=
kn�̄

2
nc

2
(4.19)

corresponds to fracture energy in pure opening mode I. � is a fracture mode-
sensitivity parameter, e.g., the typical range 0.2 ≤ � ≤ 0.3 characterizes
interfaces with moderately strong fracture mode dependence. �̄c and �̄nc
are the critical normal stress and opening displacement reached when the
spring breaks in mode I. Thus, �̄c = �c(0

∘) and �̄nc = �nc(0
∘).

Figure 4.6: Fracture energy Gc as a function of  G for different values of �.

As can be seen in Figure 4.6, if � = 0 the interface will never break in
pure mode II, due to the asymptotic behavior of the function Gc defined
in (4.18). As mentioned before, the use of 0 < � < 1 in (4.18) yields a
more realistic behavior, allowing for the interface to fail in pure mode II.
As shown in Figure 4.6 for higher values of �, the failure in pure fracture
mode II becomes easier (Gc value becomes lower).

Writing the crack propagation criteria along a linear elastic-brittle in-
terface, making use of (4.12 - 4.19), the following general expression of the
critical normal stress as a function of the angle  G is obtained:

�c( G) = �̄c

√
1 + tan2[(1 − �) G]. cos G and �nc( G) =

�c( G)

kn
.

(4.20)
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In a similar way the critical tangential stress for mixed mode, shown in
Figure 4.4, can be expressed, in terms of �c( G) and  G, as:

�c( G) =

√
kt
kn
�̄c

√
1 + tan2[(1− �) G]. sin G and �tc( G) =

�c( G)

kt
.

(4.21)

The plot of interface failure loci parameterized by equations (4.20) and
(4.21) is shown in Figure 4.7, where a ratio kn/kt = 3 has been considered.
The normal and tangential critical stress in mixed mode were normalized
with the normal critical stress in mode I, �̄c.

It should be mentioned that for � = 0, the expression of Gc in (4.18)
becomes similar to that obtained in [11], although it was used in a different
interface model. Also �c( G) in (4.20) equals �̄c (the critical normal stress
in Mode I, see Figure 4.7) for all values of  G when � = 0.

The use of the angle  � instead of  G in families of expressions of the
fracture energy similar to (4.18) might at first sight appear more adequate,
as e.g. in classical Interface Fracture Mechanics due to its direct relation
with Stress Intensity Factors [117]. Nevertheless, it has been checked that
the use of  � in the present formulation leads to a non-convex safe-region
defined by the failure loci (�c( �), �c( �)) in the (�, �) plane.

From Fig. 4.7, it can be seen that if normal compressions appear at
the crack tip (crack closed) the formulation is still able to predict a crack
growth.

Figure 4.7: Interface failure loci in (�, �) plane for different values of � with
kn/kt = 3.



Chapter 5

Boundary Element Method

The Boundary Element Method (BEM) has proved to be an efficient tool
to study elastic problems, especially those concerned mainly with boundary
values of displacements and stresses, as in the case of Fracture Mechanics. In
the present chapter, first the Boundary Integral Equations (BIE) governing
the elastic problems are defined. Then, some of the characteristics of the
BEM codes used to solve these BIEs are described.

5.1 Displacement and traction boundary integral
equations in 2D and 3D

5.1.1 Boundary integral equations in 2D for elastic materi-
als

Consider a linear elastic domain Ω ⊂ ℝ
2, with a bounded Lipschitz and

piecewise smooth boundary Γ = ∂Ω. Let Γs ⊂ Γ denote the smooth part of
Γ (excluding corners). The primary boundary integral equation for elastic-
ity, u-BIE, is an expression for the boundary displacements [49, 144],

U(x′) = Cik(x
′)ui(x

′) +−
∫

Γ
Tik(x,x

′)ui(x)dS(x)

−
∫

Γ
Uik(x − x′)ti(x)dS(x) = 0 , (5.1)

where x′ ∈ Ω∪Γ, ui(x) and ti(x), respectively, are boundary displacements
and tractions. The displacement kernel U(x− x′) is generally taken as the
Kelvin fundamental solution of the Lamé system (Navier equation), giving
the displacement at x originated by a unit point load at x′ in an infinite
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medium. The first (strongly singular) integral in (5.1) is evaluated in the
Cauchy principal value sense, whereas the second (weakly singular) integral
in (5.1) is evaluated as an improper integral. For two dimensional isotropic
elasticity the Kelvin fundamental solution is [5, 27, 29, 131]

Uik(x− x′) =
1

8��(1 − �)
[−(3− 4�)�ki log(r) + r,ir,k] . (5.2)

The notation introduced in this equation is that � is Poisson’s ratio, � is
shear modulus, �ki is the Kronecker delta, r = ∥x − x′∥, r,i = ∂r/∂xi, and
xi is the i-th coordinate of the field point x. The corresponding traction
kernel T (x,x′) is obtained by differentiating U and using the linear elastic
constitutive law to form the traction, resulting in

Tik(x,x
′) = − 1

4�(1− �)r
[{(1− 2�)�ki + 2r,ir,k} rn

−(1− 2�) {nk(x)r,i − ni(x)r,k}] , (5.3)

where n is the unit outward normal to Γ at x, and rn = r,1n1(x)+ r,2n2(x)
is the normal derivative or r. Cik(x

′) is the coefficient tensor of the free
term [111], where Cik(x

′) = �ik for x′ ∈ Ω, and Cik(x
′) = 1

2�ik for x′ ∈ Γs.

For boundary integral fracture analysis, and for Symmetric-Galerkin
BIE formulation in general, the integral equation for the boundary tractions
is essential. Formally differentiating (5.1) with respect to x′ ∈ Γs yields an
equation for boundary tractions, t-BIE, of the form:

T (x′) =
1

2
ti(x

′) + =

∫

Γ
Sik(x,x

′)ui(x)dS(x)−−
∫

Γ
T ∗
ik(x,x

′)ti(x)dS(x) = 0 .

(5.4)

The singular and hypersingular kernels for the traction integral equation
can be expressed as [49, 115, 116]

T ∗
ik(x,x

′) =
1

4�(1 − �)r
[{(1− 2�)�ki + 2r,ir,k} rn

−(1− 2�)
{
nk(x

′)r,i − ni(x
′)r,k

}]
,

Sik(x,x
′) =

�

2�(1 − �)r2
[
�iknj(x

′)nj(x) +
{
r,ink(x

′) + r,kni(x
′)
}
r,jnj(x)

+ {r,ink(x) + r,kni(x)} r,jnj(x′)

−8r,ir,kr,jnj(x
′)r,lnl(x)

]
. (5.5)

It should be noticed that according to [116] there is no material parameters
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in the expression of Sik, except for the prefactor �/(1 − �). It is worth re-
emphasizing at this point that the derivation of (5.4) is purely formal. Due
to the singularity in the kernel functions at r = 0, moving the derivative
with respect to x′ under the integral is, in general, not justified. It is
therefore necessary to develop viable definitions for the singular integrals,
most especially for the hypersingular kernel S. In this regard, the Galerkin
formulation is highly useful.

For the elastic orthotropic case the kernels used for the displacement
and stress boundary integral equation are the ones developed in [9], where
simple explicit formulae in complex variable of all the integral kernels and
the free term tensor is presented. The correctness of these expressions has
been proved in several works [23, 114].

5.1.2 Boundary integral equation in 3D for transversely
isotropic elastic materials

Consider a linearly elastic transversely isotropic solid Ω ⊂ ℝ
3 with a bounded

piecewise smooth Lipschitz boundary Γ = ∂Ω. The Somigliana displace-
ment identity, called also displacement Boundary Integral Equation (u-BIE)
for internal source point (x′) is similar to (5.1), with Cik = 1. The, the
stress field �ij is can be expressed as

�ij(x
′) +−

∫

Γ
Sijk(x,x

′)tk(x)dS(x) =

∫

Γ
Dijk(x− x

′)uk(x)dS(x), (5.6)

and represent the Somigliana stress identity at an internal source point
(x′). In this equation, Sijk and Dijk contain the derivatives of Tik(x,x

′)
and Uik(x− x′), respectively. Sijk and Dijk kernels are directly related, by
multiplying with the normal nj, with the kernels Sik and T ∗

ik appearing in
(5.5).

Expressions of the integral kernels for the displacement and stress bound-
ary integral equation for 3D transversely isotropic materials will be intro-
duced in a cartesian coordinate system associated to the material (x3-axis
being the symmetry axis) in Chapter 8.

An application of these expressions in a different coordinate system,
cartesian or curvilinear, may be required sometimes. Rizzo and Shippy [145]
analyzed the corresponding transformations considering these fundamental
solutions as two-point tensor functions. In the simpler case of a different
cartesian coordinate system, it will be sufficient, first to evaluate these fun-
damental solutions in the material coordinate system, obtaining values U∗

mn
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and T ∗
mn, and second to apply the standard transformation rule for second

rank tensors:

Uik = QimQknU
∗
mn, Tik = QimQknT

∗
mn, (5.7)

Q being an orthogonal transformation matrix. It should be stressed that
the coordinates of the radius vector x − x′ between the field and source
points and the normal vector appearing in the expressions of U∗

mn and T ∗
mn

should be given in the material coordinate system.

The free-term coefficient tensor Cik(x
′) for a boundary point x′ ∈ Γ can

be evaluated as:

Cik(x
′) = − lim

"→0+

∫

S"(x′)∩Ω
Tik(x,x

′)dS(x) = −−
∫

Γ
Tik(x,x

′)dS(x), (5.8)

where S"(x
′) is a spherical surface of radius " centred at x′. Equation (5.8)

implies that Cij(x
′) = 1

2�ij for x′ placed at a smooth part of Γ, whereas for
x′ at an edge or a corner its value depends on the local form and spatial
orientation of Γ at x′ and on the elastic material properties. An application
of the Stokes theorem to obtain a more explicit formula for Cik(x

′) at edge
and corner points, advantageous for numerical (and possibly for analytic)
computations, in a similar way as was previously done for isotropic materi-
als [111], would also require an analogous decomposition of Tik. In fact, such
a decomposition is related to the Burgers formula [30] giving displacement
field originated by a unit dislocation loop. A generalization of the Burgers
formula to general anisotropic materials was developed by Indenbom and
Orlov [86], see also Lothe [105], and introduced in the framework of the
Symmetric Galerkin BEM by Rungamornrat [148] recently. According to
these works, Tik can be decomposed as

Tik(x,x
′) = −�iknjr,j

4�r2
+Dij

(
Pjk(x− x

′)
)
, (5.9)

where r = ∣x − x′∣ and r,j = (xj − x′j)/r, Dij is the antisymmetric (tan-
gential) differential operator defined by Dij = ni(x)∂xj − nj(x)∂xi and the
weakly singular integral kernel Pjk can be expressed using a line integral
similar to that appearing in (9.5). Then, the Stokes theorem, after the limit
"→ 0 leads to

Cik(x
′) =

Φ(x′)

4�
�ik +

∫

∂S1(x′,Ω)

"ijlPjk(x− x′)dxl, (5.10)
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where ∂S1(x
′,Ω) is the closed contour representing the boundary of the so-

called characteristic surface S1(x
′,Ω) of Γ at x′ (a polygon cut on the unit

sphere S1(x
′) by the tangential planes to Γ at x′). Φ(x′) is the solid angle

of S1(x
′,Ω) viewed from x′. Formula (5.10) represents a generalization to

anisotropic materials of the analogous formula for Cik(x
′), in terms of Φ(x′)

and regular line integrals over ∂S1(x
′,Ω), obtained previously for isotropic

materials [111]. Notice that the regular angular integrals over edges of
∂S1(x

′,Ω) can be evaluated numerically by standard quadratures. A study
of the possibility of an analytic evaluation of these integrals would require
a closed-form expression of Pjk, e.g. in a similar form to that shown for Uik
in Sections 9.1.2 and 9.2.2. To the knowledge of the present author such a
formula is not available at present.

5.2 Collocational Boundary Element Method

The simpler procedure to reduce u-BIE to a linear algebraic system is the
so-called collocation approach, wherein the u-BIE is explicitly enforced at a
finite set of boundary points. In its simplest form, these collocation points
are chosen to be the nodes used to discretize the boundary. Thus, a collo-
cation approximation of the u-BIE can be simply stated as, c.f. (5.1),

U(x′
k) = 0 , (5.11)

where x′
k, 1 ≤ k ≤ M are the selected boundary points. If the boundary

displacement and traction (in elasticity) are interpolated from their values
at these M selected boundary points, then the boundary conditions usually
provide 2M of these 4M values. The point-wise enforcement of (5.11)
then provide the 2M equations needed to solve for the unknown values.
Collocation necessarily leads to non-symmetric matrices [161].

Generally speaking, engineers prefer the collocation approach to the
Galerkin approach [27, 131]. The essential reason is that we have simpler
integrals to compute or to approximate and that the deduction is somewhat
simpler in the sense that we are neither averaging on the boundary elements
nor considering an intermediate variational formulation. There are however
some aspects to be taken into account for solving problems with collocation
approach:

∙ Not every choice of collocation nodes is going to work. For instance at
a vertex and/or corner the normal vectors are not uniquely defined.
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∙ There is not a satisfactory theory for collocation method working even
for smooth surfaces. This should not worry too much a practitioner
of the method: most people are convinced that the theory will arrive
in due time. However, the Galerkin setting gives more confidence to
mathematically oriented users of the boundary element method.

∙ In some instances, practitioners of the method use more collocation
points than unknowns and solve the incompatible equations by least
squares. This has the advantage that we have to solve a symmetric
positive definite system.

5.3 Symmetric Galerkin Boundary Element Method

5.3.1 Symmetric Galerkin Scheme

In a Galerkin formulation, the displacement and traction integral equations,
u-BIE and t-BIE, are enforced ‘on average’, in the form, see (5.1) and (5.4),

∫

Γ
 l(x

′) U(x′)dS(x′) = 0 ,

∫

Γ
 l(x

′) T (x′)dS(x′) = 0 . (5.12)

The weight function  l(x
′) is comprised of all shape functions that are equal

to one at the node x′
l, and thus there are sufficient equations to solve for the

boundary unknowns. The shape functions themselves are determined by the
choice of how the boundary displacements and tractions are interpolated.

The symmetric-Galerkin formulation was first considered by Sirtori [159]
and Hartmann et al. [78], and then extensively developed by Maier and co-
workers [109, 95, 160, 107]. Note that in Galerkin approach the source
and field points x′ and x are treated equally, and the kernels U and S are
themselves symmetric, i.e.

Uik(x− x
′) = Uki(x− x

′), Sik(x,x
′) = Ski(x,x

′), (5.13)

and also fulfill the reciprocity relation

Uik(x− x′) = Uki(x
′ − x), Sik(x,x

′) = Ski(x
′,x). (5.14)

Thus, according to (5.14), if displacements are specified everywhere on
the boundary, the displacement equation in Eq. (5.12) leads to a symmet-
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ric system of equations for the unknown tractions. Similarly the traction
equation yields a symmetric matrix if the boundary data are entirely known
tractions. In general, if the displacement equation is employed on the part
of the boundary where displacements are specified, while the traction equa-
tion is employed on the part of the boundary where tractions are known,
then the resulting linear equations are symmetric. This follows from (5.14)
and the fact that T and T ∗ are directly related, both being first order
derivatives of U , thus

Tik(x,x
′) = −T ∗

ik(x
′,x). (5.15)

For standard fracture analysis problems, wherein the boundary condi-
tion on the crack is specified traction, the symmetry is remarkably simple:
the above prescription (writing the traction equation on the crack surface)
retains the symmetry, with the proviso that the unknowns on the fracture
surface are now the jump in displacement, and the complementary variable
is the sum of the known tractions. See for example [28, 160].

5.3.2 Singular Integration

The key task in the numerical implementation of Eq. (5.12) is the evalu-
ation of the singular integrals, and an advantage of the Galerkin approach
is that the extra boundary integration makes defining and computing the
hypersingular S kernel integral significantly easier. The singular integration
(for all kernels) may be efficiently accomplished by means of direct hybrid
analytical/numerical algorithms that result from defining the integrals as
a limit to the boundary [74, 161]. In this approach, one sees that the in-
dividual, i.e. coincident and adjacent element, hypersingular integrals are
divergent. However, the divergent terms that show up in the limit process
can be shown to cancel, and the complete limit of the integral is finite.

Nevertheless, is should be noted that there are a number of other singu-
lar integration techniques available [64, 83, 106]. For fracture in particular,
schemes based upon integration by parts [41, 63] have been highly success-
ful.

5.4 Weak formulation of contact and interface con-

ditions

In order to allow the use of conforming or non-conforming discretizations
at interfaces, the idea of imposing the boundary conditions at interfaces,
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described in [25], is used. The use of non-conforming meshes could lead to
a reduction of the final system of equations.

Thus, the equilibrium and compatibility conditions along the interface
zone between the two solids A and B are imposed in a weak manner, derived
from the principle of virtual work [25, 72]. In this way, stresses along the
interface zone are defined as the tractions along ΓAi ⊂ ΓA, the interface part
of the boundary of solid A.

Equilibrium is imposed in a weak form at all points y along the interface
part of the boundary of solid B, ΓBi ⊂ ΓB, which means that

△tBi (y) +△tAi (y) = 0, (5.16)

is guaranteed by the fulfilment of the following integral equation considered
at ΓBi : ∫

ΓB
i

[△tBi (y) +△tAi (y)]△uB i dΓBi = 0 i = n, t, (5.17)

for all fields of compatible displacements △uB i (y).

Accordingly, displacements along the interface are defined by the dis-
placements at ΓBi . Compatibility is imposed in a weak form at all points y
belonging to ΓAi , which means

△�Ai (y) = △uAi (y)− uBi (y) (5.18)

with △�A(y) being the relative displacements between opposite points of
the adjacent solids, by the fulfilment of the following integral equation con-
sidered at ΓAi :

∫

ΓA
i

△tA i [△uAi (y)−△tBi (y)−△�Ai (y)]dΓAi = 0 (5.19)

for all traction fields in equilibrium △tA i (y).

The implementation of the interface conditions related to the Linear
Elastic-Brittle Interface Model, introduced in Chapter 4, will be described
in Section 8.1.

5.5 Boundary Element codes

In this thesis, three different BEM codes has been used and modified in or-
der to include the new features developed: non-singular fracture mechanics
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models and 3D transversely isotropic materials kernels. Some additional
modifications needed to solve some of the application problems as: non-
linear solving algorithms and methods to remove rigid body motions in the
displacements field have been carried out.

5.5.1 2D Collocational Boundary Element code

A 2D BEM collocational code (written in Fortran 90) for the numerical solu-
tion of u-BIE (5.1) is used. This code was originally developed in [71]. The
main features of this code were as follow: i) 2-node Lagrangian linear con-
tinuous boundary elements [131]; ii) isotropic axisymmetric and anisotropic
plane problems can be modeled, including multiple perfectly bonded solids
or contact zones between them; (iii) equilibrium and compatibility condi-
tions, along contact zones, are imposed in a weak form, allowing an easy
use of non-conforming discretizations [25, 72].

The new features included in this code are: i) possibility of defining lin-
ear elastic-brittle interfaces between the elastic solids; ii) equilibrium and
compatibility conditions, along linear elastic-brittle interfaces, are imposed
in a weak form. iii) a sequentially linear analysis to solve crack growth prob-
lems with the linear elastic-brittle interface model is implemented. In the
specific case of linear elastic-brittle interfaces, a non-conforming discretiza-
tion is possible since the normal stress-displacement law and the tangential
stress-displacement law are not mesh dependent. From (4.4) and (4.6), it
can be seen that the stiffness parameters kn and kt are independent of the
distances L and w.

5.5.2 2D Symmetric Galerkin Boundary Element code

A 2D Symmetric Galerkin BEM code (written in Fortran 90) for the nu-
merical solution of u-BIE (5.1) and t-BIE (5.4) was used. This code was
originally developed in [135]. The main features of this code were as follow:
i) 3-node Lagrangian quadrilateral continuous boundary elements [131];
ii) isotropic plane problems can be modeled, including multiple perfectly
bonded solids; iii) cracks can be modeled by meshing just one crack side;

The new features included in this code are: i) cohesive cracks inside
an homogeneous media can be modeled by meshing just one crack side; ii)
possibility of defining cohesive interfaces between the elastic solids; iii) use
of the Method S [172] to remove the rigid body motion in the displacement
field when using traction boundary conditions. iv) several variants of the
arc-length method are implemented. They are used as the non-linear solving
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algorithm to solve the cohesive crack problems.

5.5.3 3D Collocational Boundary Element code

A 3D collocational BEM code (written in Fortran 90) for the numerical so-
lution of u-BIE (5.1) was also used in the present thesis. The main features
of this BEM code originally developed in [127] follow: i) 9-node Lagrangian
quadrilateral boundary elements with quadratic shape functions; ii) a nu-
merical evaluation of regular integrals by 8 × 8 Gaussian quadrature with
adaptive subdivison of elements in the case of quasi-singular integrals [96];
iii) the polar coordinate transformation applied for a numerical evaluation
of weakly singular integrals with the integral kernel Uik; iv) the rigid-body-
motion procedure applied for a numerical evaluation of the sum of the free-
term coefficient tensor Cik and the Cauchy principal value integral with the
integral kernel Tik. v) allow to model transversely isotropic materials and
functionally graded materials (FGM).

The new feature included in this code is the implementation of new
general, real-variable and efficient expressions of the integral kernels for the
solution of transversely isotropic materials, valid for any combination of
material properties (previous solution had some difficulties due to the use
of complex variables and it is not valid for some combination of material
properties).



Chapter 6

Implementation of linear and
non-linear solvers in the BEM
codes used

In the present chapter a review and brief description of linear system solvers
is carried out first. The success of the numerical tools developed are highly
related to an efficient linear solver that will be implemented in home made
BEM codes. Then, as the problems to be studied in the present thesis need
a non-linear solving algorithm a sequentially linear analysis is developed for
the use with the Linear Elastic-Brittle Interface (LEBI) formulation and
the 2D collocational BEM code. While, the arc-length method with several
variants is implemented in the 2D SGBEM code to solve problems that
include a Cohesive Zone Model (CZM).

6.1 Linear system solver improvement

Due to the use of home-made BEM codes, an initial part of the work was
researching different Linear System Solvers. The principal aim was to im-
prove the time used to solve the system of equations obtained by the BEM.
Especially, the 2D Collocational-BEM code that had implemented a Gauss-
Jordan Elimination solver, which used too much time [71].

After the review of the different methods and libraries available, direct
solvers based on LU factorization were chosen to be implemented in the
different codes used. This fact led to the use of IMSL libraries when the
codes are running under Windows platform and Linpack [54] and Lapack
[7] libraries when the codes are running under LINUX environment.
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The problem of solving a linear system Ax = b is central in scientific
computation. In the following some main features of the methods used are
detailed, when A is square, dense and unstructured.

6.1.1 Gauss-Jordan Elimination

For inverting a matrix, Gauss-Jordan Elimination is about as efficient as
any other method. For solving sets of linear equations, Gauss-Jordan Elim-
ination produces directly the solution of the equations for one or more
right-hand side vectors b. However, its principal weaknesses are that (i) it
requires all the right-hand sides to be stored and manipulated at the same
time, and (ii) when the inverse matrix is not desired, Gauss-Jordan Elimi-
nation is three times slower than the LU procedure that will be described
in the next subsection [70, 139].

Gaussian elimination procedure can be divided in two parts. The first
part is called forward elimination and it reduces a given system to triangular
form. This is accomplished through the use of elementary row operations.
The second step is done to find the solution of the system above by means
of back substitution. Computing Gauss-Jordan Elimination requires 2n3

floating point operations, ignoring lower order terms.

Gaussian elimination is numerically stable for diagonally dominant or
positive-definite matrices. For general matrices, Gaussian elimination is
usually considered to be stable in practice if the partial pivoting is used,
even though there are examples for which it is unstable [139].

The subroutine originally used was “pivot.f” taken from [131], which im-
plements the above mentioned Gauss-Jordan Elimination procedure. This
subroutine was also implemented in the improved 2D collocational BEM
code [71].

6.1.2 LU solvers

The LU decomposition can be considered as a “high level” algebraic descrip-
tion of Gaussian elimination [70]. The LU decomposition assumes we are
able to write a matrix as the product of a lower triangular matrix (L - has
elements only on the diagonal and below) and an upper triangular matrix
(U - has elements only on the diagonal and above).

The advantage of breaking up one linear system into two successive ones,
is that the solution of a triangular set of equations is quite trivial [70, 139].
Thus, one set of equations can be solved by forward substitution (L matrix
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involved) while the other set of equations can be solved by back substitution
(U matrix involved).

Computing LU decomposition requires 2n3/3 floating point operations,
ignoring lower order terms. Notice that, once we have the LU decomposition
of the matrix A, we can solve the corresponding system with as many right-
hand sides as we need, one at a time. This is a distinct advantage over the
Gauss-Jordan Elimination.

The subroutines implemented were “DL2ARG.f” from IMSL on Win-
dows environment in the different BEM codes. In Linux platform, “dsytrf.f”
and “dsytrs.f” from Linpack library [54] were used for the SGBEM code;
while “dgesv.f” from Lapack was used for the 2D and 3D collocational BEM
code.

6.1.3 Parallel LU solvers

Once we obtained a very nice improvement on computing time by using
the LU solvers, the next step is to parallelize the different codes so larger
problems can be solved over a distributed memory. Thus, the use of a MPI
programming was started specially for the 3D code. A suitable solver used
was taken from the library ScaLapack [19].

The ScaLAPACK (or Scalable LAPACK) library includes a subset of
LAPACK routines redesigned for distributed memory MIMD parallel com-
puters. It is currently written in a Single-Program-Multiple-Data style using
explicit message passing for interprocessor communication. The subroutine
chosen was “pdgesv.f‘” (parallel version of the subroutine used previously).

6.2 Sequentially Linear Analysis

The present algorithm is developed for the use with the Linear Elastic-
Brittle Interface (LEBI) formulation and the 2D collocational BEM code.
The LEBI formulation allows to solve the non-linear problem as a set of
different linear problems, see Section 4.2.

The numerical solution of the non-linear problem formulated is usually
based on a gradual application of the loads and displacements imposed, by
means of a load factor, 0 ≤ F ≤ 1. The solution procedure is given by
a series of lineal stages, “load steps". At the beginning of each load step
the actual interface zone bonded by the adhesive layer is established, which
defines the actual linear system of equations.

By solving this system of equations the corresponding elastic solution is
obtained. Thus, the solution of the problem will be divided into a number
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Figure 6.1: Example of evolution of a variable �(x, F )

M (a priori unknown) of load steps where all variables behave linearly:

�(x, F ) = F△m�(x), (6.1)

with Fm−1 ≤ F ≤ Fm, m = 1, ...,M , and F0 = 0, and where �(x, F ) is
the value of any problem variable at a point x after an F -fraction of the
load is applied. △m�(x) is the value of the increment of the variable �(x)
corresponding to the unit increment of the load factor F (or equivalently
the derivative of �(x) with respect to F ), and it is obtained in the solution
of the linear system of equations corresponding to the m-th load step.

This solution fulfills all the conditions of the linear elastic interface for-
mulation (and also of the frictionless contact formulation, if needed in the
damaged zone) up to a certain maximum value Fm of the load factor F
associated to this load step. A further increment of the load factor leads
to rupture of some springs (or to a change in contact conditions). Con-
sequently, values of variable � at the end of each load step are defined as
�(x, Fm) = Fm△m�(x) for F = 1, ...,M . This procedure is illustrated in
Figure 6.1.

This sequentially linear analysis was implemented in the 2D collocational
BEM code. Among its main features it can be said that is a very simple
and absolutely robust algorithm, nevertheless it is less efficient when a fine
mesh is used.

6.3 Arc-length Algorithm for non-linear problems

The arc-length method is a powerful solution algorithm, allowing the evo-
lution of the equilibrium states of a problem to be solved at various load
levels [48, 61, 156]. All these equilibrium states trace the load-displacement
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response of the structure in which all the applied loads vary proportionally
as a function of a unique load parameter called herein �. In such a case, for
a non-linear system Ax = b with n degrees-of-freedom (DOF), the n + 1
unknowns t = (x, �) completely define the problem, where t is the vector
of total unknowns, x the vector of unknowns in displacement and tractions
in the BEM case and � is the unknown load factor. The BEM, based on
continuum mechanics, provides n relationships describing the equilibrium
state of a structure. This is expressed in a single equation

R(x, �) = �fext − fint(x) = 0 (6.2)

The parameters of this equation are R(x, �) = the residual out-of-balance
vector; � = scalar load factor; fext = the external loads and constraints
vector and fint(x) = the resultant of the internal loads and constraints
vector.

In the following, one of the most efficient arc-length procedure [140], will
be described in detail for its computer implementation. Also, two classical
arc-length procedures are described.

6.3.1 Normal Flow Method

Several variants of the arc-length method have been proposed in literature
[48] in its discrete formulation. The one used in the present work is the
normal-flow algorithm [140, 156], where successive Newton-Raphson iter-
ations converge to the equilibrium solution along a path which is normal
(in an asymptotic sense) to the so-called Davidenko flow [140]. The Davi-
denko flow can be described by considering a small perturbation, �, to the
nonlinear system of equations:

R(x, �) = � (6.3)

As the perturbation parameter varies, small changes will occur in the solu-
tion curve for (6.3). The family of curves generated by varying � is known
as the Davidenko flow. The dashed lines in Fig. 6.2 are a representation of
the Davidenko flow for a one-dimensional problem.

In Figure 6.3, the variables used in the arc-length method are shown,
where the vector up (p = step number), in the case of BEM, is formed
by the unknown displacements and tractions in a converged equilibrium
point, while xi (i = iteration number) is the vector of unknowns in the
Newton-Raphson iterations between two converged equilibrium points, be-
fore equilibrium is reached. Thus, xi becomes up+1, when xi has converged
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Figure 6.2: Normal flow arc-length procedure.

to an equilibrium point. (x0, �0) corresponds to a predictor estimation.

A very important issue of the procedure is to define a suitable scaling
of the known and unknown variables involved in the solution of a nonlinear
system of equations. The variables in the final system should have sim-
ilar orders of magnitude, so as to aid the performance of the non-linear
numerical solver.

As mentioned the present solution algorithm was implemented using the
full Newton-Raphson method and includes a predictor phase and a corrector
phase.

Predictor phase.

The predictor phase includes the determination of the arc-length step size
at each increment after equilibrium is reached. In Fig. 6.4, the predictor
phase is depicted.

In the first step, an appropriate value for the increment of the arc length
load factor, d�0∣p=0, defined by the user is needed. The increment of the
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Figure 6.3: Graphic of the arc-length method with the Newton-Raphson
method as iterative scheme.

arc-length load factor for the next steps are adjusted from one step to the
next using the following simple formula:

d�∗0∣p =
n

m
d�0∣p−1

(6.4)

where m is the number of iterations that were required at the previous step
and n is the (user specified) desired number of iterations at each step. This
procedure allows larger steps to be taken when the solution is converging
easily, and forces the solver to take smaller steps when the convergence is
more difficult. For the present work, n was selected between 3 and 4 so as
to achieve the most favorable results in terms of computational time.

After d�∗0∣p for the load step p is calculated, the vector dII is calculated
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Figure 6.4: Predictor phase of the arc-length method.

by:
dII∣x0,p = [K−1

t ∣0,p]{fext}, (6.5)

where {fext} is the external load and constraints vector, see (6.2), and Kt

is the tangential stiffness matrix of the considered structure in the FEM
framework, in the present BEM case it can be defined as:

Kt =
dfint(up)

dx
. (6.6)

Then, the sign of the increment is calculated by means of the following
relation:

sig = Sign[duTp−1. dII∣x0,p ] (6.7)

with Sign[ ] being the Signum function, dup−1 = up − up−1 the vector that
contains the difference between the last two converged solution points.
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Then, the load factor d�0∣p becomes:

d�0∣p = sig d�∗0∣p = Sign[duTp−1. dII∣x0,p ] d�
∗
0∣p
, (6.8)

Finally, the predictor estimation is reached by:

dx0∣p = d�0∣p . dII∣x0,p (6.9)

x0 = up + dx0∣p (6.10)

Corrector phase.

In the corrector phase, the full Newton-Raphson method is used in the
present thesis. A scheme of this corrector phase is depicted in Fig. 6.5.

Figure 6.5: Corrector phase of the arc-length method.
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In order to achieve a new iteration solution first the residual vector,
{ri} is calculated for the i -iteration. In our BEM case, we made use of the
following relation:

{ri} = Hu−Gt (6.11)

where u and t are the vectors of the actualized (taking into account the last
iteration) displacement and traction solutions and/or boundary conditions.
While, G and H are the matrixes obtained by the BEM, they are related
to the fundamental solutions (Green’s functions) in displacements and trac-
tions respectively [131]. Notice that in order to calculate {r} the variables
are not taken in rate form.

Then, the vectors dI and dII for the i -iteration are calculated by:

dI∣xi,p = [K−1
t ∣i,p]{ri}, (6.12)

dII∣xi,p = [K−1
t ∣i,p]{fext}, (6.13)

Then, the variation (increment or decrement) of the load factor in each
iteration d�i is determined by:

d�i = − [dII ∣xi ]T .[dI ∣xi ]
[dII ∣xi ]T .[dII ∣xi ]

(6.14)

Finally, the i -prediction of the corrector is reached by:

dxi = d�i . dII∣xi,p + dI∣xi,p (6.15)

xi = xi−1 + dxi (6.16)

Once the value of the norm of the residual vector is smaller than a tol-
erance value (the residual vector usually tends to zero during the corrector
iterations), the solution xi is considered to be converged to an equilibrium
state. Thus, the algorithm pass the to the next load step.

In order to stop the algorithm the user defines a load (usually a fraction
of the maximum load reached during the solution).

It is also useful to clarify the difference between dxi and △xi as presented
in Fig. 6.5. While dxi = xi−xi−1 is the difference between Newton-Raphson
iterations, △xi = xi−xp is the difference between the i-th Newton-Raphson
iteration and the last converged solution p. Thus, when i = 0 (predictor
phase) dx0 = △x0. In Fig. 6.6 a flow chart of the whole procedure is
presented.
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Loop on steps (p = 1, pmax)
(Predictor pℎase)
If p = 1 then

assign d�0
else

d�∗0∣p =
n

m
d�0∣p−1

end If

sig =Sign[duTp−1.dII∣x0,p ]

d�0∣p = sig . d�∗0∣p
dx0∣p = d�0∣p . dII∣x0,p
x0 = up + dx0∣p
Loop on iterations (i = 1, imax)

(Corrector pℎase)

d�i = − [dII ∣xi ]T .[dI ∣xi ]
[dII ∣xi ]T .[dII ∣xi ]

dxi = d�i . dII∣xi,p + dI∣xi,p
xi = xi−1 + dxi
Convergence test

End loop

End loop

Figure 6.6: Flow chart of the normal flow procedure.

6.3.2 Riks and Ramm Methods

As mentioned before, many authors have used different approaches for the
arc-length method. Probably the most important variants are the ones
developed by Riks[143], Ramm[141] and Crisfield [48, 61, 156].

Besides the normal flow procedure, described in detailed in the previous
section, two other arc-length methods have been implemented in the 2D
SGBEM code the Riks and Ramm arc-length procedures. It is noteworthy
that the algorithm procedure described in the previous section and summa-
rized in Fig. 6.6 was written in way that only changing equation (6.14) in
the corrector phase allow the use of the different approaches.

Riks procedure.

The Riks’ procedure is also called Normal plane Fig. 6.7(a). In this proce-
dure the Newton-Raphson iterations are enforced to go along a line orthogo-
nal to the tangent prediction increment. The original method was proposed
in [143].
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(a) (b)

Figure 6.7: Iterations path in the (a) Riks and (b) Ramm arc-length pro-
cedures.

As mentioned before, the Riks’ arc length procedure can be obtained by
using the procedure described in the previous subsection and just replacing
(6.14) with:

d�i = − [dx0]
T .[dI ∣xi ]

[dx0]T .[dII ∣xi ]
(6.17)

Ramm procedure.

This procedure is also called Updated Normal plane and it was proposed in
[141]. In this procedure the Newton-Raphson iterations are orthogonal to
the previos “secant increment”, see Fig. 6.7(b). In a similar way, the Ramm’s
arc length procedure can be obtained by using the procedure described in
the previous subsection and just replacing (6.14) with:

d�i = − [△xi]T .[dI ∣xi ]
[△xi]T .[dII ∣xi ]

(6.18)

It should be mentioned that preliminary test comparing the three arc-
length procedures described previously have been carried out. The normal
flow procedure being the fastest one, less iterations and/or steps were nec-
essary.



Chapter 7

Formulation, implementation
and validation of a Cohesive
Zone Model in a 2D SGBEM
code

In the present Chapter a Cohesive Zone Model will be included in a 2D
Symmetric Galerkin BEM formulation. At first glance, it would appear
that symmetry would be out of the question for a cohesive fracture model.
However it is desirable and possible to obtain a symmetric formulation,
as shown in [108] and elaborated on in this chapter for cracks inside an
homogeneous domain, as well as for interface cracks [153].

After the formulations for cohesive cracks inside and homogeneous media
and for cracks placed along an interface. Some numerical examples were
solved in order to see the capability of the formulation introduced.

7.1 Pressurized cracks in homogeneous media in
2D SGBEM

Consider a linear elastic body of arbitrary shape Ω which contains a crack,
see Fig. 7.1. The boundary Γ of the body Ω is composed of the non-crack
boundary Γb and the crack surface Γc. The crack surface Γc consists of
two coincident surfaces Γ+

c and Γ−
c which represent the so-called upper and

lower crack surfaces respectively. As explained in [4, 3, 5, 75, 108, 135] it
suffices to discretize one crack surface (e.g. the upper one) as the crack
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surfaces are usually symmetrically loaded, i.e. t = t
+
c = −t

−
c , where t

represent the traction vector.

Figure 7.1: Configuration of the fracture scheme using SGBEM.

Thus the Somigliana displacement (u-BIE) and traction (t-BIE) identi-
ties, see (5.1) and (5.4) respectively, written for a point x′ in a smooth
part of the boundary take the following form:

1

2
ui(x

′) = −
∫

Γb

[
Uik(x− x′)ti(x)− Tik(x,x

′)ui(x)
]
dS(x)

−−
∫

Γ+
c

[
Tik(x,x

′)wi(x)
]
dS(x) x′ ∈ Γu (7.1)

1

2
ti(x

′) = =

∫

Γb

[
T ∗
ik(x,x

′)ti(x)− Sik(x,x
′)ui(x)

]
dS(x)

−=

∫

Γ+
c

[
Sik(x,x

′)wi(x)
]
dS(x) x′ ∈ Γt (7.2)
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ti(x
′) = =

∫

Γb

[
T ∗
ik(x,x

′)ti(x)− Sik(x,x
′)ui(x)

]
dS(x)

−=

∫

Γ+
c

[
Sik(x,x

′)wi(x)
]
dS(x) x′ ∈ Γ+

c (7.3)

where w = u
+
c −u

−
c is the relative displaments between the crack faces. The

non-crack boundary Γb is formed by Γu and Γt, where Γu is the portion of
the boundary with prescribed displacements uu and Γt is the portion of the
boundary with prescribed tractions tt. As tractions are prescribed on the
crack surface, only t-BIE is written for source points on Γ+

c . Discretizing a
weak form of Equations (7.1-7.3) by using a Galerkin scheme, see Section
5.3, the following system is obtained in block matrix form:

⎡
⎣

1
2Muu +Tuu Tut Tuc

Stu Stt Stc

Scu Sct Scc

⎤
⎦
⎧
⎨
⎩

uu

ut

wc

⎫
⎬
⎭

=

⎡
⎣

Uuu Uut 0
T

∗
tu −1

2Mtt +T
∗
tt 0

T
∗
cu T

∗
ct −Mcc

⎤
⎦
⎧
⎨
⎩

tu

tt

t
+
c

⎫
⎬
⎭ (7.4)

where, the subscripts u, t, and c represent respectively the terms corre-
sponding to the non-crack boundary with prescribed displacements Γu, to
the non-crack boundary with prescribed tractions Γt, and to the crack sur-
face Γ+

c . The first subscript in each matrix operator (denoted by capitals)
defines where the exterior integral test function, like in (5.12), is considered
and the second subscript is on which part of the boundary the inner integral
is considered, or which is the variable where the corresponding displacement
or traction integral equation is considered.

The vector tu represents unknown tractions and ut represents unknown
displacements on the boundary Γu and Γt respectively; M is a ‘mass matrix’
obtained from the free term of the integral equations. T and U represents
the matrixes obtained from the traction (Tik) and displacement (Uik) fun-
damental solutions in the u-BIE respectively. While T

∗ and S represents
respectively the matrixes obtained from the integral kernels (T ∗

ik) and (Sik)
used in the t-BIE.

This formulation allows solving cracks with a symmetrical pressure on
the crack faces. Note that if there are no tractions on the crack faces the
present formulation would be the same as that presented for a traction free
crack in [161, 135].
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7.2 Cohesive cracks in homogeneous media in 2D
SGBEM

In this section a crack inside an homogeneous media, as the one in Fig. 7.1,
will be considered to behave according to a cohesive law. In order to intro-
duce the Cohesive Zone Model behaviour into the crack, equation (7.4) is
rearranged into a suitable rate form [A]{ẋ} = {ḃ} by:

∙ Formulating the problem in an incremental form, the variables in-
volved can be written in terms of rates, ẋ = △(x), where for this
specific formula x represent any variable.

∙ Multiplying the t-BIEs by -1 (for symmetry).

∙ Making use of the relation ṫi = kij �̇j in the crack cohesive zone, see
(3.14), which relates the traction rate (ṫ(x) = ṫ

+
c (x)) along the crack

cohesive surface with the crack opening displacement rate (ẇ(x) =
−�̇(x)), at a point x ∈ Γc, associated to a certain increment of the
load factor.

In this way we finally arrive at the system written in terms of rates of
elastic variables:

⎡
⎣

−Uuu Tut Tuc

T
∗
tu −Stt −Stc

T
∗
cu −Sct −Scc +KMcc

⎤
⎦
⎧
⎨
⎩

ṫu

u̇t

ẇc

⎫
⎬
⎭

=

⎧
⎨
⎩

−(12Muu +Tuu)u̇u + Uutṫt

Stuu̇u + (12Mtt −T
∗
tt)ṫt

Scuu̇u − T
∗
ctṫt

⎫
⎬
⎭ (7.5)

It is noteworthy to mention that for sake of simplicity in the above
matrix form the whole crack was considered as a cohesive zone, nevertheless
a non-cohesive crack can also be involved in the formulation either as a part
of the same crack or as a different crack in the homogeneous body (where
the usual crack formulation is adopted as described in Section 7.1, this is
to say that t+c will be a boundary condition and part of the right hand side
of the linear system).

The final coefficient matrix of this system is symmetric due to the reci-
procity relations of the integral kernel tensors as shown in [28, 75, 161], i.e.
Tut = (T∗

tu)
T , Tuc = (T∗

cu)
T and Stc = (Sct)

T , see also (5.14) and (5.15).
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In [75] a similar matrix is obtained for the case of traction free cracks.
The only difference here with the previous work and what is in fact new in
the present procedure with respect to previous works is the diagonal term
−Scc+KMcc, where K is the tangent elastic stiffness matrix obtained from
the cohesive law, see (3.14). It can be shown that the product KMcc keeps
the desired symmetry, if K is symmetric. This is, for example, the case
of the Ortiz-Pandolfi cohesive zone model (Section 3.2) where a symmetric
matrix K is obtained.

7.3 Cohesive cracks at interfaces in 2D SGBEM

The formulation for the problem of several domains connected by cohesive
interfaces was presented in [152, 153, 154]. A review of this formulation is
given in this section using the present notation.

Figure 7.2: Configuration of an interface problem.

For the sake of simplicity, let us consider two domains ΩA and ΩB with
a single common interface Γw, see Fig. 7.2. The geometrical description of
the interface is similar to the geometrical description of the crack, shown
in the previous section. Then we can define ẇ(x) = u̇

A
w(x) − u̇

B
w(x) and

ṫ(x) = ṫ
A
w(x) at a point x ∈ Γw. Cohesive tractions t and relative opening

displacements w are related by a non-linear vector function t(w(x)), ∀x ∈
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Γw. Let us define vectors v and z as follows:

v̇ = 1
2(u̇

A
w + u̇

B
w) , ż = 1

2(u̇
A
w − u̇

B
w) =

1
2ẇ (7.6)

Then, using (7.1) and (7.2) for each domain, including three linear com-
binations of them for the interface (u-BIEA − u-BIEB , t-BIEA + t-BIEB ,
t-BIEA − t-BIEB), a suitable arrangement of the system of equations can
be written in block matrix form

[A′]{ẋ′} = {ḃ′} (7.7)

where:
{ẋ′} = {ṫAu , u̇At , ṫBu , u̇Bt , ṫw, v̇w, żw},

{ḃ′} =

⎧
⎨
⎩

(12Muu +Tuu)u̇
A
u −Uutṫ

A
t

−Stuu̇
A
u + (12Mtt −T

∗
tt)ṫ

A
t

(12Muu +Tuu)u̇
B
u −Uutṫ

B
t

−Stuu̇
B
u + (12Mtt −T

∗
tt)ṫ

B
t

Twuu̇
A
u −Uwtṫ

A
t −Twuu̇

B
u +Uwtṫ

B
t

−Swuu̇
A
u −T

∗
wtṫ

A
t − Swuu̇

B
u −T

∗
wtṫ

B
t

−Swuu̇
A
u −T

∗
wtṫ

A
t + Swuu̇

B
u +T

∗
wtṫ

B
t

⎫
⎬
⎭

on ΓAu

on ΓAt

on ΓBu

on ΓBt

on Γw

on Γw

on Γw
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[A′] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−U
A
uu T

A
ut 0 0 −U

A
uw T

A
uw T

A
uw

T
A∗
tu −S

A
tt 0 0 T

A∗
tw −S

A
tw −S

A
tw

0 0 −U
B
uu T

B
ut U

B
uw T

B
uw −T

B
uw

0 0 T
B∗
tu −S

B
tt −T

B∗
tw −S

B
tw S

B
tw

−U
A
wu T

A
wt U

B
wu −T

B
wt −(UA

ww +U
B
ww) (TA

ww −T
B
ww) (TA

ww +T
B
ww +Mww)

T
A∗
wu −S

A
wt T

B∗
wu −S

B
wt (TA∗

ww −T
B∗
ww) −(SAww + S

B
ww) −(SAww − S

B
ww)

T
A∗
wu −S

A
wt −T

B∗
wu S

B
wt (TA∗

ww +T
B∗
ww −Mww) −(SAww − S

B
ww) −(SAww + S

B
ww)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Multiplying by K
T the rows related with the variable ṫ and setting ṫ = −Kż, the system can be written in

block matrix form [A]{ẋ} = {ḃ} where:

[A] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−U
A
uu T

A
ut 0 0 U

A
uwK+T

A
uw T

A
uw

T
A∗
tu −S

A
tt 0 0 −(TA∗

twK+ S
A
tw) −S

A
tw

0 0 −U
B
uu T

B
ut −(UB

uwK+T
B
uw) T

B
uw

0 0 T
B∗
tu −S

B
tt T

B∗
twK+ S

B
tw −S

B
tw

K
T
U
A
wu −K

T
T
A
wt −K

T
U
B
wu K

T
T
B
wt −K

T (UA
ww +U

B
ww)K −K

T (TA
ww −T

B
ww)

+T
A∗
wu −S

A
wt −T

B∗
wu +S

B
wt −K

T (TA
ww +T

B
ww) −(SAww − S

B
ww)

−(TA∗
ww +T

B∗
ww)K

−(SAww + S
B
ww)

T
A∗
wu −S

A
wt T

B∗
wu −S

B
wt −(TA∗

ww −T
B∗
ww)K −(SAww + S

B
ww)

−(SAww − S
B
ww)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



7.3
C

oh
esive

crack
s

at
in

terfaces
in

2D
S
G

B
E

M
67

{ẋ} =
{
ṫ
A
u , u̇

A
t , ṫ

B
u , u̇

B
t , v̇, ż

}T

{ḃ} =

⎧
⎨
⎩

(12Muu +Tuu)u̇
A
u −Uutṫ

A
t

−Stuu̇
A
u + (12Mtt −T

∗
tt)ṫ

A
t

(12Muu +Tuu)u̇
B
u −Uutṫ

B
t

−Stuu̇
B
u + (12Mtt −T

∗
tt)ṫ

B
t

K
T (−Twuu̇

A
u +Uwtṫ

A
t +Twuu̇

B
u −Uwtṫ

B
t )− Swuu̇

A
u −T

∗
wtṫ

A
t + Swuu̇

B
u +T

∗
wtṫ

B
t

−(Swuu̇
A
u +T

∗
wtṫ

A
t + Swuu̇

B
u +T

∗
wtṫ

B
t )

⎫
⎬
⎭



68 Chapter 7. 2D SGBEM for crack problems

7.4 Validation of the SGBEM-CZM and arc-length
implementation

In order to verify the capability of the Ortiz-Pandolfi cohesive zone model
implemented into a 2D SGBEM code to model crack growth in a homoge-
neous media, two experimental tests were simulated. It should be mentioned
that the formulation for pressurized cracks shown in Section 7.1 was pre-
viously verified. Crack problems with analytic solutions were solved and
excellent accurate results were obtained.

7.4.1 Wedge split test

The wedge split test for a concrete mix, studied in [52], is modeled by the
SGBEM code with the homogeneous cohesive crack approach (Section 7.2).

Figure 7.3: Specimen configuration of the wedge split test.

The material characteristics are considered homogeneous and linear
isotropic, with Young´s modulus E = 25.2GPa, Poisson ratio � = 0.22,
specific fracture energy GIc = 101J/m2, and the parameter values for the
Ortiz-Pandolfi model are maximum cohesive stress �c = 2.5MPa and criti-
cal opening displacement �c = 1.48623x10−5m. It is important to mention
that in this case the parameter �, defined in (3.6), is not used, due to the
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Figure 7.4: Wedge split test load-displacement curve prediction and exper-
imental results [52].

Mode I character of the problem.

The specimen dimensions are shown in Fig. 7.3. Notice that although
experimentally the pre-crack has 4 mm width (because of the machine tool)
a stress free crack with no width is considered in the BEM model. A plain
strain state is considered for this problem. 206 quadratic boundary elements
were used to model the problem by means of a uniform mesh (element size
is 5 mm). As the formulation allows it, only one side of the stress free crack,
as well as in the cohesive zone, is meshed. Displacements are applied over
one element (uy = 0, ux = ±�u), in the points where the load is applied
experimentally.

In the present problem 1/10 fraction of the maximum load reached is
defined as stop criteria of the nonlinear solution algorithm. The numeri-
cal results obtained with the SGBEM code are represented by the load -
displacement global response curve shown in Fig. 7.4, the load and displace-
ments are measured as shown in Fig. 7.3.

Fig. 7.5 and Fig. 7.6 show the boundary element mesh used, deformed
at various load levels, while in Fig. 7.7 the normal stresses along the crack
path for the same load levels are shown. Notice that, in Fig. 7.5 and Fig. 7.6
only one side of the crack is meshed (as mentioned before). As the relative
displacements between the crack faces is directly obtained, the deformed
configuration of the crack faces is obtained by symmetry (different color for
each crack face). Also, in Fig. 7.7 it can be observed that compressions
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(a)

(b)

Figure 7.5: Deformed boundary element mesh of the wedge split test (with
displacements multiplied by a factor of 20) for different load steps at the
softening branch (a)P = 3008N peak load and (b) P = 1497N .
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(a)

(b)

Figure 7.6: Deformed boundary element mesh of the wedge split test (with
displacements multiplied by a factor of 20) for different load steps at the
softening branch (a)P = 749N and (b) P = 451N .
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Figure 7.7: Normal stresses along the crack path for different load steps at
the softening branch in the wedge split test.

Figure 7.8: Crack length defined by the position of the mathematical and
physical cohesive crack tips as well as the crack length obtained by means
of LEFM in the wedge split test.
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appear in the part ahead of the crack tip due to an equilibrium of momen-
tums. The use of the modification of the Ortiz-Pandolfi CZM proposed in
Section 3.2 allowed to catch this behavior. It is noteworthy that if the orig-
inal Ortiz-Pandolfi CZM is used an artificial (non-physically based) large
overlapping/interpenetration is produced, this overlapping could be even
greater than the opening produced in the crack front.

A comparison of the crack length obtained considering the mathematical
and physical cohesive crack tip as well as the crack length obtained by means
of LEFM is shown in Fig. 7.8, where the mathematical crack tip is the
location of the node in which the critical stress is reached, and the physical
crack tip (for this case) is the location of the node in which one fifth of the
critical stress in the softening branch is reached. The curve using LEFM is
obtained by evaluating the fracture toughness (KIc) at various crack sizes,
in these cases no cohesive zone is considered. Fig. 7.8 clearly indicates, that
for a concrete structure with the described size the application of LEFM
instead of CZM leads to a strong overestimation of the maximum load. Also
the size of the cohesive zone, see Fig. 3.1, can be estimated from Fig. 7.8
as the difference between coordinates of the mathematical and estimated
physical crack tip.

7.4.2 Three-point bending test

Three-point bending test, Fig. 7.9(a), for a concrete mix is modeled. The
growth of a cohesive crack in such a specimen was studied extensively in [36]
using the Finite Element Method (FEM) and the node release technique for
a linear cohesive law. In the present work the influence of the initial crack
depth and the value of fracture energy are studied.

The dimensions of the specimen considered are height b = 0.15m, thick-
ness t = b and span l = 4b. A uniform boundary element mesh (with element
size 0.005m) with 672 nodes and 330 quadratic elements are employed in
the numerical simulation of this specimen. The anticipated straight crack
path is modeled by a mesh placed inside the single domain representing the
specimen tested. The point-supports are imposed by means of the Method
S [172]. This method allowed an adequate simulation of the three-point
bending test, as the point-support boundary condition can be situated at
a single node (similar to FEM), rather than fixing an entire element. The
point supports at the two bottom corners are shown in Fig. 7.9(a), and as
only one node is constrained at each support, rotation around these points
is allowed. Constant distributions of pressures, which fulfill the condition
of global equilibrium, were imposed over two elements at the centre top of
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(a)

(b)

Figure 7.9: (a) A three-point bending specimen configuration and (b) BEM
mesh used and the boundary conditions employed.

the specimen and on one element at each bottom corner, Fig. 7.9(b). The
mechanical properties of the concrete-like material are Young’s modulus
E = 36.5GPa and Poisson ratio � = 0.1. Two different values of fracture
toughness GIc = 50 and 10 J/m2 are considered. The parameter values for
the Ortiz-Pandolfi model are maximum cohesive stress, �c = 3.19MPa, and
critical opening displacement, �c, which has two values: �c = 5.77x10−6m
and �c = 1.15x10−6m, for each of the two different values of fracture en-
ergy respectively. It is important to mention that in the present study the
parameter � is irrelevant, due to the Mode I character of the problem.

For each considered value of fracture toughness, different initial values
of crack depth, a, are considered from a = 0 (initially uncracked specimen)
to a = 0.06m, with increments of 0.01m. For all these cases considered,
the load deflection F-� curves are obtained. These F-� curves, shown in
Fig. 7.10 for GIc = 50J/m2 are related to different initial crack depths.
In a similar way as in [36] initial stiffness and maximum loading capacity
of the specimen decrease by increasing the initial crack depth a. Also the
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Figure 7.10: Three-point bending test load-deflection plots for different
initial crack depths, a, for GIc = 50J/m2.

Figure 7.11: Three-point bending test load-deflection plots for several initial
crack depths, a, for GIc = 10J/m2.
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Figure 7.12: Three-point bending test BEM and FEM load-deflection plots
for GIc = 50J/m2.

Figure 7.13: Three-point bending test BEM and FEM load-deflection plots
for GIc = 10J/m2.
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Figure 7.14: Normal stresses along the crack path for different load steps
at the softening branch (a) F = 17718N (peak load), (b) F = 9144N , (c)
F = 4328N and (d) F = 1395N in the three-point bending test.

uncracked specimen reveals considerable instability and a nearly vertical
drop in its loading capacity (a small snap-back is observed), whereas the
cracked specimens appear much more “ductile". The last part of the soft-
ening branch appears as totally independent of the initial crack depth a,
since all the plots superpose. The F-� curves shown in Fig. 7.11 describe
the specimen behavior when GIc = 10J/m2. For a ≤ 0.02m a snap-back
instability occurs, that is, a softening branch with positive slope is revealed.

Fig. 7.12 and Fig. 7.13 show a comparison between the present results
obtained by the SGBEM code and those obtained in [36] by means of the
Finite Element Method (FEM). Taking into account different cohesive laws,
exponential herein and bi-linear in [36], and different meshes employed in
both approaches, the achieved agreement of the results can be considered
as very good.

One of the reasons for the good agreement of the SGBEM and FEM
results is the use of the Method S [172] in the SGBEM implementation to
impose point-supports for the removal of rigid body motions, thus employing
identical boundary conditions in both approaches.

In Fig. 7.14 the normal stresses along the crack path for the same con-
figuration and load steps as in Fig. 7.15 are shown. From the stresses along
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(a)

(b)

(c)

(d)

Figure 7.15: Deformed boundary element mesh (displacement multiplied by
a factor of 500) for the initially uncracked specimen with GIc = 50J/m2 for
different load steps at the softening branch: (a) F = 17718N (peak load),
(b) F = 9144N , (c) F = 4328N and (d) F = 1395N in the three-point
bending test.
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the cohesive zone, it can be observed how the softening (process zone) devel-
ops at the different load steps. The advancing of the so called mathematical
crack tip (where the critical stress is reached) can be observed, although not
explicitly. Also, in Fig. 7.14 it can be observed that compressions appear in
the part ahead of the crack tip due to an equilibrium of momentums. Thus,
the use of the modification of the Ortiz-Pandolfi CZM proposed in Section
3.2 becomes important.

Fig. 7.15 shows the deformed boundary element mesh of the beam at
various load steps for the initially uncracked specimen with GIc = 50J/m2,
the crack growth being clearly observable at those stages. Notice the ticks
appearing in the graphic, which represent the nodes of the SGBEM mesh.

7.5 Concluding remarks

In the present chapter a symmetric boundary integral formulation for prob-
lems with cohesive cracks placed inside of homogeneous domains and be-
tween subdomains has been proposed and implemented. This new 2D
SGBEM code is based upon a previous implementation of crack analysis
in the LEFM framework [135] and also a cohesive zone formulation from
[153, 154]. This approach is likely to be suitable for engineering applica-
tions involving isotropic materials, e.g. for an analysis of crack initiation
and growth in composites modeled as piecewise homogeneous materials at
the micro-scale (glass fibre).

The introduction of the cohesive zone requires an iterative solution pro-
cedure to solve the nonlinear equations resulting from the boundary integral
formulation; the arc-length method with the normal flow procedure, as de-
scribed in Section 6.3, has been implemented and used.

As shown by the numerical results, the cohesive zone formulation cor-
rectly modeled the experimentally observed crack growth behavior for the
wedge split test [52] and agreed very well with a previous FEM crack growth
analysis of the load-deflection behavior for the three-point bending test [36].
Although a different cohesive law is used in [36], the SGBEM results are
consistent with the results presented therein. The SGBEM analysis was
capable of following the instabilities produced by a nearly vertical drop
in the loading capacity and also snap-back behaviors seen in some cases
(three-point bending test).

To predict the real behavior of structures, the first step would be to
determine parameters of the discrete model (�c and �c in the case of the
Ortiz-Pandolfi model for Mode I), where the so-called inverse method could
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be very useful [26].
As can be observed by the analysis of the three point bending test,

when the initial crack depth a becomes larger the specimen becomes more
“ductile", and at the same time it makes the problem more stable. It is also
important to mention the influence of GIc, as shown by the results. When
this value is small an unstable behavior is presented, especially for small
initial crack depths a.



Chapter 8

Implementation and validation
of the Linear Elastic-Brittle
Interface Model in a 2D
collocational BEM code

The Linear Elastic-Brittle Interface (LEBI) Model has been implemented
in a 2D BEM code [71, 72, 131], whose original version allowed isotropic
axisymmetric and anisotropic plane problems to be modeled, including mul-
tiple solids with perfect interfaces (perfectly bonded) or contact zones be-
tween them. The new feature incorporated in this code is the possibility
of defining weak interfaces between the elastic solids. It is noteworthy that
the BEM is a suitable tool for modeling a crack growing along the weak
interface because the non-linearity introduced is associated only to the in-
terface boundary. Another feature of the code is that the equilibrium and
compatibility conditions, along contact zones and along perfect or weak in-
terfaces, are imposed in a weak form allowing an easy use of non-conforming
discretizations [20, 25, 71, 72]. Coupling BEM and LEBI Model is straight-
forward because the displacements and tractions at the interfaces are the
primarily unknowns in BEM.
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8.1 Linear Elastic-Brittle (Weak) Interface imple-
mentation in 2D BEM

The introduction of the Linear Elastic-Brittle Interface constitutive law de-
scribed in Chapter 4, see Figure 4.4, requires a set of linear and non-linear
equations to be applied. These equations complement the equations im-
posed in a weak manner for the interface conditions, see Section 5.4. Thus,
if the interface is not broken at a point, the linear equations corresponding
to the m-th load step are imposed at the nodes of one side of the undamaged
interface, ΓAi , in the following form, see (4.9):

△mt
A
n (y) = kn△m�

A
n (y), △mt

A
t (y) = kt△m�

A
t (y), (8.1)

where tAn (y) are the normal tractions, �An (y) are the relative normal dis-
placements (separations of ΓAi with respect to ΓBi ), tAt (y) are the tangential
tractions, and �At (y) are the relative tangential displacements (sliding of the
ΓAi with respect to ΓBi ).

The sequentially linear analysis algorithm, Section 6.2, is used with the
Linear Elastic-Brittle Interface formulation, introduced in Chapter 4. Thus,
in the first load step all interface elements behave according to (8.1). Then,
the interface failure criteria is applied,  G being calculated in every interface
point, with its corresponding �c( G).

Non-linearity arises when the condition G ≤ Gc is violated, as G is
directly related to � in an undamaged interface point, � ≤ �c( G) can also
be used as the condition to be evaluated. Thus, when solving the m-th load
step, the values F ∗

m(y) of the load factor that leads to the violation of the
condition previously described are determined at each interface node y, and
subsequently the limit load factor of the current step, Fm = min

y
F ∗
m(y),

is defined. In the next load step the linear system is defined by replacing
in the node that failed, the boundary conditions defined in (8.1) by the
conditions:

△m+1t
A
n (y) = 0, △m+1t

A
t (y) = 0. (8.2)

which means that in the following step this part of the interface is traction
free. Except for the case that both sides of interface enter in contact in this
interface point. In such a case two options could be taken into account:
(i) allow the overlapping without producing contact stresses, which could
be useful for solving problems where the overlapping can be neglected; (ii)
the crack faces enter in linear friction-less contact as described in Section
4.2, thus the following conditions are used at the interface point, instead of
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(8.2):
△m+1t

A
n (y) = kn△m+1�

A
n (y), △m+1t

A
t (y) = 0. (8.3)

Notice that if the overlapping disappears at this interface point the condi-
tions in (8.3) will be changed again to (8.2). This fact allows that once
a point is broken, it could enter in contact or become open again as many
times as the problem needs it.

8.2 Adhesive layer between orthotropic half spaces

In order to validate the implementation of the linear elastic-brittle interface
model, the problem of two half planes joined by a thin layer is solved. In
this validation problem no crack growth is considered.

8.2.1 Governing integral equations

To solve the problem of two isotropic half-planes bonded by a thin adherent
layer modeled by a weak interface including a crack and subjected to a
far field tension, see Fig. 8.1(a), Lenci [102] deduced a governing integral
equation for the problem of pressurized cracks, see Fig. 8.1(b), related to
the original problem by superposition with a constant stress solution. The
integral equation obtained was solved by a specific numerical procedure.

(a)

(b)

Figure 8.1: (a) Crack at a weak interface under far field tension, (b) sim-
plified problem of a pressurized crack at a weak interface.
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In this section Lenci’s approach will be generalized to the case of identi-
cal orthotropic half-planes bonded by a weak interface including a crack and
subjected to far field tension, see Fig. 8.1(a). Orthotropic axes of adherents
are considered parallel and perpendicular to the interface.

Let �y(x) = �y(x, y = 0) and v(x) = v(x, y = 0) be the normal stress
and the vertical displacement of the lower half-plane at the interface, re-
spectively. By superposition with the constant stress solution �y = N
constant tension (N > 0), and by symmetry with respect to the x-axis we
can limit the present analysis to Ω− subjected to �y(x) = −N in ∣x∣ < a,
�y(x) = −kv(x) in ∣x∣ > a and �xy(x, y = 0) = 0, defining the pressur-
ized crack problem shown in Fig. 8.1(b); k = 2kn is defined to simplify the
notation.

In the case of an isotropic material, by using the Flamant solution as
a Green function, the normal stress and the vertical displacement at the
upper boundary (y = 0) of Ω− can be related by [102]:

v(x) = −�+ 1

4��

+∞∫

−∞

�y(t) ln ∣t− x∣dt, (8.4)

where � is the shear stiffness, � = 3 − 4� in the case of plane strain and
� = (3 − �)/(1 + �) in the case of generalized plane stress and � is the
Poisson ratio. The function �y(x) is even and given by

�y =

{
−N, 0 < x < a,

G(x), x > a,
(8.5)

where G(x) is the unknown interface stress. The notation introduced by
[102] has been kept herein for an easy comparison of the deduction intro-
duced therein and the present analysis.

In the present case of orthotropic half planes, the strain-stress law for a
generalized plane strain state can be expressed in the following way:

⎛
⎝
"xx
"yy
2"xy

⎞
⎠ =

⎛
⎝
s′11 s′12 0
s′12 s′22 0
0 0 s′66

⎞
⎠ .

⎛
⎝
�xx
�yy
�xy

⎞
⎠ , s′IJ = sIJ −

sI3s3J
s33

, (8.6)

where s′IJ are the reduced elastic compliances. Applying the concept of the
Airy stress function and using (8.6), the strain compatibility equation yields
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the following characteristic equation of an orthotropic material [101, 165].

ℓ4(p) = s′11p
4 + (2s′12 + s′66)p

2 + s′22 = 0, (8.7)

whose complex conjugate roots p� and p� (� = 1, 2) can be expressed as
[23, 114]:

p� =
±s− + is+√

2s′11
, s± =

√√
s′11s

′
22 ± (s′12 + 0.5s′66). (8.8)

By particularizing a general expression for displacement solution in an or-
thotropic half-plane (y ≤ 0) subjected to a normal point force (Py) at its
boundary, at the origin of cartesian coordinates (x = y = 0), deduced in
[175], see also [101, 165], the following simple expression of normal displace-
ments along the half-plane boundary (y = 0) originated by this force can
be obtained:

v(x) = −s+
√
s′22Py

�
ln ∣x∣. (8.9)

Thus, in a similar way as in (8.4), we can define for the case of an orthotropic
half-plane bonded by a weak interface, as shown in Fig. 8.1(b), the vertical
displacement of the bottom side of the interface as

v(x) = −s+
√
s′22

�

+∞∫

−∞

�y(t) ln ∣t− x∣dt. (8.10)

Then, using (8.5) and (8.10) and introducing dimensionless coordinates r =
t/a and � = x/a yields:

v(�) = −s+
√
s′22

�
aN

⎧
⎨
⎩2 ln a

∞∫

1

g(r)dr +

∞∫

1

g(r) ln ∣r2 − �2∣dr − 2 ln a+ ℎ(�)

⎫
⎬
⎭ ,

(8.11)
where

ℎ(�) = − ln
∣∣�2 − 1

∣∣+ � ln

∣∣∣∣
� − 1

� + 1

∣∣∣∣+ 2, (8.12)

and g(r) = G(ar)/N = G(t)/N is the unknown dimensionless stress along
the bonded interface part. In the problem illustrated in Fig. 8.1(b), the
vertical displacement v(x) vanishes when x→ ∞ and the sum of the forces
applied to Ω− is zero. Consequently, the global equilibrium condition takes
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the form:
∞∫

1

g(r)dr = 1. (8.13)

Equation (8.11) can be simplified, by substituting (8.13), into the following
form:

v(�) = −s+
√
s′22

�
aN

⎧
⎨
⎩

∞∫

1

g(r) ln ∣r2 − �2∣dr + ℎ(�)

⎫
⎬
⎭ . (8.14)

In the bonded part � > 1, the vertical displacement satisfies the weak
interface condition �y(�) = −kv(�). This relationship and (8.14) finally
give the integral equation which governs the problem:

g(�) = �

⎧
⎨
⎩

∞∫

1

g(r) ln ∣r2 − �2∣dr + ℎ(�)

⎫
⎬
⎭ , � > 1, (8.15)

where

� =
s+
√
s′22ka

�
(8.16)

is a new dimensionless parameter governing the pressurized crack solution
at a weak interface between orthotropic materials. It is a structural pa-
rameter because it relates adhesive-layer stiffness to the adherent stiffness,
taking into account the crack length (the unique characteristic length of the
geometry of the present problem).

Note that the present dimensionless form of the governing integral equa-
tion in (8.15) coincides with that obtained by Lenci [102] except for the
present definition of � for orthotropic half-planes bonded by a cracked weak
interface parallel to one orthotropic axis of the half-planes. The present def-
inition of � is in fact a generalization of Lenci’s original isotropic definition
to this particular orthotropic case. It can be shown that (8.16) when written
for isotropic materials reduces to Lenci’s expression � = ka(�+ 1)/(4��).

8.2.2 Numerical solution

The numerical solution of the problem defined in the previous section,
Fig. 8.1(a) is obtained here by using a collocational BEM code [72, 131],
solving the Somigliana displacements identity for orthotropic materials.
This code uses linear continuous elements [131] for elastic plane problems.
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To solve the problem of pressurized cracks in a weak interface between
two orthotropic half-planes, the problem symmetry with respect to the y-
axis has been used. Each half-plane has been modeled by a square domain
much larger than the crack size, trying to simulate a finite crack between
infinite half-planes. The mesh used for each square domain has 518 ele-
ments. The height and width of each square domain is 100 times the size
of the crack half-length a (taken as 1mm herein), see Fig. 8.1(a).

According to Subsection 8.2.1, using an appropriate material paremeter,
the dimensionless form of the solutions of a pressurized crack at a weak
interface between orthotropic and isotropic half planes are coincident if the
crack is parallel to one of the orthotropic axes. The orthotropic material
properties used in BEM calculations are those of an 8552/AS4 carbon fibre-
epoxy composite, with the following orthotropic properties: Ex=135GPa,
Ey=10GPa, Ez=10GPa, Gxy=5GPa, Gxz=5GPa, �xy=0.3, �yz=0.4 and
�xz=0.3. Nevertheless, as the numerical results obtained are presented in
dimensionless form, they are valid for any orthotropic material. Then, in
order to obtain the different values of the dimensionless parameter � shown,
the value k was varied from 109.8 x 109 Pa/m to 109.8 x 1013 Pa/m.

As shown in the following, the numerical results for orthotropic mate-
rials obtained by the BEM code (when changed to dimensionless form and
using the new characteristic parameter �, defined in (8.16)) are in excellent
agreement with those obtained for isotropic materials in [102] by a different
numerical procedure.

The function g(�) is reported in Fig. 8.2(a) for different values of �. For
relatively "soft" interfaces (i.e., low values of �) g(�) achieves very small
and almost constant values, while in the opposite case of "stiff" interfaces
the stresses are increasing significatively in the neighborhood of the crack
tip. To better visualize the shape of the solution, the normalized function
g(�)/g(1) is shown in Fig. 8.2(b), which illustrates for example how slowly
the solution spreads over the whole interface when � tends to zero.

An important feature of the solution shown in [102] is its behavior near
the crack tip, where interface tractions are bounded at the tip of a crack
situated along a weak interface, in contrast with the singular (unbounded)
tractions at the tip of an interface crack situated along a perfect interface,
where no relative displacements of bonded surfaces are allowed. Thus, dur-
ing crack growth along a weak interface, tractions are kept bounded. It
appears that local normal tractions in the zone close to the interface crack
tip follow the asymptotic law [102]:

� ∼= �0 + �1(� − 1) [ln(� − 1)− 1] , for � → 1+. (8.17)
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(a)

(b)

Figure 8.2: Pressurized crack at a weak interface between identical or-
thotropic half-planes. BEM solution for various values of the parameter
�: (a) function g(�), (b) normalized solution g(�)/g(1).

The vertical displacement v(�) at the bottom side of the interface is
depicted in Fig. 8.3. It has a minimum in the midpoint of the crack and
it monotonically tends to zero when � → ∞. For "soft" interfaces the dis-
placement is large (tending to infinity as � → 0), while for "stiff" interfaces
it rapidly converges to the Griffith crack displacements. From observations
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Figure 8.3: Pressurized crack at a weak interface between identical or-
thotropic half-planes. BEM solution for various values of the parameter
� of the normalized vertical displacement v(�).

it can be concluded that for � > 100 the weak interface can be consid-
ered as a perfect bonding for practical purposes. An excellent agreement
of the present results for particular orthotropic materials in their dimen-
sionless form with those presented by [102] for isotropic materials has been
obtained. Recall that Lenci [102] solved (8.15) for isotropic materials by
a special numerical procedure, whereas in the present work the Somigliana
displacement identities for the upper and bottom orthotropic adherents have
been solved by the collocational BEM.

8.3 Concluding remarks

In the present chapter, some implementation details and validation of the
Linear Elastic-Brittle Interface Model are presented.

The presence of a crack at a linear elastic-brittle interface, which rep-
resents a simple model of a thin adhesive layer, has been analyzed in the
present chapter in detail. First the governing integral equation for a pressur-
ized crack at the weak interface between identical orthotropic half planes has
been deduced. A new dimensionless characteristic structural parameter �
was introduced in this governing integral equation . It relates adhesive-layer
stiffness to the adherent stiffness, taking into account crack length. Then,
the problem of a pressurized crack has been solved by the collocational
BEM. An excellent agreement has been obtained between the numerical
results by the present BEM code and those shown in [102].
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An important novelty in the present thesis is that not only numerical
solution of stresses and displacements for a crack at a weak interface can
be computed, but also the crack growth along the weak interface can be
modeled using a mixed mode fracture criterion for an adhesive thin layer
modeled by linear elastic-brittle traction-displacement law. This capability
will be tested to analyze different damage mechanisms in composite appli-
cations presented from Chapter 10 to 13.

It has been proved that with the use of adequate properties (a large
value of the dimensionless parameter �) the solution is analogous to the one
obtained by LEFM, with the advantage that crack onset and propagation
can be modeled in an easy manner, as will be shown in Chapters 10-13.



Chapter 9

Formulation, implementation
and validation of new
expressions of the integral
kernels for transversely
isotropic elastic materials in
3D BEM

Implementing a cohesive zone-like model in 3D BEM code will be part of
a future development based on the present thesis. The objective of this
work is to develop and efficient and accurate numerical tool for analysis
of different mechanisms of damage in composite laminates taking into ac-
count 3D effects. Nevertheless, in order to study problems in composite
materials by 3D BEM an efficient fundamental solution for transversely
isotropic elastic materials in 3D is necessary. Thus, explicit closed-form
real-variable expressions of a fundamental solution and its derivatives for
three-dimensional problems in transversely linear elastic isotropic solids are
developed first in the present chapter. The expressions of the fundamental
solution in displacements Uik and its derivatives, originated by a unit point
force, should be valid for any combination of material properties and for
any orientation of the radius vector between the source and field points. A
compact expression of this kind for Uik was introduced by Ting and Lee
[167] in terms of the Stroh eigenvalues on the oblique plane normal to the
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radius vector. Then, working from this expression of Uik, and after a re-
vision of the Ting and Lee [167] final formula, a new approach (based on
the application of the rotational symmetry of the material) for deducing
the first and second order derivative kernels, Uik,j and Uik,jℓ respectively, is
developed in the present chapter. The new expressions of the fundamental
solution and its derivatives do not suffer from the difficulties of some previ-
ous expressions, obtained by other authors in different ways, with complex
valued functions appearing for some combinations of material parameters
and/or with division by zero for the radius vector at the rotational symme-
try axis. The expressions of Uik, Uik,j and Uik,jℓ are presented herein in a
form suitable for an efficient computational implementation in BEM codes.

9.1 BIE kernels

9.1.1 Introduction

An accurate and efficient evaluation of the integral kernels, typically rep-
resented by a fundamental solution (free-space Green’s function) and its
derivatives, is a key issue in the numerical solution of Boundary Integral
equations (BIEs) by the Boundary Element Method (BEM) [5, 131, 10],
the Method of Fundamental Solutions (MFS) [62] and other approaches.

Consider a homogeneous linearly elastic anisotropic material character-
ized by the fourth rank tensor of elastic stiffnesses Cijkℓ (i, j, k, ℓ = 1, 2, 3),
verifying the symmetry relations Cijkℓ = Cjikℓ = Ckℓij. Then, the constitu-
tive law writes as

�ij(x) = Cijkℓ"kℓ(x) = Cijkℓuk,ℓ(x), (9.1)

where �ij , "kℓ and uk, respectively, are the tensors of stresses and strains
and the vector of displacements at a point x = (x1, x2, x3). It is assumed
that Cijkℓ is a positive definite tensor, i.e. Cijkℓ"ij"kℓ > 0 for any nonzero
strain tensor.

Let U(x) denote a fundamental solution for the above material given by
a 3 × 3 matrix whose columns represent displacement vectors (at a point
x ∕= 0) originated in the infinite anisotropic elastic medium (ℝ3) by an ap-
plication of the unit point forces at the origin of coordinates and oriented
in the direction of coordinate axes. Thus, Uik(x) is the displacement orig-
inated at point x in direction i when a unit point force is applied at the
origin of coordinates in direction k.

As the closed-form expressions U(x) do not exist for all classes of these
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materials, and an efficient numerical procedure for evaluation of U(x), and
even more of its derivatives, is not immediate, BEM is still not so popular
for these materials as it is for isotropic materials and, thus, any progress
in extending the scope of BEM applicability to these materials would be
welcome.

For a better understanding of the context of the present work, the main
contributions to the development of expressions of different kinds for U(x)
suitable for implementation in 3D BEM codes will be briefly reviewed.

Fundamental solution for general anisotropic materials in 3D

With reference to general anisotropic elastic materials, working from the
Fredholm expression of U(x) [65] obtained by the 3D Fourier transform,
the next contributions were aimed at obtaining an expression of U(x) as
explicit and simple as possible. Lifshitz and Rozentsveig [103] applied the
Cauchy residue calculus to a 1D integral obtained from the 3D Fourier
integral giving an explicit expression of U(x) in terms of the complex poles,
roots of a sixth order algebraic equation (called the Stroh eigenvalues at
present), degenerate cases with multiple poles being excluded from their
calculation.

The application of the Stroh formalism to anisotropic elasticity (see
Ting [165]) to evaluate U(x) and its derivatives in 3D has been shown to
be a fruitful approach, leading to several substantial contributions in the
1970s, e.g. by Malén [110], expressing U(x) in terms of the normalized
Stroh eigenvectors provided that all eigenvalues are distinct, and also more
recently, without assuming the distinctness of the eigenvalues, by Naka-
mura and Tanuma [123] (expressing U(x) in terms of the Stroh eigenvalues
and eigenvectors) and Ting and Lee [167] and Lee [98] (expressing U(x) in
terms of the Stroh eigenvalues only). Also Wu’s [181] generalization of the
Stroh formalism to 3D elasticity has been shown to be fruitful in generating
Green’s functions of different kinds in a uniform way, its full potential still
to be fully explored.

Recently, Lee [98] deduced new general analytic expressions of the first
and second order derivatives of U(x) in terms of the Stroh eigenvalues only,
which further develop expressions originally derived by Barnett [13].

Note, at this point, that the problem of finding a closed-form analytic
expression of U(x) in terms of elastic stiffnesses for a general anisotropic
elastic material appears to be equivalent to finding closed-form expressions
for the roots of the above mentioned sextic equation. According to the
work of Head [81], no general solution in radicals of this sextic equation is
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possible, and therefore it seems that a fully closed-form expression of U(x)
for general anisotropy will never be available.

BEM applications to anisotropic elastic materials started with the work
of Wilson and Cruse [179], who implemented the expressions of U(x) and
its first and second order derivatives in terms of a 1D integral over the unit
circle [65, 103] and achieved an efficient numerical procedure by tabulating
the values of U(x) and its derivatives (with respect to spherical angles)
and finally by interpolating these values in BEM calculations. Although,
apparently, for a long time this was the only satisfactory and widely used
numerical procedure, e.g. Schclar [155], it requires large computer storage
for tabulated values and it may not provide sufficient accuracy in materials
with a high degree of anisotropy.

A new numerical procedure for a direct evaluation of U(x) and its deriva-
tives, which is more accurate and more efficient (in terms of both computer
storage and time), was developed by Gray and his co-workers [136, 137, 151]
from expressions obtained by residue calculations [51], covering also the de-
generate cases with multiple poles. Another 3D BEM implementation based
on Wang’s [173] residue calculations was developed by Tonon et. al. [168].

Finally, let us mention that, to the best of the authors’ knowledge,
the explicit expressions of U(x) for general anisotropic materials obtained
using the concepts of the Stroh formalism in [98, 123, 167] have not yet
been implemented and validated in the BEM context.

Fundamental solution for transversely isotropic materials in 3D

With reference now to transversely isotropic elastic materials, the above
mentioned sextic equation can be solved in radicals [14, 163], and conse-
quently the closed-form expressions of U(x) and its derivatives are possible.
This feature represents a fundamental difference with respect to the above
discussed general anisotropy case and will be further exploited in the present
work.

Whereas numerical approaches, such as modulation function interpo-
lation [155, 179] or numerical solution of the sextic equation for different
relative orientations of the source and field points [136, 137, 151], are the
unique option for generally anisotropic materials where closed-form expres-
sions are not available, it is expected that using a closed-form expression of
U(x) for transversely isotropic materials will result in significant computing
time savings and a higher accuracy.

Let, without loss of generality, the x3-axis be the rotational-symmetry
axis, the x1x2-plane thus being the isotropy plane. Applying Voigt reduced
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notation [165], the elastic stiffnesses are represented by a symmetric and
positive definite matrix CIJ (I, J = 1, . . . , 6). A transversely isotropic ma-
terial is characterized by the following five elastic constants:

C1111 = C11, C3333 = C33, C1122 = C12, C1133 = C13, C2323 = C44 (9.2)

It holds that C1212 = C66 = (C11 − C12)/2. Let △ be defined as

△ =
√
C11C33 − C13 − 2C44. (9.3)

The values of △ form three different groups of transversely isotropic mate-
rials, obtained by different combinations of material properties. It should
be mentioned that previous fundamental solution and its modifications
[104, 129] are only available when △ > and △ = 0, and different expressions
are necessary for each case.

Consider a point x ∕= 0 and a pair of orthogonal unit vectors n(x) and
m(x), n⊥m, situated on the plane perpendicular to (the position vector) x

so that (n,m,x/r), r = ∣x∣, form a right-handed triad. Let �, 0 ≤ � ≤ �,
be the angle between the x3-axis and vector x, shown in Fig. 9.1.

Figure 9.1: Points x and x̂ in spherical coordinates associated to a trans-
versely isotropic material.

Several closed-form expressions of U(x) for a transversely isotropic ma-
terial presented in the past have been obtained in different ways. Whereas
Lifshitz and Rozenzweig [103], Kröner [94], Willis [178], Lejček [100] and Hu
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et al. [84] directly evaluated expressions obtained from the general formula
of Fredholm [65]; Elliot [57], Chen [43], Pan and Chou [129], Fabrikant [60],
Hanson [77] and Loloi [104] applied the potential function approach; and
Nakamura and Tanuma [123], Ting and Lee [167] and Lee [98] combined
the Fredholm’s approach and Stroh formalism.

It will be instructive to relate, in what follows, the degeneracy cases
(depending on the material properties and the direction of x) observed in
the expressions of U(x) for transversely isotropic materials obtained by
the potential function approach with the classification of the fundamental
elasticity matrix N(n,m), in the framework of the Stroh formalism [165,
166].

The fundamental elasticity matrix N(n,m) in the Stroh formalism is
non-semisimple (having a double or a triple eigenvalue, and only two inde-
pendent eigenvectors) if △ = 0 [14, 163]. It is not difficult to show that
△ = 0 is equivalent to zero discriminant of the characteristic quadratic
equation of the potential theory.

The cases of � = 0 or � also lead to a non-semisimple matrix
N(n,m) [14, 163]. In these cases the potential function approach may
lead to division by zero in the expressions of U(x) and some specific ar-
rangements have to be applied [77, 104, 129].

In the remaining cases, N(n,m) is semi-simple (having a double eigen-
value for a specific combination of elastic stiffnesses with C44/C66, giving
a solution of the characteristic quadratic equation of the potential theory)
or simple (having three different eigenvalues), and has three independent
eigenvectors in any case. In these cases, △ > 0 and △ < 0 respectively
lead to real and complex solutions of the characteristic quadratic equation
of the potential theory, which correspondingly produces real- and complex-
variable expressions of U(x).

Note that the complex-variable expressions of U(x) obtained by using
the potential theory in the case △ < 0 include complex functions, which
are cumbersome for implementing in a BEM code and require very careful
programming to keep their values in the same branch when multivaluedness
arises [129]. Therefore, it is not a surprise that BEM results obtained by
using these complex-variable expressions of U(x) for materials with △ < 0
have not been published so far.

From the above mentioned closed-form expressions of U(x), the expres-
sion deduced by Pan and Chou [129] is usually used in BEM codes, see
Sáez et al. [150] and Loloi [104] for its BEM implementations and Ariza
and Domínguez [8] for an expression of the hypersingular kernel in the trac-
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tion BIE obtained from the second order derivatives of U(x).

As discussed above, this solution [129] has several features which make
somewhat cumbersome its implementation covering all possible cases: i)
expressions depending on the values of △ (positive, negative or zero) and
in particular its complex-variable character for △ < 0; ii) a loss of precision
and/or a division by zero for � = �. Although the difficulty with the
degeneracy problem at � = � has been solved by Loloi [104] by means of
an ad hoc approach (using the sign(x3) function), the mentioned features
may still cause some difficulties in using this expression in further analytic
deductions and in BEM development.

The aim of the present chapter is to obtain, and numerically test,
completely general and closed-form real-variable expressions of Uik(x), its
derivatives Uik,j(x) and Uik,jl(x) and the corresponding stress Σijk and

traction Tik(x) solutions, as well as the hypersingular kernels Σloopijkl and Sijk
valid for any transversely isotropic material.

9.1.2 Displacement fundamental solution for anisotropic ma-
terials

According to Malén [110] and Lothe [105], U(x) can be expressed in terms
of the Barnett-Lothe tensor H(x) as:

U(x) =
1

4�r
H(x). (9.4)

Thus, in the context of BIEs, H(x) represents the characteristic (or modu-
lation) function of the displacement fundamental solution U(x). It is well
known that H(x) can be evaluated in several ways [165, 123, 167], one
option being given by the integral:

H(x) =
1

�

∫ +∞

−∞
Γ
−1(p)dp, (9.5)

with the matrix
Γ(p) = Q+ p(R+R

T ) + p2T (9.6)

expressed in terms of a the integration variable p and the matrices Q, R

and T , defined for an x ∕= 0 as:

Qij = Cijkℓnjnℓ, Rik = Cijkℓnjmℓ, Tik = Cijkℓmjmℓ, (9.7)
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where superscript T denotes the matrix transpose. Note that the matrices
Q and T are symmetric and positive definite matrices.

It can be shown that H(x) is independent of the choice of n and m

on the plane perpendicular to x [165]. As follows from the above relations,
H(x) is a symmetric and positive definite matrix depending only on the
direction of x but not on its magnitude, i.e. H(x) = H(xr ), and fulfilling
H(−x) = H(x). Hence, U(x) is also a symmetric positive definite matrix
and U(−x) = U(x).

Lifshitz and Rozentsveig [103] obtained, by applying the Cauchy residue
theory, an expression of the integral in (9.5) which can be arranged in the
following form:

H(x) = 2i
3∑

v=1

Γ̂(pv)

∣Γ(pv)∣′
, (9.8)

where i is the imaginary unit, ∣Γ(p)∣ is the determinant of Γ(p), ∣Γ(p)∣′ =
d∣Γ(p)∣/dp, Γ̂(pv) is the adjoint matrix of Γ(pv) defined by the relation
Γ(pv)Γ̂(pv) = ∣Γ(pv)∣I, where I is the identity matrix, and pv = �v + i�v
(v = 1, 2, 3) are the three complex roots with the positive definite imagi-
nary part (�v > 0) of the sextic algebraic equation (sometimes called Stroh
eigenvalues):

∣Γ(p)∣ = 0. (9.9)

It should be noted that the expression of H(x) in (9.8) is not valid for
mathematically degenerate cases with repeated roots pv, e.g. p1 = p2 or
p1 = p2 = p3.

Ting and Lee [167], starting from (9.8) and writing Γ̂(p) as a polynomial
of fourth degree in p

Γ̂(p) =

4∑

n=0

pnΓ̂(n), (9.10)

achieved a new general expression of H(x) valid for any kind of linearly
elastic material:

H(x) =
1

∣T ∣

4∑

n=0

qnΓ̂
(n), (9.11)

where the real coefficients qn are expressed through fractions defined in
terms of pv, with no division by zero in the degenerate cases as happens
with the expression of H(x) in (9.8).

A simplified expression of H(x) can be achieved for configurations, ma-
terials and some specific positions of x with respect to a material, for
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which (9.9) is a cubic equation with real coefficients in p2. In this case
the determinant ∣Γ(p)∣ is expressed using (9.6) as

∣Γ(p)∣ = ∣T ∣(p2 − p21)(p
2 − p22)(p

2 − p23), (9.12)

which leads to the following form of the sextic equation (9.9):

[p4 + (g2 − 2ℎ)p2 + ℎ2][p2 + �23 ] = 0, (9.13)

g, ℎ and �3 being real and positive. The two roots p1 and p2 are pure imag-
inary or complex numbers, whereas the root p3 is always a pure imaginary
number.

Then, applying (9.10) and (9.12) in (9.8) a simple expression in the form
of (9.11) is obtained:

H(x) =
1

∣T ∣� {
�

ℎ�3
Γ̂
(0) + Γ̂

(2) + �Γ̂(4)}, (9.14)

where the real and positive numbers �, � and � defined as:

� = −i(p1 + p2 + p3) = g + �3, (9.15a)

� = −(p1p2 + p2p3 + p3p1) = ℎ+ g�3, (9.15b)

� = i(p1 + p2)(p2 + p3)(p1 + p3) = g(ℎ+ g�3 + �23), (9.15c)

depend only on p1+p2, p1p2 and p3. Thus, it is not necessary to evaluate in-
dividually all the roots of the sextic equation, and the final expression (9.14)
is valid for both non-degenerate and degenerate cases. Explicit expressions
for �3, ℎ and g can be determined from (9.9) and (9.13) determining first
the pure imaginary root p3 = i�3 by an explicit formula for roots of cubic
algebraic equations [167].

Finally, the following key results by Ting and Lee [167] (Section 4
therein) will be useful in the evaluation of H(x) presented in the next
section. If x is situated on a plane of elastic symmetry then, without loss
of generality, one can assume that this plane coincides with a coordinate
plane (applying a suitable rotation of the coordinate system if necessary),
which implies the reduction of (9.9) to (9.13) and the vanishing of some
components of H(x) (e.g., H12(x) = 0 and H23(x) = 0 if the plane x2 = 0
is a plane of elastic symmetry).
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9.1.3 Displacement fundamental solution for transversely
isotropic materials

Consider a transversely isotropic material as specified in (9.2). Any plane
that contains the x3-axis is a plane of elastic symmetry and, according
to [167], form (9.13) of the sextic equation and the completely explicit
expression of H(x) from (9.14) could be applied for any point x.

The following procedure leads to a relatively simple and general expres-
sion of H(x). Let us define a vector

x̂ = (r12, 0, x3), where r12 =
√
x21 + x22. (9.16)

Let c = cos� = x3/r and s = sin� = r12/r, the angle 0 ≤ � ≤ �
being shown in Fig. 9.1. Then, defining n = (c, 0,−s) and m = (0, 1, 0),
[n,m, x̂/r] forms a right-handed triad. Explicit expressions for the non-zero
terms of

H(x̂) =

⎛
⎝
H11 0 H13

0 H22 0
H13 0 H33

⎞
⎠ , (9.17)

can be obtained using (9.14)

H11 =
1

C66�3
+
C44c

2 + C33s
2

C11C44gℎ
− f

�
,

H22 =
1

C11g
+
f

�
,

H33 =
1

gℎ

{
ℎ+ c2

C44
+

s2

C11

}
,

H13 = H̃13s,

(9.18)

where
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H̃13 =
(C13 + C44)c

C11C44gℎ
,

�3 =

{
C66c

2 + C44s
2

C66

}1/2

,

ℎ =

{
c4 +

�s2c2

C11C44
+
C33s

4

C11

}1/2

,

� = C11C33 −C2
13 − 2C13C44,

g =

{
2(ℎ + c2) +

�s2

C11C44

}1/2

,

� = g(ℎ + g�3 + �23),

f =
ℎ+ c2

C66
+

gℎ

C66�3
+

C33s
2

C11C44
,

(9.19)

�3, ℎ, g and � being positive dimensionless functions of c and s.

A general expression of the tensor H(x) for any x, in terms of cos and
sin functions of spherical angles � and � of x, can be obtained from (9.17)
and (9.18) by the following transformation of components of H(x̂):

Hik(x) = ΩiaΩkbHab(x̂), (9.20)

where the rotation matrix Ω is defined as

Ω =

⎛
⎝
cos � − sin � 0
sin � cos � 0
0 0 1

⎞
⎠ , (9.21)

the angle 0 ≤ � < 2� being shown in Fig. 9.1. Note that transformation
rule (9.20) with (9.21) for H(x) evaluation has been obtained by a small
correction in the original formula given by Ting and Lee [167].

Finally, bringing together Equations (9.4) and (9.17-9.21) an explicit
and completely general expression for the fundamental solution U(x) in a
transversely isotropic material is obtained. The form of this expression suit-
able for a computational implementation obtained by performing explicitly
the transforms indicated in (9.20) is given in the Appendix, see (A.18),
where the presence of several zero components in H(x̂) and Ω has provided
simple and short expressions of the components of H(x).
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9.1.4 Traction fundamental solution for transversely isotropic
materials

Let Eijk(x) represent strains "ij at x originated in the infinite elastic medium
subjected to a unit point force in the k-direction at the origin of coordinates.
Then,

Eijk(x) =
1

2

(
∂Uik
∂xj

(x) +
∂Ujk
∂xi

(x)

)
=

1

2
(Uik,j(x) + Ujk,i(x)) . (9.22)

Derivatives of the displacement fundamental solution appearing in (9.22)
can be expressed in a form analogous to (9.4):

Uik,j(x) =
Ûik;j(x)

4�r2
, (9.23)

where Ûik;j(x) is the characteristic (or modulation) function, which de-

pends only on the direction of x but not on its magnitude, i.e. Ûik;j(x) =

Ûik;j
(
x

r

)
. While a comma between subscripts denotes a derivative with

respect to a cartesian coordinate, a semicolon in a modulation function is
used only (mnemotechnically) to represent that this function is associated
to the corresponding derivative kernel. Notice that Ûik;j(x) = Ûki;j(x) and

Ûik;j(−x) = −Ûik;j(x).
Starting from the expression of Uik(x) given by (9.4) and (9.17-9.21)

and directly performing differentiation leads to somewhat large expressions
for Ûik;j(x), which additionally, when expressed in terms of coordinates of
point x, include terms of the type “zero divided by zero” when x is placed
on the x3-axis. To avoid this problem, a trick analogous to that proposed
by Ting and Lee [167] can be used here.

First, Ûik;j(x̂) is evaluated by the above described procedure. Then,
considering that x3 is the rotational symmetry axis of the material, a general
expression of Ûik;j(x), in terms of cos and sin functions of spherical angles
� and � of a point x, is simply obtained by a transformation analogous
to (9.20):

Ûik;j(x) = ΩiaΩkbΩjcÛab;c(x̂). (9.24)

Analytic evaluation of Ûik;j(x̂) has been performed with the aid of the
computer algebra software Mathematica [180]. The completely general and
closed-form expressions of Ûik;j(x̂) obtained are presented in a compact form
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suitable for computer implementation:

Û11;1 = H ′
11c−H11s, Û12;2 = H̃12s, Û11;3 = −H ′

11s−H11c,

Û22;1 = H ′
22c−H22s, Û23;2 = H̃13, Û22;3 = −H ′

22s−H22c,

Û33;1 = H ′
33c−H33s, Û33;3 = −H ′

33s−H33c,

Û13;1 = H ′
13c−H13s, Û13;3 = −H ′

13s−H13c,

(9.25)

where

H ′
11 = − �′3

C66�23
− C44c

2 +C33s
2

C11C44gℎ

(
ℎ′

ℎ
+
g′

g

)
+

2 (C33 − C44) cs

C11C44gℎ

− 1

�

(
f ′ − �′f

�

)
,

H ′
22 = − g′

C11g2
+

1

�

(
f ′ − �′f

�

)
,

H ′
33 = − 1

gℎ

(
2cs

C11
+
ℎ′ − 2cs

C44

)
−H33

(
ℎ′

ℎ
+
g′

g

)
,

H ′
13 =

C13 + C44

C11C44gℎ

(
c2 − s2 − cs

(
ℎ′

ℎ
+
g′

g

))
.

H̃12 =
C33

C11C44gℎ
− �c2 + C33C44s

2

C11C44 (ℎ+ c2)

(
1

C11gℎ
+

g

C66�3�

)

+
1

�

(
� − 2C33C66

C11C44C66
+

C44g

C2
66�3

)
,

�′3 =
(C44 −C66) cs

C66�3
,

ℎ′ =
1

ℎ

(
−2c3s+

�cs

C11C44

(
c2 − s2

)
+

2C33cs
3

C11

)
,

g′ =
1

g

(
ℎ′ − 2cs+

�cs

C11C44

)
,

�′ = g
(
ℎ′ + g′�3 + g�′3 + 2�3�

′
3

)
+
g′�

g
,

f ′ =
ℎ′ − 2cs

C66
+

1

C66�3

(
ℎg′ + ℎ′g − �′3gℎ

�3

)
+

2C33cs

C11C44
,

Functions �′3, ℎ
′, g′, �′, f ′ and H ′

ik represent the first order derivatives
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with respect to the angle � of the corresponding functions defined in (9.18-
9.19).

The remaining components of Ûik;j(x̂) vanish,

Û12;1 = Û23;1 = Û11;2 = Û13;2 = Û22;2 = Û33;2 = Û12;3 = Û23;3 = 0. (9.26)

It should be mentioned that in the original expression of Û12;2(x̂), di-
rectly obtained by differentiating (9.20), the term (H11 −H22)/s appeared,
which would lead to zero divided by zero for points at the x3-axis. This
term, which has a finite limit value for � → 0 or �, has been rewritten in
the form H̃12s, which is well defined for any point with r > 0.

By applying the stress-strain constitutive law in matrix form, the stresses
corresponding to the above fundamental solution are obtained as:

⎧
⎨
⎩

Σ11k

Σ22k

Σ33k

Σ23k

Σ13k

Σ12k

⎫
⎬
⎭

= C

⎧
⎨
⎩

E11k

E22k

E33k

2E23k

2E13k

2E12k

⎫
⎬
⎭

= C

⎧
⎨
⎩

U1k,1

U2k,2

U3k,3

U2k,3 + U3k,2

U1k,3 + U3k,1

U1k,2 + U2k,1

⎫
⎬
⎭

, (9.27)

Σijk(x) representing the stress tensor �ij at x originated in the infinite
elastic medium subjected to a unit point force in the k-direction at the origin
of the coordinates. Again, it will be useful to write the stress fundamental
solution in the form analogous to (9.4) and (9.23):

Σijk(x) =
Σ̂ijk(x)

4�r2
, (9.28)

where Σ̂ijk(x) = Σ̂ijk
(
x

r

)
. Notice that Σ̂ijk(x) = Σ̂jik(x) due to the sym-

metry of the stress tensor and Σ̂ijk(−x) = −Σ̂ijk(x).

By substituting expressions (9.23) and (9.28) into (9.27), it is easily
seen that a relation analogous to (9.27) holds for the characteristic func-
tions Ûik;j(x) and Σ̂ijk(x) as well. Then, using expressions (9.25-9.26) gives

directly the following closed-form expressions of Σ̂ijk(x̂):
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Σ̂111 = C12H̃12s+C11

(
H ′

11c−H11s
)
+ C13

(
−H ′

13s−H13c
)
,

Σ̂221 = C11H̃12s+C12

(
H ′

11c−H11s
)
+ C13

(
−H ′

13s−H13c
)
,

Σ̂331 = C13H̃12s+C13

(
H ′

11c−H11s
)
+ C33

(
−H ′

13s−H13c
)
,

Σ̂131 = C44

(
−H ′

11s−H11c
)
+ C44

(
H ′

13c−H13s
)
,

Σ̂232 = C44

(
−H ′

22s−H22c
)
+ C44H̃13,

Σ̂122 = C66H̃12s+C66

(
H ′

22c−H22s
)
s,

Σ̂113 = C13

(
−H ′

33s−H33c
)
+ C12H̃13 +C11

(
H ′

13c−H13s
)
,

Σ̂223 = C13

(
−H ′

33s−H33c
)
+ C11H̃13 +C12

(
H ′

13c−H13s
)
,

Σ̂333 = C33

(
−H ′

33s−H33c
)
+ C13H̃13 +C13

(
H ′

13c−H13s
)
,

Σ̂133 = C44

(
H ′

33c−H33s
)
+ C44

(
−H ′

13s−H13c
)
.

(9.29)

The remaining components of Σ̂ijk(x̂) vanish due to the fact that the
plane x2 = 0 is the symmetry or skew-symmetry plane of the elastic problem
associated to a particular direction of the point force, namely:

Σ̂121 = Σ̂231 = Σ̂112 = Σ̂222 = Σ̂332 = Σ̂132 = Σ̂123 = Σ̂233 = 0. (9.30)

Again, considering that x3 is the rotational symmetry axis of the ma-
terial, a general expression of Σ̂ijk(x), in terms of cos and sin functions
of spherical angles � and � of a point x, is obtained by a transformation
analogous to (9.24):

Σ̂ijk(x) = ΩiaΩjbΩkcΣ̂abc(x̂). (9.31)

The corresponding traction fundamental solution Tik(x), associated to
the unit normal vector n(x) is directly obtained from Σijk(x) applying the
Cauchy lemma:

Tik(x) = Σijk(x)nj(x) (9.32)

The main advantage of the above presented expressions for Uik,j(x),
Σijk(x) and Tik(x) in comparison with the previous expressions of other
authors [104, 129] is that they are completely general real-variable expres-
sions, valid for any combination of material parameters and any position of
the evaluation point.

For a direct and efficient computational implementation of the obtained
expressions of Ûik,j(x) and Σ̂ijk(x) for any point x ∕= 0, the transforms
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indicated in (9.24) and (9.31) have been explicitly performed producing
compact and general expressions presented in Appendix, which take ad-
vantage of the presence of many zero components in Ûik;j(x̂) and Σ̂ijk(x̂).
It has been numerically verified that in terms of computational time, the
expressions in (A.20) and (A.21) are significantly more efficient than their
counterparts (9.24) and (9.31).

Finally, it should be mentioned that the reason for presenting in an
explicit way expressions of the derivatives of the displacement fundamental
solution and not only of the stress fundamental solution is the fact that BEM
programmers sometimes prefer to use the first one instead of the second,
and also the fact that these expressions are applied in the deduction of the
second order derivatives of the displacement fundamental solution in the
deduction of the Somigliana stress identity.

9.2 HBIE kernels

9.2.1 Introduction

The present section deals with the evaluation of a evolution of the hyper-
singular integral kernel in the Somigliana stress identity for transversely
isotropic materials.

For the sake of brevity only the main contributions in the development
and application of different kinds of expressions for the second order deriva-
tive of fundamental solutions (or related kernels) will be briefly reviewed
herein. See Subsection 9.1.1 for a comprehensive review of the history fun-
damental solutions evolution and its derivatives for general anisotropic ma-
terials, and in particular for the transversely isotropic materials in 3D.

Barnett [13] obtained integral representations of the first and second
order derivatives of the fundamental solution for a general anisotropic ma-
terial, U(x), by using Fourier transforms. Barnett used numerical schemes
to evaluate his results. Recently, Lee [99] deduced new general analytical
expressions of the second order derivatives of U(x) in terms of the Stroh
eigenvalues.

The implementation in BEM of expressions of anisotropic fundamen-
tal solutions and its derivatives using the Stroh formalism as introduced
by Lee [98], were recently developed by Shiah et. al. [157] and Tan et.
al. [162]. Although the theory and formulation was obtained a few years
before. Rungamornrat [149] transforms the hypersingular and strongly sin-
gular integrals appearing in the SGBEM formulation into line and surface
integrals, which are at most weakly singular and consequently can be ana-
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lytically or numerically evaluated without difficulty. Some extensions of the
fundamental solutions and its derivatives for anisotropic piezoelectric [42]
and magneto-electro-elastic materials [31] have been also obtained. Chen
and Lin [42] evaluated numerically (from the integral solutions derived from
Fourier transform methods) the first and second order derivative for linear
piezoelectric materials. Recently, Buroni and Sáez [31] obtained the fun-
damental solution for fully magnetoelectro-elastic and general anisotropic
materials. The first and second order derivatives are also obtained com-
bining extended Stroh formalism, Radon transform and Cauchy’s residue
theory.

In the particular case for transversely isotropic materials, it is remark-
able to mention that closed-form expressions for the hypersingular kernel in
the traction BIE obtained from second order derivatives of U(x) were pre-
sented by Ariza and Domínguez [8]. These expressions were obtained using
the potential theory and was based on previous works [104, 129]. To the
best knowledge of the authors the expressions presented in [8] are the only
ones that are presented in an explicit and closed-form manner for trans-
versely isotropic materials. The aim of the present work is to deduce, and
numerically test, completely general and closed-form real-variable expres-
sions of the strongly singular and hypersingular kernels in the traction BIE,
valid for any transversely isotropic material obtained using the concepts of
the Stroh formalism.

9.2.2 Modulation functions of the fundamental solution and
its derivatives

The fundamental solution and its derivatives can be expressed in terms of
the so-called modulation functions depending only on spherical angles, see
Fig. 9.1, in the following form:

Uik(r, �, �) =
1

4�r
Ûik(�, �), (9.33)

Uik,j(r, �, �) =
1

4�r2
Ûik;j(�, �), (9.34)

Uik,jℓ(r, �, �) =
1

4�r3
Ûik;jℓ(�, �), (9.35)

where ‘widehat’ symbol denotes the modulation functions of the fundamen-
tal solution, and also of its derivatives with respect to cartesian coordinates.
The modulation functions are independent of the radius r in spherical co-
ordinates. Again a comma between subscripts denotes a derivative with
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respect to a cartesian coordinate, a semicolon in a modulation function is
used only (mnemotechnically) to represent that this function is associated
to the corresponding derivative kernel in (9.34) or (9.35).

The modular functions of the fundamental solution derivatives will be
shown first in terms of the derivatives of H(x). By applying standard rules
for differentiation with respect to cartesian coordinates in (9.34) and (9.35)
we obtain

Ûik;j(�, �) =Hik,j(r, �, �)r −Hik(�, �)r,j (9.36)

Ûik;jℓ(�, �) =Hik,jℓ(r, �, �)r
2 −Hik,j(r, �, �)r,ℓr −Hik,ℓ(r, �, �)r,jr

−Hik(�, �) (�jℓ − 3r,jr,ℓ) (9.37)

where r,j(�, �) = rj(r, �, �)/r.

By conveniently introducing new modulation functions obtained by deriva-
tives of Hik(�, �) as follows,

Hik,j(r, �, �) = r−1Ĥik;j(�, �) (9.38)

Hik,jℓ(r, �, �) = r−2Ĥik;jℓ(�, �) (9.39)

the modulation functions of the derivatives of Uik can be also expressed in
terms of the modulation functions Hik, Ĥik;j and Ĥik;jℓ as follows

Ûik;j(�, �) = Ĥik;j(�, �)−Hik(�, �)r,j (9.40)

Ûik;jℓ(�, �) = Ĥik;jℓ(�, �)− Ĥik;ℓ(�, �)r,j − Ĥik;j(�, �)r,ℓ

−Hik(�, �)(�jℓ − 3r,jr,ℓ) (9.41)

Sometimes it is useful to express the characteristic (or modulation) function
Ûik;j(x) as a function of x. Then, such modulation function depends only

on the direction of x but not on its magnitude, i.e. Ûik;j(x) = Ûik;j
(
x

r

)
.

The following symmetry relation hold Ûik;j(x) = Ûki;j(x) and Ûik;j(−x) =

−Ûik;j(x).

As will be shown the modulation function Ûik;jℓ have simple expressions
in terms of the first and second order derivative of Hik with respect to spher-
ical angles � and �. These expressions are obtained for � = 0, as they will
be enough to obtain final expressions of Uij,kl by applying a transformation
introduced in [167] for Uik and also used and extended in Subsection 9.1.4
for Uik,j.
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9.2.3 Strongly singular kernel Dijk for the stress Somigliana
identity

It is noteworthy to remind that the expressions for Dijk coincide, except
for a change of sign, with the stress tensor components Σijk introduced in
the previous section, see (9.31). The change of sign is due to the different
differentiation point: integration point for the stress tensor and collocation
point for the kernel Dijk.

Dijk(x) = −Σijk(x) (9.42)

9.2.4 Hyper-singular kernel Sijk for the stress Somigliana
identity

The tensor Sijk is based on the related kernel of the second order derivative

Uik,jl and the tensor Σloopijkl (the stress influence function in an infinitesimal
dislocation loop [115]). The corresponding fundamental solution, tensor
Sijk, associated to the unit normal vector n(x) is directly obtained from

Σloopijkl (x) by:

Sijk(x) = Σloopijkl (x)nl(x) (9.43)

Explicit expressions of Sijk are shown in the Appendix. While explicit

expression for the tensors Uik,jl and Σloopijkl will be obtained in the following.

Thus, first the second order derivative Uik,jl(x) is expressed in terms

of the modulation function Ûik;jl(x), see (9.35). Then, as will be shown

expressions for Ûik;jl(x̂), � = 0, are only necessary to correctly describe the

behavior of any transversely isotropic material. Then, Ûik;jl(x̂) is evaluated
and considering that x3 is the rotational symmetry axis of the material, a
general expression of Ûik;jl(x), in terms of cos and sin functions of spherical
angles � and � of a point x, is simply obtained by a transformation analogous
to (9.20) and (9.31):

Ûik;jl(x) = ΩiaΩkbΩjcΩldÛab;cd(x̂). (9.44)

The reason to present this expressions explicitly is that some BEM pro-
grammers prefer to use them instead of using the expressions of tensor Sijk.
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Thus Ûik;jl(x̂) expressions are expressed by:

Û11;11 =H
′′
11c

2 − 4H ′
11cs −H11c

2 + 2H11s
2,

Û11;13 =−H ′′
11cs− 2H ′

11(c
2 − s2) + 3H11cs,

Û11;22 =H̃11c− 2H̃12 −H11,

Û11;33 =H
′′
11s

2 + 4H ′
11cs+ 2H11c

2 −H11s
2,

Û12;12 =(H̃11 − H̃22)c− H̃12 −H11 +H22,

Û12;23 =−H ′
11 +H ′

22 − H̃12cs,

Û13;11 =H
′′
13c

2 − 4H ′
13cs −H13c

2 + 2H13s
2,

Û13;13 =−H ′′
13cs− 2H ′

13(c
2 − s2) + 3H13cs,

Û13;22 =− H̃13 (2s + 
c)−H13, (9.45)

Û13;33 =H
′′
13s

2 + 4H ′
13cs+ 2H13c

2 −H13s
2,

Û22;11 =H
′′
22c

2 − 4H ′
22cs −H22c

2 + 2H22s
2,

Û22;13 =−H ′′
22cs− 2H ′

22(c
2 − s2) + 3H22cs,

Û22;22 =H̃22c+ 2H̃12 −H22,

Û22;33 =H
′′
22s

2 + 4H ′
22cs+ 2H22c

2 −H22s
2,

Û23;23 =−H ′
13 − H̃13c,

Û33;11 =H
′′
33c

2 − 4H ′
33cs −H33c

2 + 2H33s
2,

Û33;13 =−H ′′
33cs− 2H ′

33(c
2 − s2) + 3H33cs,

Û33;22 =−H33 + H̃33c,

Û33;33 =H
′′
33s

2 + 4H ′
33cs+ 2H33c

2 −H33s
2,

where
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H ′′
13 =

C13 + C44

C11C44ℎg

[(
g′2

g2
+
ℎ′2

ℎ2
− 4

)
cs − g′′cs + g′(c2 − s2)

g

−ℎ
′′cs+ ℎ′(c2 − s2)

ℎ

]
−H13


H ′′
33 = −H33

(
g′′g − g′2

g2
+
ℎ′′ℎ− ℎ′2

ℎ2

)
−H ′

33
 − 


gℎ

(
ℎ′ − 2cs

C44
+

2cs

C11

)

+
1

gℎ

(
ℎ′′ − 2(c2 − s2)

C44
+

2(c2 − s2)

C11

)

H ′′
22 =

2g′2 − g′′g

C11g3
+

1

�

(
f ′′ − (�′′f + �′f ′)� − f�′2

�2

)
+
�′

�2

(
f�′

�
− f ′

)

H ′′
11 =

2�′23 − �′′3�3
C66�33

+
C44c

2 + C33s
2

C11C44gℎ

(

2 − g′′g − g′2

g2
− ℎ′′ℎ− ℎ′2

ℎ2

)

− 1

�

(
f ′′ − (�′′f + �′f ′)� − f�′2

�2

)
+

2(C33 − C44)(c
2 − s2)

C11C44gℎ

− 4(C33 − C44)cs


C11C44gℎ
− �′

�2

(
f�′

�
− f ′

)
(9.46)

�′′3 = −�
′2
3

�3
+

(C44 − C66)

C66�3

(
c2 − s2

)

ℎ′′ =
1

ℎ

[
−ℎ′2 − 2ℎ2 + 2

(
3 +

3C33

C11
− �

C11C44

)
c2s2 +

�
(
c2 − s2

)2

C11C44

]

g′′ =
1

g

[
ℎ′′ − g′2 +

(
�

C11C44
− 2

)(
c2 − s2

)]

�′′ = g

(
ℎ′′ + �3g

′′ + �′′3g + 2�′3g
′ +

2 (C44 − C66)
(
c2 − s2

)

C66

)

+
g′′�

g
+ 2g′

(
�′

g
− g′�

g2

)

f ′′ =
1

C66�3

(
ℎ′′g + ℎg′′ − �′′3gℎ + �′3g

′ℎ+ �′3ℎ
′g

�3
+

2gℎ�′23
�23

+ 2ℎ′g′
)

− (ℎg′ + ℎ′g)�′3
C66�23

+
2C33(c

2 − s2)

C11C44
+
ℎ′′ − 2(c2 − s2)

C66

Functions H ′′
ik, �

′′
3 , ℎ

′′, g′′, �′ and f ′′ represent the second order derivatives
with respect to the angle � of the functions defined in (9.18) and (9.19).
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It is also useful to define:

�′3 = �̃3s, ℎ′ = ℎ̃s, g′ = g̃s, �′ = �̃s,

f ′ = f̃s, H ′
11 = H̃11s, H ′

22 = H̃22s, H ′
33 = H̃33s (9.47)

In (9.47), ‘tilde’ functions are related to the first order derivatives func-
tions defined in (9.19). These functions are presented in order to avoid the
presence of divisions by s, leading eventually in divisions by 0 when � = 0.

Continuing with the deduction of the kernel Sijk, the stress-strain con-
stitutive law is applied twice to modulation function related to the second
order derivative of the fundamental solution, obtaining:

Σ̂loopijkl (x) = CijmnCpqklÛmp,nq(x). (9.48)

where Σloopijkl is the stress influence function in an infinitesimal dislocation
loop [115], which is defined by bknl (where b is the constituent Burgers
vector and n is the normal vector to the infinitesimal area).

Considering that x3 is the rotational symmetry axis of the material, a
modulation function can be obtained from a general expression of Σ̂loopijkl (x),
in terms of cos and sin functions of spherical angles � and � of a point x,
by a transformation analogous to (9.44):

Σ̂loopijkl (x) = ΩiaΩjbΩkcΩldΣ̂
loop
abcd(x̂). (9.49)

and

Σloopijkl (x) =
Σ̂loopijkl (x)

4�r3
, (9.50)

Thus, Σ̂loopijkl (x̂) expressions are defined as:

Σ̂loop1111 = C2
11

[
H ′′

11c
2 − 4H ′

11cs+H11

(
2s2 − c2

)]
+ 2C12C13

[
−H ′

13 − H̃13c
]

+ C2
13

[
−H ′′

13cs− 2H ′
13

(
c2 − s2

)
+ 3H13cs

]
+ C2

12

[
2H̃12 + H̃22c−H22

]

+ 2C11C13

[
−H ′′

13cs− 2H ′
13

(
c2 − s2

)
+ 3H13cs

]

+ 2C11C12

[(
H̃11 − H̃22

)
c− H̃12 −H11 +H22

]
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Σ̂loop1122 = C11C12

[
H ′′

11c
2 − 4H ′

11cs+ 2H̃12 + H̃22c+H11

(
2s2 − c2

)
−H22

]

+ C11C13

[
−H ′′

13cs− 2H ′
13

(
c2 − s2

)
−H ′

13 + H̃13c+ 3H13cs
]

+ C12C13

[
−H ′′

13cs− 2H ′
13

(
c2 − s2

)
−H ′

13 + H̃13c+ 3H13cs
]

+ C2
11

[(
H̃11 − H̃22

)
c− H̃12 −H11 +H22

]

+ C2
12

[(
H̃11 − H̃22

)
c− H̃12 −H11 +H22

]

+ C2
13

[
−H ′′

13cs − 2H ′
13

(
c2 − s2

)
+ 3H13cs

]

Σ̂loop1113 = +C12C44

[
−H ′

11 +H ′
22 − H̃12cs− H̃13 (2s+ 
c)−H13

]

+ C11C44

[
H ′′

13c
2 −H ′′

11cs− 4H ′
13cs − 2H ′

11

(
c2 − s2

)
+H13

(
2s2 − c2

)

+3H11cs] +C13C44

[
H ′′

13s
2 −H ′′

33cs+ 4H ′
13cs − 2H ′

33

(
c2 − s2

)

+H13

(
2c2 − s2

)
+ 3H33cs

]

Σ̂loop1133 = C13C33

[
H ′′

33s
2 + 4H ′

33cs +H33

(
2c2 − s2

)]
+ C12C33

[
−H ′

13 − H̃13c
]

+ C11C13

[
H ′′

11c
2 − 4H ′

11cs+
(
H̃11 − H̃22

)
c− H̃12 +H11

(
2s2 − c2

)

−H11 +H22] +C11C33

[
−H ′′

13cs− 2H ′
13

(
c2 − s2

)
+ 3H13cs

]

+ C2
13

[
−H ′′

13cs − 2H ′
13

(
c2 − s2

)
−H ′

13 + H̃13c+ 3H13cs
]

+ C12C13

[
H̃11c+ H̃12 −H11

]

Σ̂loop1212 = C2
66

[
H ′′

22c
2 − 4H ′

22cs+
(
3H̃11 − 2H̃22

)
c− 4H̃12 +H22

(
2s2 − c2

)

−3H11 + 2H22]

Σ̂loop1223 = C44C66

[
−H ′′

22cs− 2H ′
22

(
c2 − s2

)
−H ′

11 +H ′
22 − H̃12cs

−2H̃13 (2s+ 
c) + 3H22cs− 2H13

]

Σ̂loop1313 = C2
44

[
H ′′

11s
2 − 2H ′′

13cs+H ′′
33c

2 + 4H ′
11cs− 4H ′

13

(
c2 − s2

)
− 4H ′

33cs

+H11

(
2c2 − s2

)
+ 6H13cs +H33

(
2s2 − c2

)]

Σ̂loop1322 = C11C44

[
−H ′

11 +H ′
22 − H̃12cs− H̃13 (2s+ 
c)−H13

]

+ C12C44

[
H ′′

13c
2 −H ′′

11cs− 4H ′
13cs − 2H ′

11

(
c2 − s2

)

+H13

(
2s2 − c2

)
+ 3H11cs

]
+ C13C44

[
H ′′

13s
2 −H ′′

33cs

+4H ′
13cs− 2H ′

33

(
c2 − s2

)
+H13

(
2c2 − s2

)
+ 3H33cs

]
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Σ̂loop1333 = C13C44

[
−H ′

11 +H ′
22 − H̃12cs− H̃13 (2s + 
c)−H13

]

+ C13C44

[
H ′′

13c
2 −H ′′

11cs− 4H ′
13cs− 2H ′

11

(
c2 − s2

)

+H13

(
2s2 − c2

)
+ 3H11cs

]
+ C33C44

[
H ′′

13s
2 −H ′′

33cs

+4H ′
13cs− 2H ′

33

(
c2 − s2

)
+H13

(
2c2 − s2

)
+ 3H33cs

]

Σ̂loop2323 = C2
44

[
H ′′

22s
2 + 4H ′

22cs− 2H ′
13 − 2H̃13c− H̃33c+H22

(
2c2 − s2

)

−H33]

Σ̂loop2222 = C2
12

[
H ′′

11c
2 − 4H ′

11cs+H11

(
2s2 − c2

)]
+ 2C11C13

[
−H ′

13 − H̃13c
]

+ C2
13

[
−H ′′

13cs− 2H ′
13

(
c2 − s2

)
+ 3H13cs

]
+ C2

11

[
2H̃12 + H̃22c−H22

]

+ 2C12C13

[
−H ′′

13cs− 2H ′
13

(
c2 − s2

)
+ 3H13cs

]

+ 2C11C12

[(
H̃11 − H̃22

)
c− H̃12 −H11 +H22

]

Σ̂loop2233 = C12C13

[
H ′′

11c
2 − 4H ′

11cs+
(
H̃11 − H̃22

)
c− H̃12 +H11

(
2s2 − c2

)

−H11 +H22] + C13C33

[
H ′′

33s
2 + 4H ′

33cs+H33

(
2c2 − s2

)]

+ C11C13

[
H̃11c+ H̃12 −H11

]
+ C11C33

[
−H ′

13 − H̃13c
]

+ C12C33

[
−H ′′

13cs− 2H ′
13

(
c2 − s2

)
+ 3H13cs

]

+ C2
13

[
−H ′′

13cs− 2H ′
13

(
c2 − s2

)
−H ′

13 + H̃13c+ 3H13cs
]

Σ̂loop3333 = C2
13

[
2
(
H̃11 − H̃22

)
c− H̃22c− 2H11 +H22 +H ′′

11c
2 − 4H ′

11cs

+H11

(
2s2 − c2

)]
+ C2

33

[
H ′′

33s
2 + 4H ′

33cs+H33

(
2c2 − s2

)]

+ 2C13C33

[
−H ′′

13cs− 2H ′
13

(
c2 − s2

)
−H ′

13 − H̃13c+ 3H13cs
]

(9.51)

Σ̂loop1112 = Σ̂loop1123 = Σ̂loop1213 = Σ̂loop1222 = Σ̂loop1233 = Σ̂loop1323 = Σ̂loop2223 = Σ̂loop2333 = 0

(9.52)

Σ̂loopijkl = Σ̂loopjikl = Σ̂loopijlk = Σ̂loopklij (9.53)

It must be mentioned that in terms of efficiency the authors suggests
the use of the expressions of Σloopijkl (x̂), due to the great amount of zeros
and the full symmetry presented, and the short expressions obtained that
makes easy the implementation in a computational code. Also for a direct
and efficient computational implementation of the obtained expressions of
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Ûij;kl(x) and Σloopijkl (x) for any point x ∕= 0, the transforms indicated in
(9.44) and (9.49) have been explicitly performed, producing compact and
general expressions presented in the Appendix, which take advantage of the
presence of many zero components in Ûij;kl(x̂) and Σloopijkl (x̂). It has been
numerically verified that, in terms of computational time, expressions in
Appendix are significantly more efficient than their counterparts (9.44) and
(9.49).

It should be also stressed that independently of the hypersingular ker-
nel selected (Sijk, Σ

loop
ijkl or Uij,kl) the expressions obtained are much more

compact that the expressions based on Pan and Chou’s solution and given
by Ariza and Domínguez [8].

9.3 Validation of the BIE kernels

The primary means of providing confidence in the correctness of the ex-
pressions of the displacement fundamental solution Uik and traction fun-
damental solution Tik introduced in the present work and also of their im-
plementation in the present 3D BEM code will be their application in the
numerical solution of u-BIE (5.1) by this code.

Numerical results for problems in transversely isotropic elastic solids
with known analytic solutions [101], coinciding with some problems solved
by other authors [104, 179], except for the case with △ < 0 where no pre-
vious numerical results by other authors have been found in the literature,
will be studied.

For the purpose of comparison with expressions of Uik and Tik studied
in Section 9.2, the expression of Uik due to Loloi [104] and an explicit
expression of Tik deduced, working from Loloi’s expression of Uik have also
been implemented in the BEM code. It can be mentioned that no final
explicit expression of Tik was given in Reference [104]. Note also that 4-
node linear boundary elements were used in Reference [104] whereas 9-node
quadratic boundary elements have been used in the present BEM code.

Example 1

Let Ω be an elastic transversely isotropic cube whose sides of length ℓ are
parallel to coordinate axes with the x3-axis being the rotational-symmetry
axis. Consider now this cube subjected to a simple tension. The elastic
properties used in this example are shown in Table 9.1. The properties
of Material 1 (with △ > 0) and Material 2 (with △ = 0) have been taken
from Loloi [104] with the aim of comparing the numerical results obtained by
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Table 9.1: Elastic stiffnesses considered in Example 1, values given in 106

psi.

Constants Material No. 1 Material No. 2 Material No. 3
(△ > 0) (△ = 0) (△ < 0)

C11 49.40 49.40 23.35
C12 34.60 34.60 4.96
C13 9.70 9.70 7.27
C33 38.10 38.10 8.85
C44 14.20 16.84 5.55

Table 9.2: Results of Example 1, Material No. 1(△ > 0).

Load
direction Displacements Analytic solution Present solution Solution [104]

x3 u1/u
e

3
-0.1154762 -0.1154762 -0.1154762

u2/u
e
3 -0.1154762 -0.1154762 -0.1154762

u3/u
e

3
1.0000000 1.0000000 1.0000000

x1 u1/u
e

1
1.0000000 0.9999998 0.9999998

u2/u
e
1 -0.6846397 -0.6846395 -0.6846395

u3/u
e

1
-0.0802886 -0.0802886 -0.0802886

x2 u1/u
e

2
-0.6846397 -0.6846395 -0.6846395

u2/u
e

2 1.0000000 0.9999998 0.9999998
u3/u

e

2
-0.0802886 -0.0802886 -0.0802886

using the expressions deduced from the original work of Pan and Chou [129]
and those obtained here starting from the work of Ting and Lee [167], both
implemented in the present BEM code. Material 3 (with △ < 0) is a
hexagonal crystal of zinc.

In the BEM model used the cube boundary is discretized by six elements,
one element per cube side. Three load cases with normal stresses in the
coordinate axes directions have been solved with the symmetry boundary
conditions applied at coordinate planes. Although an implicit symmetry
can be applied for this example [104], the explicit symmetry was used here.

Numerical results in displacements for Materials 1 and 2 are shown in
Tables 9.2 and 9.3 together with the results obtained using the expressions
derived from Loloi [104] and implemented in the present BEM code. The



9.3 Validation of the BIE kernels 117

Table 9.3: Results of Example 1, Material No. 2 (△ = 0).

Load
direction Displacements Analytic solution Present solution Solution [104]

x3 u1/u
e

3
-0.1154762 -0.1154762 -0.1154867

u2/u
e

3
-0.1154762 -0.1154762 -0.1154867

u3/u
e
3 1.0000000 1.0000000 1.0000306

x1 u1/u
e

1
1.0000000 0.9999998 0.9999943

u2/u
e

1
-0.6846397 -0.6846395 -0.6846325

u3/u
e

1 -0.0802886 -0.0802886 -0.0802905
x2 u1/u

e

2
-0.6846397 -0.6846395 -0.6846325

u2/u
e
2 1.0000000 0.9999998 0.9999943

u3/u
e

2
-0.0802886 -0.0802886 -0.0802905

Table 9.4: Results of Example 1, Material No. 3 (△ < 0).

Load
direction Displacements Analytic solution Present solution

x3 u1/u
e
3 -0.2567997 -0.2567997

u2/u
e

3
-0.2567997 -0.2567997

u3/u
e

3
1.0000000 0.9999999

x1 u1/u
e

1 1.0000000 1.0000000
u2/u

e

1
0.0582394 0.0582393

u3/u
e
1 -0.8693108 -0.8693107

x2 u1/u
e

2
0.0582394 0.0582393

u2/u
e

2
1.0000000 1.0000000

u3/u
e
2 -0.8693108 -0.8693107
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differences between both numerical solutions and the analytic solution are
almost negligible, as could be expected from the character of the analytic
solution, linear in displacements and constant in stresses. An analogous
conclusion is also valid for Material 3, results being shown in Table 9.4,
where only the results obtained using the expressions of Uik and Tik intro-
duced in Section 9.2 are shown, as complex-variable expressions of Uik are
given for materials with △ < 0 in Loloi [104].

Example 2

A prismatic rod subjected to an axial load, Fig. 9.2(a), is considered.

(a) (b)

Figure 9.2: Transversely isotropic problem configurations with an inclined
plane of isotropy for Examples 2 and 3: (a) axial load, (b) shear load

The elastic properties in the material coordinate system are defined by:

E/E′ = 2.0, E/�′ = 6.0, � = 0.3, � ′ = 0.4, (9.54)

where E and � are Young elastic modulus and Poisson ratio associated to
the isotropy plane, E′ is the Young modulus along the rotational-symmetry
axis, and �′ and � ′ are the shear modulus and Poisson ratio at the planes
perpendicular to the plane of isotropy. The plane of isotropy is inclined 45o

with respect to the plane x1x2 which coincides with one rod base, Fig. 9.2(a).
A BEM model of one-fourth of the rod, symmetry boundary conditions
having been considered at the planes x1x3 and x2x3, with 14 elements, 3
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Table 9.5: Results of Example 2, transversely isotropic rod under axial
tension.

Point Solution u1/u
e
3 u2/u

e
3 u3/u

e
3 �33/�

e
33

A Analytic 0.0000000 0.0000000 1.0000000 1.0000000
(0, 0, 10a) Present 0.0000000 0.0000000 1.0000091 1.0000091

[104] 0.0000000 0.0000000 1.0000091 1.0000091
B Analytic -0.0170732 0.0000000 1.0000000 1.0000000

(a, 0, 10a) Present -0.0170740 0.0000000 1.0000094 1.0000094
[104] -0.0170740 0.0000000 1.0000094 1.0000094

C Analytic 0.0000000 -0.0670588 1.0000000 1.0000000
(0, 1.5a, 10a) Present 0.0000000 -0.0670600 1.0000008 1.0000008

[104] 0.0000000 -0.0670600 1.0000008 1.0000008
D Analytic -0.0164706 -0.0670588 1.0000000 1.0000000

(a, 1.5a, 10a) Present -0.0164714 -0.0670579 0.9999987 0.9999987
[104] -0.0164714 -0.0670579 0.9999987 0.9999987

E Analytic -0.0318182 -0.1295455 1.0000000 1.0000000
(a, 1.5a, 5a) Present -0.0318332 -0.1295392 1.0000002 1.0000002

[104] -0.0318332 -0.1295392 1.0000002 1.0000002
Center Analytic 0.0000000 0.0000000 1.0000000 1.0000000
(0, 0, 5a) Present 0.0000000 0.0000000 1.0000107 1.0000107

[104] 0.0000000 0.0000000 1.0000107 1.0000107

elements at each lateral side and 1 element at each extreme section, has
been used. Tension has been applied at the extreme sections whereas the
lateral sides have been traction free.

Numerical results in displacements and stresses at the points indicated
in Fig. 9.2(a) are presented in Table 9.5 and compared with analytic values.
Numerical solutions, in displacements and stresses, obtained by expressions
of Uik and Tik from Section 9.2 and from Reference [104] are coincident up
to all 8 digits presented. The maximum normalized errors are 0.00004 in
stresses and 0.0004 in displacements.

Example 3

A transversely isotropic prismatic rod, with elastic properties defined by (9.54),
subjected to a shear load is considered, see Fig. 9.2(b). The orientation of
the coordinate system associated to the material is defined by the transfor-
mation matrix [104]:
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Q =

⎛
⎝
+0.7500 +0.4330 +0.5000
−0.2403 +0.8827 −0.4040
−0.6162 +0.1828 +0.7660

⎞
⎠ . (9.55)

A BEM model of 10 elements, 2 at each lateral side and 1 at each extreme
section, is applied. Due to the lack of symmetry and in order to avoid
rigid body movements, displacements are prescribed at central points of
each side except for the front (x1 = −a

2 ) and back (x1 = a
2 )sides. Results

in displacements at the points indicated in Fig. 9.2(b) are presented in
Table 9.6. Both numerical solutions are coincident up to all 8 digits shown,
the maximum normalized error, achieving the value 0.0009, which confirms
the correctness of the theoretical formulas used.

Table 9.6: Results of Example 3, transversely isotropic rod under tangential
stress.

Point Result u1/u
e
3 u2/u

e
3 u3/u

e
3

A Analytic solution 0.0990792 -0.1503137 1.0000000
(−0.5a,−2.5a, 3a) Present solution 0.0990123 -0.1504005 1.0000161

Solution using [104] 0.0990123 -0.1504005 1.0000161
B Analytic solution -0.5089075 -0.4758082 1.0000000

(0.5a, 0, 3a) Present solution -0.5084558 -0.4762378 1.0002009
Solution using [104] -0.5084558 -0.4762378 1.0002009

C Analytic solution 0.1100334 -0.1669323 1.0000000
(0.5a, 2.5a, 3a) Present solution 0.1101208 -0.1668616 0.9999395

Solution using [104] 0.1101208 -0.1668616 0.9999395
D Analytic solution 0.0679538 -0.1937795 1.0000000

(0.5a,−2.5a, 1.5a) Present solution 0.0679590 -0.1937762 1.0000484
Solution using [104] 0.0679590 -0.1937762 1.0000484

E Analytic solution 0.0717356 -0.2045640 1.0000000
(−0.5a, 2.5a, 1.5a) Present solution 0.0717414 -0.2045603 1.0000571

Solution using [104] 0.0717414 -0.2045603 1.0000571
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9.4 Validation of the HBIE kernels

The primary means of providing confidence in the correctness of the expres-
sions of the Stress Integral Equation fundamental solutions, tensors Dijk

and Sijk, deduced in the present work and also of their implementation in
the present 3D BEM code will be their application in the numerical solution
of �-BIE (7.14) for internal points.

Numerical results for problems in transversely isotropic elastic solids
having known analytic solutions [101], coinciding with some material prop-
erties solved by other authors [104, 179] except for the case with △ < 0
where no previous numerical results by other authors have been found in
the literature, will be studied.

For the purpose of comparison with Dijk and Sijk expressions presented
in Section 9.2, the expression of Dijk due to Loloi [104] and an explicit
expression of Sijk deduced, starting from Loloi’s expression of Uik have
also been implemented in the BEM code. Due to the results obtained
using both solutions were exactly the same up to 8 digit considered in the
different cases, the results are shown in form of normalized errors between
the numerical and analytical solution given by (9.56) for displacements and
stresses respectively.

err(ui) =
uni − uai
uaN

err(�i) =
�nij − �aij
�aN

(9.56)

where uni and uai are numerical and analytical displacement in direction i, �nij
and �aij are numerical and analytical ij stresses, and uaN and �aN are nominal
(maximum value in the domain of the problem) analytical displacement and
stress respectively.

Example 4

A prismatic rod subjected to an axial load is considered. The elastic prop-
erties used in this example are shown in Table 9.7.

The plane of isotropy is inclined 45o with respect to the plane x1x2
which coincides with one rod base. A BEM model of one-fourth of the rod,
symmetry boundary conditions have been considered at the planes x1x3 and
x2x3, with 10 elements, 2 elements at each lateral side and 1 element at each
extreme section, has been used. Tension has been applied at the extreme
sections whereas the lateral sides have been traction free, Fig. 9.3(a).

The numerical solution for some points obtained using the expressions
deduced in the present work and those resulting from Loloi [104] imple-
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Table 9.7: Elastic properties considered in Example 4, values given in 106

psi.

Constants Material No. 1 Material No. 2 Material No. 3
(△ > 0) (△ = 0) (△ < 0)

C11 15.73 49.40 23.35
C12 6.50 34.60 4.96
C13 4.44 9.70 7.27
C33 7.78 38.10 8.85
C44 2.00 16.84 5.55

(a) (b)

Figure 9.3: Transversely isotropic problem configuration (a) with an in-
clined plane of isotropy for Example 4 and (b) with the plane of isotropy
perpendicular to axis 3 for Example 5

mented in the present BEM code were coincident up to the 8 digits con-
sidered in the displacements and stresses solution. The differences between
numerical results and analytic solution are almost negligible, as could be
expected from the character of the analytic solution, linear in displacements
and constant in stresses. The normalized errors are presented for the Ma-
terials 1 and 2 in Tables 9.8-9.11. An analogous conclusion is also valid for
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Table 9.8: Normalized displacement errors of Example 4, transversely
isotropic rod under axial tension. Material No. 1(△ > 0)

Point (x,y,z) err(u1) err(u2) err(u3)
A (0.4a,0.5a,3a) -3.89(-7) -2.57(-6) -3.42(-6)
B (0.4a,a,3a) -9.17(-7) -3.78(-6) -2.69(-7)
C (0.6a,0.5a,3a) -2.23(-7) -2.29(-6) -3.36(-6)
D (0.6a,a,3a) -5.65(-7) -3.41(-6) -3.20(-7)

Table 9.9: Normalized stress errors of Example 4, transversely isotropic rod
under axial tension. Material No. 1(△ > 0)

Point (x,y,z) err(�11) err(�22) err(�33) err(�23) err(�13) err(�12)
A 2.42(-6) -3.56(-5) -1.18(-5) 4.43(-5) -1.27(-5) 1.53(-5)
B 5.22(-6) -5.77(-5) -3.50(-5) 4.76(-5) 1.51(-5) -2.10(-5)
C 1.02(-5) -3.14(-5) -8.68(-6) 4.21(-5) 5.23(-6) 1.57(-5)
D 1.35(-5) -5.04(-5) -3.02(-5) 4.51(-5) -8.68(-6) 4.36(-6)

Table 9.10: Normalized displacement errors of Example 4, transversely
isotropic rod under axial tension. Material No. 2(△ = 0)

Point (x,y,z) err(u1) err(u2) err(u3)
A (0.4a,0.5a,3a) -3.38(-5) -5.57(-6) 6.37(-5)
B (0.4a,a,3a) -4.43(-5) -8.79(-6) 1.56(-5)
C (0.6a,0.5a,3a) -4.12(-5) -1.60(-6) 6.19(-5)
D (0.6a,a,3a) -5.10(-5) -3.71(-6) 1.59(-5)

Material 3, errors being shown in Tables 9.12 and 9.13, where only the re-
sults obtained using the expressions of Dijk and Sijk introduced in Section
9.2 are shown, as complex variable expressions of Uik are given for materials
with △ < 0 in Loloi [104].
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Table 9.11: Normalized stress errors of Example 4, transversely isotropic
rod under axial tension. Material No. 1(△ = 0)

Point (x,y,z) err(�11) err(�22) err(�33) err(�23) err(�13) err(�12)
A -2.33(-5) -2.26(-5) -1.78(-4) -6.31(-5) 2.04(-5) 4.09(-5)
B -3.34(-5) -6.65(-5) -7.32(-5) -6.39(-5) -1.59(-5) -3.76(-5)
C -2.34(-6) -1.22(-5) -1.75(-4) -6.24(-5) -5.04(-6) 4.71(-5)
D -1.14(-5) -4.79(-5) -7.38(-5) -6.24(-5) 9.66(-6) -1.11(-5)

Table 9.12: Normalized displacement errors of Example 4, transversely
isotropic rod under axial tension. Material No. 2(△ < 0)

Point (x,y,z) err(u1) err(u2) err(u3)
A (0.4a,0.5a,3a) -3.90(-6) 5.48(-5) -8.55(-5)
B (0.4a,a,3a) 1.54(-5) 7.40(-5) -8.64(-5)
C (0.6a,0.5a,3a) -2.98(-6) 5.00(-5) -8.51(-5)
D (0.6a,a,3a) 1.24(-5) 6.63(-5) -8.60(-5)

Table 9.13: Normalized stress errors of Example 4, transversely isotropic
rod under axial tension. Material No. 1(△ < 0)

Point (x,y,z) err(�11) err(�22) err(�33) err(�23) err(�13) err(�12)
A 1.43(-4) 3.34(-4) -7.01(-6) -7.13(-5) -1.64(-6) 3.01(-5)
B -2.31(-5) 8.58(-4) 2.05(-4) -2.63(-4) -8.80(-5) 3.00(-4)
C 6.78(-5) 2.32(-4) -4.19(-5) -5.63(-5) 4.89(-5) -1.98(-4)
D -8.63(-5) 7.65(-4) 1.72(-4) -2.44(-4) 2.50(-5) -5.38(-5)

Example 5

A homogeneous bar in the form of a prism, Fig. 9.3(b), is deformed by a
bending moment acting in the principal plane x2x3. The elastic properties
in the material coordinate system are defined by:

E/E′ = 2.0, E/�′ = 7.0, � = 0.2, � ′ = 0.3, (9.57)

where E and � are Young elastic modulus and Poisson ratio associated to
the isotropy plane, E′ is the Young modulus along the rotational-symmetry
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axis, and �′ and � ′ are the shear modulus and Poisson ratio at the planes
perpendicular to the plane of isotropy. A BEM model of the beam, with
112 elements, 20 elements at each lateral side and 16 elements at each
extreme section, has been used. The bending moment M1 has been applied
at one extreme section (x3 = 0), whereas the other extreme was restricted
in displacements (u3 = 0 for x3 = 2a) and the lateral sides have been
considered as traction free.

Table 9.14: Normalized displacement errors of Example 5, transversely
isotropic bar deformed by bending moments.

Point (x,y,z) err(u1) err(u2) err(u3)
A (0.25a,0.25a,0.1a) -8.05(-7) -4.68(-6) -2.80(-5)
B (0.9a,0.9a,0.1a) 1.92(-6) -6.07(-7) -3.58(-5)
C (0.25a,0.25a,0.2a) -8.17(-7) -5.43(-6) -2.94(-5)
D (0.9a,0.9a,0.2a) 2.26(-6) -7.28(-7) -3.92(-5)
E (0.25a,0.25a,a) 1.41(-6) -2.39(-5) -2.39(-5)
F (0.9a,0.9a,a) 9.10(-6) -5.30(-6) -9.54(-5)

Table 9.15: Normalized stress errors of Example 5, transversely isotropic
bar deformed by bending moments.

Point (x,y,z) err(�11) err(�22) err(�33) err(�23) err(�13) err(�12)
A -2.36(-6) 1.66(-5) 5.95(-5) 7.97(-5) -6.13(-6) 1.73(-5)
B 1.83(-5) -1.38(-5) 1.30(-4) -8.31(-6) -6.69(-5) 3.39(-6)
C -3.44(-6) 2.13(-5) 5.86(-5) 9.52(-5) -8.67(-6) 2.14(-5)
D 2.24(-5) -1.74(-5) 1.47(-4) -1.02(-5) -8.00(-5) 4.39(-6)
E -6.03(-5) 1.93(-4) -2.54(-4) 5.14(-4) -1.40(-4) 1.50(-4)
F 1.64(-4) -1.22(-4) 5.24(-4) -1.06(-4) -4.58(-4) 5.36(-5)

The normalized errors from numerical results in both displacements and
stresses for points indicated in Tables 9.14 and 9.15 are presented. Numer-
ical solutions, in stresses, obtained by expressions of Dijk and Sijk from the
present work and from the Reference [104] are coincident up to all 8 digits
used.
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Example 6

In the previous examples, the validity and accuracy of the fundamental
solution and its derivatives for transversely isotropic materials has been
established. The present example is an application where the present fun-
damental solution and the BEM can be used.

A three-dimensional model of the proximal tibia of the human knee is
described. The geometry is generated via a wireframe structure constructed
using three-dimensional reconstruction of Computarized Tomographies and
Magnetic Resonance Imaging [121].

(a) (b)

Figure 9.4: BEM tibia model used in Example 6: (a) mesh and boundary
conditions and (b) wireframe view.

The elastic properties in the material coordinate system are defined by:

E = 11.5, E′ = 17.0, �′ = 3.28, � = 0.58, � ′ = 0.31, (9.58)

where E, E′ and �′ are given in GPa [142]. The orientation of the coordinate
system associated to the material is defined in a way that the axis x3 coincide
with the largest part of the bone Fig. 9.4(a). The described model cover a
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portion up to 135 mm below the plateau of the tibia and is taken as a solid
composed only of compact bone as solved by Müller et. al. [121].

Figure 9.5: Stress progression in line AB show in Fig. 9.4.

A BEM model of 223 elements is used. The load condition applied
occurs during normal gait at the stance phase in near full extension with a
magnitude of 2450 N.The loaded nodal points covered areas approximately
equal to the following contact areas of 468 mm2 (medial condyle) and 297
mm2 (lateral condyle). The compressive force was distributed over the
nodes at the tibia condyles as a constant distributed force. The stress
results indicate compressive and tensile stress developing from the anterior
to the posterior part of the model, this behavior is represented in Fig. 9.5
where the stress progression obtained in line AB Fig. 9.4(b) it is shown,
with �33 = −22.14 MPa and �Mises = 20.57 MPa at A and �33 = 10.25
MPa and �Mises = 9.65 MPa at B, all the points are positioned in a plane
3.5 mm above the distal end in x3 direction and are distanced 1 mm among
them. Point A and B are also distanced 1 mm from the lateral surface.

The compressive behavior of the anterior part of the tibia is shown in
Fig. 9.6 where points distanced 1 mm from the lateral surface where taken
starting from the point A mentioned above. Also the tensile progression
of the posterior part of the model is shown in Fig. 9.7 there the points are
distanced 1 mm from the lateral surface but starting from B. These results
are in accordance to those obtained in [121]. Notice that, this example
is just to show the capability of the 3D BEM code to solve application
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Figure 9.6: Compressive behavior at 1mm from the lateral surface starting
from point A of the anterior part of the tibia trough its largest part.

Figure 9.7: Tensile behavior at 1mm from the lateral surface starting from
point B of the posterior part of the tibia trough its largest part.

problems, further studies are necessary in order to get an actual behavior
of the human knee. Next steps could involve to consider the hole inside the
bone and considering the bone to have different material properties.
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9.5 Concluding remarks

The present chapter, introduces new closed-form expressions of the integral
kernels Tik(x), Dijk(x) and Sijk(x) appearing in the Somigliana displace-
ment and traction identity for transversely isotropic elastic materials, and
also of the related integral kernels Uik,j(x), Uik,jl(x), Σijk(x) and Σloopijkl (x).

The novel approach developed recently by Ting and Lee [167] gave as
a result a closed-form expression of the fundamental solution Uik(x) for
transversely isotropic materials with the following unique features: i) com-
pletely general and unique expressions valid for all possible configurations
of material and relative positions of the source and field points; ii) given by
means of real functions (no difficulties with using complex functions with
complex arguments which may require keeping values in the same branch
when multivaluedness arises as in the expressions obtained from the poten-
tial theory [104, 129] in the case △ < 0, see (9.3)); iii) continuous transition
with respect to a variation of material properties (the expressions obtained
from the potential theory approach [104, 129] require two distinct expres-
sions for the cases △ ∕= 0 and △ = 0); iv) continuous transition with respect
to relative positions of the source and field points (the sign function was
introduced in the Uik(x) expression obtained from the potential theory [104]
to cover both cases where � → 0 or �); v) a straightforward and efficient
implementation in a BEM code. These features have been kept by the
new closed-form expressions of Tik(x), Dijk(x) and Sijk(x), and its related

kernels Uik,j(x), Uik,jl(x), Σijk and Σloopijkl obtained in the present chapter
working from the expression of Uik(x) due to Ting and Lee [167], after a
revision of their final formula. These expressions of Uik(x), Tik(x), Dijk(x)
and Sijk(x) have been implemented in a 3D collocational BEM code and
verified numerically by solving several examples with known analytic so-
lution, high accuracy results being obtained in all cases. All three cases
with positive, zero and negative △ have been solved, previous BEM results
by other authors for the case △ < 0 not being known in the literature.
This work also represents, the first numerical verification of the correctness
of the novel expression of Uik due to Ting and Lee [167]. It should also
be pointed out that the new closed-form expressions for the tractions and
stresses originated by a unit point force in the infinite transversal isotropic
space, Tik and Σijk, can also be used in the context of the theory of disloca-
tions [30, 86, 105, 178] where Tik have a work-conjugated interpretation of
the displacements originated by a unit infinitesimal dislocation loop in this
space. Similarly, Σloopijkl can be interpreted as the stress tensor originated by
a unit infinitesimal dislocation loop.
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Chapter 10

Interlaminar fracture
toughness test of composite
materials

In the present chapter the interlaminar fracture toughness, GIc, test of com-
posite materials is modeled by means of the Linear Elastic-Brittle Interface
(LEBI) introduced in Chapter 4. The non-linear algorithm used is the
sequentially linear analysis implemented in a 2D collocational BEM code.
The LEBI model seems to reproduce very well the behavior of thin adhesive
layers in a single model problem, as shown in Chapter 8. In this chapter, it
will be shown that LEBI model is also able to simulate the behavior (and/or
failure) of real structures.

10.1 Laboratory test and specimen description

The tests used in the aeronautical industry to evaluate the interlaminar
fracture toughness in composite-composite joints are performed by well-
known standard procedures [2, 87].

The specimen used is the Double Cantilever Beam (DCB) shown in
Fig. 10.1(a). The DCB specimen is formed by two laminates joined by a
thin adhesive layer. The laminates are processed according to EN 2565
standard, and the specimens are cut after the panel has been cured. The
specimen is connected to the grips of a universal testing machine through
small tabs bonded to laminates, as shown in Fig. 10.1(b). The load, P, and
the relative displacement, d, of the wedge grips are continuously registered
during crack propagation, Fig. 10.1(c).
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(a)

(b)

(c)

Figure 10.1: (a) Scheme of the DCB specimen, (b) DCB specimen with
bonded tabs, (c) test configuration.
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In a study of the experimental results obtained from GIc tests and frac-
tographic analysis, using different kinds of adhesive, it was observed that
some adhesives like FM 300K0.5 and EA 9695 K.05 presented jumps (non-
smooth behavior) in the experimental load-displacement curve. This behav-
ior seems to be explained by the presence of a polyester support in these
adhesives [88, 89]

Figure 10.2: Fracture surface of a GIc-specimen tested with EA 9695 K.05
adhesive.

Figure 10.3: Detail of the polyester support of the EA 9695 K.05 adhesive,
outer and inner dimensions of the rhombus-like mesh. Picture taken at 50x
zoom.

In Fig. 10.2 the fracture surface of a tested GIc specimen with EA
9695 K.05 adhesive is shown. Clearly visible marks on the specimen frac-
ture surface are related to the jumps appearing in the experimental load-
displacement curve. At initial stages, the distance between marks is shorter
than at further stages, resulting from larger jumps. In Fig. 10.3 a detailed
picture, taken at 50x zoom, of the polyester support of the adhesive is
shown.
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10.2 Numerical results

In this example, a simulation of the interlaminar fracture toughness test
according to ISO 15024 [87] is going to be carried out. In the present nu-
merical study, a plane strain model has been solved assuming the hypothe-
sis of small strains using the BEM code described in Subsection 5.5.1. The
laminate considered is an 8552/AS4 carbon fibre - epoxy composite (hav-
ing only 0o plies), with the following orthotropic properties: Ex=135GPa,
Ey=10GPa, Ez=10GPa, Gxy=5GPa, Gxz=5GPa, �xy=0.3, �yz=0.4 and
�xz=0.3. The adhesive used is EA 9695 K.05, an epoxy adhesive with a
polyester mesh support. The properties estimated for the LEBI constitu-
tive law are: kn=150GPa/m, �c =15MPa and �nc=0.1mm, corresponding
to a value of GIc = 750 Jm−2, see Fig. 4.4. Due to the symmetry of the
problem there are not tangential relative displacements, thus the tangential
part of the LEBI law does not play an important factor in this problem.

Load P was progressively applied at both laminates in the direction nor-
mal to the specimen boundary at a the distance of 13mm from the extreme
where the initial crack is situated, see Fig. 10.1(b). Two point supports
were defined at the left-hand extreme of the specimen, Fig. 10.1(b,c), to
remove the rigid body motion in the displacement solution by the use of
the method described in [22].

Figure 10.4: Normal stresses � near the crack tip along the bonded zone,
for a load step with P=29.7N, d=35.4mm and a=146.6mm.
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The normal stresses along the bonded zone obtained in a load step
corresponding to the decreasing part of the load-displacement curve with
P=29.7N, d=0.0354m and a=146.6mm (using two different meshes), are
shown in Fig. 10.4. The initial length of the adhesive layer (225 mm) is
discretized by means of 468 (coarse mesh) or 936 (fine mesh) linear elastic-
brittle interface elements placed on the upper and bottom sides of the inter-
face. As can be observed in Fig. 10.4, a very accurate solution has already
been obtained by the coarse mesh. The corresponding analytical solution
of Strength of Materials for a beam on Winkler elastic-foundation deduced
in [90]1 (Eq. 4 therein) has also been included in Fig. 10.4. The agreement
between this analytic solution and the present BEM solution is good, sig-
nificant differences being observed only in the zone close to the crack tip,
as could be expected.

Figure 10.5: Fitting of the BEM normalized local stress solution by an-
alytic expression (10.2), for a load step with P=29.7N, d=35.4mm and
a=146.6mm.

In view of Lenci’s [102] expression (8.17) for the local normal stresses
along the bonded interface part close to the crack tip in a particular problem,
and taking into account a general singularity analysis of a crack in presence
of spring boundary conditions in [158], it appears that the first terms in the
asymptotic expansion of the normal stresses take the form:

�

�c
= c0 + c1� [ln(�) + c2] , for � → 0+. (10.1)

1In the present orthotropic case the parameter � in [90] is defined as �4 = 6kn

Ex(t/2)3
.
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Thus, these stresses are bounded, but their gradient has a logarithmic sin-
gularity at the crack tip. In this sense, it is noteworthy that the local
numerical BEM solution for normal stresses in the present GIc specimen
near the crack tip fits this expression very well. In Fig. 10.5, the normal-
ized stresses �/�c represented as a function of � are compared with the
following fitted expression:

�

�c
= 1.0038 + 9.9132� [ln(�)− 1.0991] (10.2)

obtained from (10.1) by applying the least square method to the first nodes
with � < 0.012. An excellent agreement between the BEM solution and the
fitted asymptotic expression can be observed, and in addition to c0 ∼= 1 also
c2 ∼= −1 in agreement with (8.17). Notice that this asymptotic behavior is
applicable for the local solution near the crack tip only.

The deformed shape obtained for the same load step as defined before
is depicted in Fig. 10.6(a). A detailed view of the deformed shape obtained
with the BEM code is shown in Fig. 10.6(b). The different zones where the
LEBI elements are broken, and where the elements are subjected to tensile
or compressive normal stresses, are clearly indicated in the plot.

10.3 Experimental and numerical load - displace-
ment diagrams

In Fig. 10.7 the load-displacement diagrams obtained experimentally (di-
rectly measured by the universal testing machine) and numerically (by
means of BEM) at the points indicated in Fig. 10.1(c). GIc value em-
ployed in the numerical simulation (GIc = 750 Jm−2) is obtained from the
experimental test.

The most important result is that the model is able to catch the fail-
ure load as well as the energy dissipated during the debonding process, by
means of a unique critical parameter (GIc or, equivalently, �c see (4.17))
together with the stiffness parameter kn. As can be observed in Fig. 10.7,
the numerical results obtained provide a good approximation of the exper-
imental results. Therefore, the use of the LEBI formulation seems to be a
promising approach to model composite adhesive joints. It is important to
mention that in the experimental curve an unloading and a reloading are
done because the laboratory standard required them; this behavior was not
simulated due to its irrelevant effect on the numerical solution.

Changing the non-linear conditions node by node can make the crack
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(a)

(b)

Figure 10.6: (a) Numerical deformed shape obtained, and (b) detail of the
deformed shape at the vicinity of the crack tip of the modeled GIc test.

propagation very smooth (especially for fine meshes), in contrast with the
experimental evidence found in some industrial adhesives that show crack
growth by small but clearly finite jumps. For this specific kind of adhesive
(especially the ones that have a "knife" kind of support, see Fig. 10.2)
the end of a load step can be defined by a situation where the normal
and tangential stiffnesses of a fixed number of consecutive nodes are set
to zero. This number of nodes are related to the size of the rhombus-like
mesh support of the adhesive, Fig. 10.3, and the marks observed in the
experimental results, Fig. 10.2. In the results shown in Fig. 10.7, in the
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Figure 10.7: Comparison between the experimental and numerical load -
displacement diagrams of the GIc test and a detail of the polyester support
of the adhesive used.

jump-like curve obtained, 15 nodes were opened in each load step, which
corresponds to approximately 5 times half of the width of a rhombus and
also corresponds to the first distances between marks, Fig. 10.2. As can be
seen from the BEM results, the jumps remain constant while the jumps in
the experimental results become larger.

10.4 Non-symmetric DCB specimen

In order to see the capability of the mixed mode failure criterion proposed in
Section 4.2, a non-symmetric DCB specimen has been studied numerically.
The composite laminate and adhesive layer are assumed to have the same
properties as in the previous section. The geometry of the specimen is
almost the same as that depicted in Fig. 10.1, except for the thickness of
the laminates taken as t/2 and t (one laminate two times thicker than the
other). In Fig. 10.8 the global load - displacement response is shown, and
compared with the previously studied symmetric DCB specimen. As can be
seen, the failure load necessary to start the crack growth is a little higher.

In Fig. 10.9 the deformed shape obtained is shown for a load step with
P=46.48N, d=45.8mm and a=134.6mm.
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Although not shown in the plots, another important effect, resulting
from the lack of symmetry, is the presence of tangential stresses along the
interface, leading to values of the fracture mode mixity angle  G in the
following interval 7.15∘ <  G < 9.01∘ for 12mm< a < 208mm, when the
fracture mode-sensitivity parameter � = 0.

Figure 10.8: Numerical load - displacement diagrams for a symmetric and
non-symmetric DCB specimen (bonded joint).

Figure 10.9: Numerical deformed shape obtained for a non-symmetric DCB
specimen (bonded joint).

10.5 Concluding remarks

As shown by the numerical results presented in the previous section, the
LEBI formulation modeled by a spring distribution correctly describes the
behavior of adhesive joints used in the aeronautical industry. From labora-
tory tests and fractographic analysis it has been concluded that the jumps
appearing in the experimental load - displacement curve are caused by the
polyester support of the adhesive resin. The experimental and numerical
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comparison presented in Section 10.3 corresponds to opening mode I due to
symmetry configuration of the specimen. Nevertheless, the present imple-
mentation of the LEBI model allows for a similar analysis of non-symmetric
configurations of bonded adhesive joints leading to a mixed fracture mode
as studied numerically in Section 10.4. It has been proved that the real
behavior of an adhesive layer with a polyester support that joins two unidi-
rectional laminates can be approximated very well by means of BEM and a
distribution of LEBI elements, by adjusting the parameters of the discrete
model (kn, �c, and the number springs that break in a load step). This fact
will make it possible to predict the real behavior of structures that include
similar adhesive joints by the model developed here.

Noteworthy, in accordance with the model used, is the bounded charac-
ter of stresses along the LEBI interface, the maximum value of stresses being
achieved at the crack tip. The interface constitutive law introduced and in-
cluded in the incremental algorithm of the BEM code has the advantage of
being independent of the number of elements used in the interface. An an-
alytic expression for the local solution of normal tractions at the crack tip,
deduced in the singularity analysis of the weak interface by Lenci [102] in a
particular problem for isotropic half-planes, has been successfully compared
with the present numerical solution for orthotropic laminates.



Chapter 11

Delamination cracks in [0/90]
symmetric laminates

In the present chapter the problem of delamination cracks in [0/90] sym-
metric laminates of composite materials is modeled by means of the Linear
Elastic-Brittle Interface (LEBI) model, introduced in Chapter 4. The non-
linear algorithm used is the sequentially linear analysis, proposed in Section
6.2, and implemented in a 2D collocational BEM code.

11.1 Description of the problem

The problem analyzed in this chapter is shown in Fig. 11.1. It represents a
[0/90]s laminate under tensile loading in the direction of the 0∘ fibres, that
was solved previously by a means of the BEM and using the Virtual Crack
Closure Technique (VCCT) to calculate the Energy Release Rate (ERR) by
Blázquez et. al. [23, 24] and by París et. al. [130].

The first damage in this laminate is expected to be the nucleation and
growth of cracks in the 90∘ ply transverse to the load. When one of these
cracks approaches the interface with the 0∘ ply, it is accepted that it stops.
New transverse cracks appear in the 90∘ ply with increasing load until the
crack density reaches a critical value. Transverse matrix cracking in 90∘ ply
leads to a load redistribution in the adjacent 0∘ plies and induces local stress
concentrations at the neighborhood of the crack tips that, when the tips
are near to the interface, can involve significant interlaminar delamination,
[17, 130].

For the case analyzed in this work, the material systems is a carbon–epoxy
(AS4/8552 Hexcel) laminate [03/903]S , direction 1 being considered the fi-
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bre direction: E11 = 45.6 GPa, E22 = E33 = 16.2 GPa, �12 = �13 = 0.278,
�23 = 0.4, G12 = G13 = 5.83 GPa, G23 = 5.786 GPa. The half-thickness of
the set of 90∘ plies, t, and the thickness of each of the set of 0∘ plies is 0.55
mm. The average separation between transverse cracks is taken to be 2L =
4 mm.

Figure 11.1: Transverse and delamination cracks in [0/90]s laminate, taken
from [130].

11.2 Model of the problem

The previously described problem that will be studied, has some usually
accepted damage patterns [130], see Fig. 11.2. One having only a trans-
verse crack Fig. 11.2(a) and (b), the second having a transverse crack
that has reached the interface with the 0∘ lamina and has deflected, start-
ing a symmetric delamination Fig. 11.2(c). The third damage pattern
shown Fig. 11.2(d) indicates that delamination will start to appear be-
fore the transverse crack reaches the interface. This scheme represented in
Fig. 11.2(d) is known in Fracture Mechanics as the Cook-Gordon mechanism
[44].

As mentioned before, the LEBI model is used to study the present prob-
lem. The cases shown in Fig. 11.2 exhibit symmetry (with respect to the
horizontal middle plane in the figure), this fact allows us to study the delam-
ination crack growth either using the configuration shown in Fig. 11.3(a) or
Fig. 11.3(b). Nevertheless, if we want to study the onset and growth of the
transversal crack (modeled using the LEBI model), it is necessary the use
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(a) (b) (c) (d)

Figure 11.2: Damage configurations considered with a transverse crack: (a)
not reaching the interface, (b) terminated at the interface, (c) deflected
at the interface, and (d) approaching a damaged interface (mechanism of
Cook-Gordon). Slightly modified version of a picture from [130].

of the configuration presented in Fig. 11.3(a) because of the use of interface
elements that, in the present implementation, needs the presence of both
solids adjacent to the interface.

In the BEM model used to simulate the geometry shown in Fig. 11.3(a)
the uniform boundary element mesh has 3860 linear elements, while in the
other case (Fig. 11.3(b)) the mesh is formed by 2040 linear elements. In
both cases the constant element size is 5�m.

11.3 Numerical results for transverse and delami-
nation cracks

11.3.1 Transverse cracks

As mentioned before, to study the onset and growth of the transverse crack,
the geometry shown in Fig. 11.3(a) is used. The LEBI elements have been
included at the interface between the 0∘ ply and 90∘ ply, and also in the
assumed crack path of the transverse crack that could appear in the 90∘ ply
(shown in Fig. 11.3(a) with a dashed line).

The properties of the interfaces at the two positions (transversal or de-
lamination) were considered to be different, see Table 11.1. Two different
combinations were used in order to see the influence of the interface prop-
erties in the overall behavior of the problem.

Notice that in the first combination the fracture toughness in mode I,
GIc, is considered to be the same in both positions, but the critical stress,
�̄c, varies leading to different values of kn. From Table 11.1, it can be seen
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(a) (b)

Figure 11.3: Geometry and boundary conditions for the delamination prob-
lem in [0/90] symmetric laminates.

Table 11.1: Considered combinations of the interface properties in the de-
lamination problem of [0/90] symmetric laminates.

N∘ Position GIc(Jm−2) �̄c(MPa) kn (MPa/�m) kt (MPa/�m)

1
transversal 75 61 24.807 8.269

delamination 75 90 54 18

2
transversal 75 61 24.807 8.269

delamination 34.454 61 54 18

that the ratio kn/kt = 3 is defined for all cases considered. In the second
combination GIc values are considered to be different, but having the same
value of �̄c.

In Fig. 11.4 the actual applied average (longitudinal) strain, " = ū/L,
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Figure 11.4: Applied strain versus the length of the transverse crack a.

Figure 11.5: Predictions of the ERR (G), for a fixed applied strain of 1%,
versus the length of the transverse crack a.
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Figure 11.6: Comparison of the predictions of the ERR (G) obtained by
VCCT [21] and the linear elastic-brittle formulation, for a fixed applied
strain of 1%

versus the length of the transverse crack a is plotted. It can be seen that
once a critical strain is applied the crack grows in an unstable manner (less
applied strain is needed) until it reaches the interface between the 0∘ ply
and 90∘ ply.

Although is not shown in the above mentioned figure the fracture energy
Gc was always equal to GIc = 75Jm−2, due to the mode I behavior of the
transversal crack and according to Table 11.1.

Fig. 11.5 represents the distribution of the values of the ERR at the
crack tip of the growing transverse crack versus the length a, for a fixed
applied strain of 1%.

Notice that in both combinations the results are the same, this fact
leads to the conclusion that the properties of the interface between the 0∘

ply and 90∘ ply (�̄c and GIc), has no significant influence on the behavior
of the transversal crack, while kn and kt values keep the same for both
combinations and the delamination crack has not onset yet.

In Fig. 11.6 the distribution of the values of the ERR of the transverse
crack versus the length a, for a fixed applied strain of 1% obtained by means
of the VCCT [21] is compared with the results obtained with the LEBI
formulation proposed. A reasonable general agreement, from a qualitatively
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point of view, from the obtained results can be observed. Nevertheless some
differences can also be seen, especially in the zone where the transversal
crack has onset and in the zone just before the transversal crack reaches the
0∘ ply and 90∘ ply interface. These differences are basically caused because
the LEBI model allows an opening and tangential relative displacements at
the crack tip and ahead of it, while in the VCCT these relative displacements
are zero.

11.3.2 Delamination cracks

In the following, the onset and growth of the delamination crack is studied.
In particular the effects of the variation of the geometry to be used, the
consideration or not of an elastic contact algorithm, as defined in Section
4.2, and also the variation of the interface properties, are elucidated in the
following section.

Different geometries

To study the onset and growth of the delamination crack, the geometries
shown in Fig. 11.3(a) and (b) are used. The properties correspond to Com-
bination 1 in Table 11.1. The contact algorithm is also activated.

In Fig. 11.7 a comparison of the actual applied strain versus the length
of the delamination crack d is plotted, for the two geometries shown in
Fig. 11.3. In fact, the value of d represents, half of the total length of the
delamination crack. For the geometry shown in Fig. 11.3(b) is d = d1,
while for Fig. 11.3(a) d is defined as d = (d1 + d2)/2. The reason for this
definition is that d1 is not necessarily equal to d2, as sometimes in modeling
a crack growth it is possible to obtain non-symmetric solutions of originally
symmetric problems. The growth of the delamination crack is an example
of this behavior.

Fig. 11.8 represents a comparison of the distribution of the fracture en-
ergy necessary to cause the crack growth versus the length d; while Fig. 11.9
shows a comparison of the distribution of the values of the ERR of the trans-
verse crack versus the length a, for a fixed applied strain of 1%, for the two
geometries shown in Fig. 11.3.

In Figs. 11.7-11.9 comparisons of the results for the onset and growth
of the delamination crack obtained by using the two geometries shown in
Fig. 11.3 are presented. As can be seen from these figures, the results for
geometry shown Fig. 11.3(a) presents some spurious oscillations. This fact
is caused because although the problem is symmetric the geometry shown
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Figure 11.7: Comparison of the applied strain versus the length of the
delamination crack d, for the geometries shown in Fig. 11.3.

Figure 11.8: Comparison of the distribution of the fracture toughness nec-
essary to cause the crack growth versus the length d, for the geometries
shown in Fig. 11.3.
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Figure 11.9: Comparison of the predictions of the ERR (G), for a fixed
applied strain of 1%, versus the length of the delamination crack d, for the
geometries shown in Fig. 11.3.

in Fig. 11.3(a) and the sequentially linear analysis (Section 6.2) allow for a
non-symmetric crack growth, while in the geometry shown in Fig. 11.3(b) a
symmetric crack growth is assumed. In this manner, once one crack branch
(top or bottom) initiates an unstable growth (less applied strain is necessary
for crack growing) the crack grows only trough this branch, leading to d1 ∕=
d2. Before a continuos unstable growth initiates in the second branch,
some spurious behavior is obtained caused because the crack grows in both
branches alternating small advances in both crack branches, see Figs. 11.8-
11.9. In particular, picks and valleys obtained in Fig. 11.7 for the geometry
shown in Fig. 11.3(a) are related to the unstable growth of one branch
followed by the unstable growth of the other branch. Nevertheless, this
behavior is observed along the unstable growth zone only, and once the crack
growth becomes stable the symmetry of the problem is recovered. Thus,
in the following to avoid this spurious behavior (with no clear physically
meaning), with the aim to reduce computing time and because the obtained
results are ver similar, only the geometry shown in Fig. 11.3(b) will be used
in the following. In any case the observed alternating crack growth will
require a further and more extensive study in the future.
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Contact influence

The delamination crack starts being an open crack and, after a certain crack
length size is reached, it starts to be partially in contact. Thus, the influence
of contact in this specific problem is studied. In one case, once the LEBI
element is broken it may enter in frictionless contact according to (4.9).
In the other case interpenetration is allowed without causing any contact
stresses. Again the properties taken where the ones for Combination 1, see
Table 11.1 and the geometry used is the one shown in Fig. 11.3(b).

Figure 11.10: Comparison of the applied strain versus the length of the
delamination crack d, considering contact or not.

In Fig. 11.10 a comparison of the actual applied strain versus the length
of the delamination crack d is plotted, considering contact or not. Notice
that when contact is considered the delamination crack initially behaves in
a stable manner, then a relatively large unstable growth appears where an
instability phenomenon called snap-through takes place, and finally a stable
growth is reached again. If contact is not considered, allowing overlapping
of delamination crack faces, the crack growth is always stable.

Fig. 11.11 represents a comparison of the mixity angle  �, see (4.15),
obtained at the crack tip versus the length of the delamination crack d. In
a first stage a stable crack growth in mixed mode ( � ≤ 90∘) is observed
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Figure 11.11: Mixity angle  � obtained at the crack tip versus the length
of the delamination crack d, considering contact or not.

Figure 11.12: Comparison of the distribution of the fracture toughness nec-
essary to cause the delamination crack growth versus the length d, consid-
ering contact or not.
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Figure 11.13: Comparison of the predictions of the ERR (G), for a fixed ap-
plied strain of 1%, versus the length of the delamination crack d, considering
contact or not.

for two cases. After this stage a great difference of  � values is obtained.
When contact is considered, a small stage of crack growth with the crack
tip closed appears, and after this small stage the crack grows in mixed mode
again, with the crack tip opened forming a “bubble” near the crack tip. On
the other hand, when contact is not considered, the stage of crack growth
with the crack tip closed is very large.

Fig. 11.12 represents a comparison of the distribution of the fracture
energy necessary to cause the crack growth versus the length d. In this case
it is noteworthy that when contact is considered the fracture energy neces-
sary to growth is less than when contact is not considered. Thus, contact
makes easier crack propagation. This fact could be explained because of
the failure criteria used. As can be seen in Fig. 4.7, when the crack tip is in
compression it needs more energy (bigger tangential stresses which controle
the failure in this problem) to growth.

Fig. 11.13 shows a comparison of the distribution of the values of the
ERR of the delamination crack versus the length d, for a fixed applied strain
of 1%. It can be seen that, the differences of the values of the ERR of the
delamination crack are almost negligible if contact is considered or not.

In Fig. 11.14 and Fig. 11.15 the normal and tangential stresses at the
0∘ ply and 90∘ ply interface are plotted for different load steps shown in
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Figure 11.14: Normal stresses obtained at 0∘ ply and 90∘ ply interface for
the different loads steps shown in Fig. 11.10.

Figure 11.15: Tangential stresses obtained at 0∘ ply and 90∘ ply interface
for the different loads steps shown in Fig. 11.10.
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(a) (b) (c) (d) (e)

Figure 11.16: Deformed shapes obtained for the different loads steps shown
in Fig. 11.10, multiplied by 20 in x-direction only.

Fig. 11.10 when elastic contact is considered. As can be seen from these
figures the tangential stresses are much larger than the normal stresses dur-
ing the delamination crack growth. In particular in Fig. 11.14, the “bubble”
formed near the crack tip can be observed (� = 0).

In Fig. 11.16 the deformed shapes of the same load steps considered in
Fig. 11.14 and Fig. 11.15 are shown. These deformed shapes are multiplied
by 20 only in x-direction.

Different interface properties

As can be concluded from the previous analysis, the use of contact seems
to be reasonable. Thus, taking into account the contact algorithm the two
combinations of interface properties are considered according to Table 11.1.
Again the geometry used is that shown in Fig. 11.3(b).

In Fig. 11.17 a comparison of the actual applied strain versus the length
of the delamination crack d is plotted, for the two combinations considered
in Table 11.1. Notice that combination 2 with the same applied strain
causes a larger delamination crack size. It is also noticeable, the fact that
both curves are very similar in form but with very different values, this
could be caused because although �̄c and GIc values are different the values
of kn and kt are the same in both configurations.

Fig. 11.18 represents a comparison of the distribution of the fracture
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Figure 11.17: Comparison of the applied strain versus the length of the
delamination crack d, for the two combinations considered in Table 11.1.

Figure 11.18: Comparison of the distribution of the fracture toughness nec-
essary to cause the crack growth versus the length d, for the two combina-
tions considered in Table 11.1.
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Figure 11.19: Comparison of the predictions of the ERR (G), for a fixed
applied strain of 1%, versus the length of the delamination crack d, for the
two combinations considered in Table 11.1.

energy necessary to cause the crack growth versus the length d. As in com-
bination 2 the GIc associated to the interface is lower, the obtained results
are in accordance to this fact. It can be observed that the delamination
crack for combination 2 grows easier. Also  � values are exactly the same
for both combinations.

Fig. 11.19 shows a comparison of the distribution of the values of the
ERR of the delamination crack versus the length d, for a fixed applied strain
of 1%. It can be seen that, there are no differences of the values of the ERR
of the transverse crack for the two combinations considered in Table 11.1.

Comparison with other previous results

In a similar way as it was done for transversal cracks, in Fig. 11.20 the ERR
(G) obtained by Blázquez [21], O’Brien [126], McCartney [118] and the the
ERR obtained using the present LEBI formulation, for a fixed applied strain
of 1%, are compared. Notice that the present results seem to be in a good
qualitative agreement with those obtained by means of the VCCT [21].

Finally in Fig. 11.21 the ERR components (GI , GII and G) obtained
by the VCCT [21] and the present LEBI formulation, for a fixed applied
strain of 1% are plotted. Notice that the contribution of mode I and II are
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Figure 11.20: Comparison of the predictions of the ERR (G) for the de-
lamination crack obtained by different authors and the linear elastic-brittle
interface formulation, for a fixed applied strain of 1%.

Figure 11.21: Comparison of the predictions of the ERR (G) obtained by
the VCCT [21] (dashed lines) and the linear elastic-brittle formulation (con-
tinuous lines), for a fixed applied strain of 1% versus the length of the
delamination crack d.
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in accordance qualitatively by the two methods presented. In fact, it can
be said that the larger contribution in mode I obtained by means of the
VCCT is caused by the use of a very small value of the virtual crack step
length, △a. It can be expected that the results obtained by means of the
VCCT and a larger value (more realistic) of △a will be in more accordance
with the results obtained by means of the present LEBI formulation.

Cook-Gordon mechanism

By using the geometry shown in Fig. 11.3(a) and taking the combination
for the interface properties shown in Table 11.2, the LEBI formulation was
able to model the Cook-Gordon mechanism [44], see Fig. 11.2(d).

Table 11.2: Interface properties used to obtain a behavior similar as the
Cook-Gordon mechanism [44], see Fig. 11.2(d).

Position GIc(Jm−2) �̄c(MPa) kn (MPa/�m) kt (MPa/�m)
transversal 75 61 24.807 8.269

delamination 15 61 124.034 41.345

Notice that the values of kn and kt between the two crack paths has
a ratio of 5. Using these properties the transversal crack stopped around
a = 0.525 mm and originated a delamination crack of a size of d = d1 =
d2 = 0.02 mm. Then, the transversal crack starts its growing again and
reaches the interface. It should be mentioned that this fact only shows
that the LEBI formulation is capable to model this behavior, nevertheless
a deeper study regarding this topic is necessary.

11.4 Concluding remarks

As shown by the numerical results presented in this chapter, the LEBI
formulation seems to be a promising tool to describe the behavior of the
transversal and delamination cracks in [0/90] symmetric laminates. As
shown by the realistic results presented, the BEM tool developed can be
considered a useful tool, due to the crack propagation can be modeled by
using always the same uniform mesh. While for the VCCT [21, 130] a refined
mesh is necessary near the crack tip, thus for a different load steps, different
meshes are needed. Although it was not studied deeply in this chapter the
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LEBI formulation is capable of reproducing the Cook-Gordon mechanism
[44], see Fig. 11.2(d), by using an adequate combination of properties at the
0∘ ply and 90∘ ply interface and the properties used for the crack path of
the transversal crack.



160 Chapter 11. Delamination cracks in [0/90] symmetric laminates



Chapter 12

Single Fibre Fragmentation
Test

In the present chapter the Single Fibre Fragmentation Test (SFFT) of com-
posite materials is modeled by means of the Linear Elastic-Brittle Interface
(LEBI) model introduced in Chapter 4. The non-linear algorithm used is
the sequentially linear analysis, described in Section 6.2, implemented in a
2D axisymmetric BEM code.

12.1 Description of the test

As mentioned in Section 2.3, the SFFT has been extensively used for fi-
bre–matrix interface characterization in fibre reinforced composites. In the
present study, a sample made of E-glass fibre and epoxy matrix is consid-
ered. SFFT specimens consist of a long fibre embedded in a large block
of resin matrix, subjected to tensile load in the fibre direction, applied as
a uniform strain at the ends of the specimen. Since strain to failure in
the fibre is much lower than in the matrix, after reaching a certain load,
successive fragmentation of the fibre is observed. Once the fragmentation
process, which reflects the statistical fibre strength distribution, starts, ten-
sile load is transferred to the fibre fragments through shear stresses at the
fibre–matrix interface, thus allowing for the appearance of new fragments.

A specific numerical tool based on the Boundary Element Method and
the LEBI formulation has been developed and employed for the numerical
simulation of the problem. This approach has been chosen for the numerical
analysis of the SFFT since it offers clear advantages if compared with other
alternative numerical methods (for example, the Finite Element Method).
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Firstly, taking into account the axial symmetry with respect to the fibre
axis, only a 1D mesh is needed for the analysis of the 2D axi-symmetric
problem with BEM. Secondly, since the debonding crack grows along the
fibre–matrix interface, the displacements and tractions needed for the study
of debond propagation are the actual primary unknowns in the nodes of the
BEM mesh.

Isotropic linear elastic material behavior, repetitive solutions in the
vicinity of all fragment ends and local symmetry with respect to the fi-
bre crack is assumed in order to simplify the BEM model, as in [71, 72, 73].
Thus, the geometry and boundary conditions employed for the analysis are
those shown in Fig. 12.1. Material properties, corresponding to typical E-
glass fibre and epoxy matrix, are listed in Table 12.1. The outer radius of
the resin cylinder is taken as rm = 1000�m. In this preliminary analysis,
the effect of the residual stresses, originated by the curing of the specimen
and the friction contact between the crack faces in closed cracks has been
neglected.

Figure 12.1: Single fibre fragmentation test geometry and boundary condi-
tions, taken from [73].

The BEM mesh used has 820 continuous linear elements modeling the
fibre, 800 elements in the fibre-matrix interface (the uniform element size is
0.5 �m), notice that is not necessary to mesh the nodes in the axisymmetric
axis. The matrix is modeled with 892 continuous linear elements, where
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again 800 elements are used in the interface, while 30 elements are used in
the outer face of the matrix and 36 elements in each lateral face.

Table 12.1: Single fibre fragmentation test: material properties (m-epoxy
matrix and f-glass fibre).

Mat. Poisson ratio Young’s modulus Outer radius

m �m = 0.3 Em = 3.5 GPa rm= 1000 �m
f �f = 0.2 Ef = 70 GPa rf= 5 �m

12.2 Crack propagation along the fibre-matrix in-

terface

The geometry and material properties used are those described previously
in Section 12.1. Since there is not a unique accepted value for the Fracture
Energy in mode II for the fibre matrix interface, three values of GIIc were
assumed, GIIc = 10, 20, 40 J/m2. The present problem is solved by means
of the LEBI model. In the present application, the linear contact part of
the LEBI formulation, once an element is broken, is deactivated, see Section
4.2; thus overlapping of crack faces is allowed. The interface properties are
taken as: kn/kt = 4 and � = 0.3 for the three values of GIIc mentioned and
shown in Table 12.2.

Table 12.2: Single fibre fragmentation test: fibre-matrix interface proper-
ties.

GIIc �̄c �̄tc GIc �̄c �̄nc
10 J/m−2 66.666 MPa 0.3 �m 2.061 J/m−2 60.53 MPa 0.0681 �m
20 J/m−2 133.332 MPa 0.3 �m 4.122 J/m−2 121.06 MPa 0.0681 �m
40 J/m−2 266.664 MPa 0.3 �m 8.244 J/m−2 242.12 MPa 0.0681 �m

Notice that the values of GIc, �̄c and �̄nc were calculated with the for-
mulation and relations described in Section 3.2.

In Fig. 12.2, BEM results for the three values of GIIc are shown. Also
some FEM results using a Cohesive Zone Model are plotted, the model used
is a linear CZM as described in Section 3.1, that is included in the comercial
FEM code MSC.MARC. Notice that the BEM results are always above the
FEM results. This fact could be explained by the different values of the
total fracture energy, Gc at the crack tip during its growth. In the FEM
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analysis the problem behaves in pure mode II, therefore Gc = GIIc. In
the BEM analysis the mixed mode formulation of the LEBI model allow
a mixed mode (where a compression in mode I affects the value of Gc,
 � > 90∘), see Fig. 4.7. The values of Gc obtained in this problem are
shown in Fig. 12.3 were it can be clearly seen that at initial steps the values
of Gc are higher and then an almost constant value, although still higher
than GIIc, is reached. In spite of the significant differences in the FEM
and BEM models used, an excellent agreement between the results of these
models is achieved, see Fig. 12.2, when taking into account the different Gc
values as shown in Fig. 12.3

Figure 12.2: BEM results for the interface crack growth in SFFT with
� = 0.3 and kn/kt = 4 compared with FEM results.

In order to see the capabilities of the present LEBI model, the problem
was solved again but changing the value of the parameter �, with � = 0.2,
as can be seen in Fig. 12.4. Notice that the model just need the values of
GIc, �̄c and �̄nc, this fact will lead to a different value of GIIc determined
by the LEBI model.

Notice that in Fig. 12.4 for GIc = 8.244 J/m−2 the final crack size is very
small, due to the very high value of Gc. This behavior is led by the value of
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Figure 12.3: Gc values for the SFFT studied problem in Fig. 12.2.

Figure 12.4: BEM results of SFFT with � = 0.2 and kn/kt = 4.
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�. As this parameter becomes lower the value of Gc, when a compression
is acting in mode I, becomes higher more quickly because of the different
slope, see Fig. 4.7.

A second study was done in order to see the effect of the value of the
ratio kn/kt. Thus, keeping constant all the other interface properties with
� = 0.3, the problem was solved with kn/kt = 3, 5, see Figs. 12.5-12.6
respectively.

Figure 12.5: BEM results of SFFT with � = 0.3 and kn/kt = 3.

As can be observed from Figs. 12.5-12.6 the value of the ratio kn/kt
has a small effect on the SFFT problem. For lower values of kn/kt the Gc
increases a little bit, while for higher values kn/kt the Gc decreases, this
effect can be observed as a small shifting of the curves in Figs. 12.5-12.6.

An important effect that is shown by all the above figures (and the
different parametric studies) is that in the initial stage a stable growth of
the interface crack is reached. Followed by a long stage with a crack growth
close to neutral equilibrium (almost unstable growth with a similar strain)
and finally a crack arrest is presented, as a considerably amount of strain
is necessary to continue with the crack growth.
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Figure 12.6: BEM results of SFFT with � = 0.3 and kn/kt = 5.

12.3 Concluding remarks

As shown by the numerical results presented in this chapter, the LEBI
formulation seems to correctly describe the behavior of the debond crack
growth in the Single Fibre Fragmentation Test.

Although this is an initial study the LEBI model seems to be a promising
tool, where the influence of the linear contact between crack faces after an
element is broken can be take into account for further studies.
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Chapter 13

Interface cracks between
matrix and fibre under
transversal loads

In the present chapter the onset and growth of interface cracks between ma-
trix and fibre of composite materials subjected to far field transversal loads
is studied by means of the Linear Elastic-Brittle Interface (LEBI) model
introduced in Chapter 4. The non-linear algorithm used is the sequentially
linear analysis implemented in a 2D collocational BEM code.

First the problem of an isolated fibre embedded in a large matrix is
deeply studied under different combinations of transversal loads and then a
cluster of fibres (three) is modeled.

13.1 Single fibre model

The problem of an elastic cylindrical inclusion (representing a fibre) inside
an elastic matrix with and without a partial debond along its interface
subjected to a remote uniform tension perpendicular to the debond has
been studied in depth by many researchers, see references in [45, 112, 132].

In the present study an infinitely long cylindrical inclusion is considered,
with circular section of radius a, inside an infinite matrix, Figure 13.1. Both
the inclusion and the matrix are considered as linear isotropic materials. Let
(x, y, z) and (r, �, z) be the cartesian and cylindrical coordinates, the z-axis
being the longitudinal axis of the inclusion, and the x-axis the one parallel
to the direction of the load. A uniform remote tension �∞x > 0 and �∞y = 0
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(a) (b)

Figure 13.1: Inclusion problem configuration under remote transverse ten-
sion (a) without and (b) with a partial debond.

is applied for uniaxial loading problems. For biaxial problems �∞x > 0 and
−�∞x ≤ �∞y ≤ �∞x is used. The semidebond angle is denoted as �d. A plane
strain state is assumed in the system.

13.1.1 Fibre-matrix debond initiation and growth under uni-
axial tension

Analytical solution for undamaged interface

Gao [66] developed closed-form solutions for circular inclusion problems
with a general linear elastic (spring) layer interface condition with a constant
eigenstrain in the inclusion and a tension at infinity. The materials are
assumed to be isotropic with �i and �i, and �m, and �m as the material
properties of inclusion (i) and matrix (m) respectively. Herein, � is the
shear modulus, � = E/2(1 + �), and � = 3 − 4� for plane strain, where
� is the Poisson’s ratio. From the Airy stress function presented in [66],
a closed-form expression has been obtained in the present thesis for the
stresses at the interface under a uniform tension �∞x at infinity and zero
eigenstrain.

�(x = a, �) =
�∞x kna(1 + �m)[A+BC cos(2�)]

2AC
, (13.1)

�(x = a, �) =
�∞x kta(1 + �m)[B sin[2�]]

2A
, (13.2)
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where

A = 12�2m+a
2knkt(�m+t)(1+�it)+a�m(kn+kt)(1+3�m+(3+�i)t), (13.3)

B = 6�m + akn(1 + �it), (13.4)

C = 4�m + akn(2 + (�i − 1)t), (13.5)

with t = �m/�i.

According to Gao [66] a necessary and sufficient condition for having a
constant stress inside the inclusion is that kn/kt = 1. Recall that, according
to Section 4.1, this ratio can not correspond to an isotropic elastic layer,
see equation (4.7).

Numerical solution and parametric studies

Consider an inclusion bonded to the matrix along its lateral surface through
a continuous distribution of springs that behave according to the LEBI
model introduced in Chapter 4. It is assumed that, although strictly speak-
ing there might be no material between the fibre and matrix, the above
interface model can still be used to simulate the behavior of this system.
An important feature of this model is, as will be shown, the possibility of
studying not only the fibre-matrix debond (interface crack) propagation but
also the debond (interface crack) onset.

It is noticeable that although the problem is symmetric (geometry and
loads) the onset and growth of the interface crack is non-symmetric, as can
be observed from experimental evidence, see Fig. 2.4. Thus, although some
researchers makes use of the symmetry to study this problem, in the present
chapter the whole inclusion is modeled in order to see the capability of the
model to represent the non-symmetric behavior.

BEM model. A typical bi-material system among fibre reinforced com-
posite materials is chosen for this study: glass fibre and epoxy matrix. The
elastic properties of these materials, the Dundurs’ bi-material parameters,
� and �, and the harmonic mean of the effective elasticity moduli E∗ in
plane strain, defined e.g. in [112, 113, 132], are detailed in Table 13.1.

The BEM model represents a cylindrical inclusion with a radius a =7.5
�m inside a relatively large square matrix with a 1 mm side. 1472 continuous
linear boundary elements are used: 32 elements for the external boundary
of the matrix and two uniform meshes of 720 elements to model the fibre-
matrix interface (therefore, the polar angle of each element is 0.5∘).
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Table 13.1: Isotropic bi-material constants (m-epoxy matrix and f -glass
fibre).

Mat. Poisson ratio Young’s modulus � � E∗

m �m = 0.33 Em = 2.79 GPa
0.919 0.229 6.01 GPa

f �f = 0.22 Ef = 70.8 GPa

Effect of the interface properties GIc, �̄c and �. Due to the absence
of a widely accepted value of the fibre-matrix interface fracture toughness
in mode I, GIc, and of the critical tension of this interface, �̄c, a parametric
study is presented. The problem has been solved for different combinations
of the estimations of their maximum and minimum values found in the
literature [1, 112, 170, 184], see Table 13.2.

Table 13.2: Considered combinations of the fibre-matrix interface proper-
ties.

N∘ GIc(Jm−2) �̄c(MPa) kn (MPa/�m) kt (MPa/�m) a0(�m) 

1 2 60 900 300 3.34 0.67
2 10 60 180 60 16.7 1.5
3 2 90 2025 675 1.48 0.44
4 10 90 405 135 7.42 0.99

A bimaterial characteristic length

a0 =
GIcE

∗

�̄2c
, (13.6)

and the dimensionless structural parameter characterizing the interface brit-
tleness,


 =
1

�̄c

√
GIcE∗

a
=

√
a0
a
, (13.7)

introduced in [112], are also included in Table 13.2. The values of kn in
Table 13.2 are computed by the formula kn = �̄2c/(2GIc) obtained from
(4.19). The constant relation between kn and kt (kt = kn/3) chosen in Table
13.2 requires an explanation. This value is obtained assuming a fictitious
material, a very thin layer between the fibre and matrix, modeled by the
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present interface model whose Poisson ratio is somewhat arbitrarily defined
as � = 0.25 according to (4.7).

Different values of the sensitivity parameter � (�=0, 0.2 and 0.3) ap-
pearing in the empirical fracture energy law (4.18) are chosen in Fig. 13.2,
Fig. 13.3 and Fig. 13.4 respectively.

In part (a) of Figs. 13.2-13.4 the applied remote stress, �∞x , is plotted
as a function of the normal relative displacement (opening), �n, evaluated
at point A(a, 0) as defined in Fig. 13.1(a). The (minimum) remote stress
value that is needed to initiate crack growth (in simple terms, the stress that
is needed to break the first point, the first spring, in the present interface
discrete model) is called critical stress, �∞c , and corresponds to the local
maximum of the functions shown in the above mentioned figures. It can be
also observed in these figures that after reaching the critical stress, �∞c , the
crack growth becomes unstable, requiring smaller values of the remote ten-
sion that causes the further crack growth, thus an instability phenomenon
called snap-through takes place.

In part (b) of Figs. 13.2-13.4 the (minimum) remote stress, �∞x , needed
to cause crack growth is plotted versus the semidebond angle �d (defined
in Fig. 13.1(b)). It should be noted that from these figures it is possible
to obtain an estimation of the value, �c, reached by the semidebond angle
�d after the initial unstable crack growth, and also of the load, �∞c , which
produced the growth.

As expected (from the values of 
 calculated), Combination 3, which has
the highest critical normal stress value in mode I, �̄c, and the lowest fracture
toughness, Gc, presents the most brittle behavior (the lowest 
 value), thus
resulting in the highest value of �c and the lowest value of �∞x /�̄c of all the
combinations studied.

The formulation of the LEBI constitutive law employed in this particular
example is different to the one shown in Fig. 4.4 (developed later) and it
does not allow crack growth when compressions are present at the crack
tip. In such situations no further increment of load is applied, as can be
observed in some curves in Figures 13.3(a)-13.5(a).

Table 13.3 summarizes the values of the �∞x , �∞x /�̄c and �c for the
different combinations studied.

The influence of � on crack propagation should also be noticed. As can
be checked from Figs. 13.2-13.4, the value of �∞c is independent of the value
of �. This fact is due to the problem configuration symmetry implying that
the first point which reaches the critical load and fails works in pure mode
I, causing the no influence of � value on �∞c . Nevertheless, changing the
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(a)

(b)

Figure 13.2: BEM results. (a) Applied stress with respect to the normal
relative displacements at point A(a,0) and (b) applied stress with respect
to the semidebond angle for different interface properties and � = 0.
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(a)

(b)

Figure 13.3: BEM results. (a) Applied stress with respect to the normal
relative displacements at point A(a,0) and (b) applied stress with respect
to the semidebond angle for different interface properties and � = 0.2.
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(a)

(b)

Figure 13.4: BEM results. (a) Applied stress with respect to the normal
relative displacements at point A(a,0) and (b) applied stress with respect
to the semidebond angle for different interface properties and � = 0.3.
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(a)

(b)

Figure 13.5: BEM results. (a) Applied stress with respect to the normal
relative displacements at point A(a,0) and (b) applied stress with respect to
the semidebond angle for different values of � with GIc = 2Jm−2, �̄c = 90
MPa and kn/kt = 3.
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Table 13.3: Critical remote load which produces the crack onset, �∞c , and
critical semidebond angle, �c, for different values of � and the different
considered combinations of the fibre-matrix interface properties.

N∘ �∞c (MPa) �∞c /�̄c
�c (∘)

� = 0 � = 0.2 � = 0.3

1 46.5 0.775 54.25 62.75 67.75
2 82.1 1.368 40.25 44.75 47.25
3 63.9 0.710 58.25 69.75 > 70
4 85.3 0.948 47.75 53.75 57.25

way the load is applied and/or the modeling two or more inclusions could
make �∞c become dependent on the value of �.

The fact that �∞c is independent of � in the present problem will also
be reflected throughout the numerical results presented herein after in the
different parametric studies.

Nevertheless, the value of �c is highly affected by �. As can be ob-
served in the above-mentioned figures and in Table 13.3, the semiangle �c
increases when the value of � becomes higher, which corresponds to de-
creasing fracture energy Gc with increasing � as shown in Figure 4.6. The
above-mentioned influence of � is also clearly seen in Figure 13.5 where
the following properties are assumed: GIc = 2Jm−2, �̄c = 90 MPa and
kn/kt = 3 and only the value of � is varied.

Effect of the relation between kn and kt. A second study determines
the influence of the value of kt in relation with kn. For this study the
properties defined previously for Combination 3 (GIc = 2Jm−2 and �c = 90
MPa) are assumed. These values correspond to the combination which
presented the most brittle interface behavior, making the hypothesis of the
present interface model represent appropriately a possible real composite
material behavior.

As assumed in (4.7), the ratio kn/kt is directly related to the value of
the Poisson ratio of the interface elastic layer. Thus, for this study we will
consider 3 different cases: kn/kt = 1, kn/kt = 2.66 and kn/kt = 3, the last
two cases implying a value of the Poisson ratio of the interface � = 0.2 and
� = 0.25 respectively. The first case, chosen for its simplicity, is not physi-
cally possible (there is no corresponding value of �), at least if we consider
isotropic elastic properties of the interface layer as we have presented in this
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section. Nevertheless, if we consider that the layer has orthotropic elastic
properties, the case kn/kt = 1 may have a physical meaning.

Table 13.4: Loads which produce the crack onset, �∞c , and critical
semidebond angle, �c, for different values of � and for different values of
the ratio kn/kt.

kn/kt �∞c (MPa) �∞c /�̄c
�c (∘)

� = 0 � = 0.2 � = 0.3

1 69.2 0.769 54.25 68.25 > 70
2.66 64.5 0.717 57.75 69.50 > 70
3 63.9 0.710 58.25 69.75 > 70

In part (a) of Figures 13.6-13.8 the applied remote stress, �∞x , is plotted
as a function of the normal relative displacement (opening), �n, obtained at
point A.

In part (b) of these figures the (minimum) remote stress, �∞x , needed
to cause crack growth is plotted versus the semidebond angle �d (defined
in figure 13.1(b)). Again from these figures it is possible to obtain an
estimation of the value, �c, reached by the semidebond angle after the initial
unstable crack growth, and also of the load, �∞c , which produced the growth.

Table 13.4 summarizes the values of the �∞x , �∞x /�̄c and �c for the
different values of the ratio kn/kt considered.

From Figs. 13.6-13.8 it can be observed that the variation of the tan-
gential stiffness of the interface, kt, does not significantly affect the values
of the critical stress �∞c or the semiangle �c. Larger values of kt implying
larger values of �∞c and smaller values of �c. In Figure 13.8(b), �c values
are larger than 70∘ and they are not shown.

As expected, due to results of the parametric study of the previous
subsection, the value of the semiangle �c increases when the value of �
becomes higher.

Effect of the inclusion size. The last parametric study has been carried
out to determine the influence of the size of the inclusion on the onset and
growth of the debond crack, as discussed in [112]. Again the interface prop-
erties defined previously for Combination 3 in Table 13.2 (GIc = 2Jm−2,
�c = 90 MPa and kn/kt = 3) are assumed. The problem is solved for
different inclusion radii, see Table 13.5.
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(a)

(b)

Figure 13.6: BEM results (a) Applied stress with respect to the normal
relative displacements �n at point A, see Fig. 13.1, and (b) applied stress
with respect to semidebond angle �d for different values of the ratio kn/kt
and � = 0.
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(a)

(b)

Figure 13.7: BEM results (a) Applied stress with respect to the normal
relative displacements �n at point A, see Fig. 13.1, and (b) applied stress
with respect to semidebond angle �d for different values of the ratio kn/kt
and � = 0.2.
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(a)

(b)

Figure 13.8: BEM results (a) Applied stress with respect to the normal
relative displacements �n at point A, see Fig. 13.1, and (b) applied stress
with respect to semidebond angle �d for different values of the ratio kn/kt
and � = 0.3.
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Table 13.5: Considered inclusion radii with GIc = 2Jm−2, �c = 90 MPa
and kn/kt = 3.

a(�m) 0.375 0.75 3.75 7.5


 1.99 1.4 0.62 0.44

Table 13.6: Loads which produce the crack onset, �∞c , and critical
semidebond angle, �c, for different values of � and for different inclusion
sizes.

a (�m) �∞c (MPa) �∞c /�̄c
�c (∘)

� = 0 � = 0.2 � = 0.3

0.375 177.0 1.967 35.25 39.25 40.75
0.75 115.6 1.284 41.25 45.75 48.25
3.75 68.4 0.760 54.75 63.75 69.25
7.5 63.9 0.710 58.25 69.75 > 70

In a similar way as in the previous sections, in part (a) of Figures 13.9-
13.11 the applied remote stress, �∞x , is plotted as a function of the open-
ing, �n, obtained at point A. In part (b) of Figures 13.9-13.11 the (min-
imum) remote stress, �∞x , needed to cause crack growth is plotted versus
the semidebond angle �d. From these figures it is possible to obtain an esti-
mation of �c and �∞c . Table 13.6 summarizes the values of the �∞c , �∞c /�̄c
and �c for the different values of a studied.

The results obtained are very similar to those obtained in a different
way in [112]: as the inclusion radius, a, decreases, the value of the critical
stress increases. It can also be seen that the value of the critical semidebond
angle, �c, decreases when the radius of the inclusion decreases.

In Figure 13.12 the effect of inclusion size on the critical load that pro-
duces the debond onset, �∞c , is shown. The marked points on one curve
represent cases solved by BEM, and the continuous lines are obtained by
the analytical solution developed in Section 4, expression (13.1). As men-
tioned before, � does not affect the value of �∞c , the same curve then being
obtained in Figure 13.12 for different values of �. Nevertheless, it is shown
from the analytical solution for �∞c , obtained from (13.1), that the ratio
kn/kt slightly affects the behavior of the fibre-matrix system. As can be ob-
served from (13.1), �∞c ∼ 1

a for vanishing values of a, whereas it approaches
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(a)

(b)

Figure 13.9: BEM results (a) Applied stress with respect to the normal
relative displacements �n at point A, see figure 13.1, and (b) applied stress
with respect to the semidebond angle �d for different inclusion sizes and
� = 0.
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(a)

(b)

Figure 13.10: BEM results (a) Applied stress with respect to the normal
relative displacements �n at point A, see figure 13.1, and (b) applied stress
with respect to the semidebond angle �d for different inclusion sizes and
� = 0.2.
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(a)

(b)

Figure 13.11: BEM results (a) Applied stress with respect to the normal
relative displacements �n at point A, see figure 13.1, and (b) applied stress
with respect to the semidebond angle �d for different inclusion sizes and
� = 0.3.
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(a)

(b)

Figure 13.12: Comparison of BEM and analytical results. Inclusion size ef-
fect on the critical remote tension that produces the growth, �∞c , as function
of a/a0.
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(a)

(b)

Figure 13.13: Comparison of BEM and analytical results. Inclusion size ef-
fect on the critical remote tension that produces the growth, �∞c , as function
of 
 and a ratio kn/kt = 3.



13.1 Single fibre model 189

(a)

(b)

Figure 13.14: BEM results. Inclusion size effect on the critical semidebond
angle, �c, for different values of � and a ratio kn/kt = 3.
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a constant value for a → ∞, see asymptotes indicated in Figure 13.12(b).
In Figure 13.13 the dependence of �∞c on the structural dimensionless pa-
rameter 
 is depicted, the corresponding asymptotes also being indicated
in Figure 13.13(b).

It is clear from the numerical results presented that the interface crack
(debond) onset begins at the point A(r = a, � = 0). Thus, in order to
clarify which variables are governing the critical value of the remote tension
�∞c , it is instructive to rewrite equation (13.1) in terms of two dimensionless
parameters, �:

� = kt/kn (13.8)

and 
 (13.7). Applying the failure criteria for pure fracture mode I at point
A, �(A) = �̄c and using (13.1) leads to the following expressions of �∞c
normalized by �̄c:

�∞c
�̄c

=

2

(1 + �m)E∗
⋅ 4AC

A+BC
, (13.9)

where

A = 12�2m +
�(�m + t)(1 + �it)E

∗2

(2
2)2
+
�m(1 + �)(1 + 3�m + (3 + �i)t)E

∗

2
2
,

(13.10)

B = 6�m +
(1 + �it)E

∗

2
2
, (13.11)

C = 4�m +
(2 + (�i − 1)t)E∗

2
2
, (13.12)

From equation (13.9) it can be seen that �∞c depends only on �̄c, 
 and �,
once the elastic properties of a bimaterial system are defined. Additionally,
as follows from the parametric study shown in Figures 13.12(a) and 13.13(a),
the dependence of �∞c on � is relatively weak.

The inclusion size effect on the critical semidebond angle, �c, is shown
in Figure 13.14. It can be seen that the fracture mode sensitivity parameter
� affects the value of �c, obtaining different curves for different values of �
while keeping constant the ratio kn/kt = 3.

Detailed study of a particular case. Among all the parametric studies
carried out, a particular case is chosen to analyze in detail the behavior of
the displacements and stresses along the interface. The material properties
taken are GIc = 2Jm−2, �̄c = 90 MPa kn/kt = 3 and � = 0.2. A radius
a=7.5�m is also considered.
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(a)

(b)

Figure 13.15: (a) Comparison of BEM and analytical solution for stresses,
and (b) BEM solution for relative displacements along the fibre-matrix in-
terface for the initial load step (before crack onset).
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(a)

(b)

Figure 13.16: BEM solution for (a) stresses and (b) relative displacements
along the fibre-matrix interface for a load step with semidebond angle �d =
29∘.
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(a)

(b)

Figure 13.17: BEM solution for (a) stresses and (b) relative displacements
along the fibre-matrix interface for a load step with semidebond angle �d =
�c = 69.5∘.
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(a)

(b)

Figure 13.18: Deformed shape multiplied by 5 obtained when (a) �d = 29∘

and (b) �d = 69.5∘.
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The results shown in Fig. 13.15 correspond to the applied load which
causes the failure of the first interface point, A(a,0).

The values of the normal and tangential stresses along the fibre-matrix
interface obtained by BEM and the analytical solution introduced in [66]
and developed in Section 4 are shown in Fig. 13.15(a). The excellent agree-
ment between the BEM solution and the analytical solution (13.1) is note-
worthy.

The normal and tangential relative displacements along the interface
obtained by BEM are plotted in Fig. 13.15(b).

An intermediate load step is shown in Fig. 13.16, corresponding to the
local minimum value of �∞x in Figs. 13.3, 13.7 and 13.10. This step is
reached when �d = 29∘. In Fig. 13.16(a) of the figure the values of the
normal and tangential stresses along the fibre-matrix interface obtained by
BEM are shown. In part Fig. 13.16(b) the normal and tangential relative
displacements are plotted. In this situation, the applied load �∞x is lower
than the load needed to initiate the crack, and therefore it corresponds to
the period of unstable growth.

Finally the solution for the load step in which the crack stops its un-
stable growth is shown in Fig. 13.17. In this load step �d = �c = 69.5∘. In
Fig. 13.17(a) of this figure the values of the normal and tangential stresses
are shown while in Fig. 13.17(b) the normal and tangential relative displace-
ments are plotted.

From Figs. 13.15-13.17 it is interesting to notice how the tangential
stresses become more important as the crack length becomes longer, since
the orientation of the crack tip changes as the crack propagates.

The deformed shape obtained for the fibre-matrix system is shown in
Figure 13.18 for the above described load steps with �d = 29∘ and �d =
69.5∘.

13.1.2 Fibre-matrix debond initiation and growth under bi-
axial (tension-tension or tension-compression) loads

In this subsection the same material properties and BEM model as in the
previous subsection has been considered. The present study is focused in the
crack onset and evolution when a constant remote biaxial load is applied.
Considering �∞x > 0 as the dominant load and a secondary transversal load
in y-direction verifying ∣�∞y ∣ ≤ �∞x . Again plane strain state is considered.

The LEBI properties considered are GIc = 2Jm−2, �̄c = 90 MPa,
kn/kt = 4 and the inclusion radius is a=7.5�m. The parameter � takes
the following values: 0, 0.2 and 0.3.
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(a)

(b)

Figure 13.19: BEM results, applied stress with respect to semidebond angle
for different values of �∞y and � = 0.
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(a)

(b)

Figure 13.20: BEM results, applied stress with respect to semidebond angle
for different values of �∞y and � = 0.2.
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(a)

(b)

Figure 13.21: BEM results, applied stress with respect to semidebond angle
for different values of �∞y and � = 0.3.
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From Figs. 13.19-13.21 the (minimum) remote stress, �∞x , needed to
cause crack growth is plotted versus the semidebond angle �d (defined in
Fig. 13.1(b). It should be noted that from these figures it is possible to
obtain an estimation of the value, �c, reached by the semidebond angle
�d after the initial unstable crack growth, and also of the load, �∞c , which
produced the growth for different combinations of biaxial loads and different
values of the parameter �. As mentioned before the load applied in x-
direction is considered dominant while the loads in y-direction are varied
in order to obtain the desired combinations. In Figs. 13.19-13.21(a) the
traction-compression combinations are shown while in Figs. 13.19-13.21(b)
the traction-traction combinations can be observed.

As can be seen from these results, when the compression load in y-
direction is larger the load necessary for crack debonding is smaller. In a
similar way �c becomes lower when the compression load increases.

On the other hand, when the traction load in y-direction is larger the
load necessary for crack debonding is also larger. Also, �c becomes higher
when the traction load increases, eventually producing a very large debond
of the fibre (unstable growth for �d > 90∘) for the highest loads of traction.

Figure 13.22: Failure curve of a circular inclusion under biaxial transversal
loads with �̄c = 90MPa and kn/kt = 4.
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Figure 13.23: Failure curve of a circular inclusion under biaxial transversal
loads with �̄c = 90MPa and two values of kn/kt.

Figure 13.24: Failure curve of a circular inclusion under biaxial transversal
loads with �̄c = 90MPa, �̄c = 60MPa and kn/kt = 4.



13.2 Multi fibre model 201

From all the cases solved it is possible to obtain a failure curve of a
circular inclusion under biaxial transversal loads, see Fig. 13.22. It can be
assumed that the triangular area defined by the points is a safe zone.

In a similar way as in previous sections the influence of kn/kt is studied,
see Fig. 13.23. The interface properties taken to obtain the second curve
are GIc = 2Jm−2, �̄c = 90 MPa and kn/kt = 3.

As can be seen in Fig. 13.23 the kn/kt ratio has only a slightly influence
on the failure curve, this behavior was expected due to the previous results
shown in the previous section for a uniaxial load.

In Fig. 13.23 the following interface properties were taken to obtain the
second curve GIc = 2Jm−2, �̄c = 60 MPa, kn/kt = 4 (�̄ value is varied
only).

The obtained results are in accordance with some experimental evidence.
Paris et. al. [133] and Correa [45] carried out biaxial tests, where increas-
ing compressions loads (as secondary loads) led to decreasing failure load
(dominant).

13.2 Multi fibre model

The LEBI model seems to be an adequate model to study the behavior
of fibre-matrix interfaces, as shown in the previous section for the case
of the single fibre model. Nevertheless, in actual composites the fibres
are embedded in a matrix forming clusters of cylindrical inclusions. Thus,
the interaction among fibres as well as the distances among them play an
important role, see Fig. 13.25.

In the present section an initial study of this problem is done to illus-
trate the capabilities of the BEM code developed. Three fibres inside a
continuous surrounding matrix were modeled by means of the LEBI model,
see Fig. 13.26. The material properties considered are the same as in the
previous section and the interface properties are GIc = 2Jm−2, �̄c = 90
MPa, kn/kt = 4, with � = 0.3. It should also be mentioned that the linear
contact part of the LEBI formulation, see Section 4.2, is deactivated.

The radius of the fibres has been taken as 7.5 �m and the matrix that
surround the fibres is a square of size 1mm. 2192 continuous linear boundary
elements are used: 32 elements for the external boundary of the matrix and
two uniform meshes of 360 elements, per fibre, to model the fibre-matrix
interface (therefore, the polar angle of each element is 1∘).

As can be seen in Fig. 13.27, an unstable onset on an interface crack
is obtained in the multifibre model, in a similar way as in the single fibre
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Figure 13.25: Example of a typical distribution of glass fibres in a glass-
epoxy composite material.

Figure 13.26: Multifibre model studied by means of BEM

model. After the initial crack onset (ending up at point A in Fig. 13.27)
is followed by a stable interface crack growth (higher loads are needed to
reach point B). Then, a second unstable crack onset in a different inclusion
is obtained (ending up at point C), followed by stable growth of the second
crack to reach point D. It is remarkable to comment that the spurious
behavior shown between points C and D, are caused because some interface
points are becoming in contact and also because the crack growth is being
achieved in both cracks. Point E shows a third unstable onset, this time in
the third fibre. Although the model is able to represent more debondings
along the matrix-fibre interfaces further than point F, an actual behavior
would probably be a crack kinking into the matrix followed by a coalescence
of cracks. In fact it is possible that the actual behavior do not reach point
D.
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Figure 13.27: BEM results, applied stress with respect to a pseudo-time
(load steps) in the multifibre model.

In Fig. 13.28, the different deformed shapes obtained at the points
marked on Fig. 13.27 are presented. There it can clearly be seen the crack
onset produced at those moments.

Although this is only a preliminary result, the capability of the numerical
tool developed to capture a more complex debonding mechanism in fibre
clusters has clearly been demonstrated.

13.3 Concluding remarks

The LEBI formulation has proved to be an adequate tool to represent the
crack onset and growth of interface cracks between fibre and matrix under
remote transversal loads.

A deep study of an isolated fibre has been carried out in this chapter.
An analytical solution for the stresses along the undamaged interface for a
circular inclusion under uniform transverse tension has been obtained from
the work of Gao [66]. The problem of a circular inclusion under transverse
tension assuming material properties of a common composite material (glass
fibre and epoxy matrix) and the LEBI model has been solved, by the col-
locational BEM. An excellent agreement between the present BEM results
and the analytical expressions for undamaged linear elastic interface has
been obtained.

An important point is that not only the numerical solution of stresses
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(a) Point A (b) Point B

(c) Point C (d) Point D

(e) Point E (f) Point F

Figure 13.28: Deformed shapes obtained at different load steps shown in
Fig. 13.27.
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and displacements for a crack at a linear elastic interface is presented, but
also the crack onset and growth along the fibre-matrix interface is modeled
using the new constitutive law of the LEBI model proposed.

The analytical solution obtained from Gao’s work [66] has led to a new
analytical expression (13.9) for the critical remote tension �∞c . It has been
shown that for fixed elastic bi-material properties, �∞c normalized by the
interface strength in pure fracture mode I, �̄c, depends only on two dimen-
sionless parameters: structural parameter 
 (13.7), introduced previously in
[112], and � (13.8) representing the ratio of shear and normal stiffnesses of
the continuous spring distribution in reference to a (fictitious) elastic layer.

From the analytical and numerical parametric studies it can be con-
cluded, as expected, that the interface parameters �c and GIc (which ap-
pear in the definition of 
) have a great influence on �∞c , as well as on the
critical semidebond angle �c. The relation kn/kt does not seem to have a
great influence on �∞c and �c. The parameter � introduced in the failure
criterion has a great influence on �c but none in �∞c . It is important to note
that the non-influence of � over �∞c is caused by the geometry and the way
the load is applied in the problem (the first failure point is always acting in
pure fracture mode I).

From the numerical results it can be seen that after reaching �∞c , the
crack growth becomes unstable. And thus an instability phenomenon called
snap-through takes place.

The inclusion size effect on the onset of debonding is observed: as the
value of inclusion radius, a, becomes lower, the value of �∞c becomes higher,
similarly to previous results in [112], although with different asymptotic
behavior for small inclusion radii. It can also be seen that the value of
the critical semidebond angle �c decreases when the radius of the inclusion
becomes smaller.

The LEBI formulation introduced here for mixed mode crack growth
along an interface is also useful for the analysis of fibre-matrix debonding
under bi-axial transverse loads [133] as shown in Subsection 13.1.2. A failure
curve for a cylindrical inclusion under transversal biaxial loads has been
obtained.

Finally, the capability of the LEBI model to predict the onset and growth
of debonds in a fibre cluster has been demonstrated.
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Chapter 14

Conclusions and future
developments

14.1 Conclusions

The work carried out in this thesis has been focused on the two research
lines, corresponding to Part 2 and Part 3 of this thesis as defined in the
Introduction, respectively:

(i) The development and implementation of a cohesive zone model and a
linear elastic-brittle (weak) interface model, both representing non-
singular fracture mechanics models, in Boundary Element Method
(BEM) codes, as a numerical tool to solve elastic problems; and

(ii) the numerical study of different damage mechanisms in fibre reinforced
composites and their joints at macro, meso and micro scales, that
may provide support to a subsequent development of physically based
failure criteria for these materials in future.

In the following the main contributions of the present thesis grouped in
the above mentioned two research lines are detailed. In this sense, first, the
contributions to the developments of the models and numerical tools, and,
then, to the analysis of some damage mechanisms at composites are listed.

14.1.1 Development of models and numerical tools

In Part 2 of the thesis, two different non-singular fracture mechanics models
have been studied. Also different numerical tools have been developed in
order to obtain an effective implementation of these models.
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Thus, in Chapter 3, a modification of the Ortiz-Pandolfi cohesive model
[128] has been proposed. The objective of this proposal has been to model
in a more realistic way (from a physical point of view) the compressive
behavior in mode I. A good modeling of the compressive behavior allows us
the study of different problems in composite materials with crack growing,
since a compressive zone ahead of the crack tip is usually presented.

Then, a new Linear Elastic-Brittle Interface (LEBI) Model (continuous
spring distribution model) has been introduced and analyzed in Chapter 4.
This LEBI formulation allows to study not only of the stress and displace-
ment fields along the zone ahead of the crack tip, but also the crack growth
along a priori known crack path, defined usually as an interface or bonded
surface. Another important feature of the LEBI model is the capability of
modeling mixed mode problems and the possibility to model an elastic con-
tact behavior in an interface point after it breaks. This interface model has
been used in Part 3 of the thesis to study different problems in composite
materials.

The use of the above mentioned non-singular fracture mechanics mod-
els required the development and implementation of suitable algorithms to
solve non-linear problems. Two algorithms have been introduced in Chapter
6. A sequentially linear analysis has been developed and implemented to
solve problems involving LEBI formulation, presented in Chapter 4. Three
variants of the arc-length method (Riks, Ramms and Normal flow proce-
dures) have been developed and implemented for the use in the Cohesive
Zone Model (CZM) and Symmetric Galerkin BEM (SGBEM). A successful
implementation of the non-linear solving algorithms is critical for captur-
ing instability phenomenons in different damage mechanisms in composite
materials.

A SGBEM formulation for problems with cohesive cracks placed inside
homogeneous domains and between subdomains has been proposed and
implemented. These new capabilities have been implemented in an exist-
ing 2D SGBEM code. This SGBEM approach is likely to be suitable for
engineering applications involving isotropic elastic materials, e.g. for an
analysis of crack initiation and growth in composites modeled as piecewise
homogeneous materials at the micro-scale.

As shown by the numerical results in Chapter 7, the cohesive zone for-
mulation correctly modeled the experimentally observed crack growth be-
havior for the wedge split test. It also agreed very well with a previous FEM
crack growth 2D analysis of the load-deflection behavior for the three-point
bending test. The SGBEM analysis with cohesive elements has been ca-
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pable to follow the instabilities produced by a nearly vertical drop in the
loading capacity and snap-back behaviors observed in some cases. All the
approaches included and tested in this 2D SGBEM code, give as result an
excellent numerical tool, that will allow the study of different instability
phenomenons present in some damage mechanisms in composite materials.

The presence of a crack at a linear elastic brittle (weak) interface, which
represents a simple model of a thin adhesive layer, has been studied in Chap-
ter 8. First, the governing integral equation for a pressurized crack at the
weak interface between identical orthotropic half planes has been deduced.
A new dimensionless characteristic structural parameter � was introduced
in this governing integral equation. It relates the adhesive-layer stiffness to
the adherent stiffness, taking into account the crack length. Then, the prob-
lem of a pressurized crack has been solved by the collocational 2D BEM. An
excellent agreement has been obtained between the numerical results by the
present BEM code and those shown in [102]. The results provided by this
example have been used for a better understanding of the LEBI formulation.
These results were useful to verify and improve the LEBI implementation
in 2D BEM.

In Chapter 9, closed-form expressions of the integral kernels Uik(x),
Tik(x), Dijk(x) and Sijk(x) appearing in the 3D Somigliana displacement
and traction identities for transversely isotropic elastic materials, and also
of the related integral kernels Uik,j(x), Uik,jl(x), Σijk(x) and Σloopijkl (x), have
been obtained. The correctness and validity of the expressions obtained
have been proved by solving some examples with known analytical solu-
tion. All the expressions obtained have advantageous features as they are
expressed in real-variable and they are unique for every material combina-
tion. The objective of working on this expressions is that in BEM, efficient
expressions of the integral kernels play a very important role. The imple-
mentation of these expressions in a 3D BEM code has resulted in an efficient
computational code. This code will be used in the future to study compos-
ite laminates, that may be considered as transversely isotropic materials, in
configurations where 3D effects can not be neglected.

14.1.2 Study cases of damage and failure in composite ma-
terials at micro, meso and macro scale

In Part 3 of this thesis, some important problems that include damage and
failure in composite materials are dealt with. Numerical studies have been
carried out in order to study several aspects of crack onset and growth
in these problems. The LEBI model implemented in the collocational 2D
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BEM code using the sequentially linear analysis has been used in all these
problems.

The interlaminar fracture toughness test for composite materials using
the DCB specimen has been studied in Chapter 10. It has been proved that
the real behavior of an adhesive layer with a polyester support that joins
two unidirectional laminates can be approximated very well by means of the
BEM and a distribution of springs which follow a LEBI constitutive law, by
adjusting the parameters of the discrete model (GIc, �c, and eventually the
number springs that break in a load step). A good agreement of the global
load-displacement curve obtained from the laboratory experiments and the
present numerical model has been achieved, even in the softening branch of
the curve. The symmetric DCB specimen has tested the capability of the
LEBI model to study a crack growth in fracture mode I. A problem of a
crack growth in a non-symmetrical DCB specimen has also been solved in
order to see the influence of the fracture mode mixity.

The behavior of the transversal and delamination cracks in a [0/90] sym-
metric laminate has been studied in Chapter 11. The predictions obtained
with the LEBI model are qualitatively in accordance with those obtained
by means of the VCCT [130] applying the framework of classical fracture
mechanics. It is remarkable that the onset and unstable growth of the
transversal crack requires a significatively lower load (applied strain) than
the one needed to the onset of the delamination crack. In most of the an-
alyzed cases, the transversal crack reached the interface between 0∘ and
90∘ plies before the delamination crack onset. Once the delamination crack
starts to growth three stages can be clearly identified: (i) initial stage - ini-
tially a relatively short stable growth of the delamination crack takes place
with open traction-free crack faces; (ii) intermediate stage - the delamina-
tion crack growth becomes unstable and there is contact between the crack
faces, except for the zone close to the crack tip where a kind of bubble ap-
pears; (iii) final stage - the delamination crack growth becomes stable again.
It is interesting to notice that although the problem configuration (geome-
try, material and boundary conditions) is symmetric its solution including
a transversal and delamination crack may be non-symmetric. This fact was
observed in the second stage of the delamination crack growth (unstable),
where an non-symmetric growth can be observed in the two branches of
the delamination crack. It was also observed that by using some suitable
interface properties in the LEBI model for the transversal crack and the
delamination crack, the Cook-Gordon mechanism can be obtained in the
present numerical model. This fact proves that the formulation and the al-



14.1 Conclusions 211

gorithm used are able to capture this behavior, nevertheless a deeper study
regarding this topic is necessary.

The Single Fibre Fragmentation Test (SFFT) has briefly been studied
in Chapter 12 using the LEBI model. The results obtained for the SFTT
are in agreement, from a qualitatively point of view, with similar results
previously obtained by means of a Cohesive Zone Model and the Finite
Element Method. From the obtained results an initial stage with a stable
crack growth is observed, followed by an almost neutral (slightly stable)
crack growth. It should be mentioned that the present problem has been
solved without taking into account the elastic contact (interpenetrations of
crack faces are allowed). The numerical results obtained may be compared
with the results of laboratory tests in order to obtain an estimation of
important parameters as it is the case of the fracture energy in mode II,
GIIc, of the fibre-matrix interface.

In Chapter 13 the onset and growth of debonds between fibre and ma-
trix in a unidirectional composite lamina under transversal loads have been
numerically studied by means of the LEBI formulation. First, the prob-
lem of an isolated fibre embedded in a large matrix subjected to far field
uni-axial transversal tension has been studied. Then, the effect of biaxial
transversal loads in the isolated fibre have been analyzed. Finally, an initial
study of onset and growth of debonds in a fibre cluster embedded in a large
matrix has also been presented. From the numerical results for the first
problem of the isolated fibre under uniaxial transversal load, it can be con-
cluded that values of the ratio between the critical stress needed to cause
the crack onset and the critical tension of the interface in mode I, �∞c /�̄c,
are in the interval: 0.78 ≤ �∞c /�̄c ≤ 1.37. These values of the ratio have
been obtained for different combinations of interface properties. It has also
been observed that after the crack onset the initial crack growth is unsta-
ble until a critical semidebond angle, �c, is reached. �c values are highly
affected by the fracture mode sensitivity parameter, �. Thus, for � = 0, �c
values are in the interval 40∘ ≤ �c ≤ 58, while, for example, for � = 0.2,
�c values are in the interval 45∘ ≤ �c ≤ 70, for different combinations of
interface properties. The inclusion size effect on the onset of debonding has
also been studied numerically and analytically. An analytic expression for
the asymptotic study of the size effect on �∞c has been developed. As the
value of the inclusion radius, a, becomes lower, the value of �∞c becomes
higher, similarly to previous results in [112], although with different asymp-
totic behavior for small inclusion radii. For large inclusion radii �∞c value is
approximately constant. It has also been seen that the value of the critical
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semidebond angle �c decreases when the radius of the inclusion becomes
smaller. The analysis of fibre-matrix debonding under bi-axial transverse
loads seems to confirm the idea proposed in [133]. Thus, the presence of a
compressive transversal load �∞y perpendicular to the dominant transversal
tension load �∞x decreases the critical stress, �∞c = �∞x , needed to cause the
crack growth. With these numerical results a failure curve for a cylindrical
inclusion under transversal biaxial loads has been obtained. Finally, the
capability of the LEBI formulation to predict the crack onset and growth
in a fibre cluster with several fibres (located very close each other) has been
shown.

From all the numerical results obtained in the above analysis of different
damage mechanisms, it can be concluded that the LEBI formulation is a
promising tool to model crack onset and growth in composite materials at
all the three levels: macro, meso and micro. Taking into account that,
the LEBI model is a non-singular fracture mechanic model with traction
concentration at the crack tip, a mesh refinement close to the advancing
crack tips is not necessary. This fact, simplifies substantially the problem
discretization in the presence of crack propagation since the initial, usually
(quasi) uniform, mesh can be used during the crack propagation, where the
crack path is known or assumed a priori.

14.2 Future developments

The work carried out in the present thesis will further continue as a more
extensive study exploring the possibilities of the two non-singular fracture
mechanics models, the Cohesive Zone Model (CZM) and the Linear Elastic
Brittle-Interface (LEBI) model, implemented in the BEM codes, in analysis
of different damage mechanisms of composite materials. The objective of
this analysis will be to contribute to the development of physically based
failure criteria of composite materials. This analysis will require to deter-
mine the governing parameters of the numerical models comparing their
predictions with the experimental results. For this purpose, the solution
of inverse problems using experimental results, for the different problems
studied, can be carried out in order to obtain the needed parameters of the
models (CZM and LEBI model).

With reference to the present implementation of the CZM, the next step
in its development will be the modeling of crack growth with a priori un-
known crack path. The CZM implementation for cracks in a homogeneous
media presented in this thesis assumes a known crack path. However, a



14.2 Future developments 213

CZM formulation and implementation where the crack path is a priori un-
known is required in analysis of some damage mechanisms. Once this for-
mulation and implementation is ready it can be combined with the cohesive
interface formulation to solve problems where an interface crack kinks to
homogeneous media. This situation is expected to appear, for example, in
fibre-matrix debond growth under transverse loads, where kink cracks may
coalesce resulting in large cracks.

The inclusion of the effect of friction in the CZM could be also very
useful for some applications in composites. In particular, in contact between
the crack faces in the delamination problem of cross-plies and in the single
fiber fragmentation test, and possibly also in the inter-fibre failure under
transversal loads.

The present thesis will also be a starting point to explore the possibilities
of different Cohesive Zone Models (CZM) presented in literature, as well as
different arc-length solver schemes applied in a SGBEM setting for the above
mentioned applications in composite materials.

All the composite problems solved in the present thesis by means of the
Linear Elastic-Brittle Interface (LEBI) model will be solved by means of
the developed code for CZM and SGBEM and the results will be compared.
Such a comparison will be very interesting to judge the adequacy of each
model, and it will require also some experimental results. On one hand,
the CZM is more general and complex model, it considers a damage zone
where a softening takes place. It requires, however, sophisticated non-linear
solvers. On the other hand, the LEBI model is substantially simpler, nev-
ertheless able to provide numerical predictions in a good agreement with
experiments, as in the case of the interlaminar fracture toughness test.

With reference to LEBI, some further improvements are expected as
well. For example, the LEBI formulation can be changed in the compres-
sion part, by considering that the critical tangential stress do not vary in
presence of contact (the value of �c(� ≤ 0) = �c(90

∘) remaining constant
for compressions), also other behaviors should be explored.

The extension of the CZM and the LEBI model to 3D will provide
a useful numerical tool that could be implemented in the 3D BEM code
to solve problems in composite materials where the 3D effects can not be
neglected.

In general all the initial study cases presented in Part 3 of this thesis
should be complemented with extensive parametric studies.

In the following a few comments about further possibilities of the CZM
and LEBI model in the study of the problems analyzed in Chapter 10 to 13
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will be given.

The preliminary study of the interlaminar fracture toughness test of ad-
hesively bonded joints using DCB specimens presented in Chapter 10 will
continue with the analysis of adhesively bonded joints used in the aeronau-
tical industry. A good modeling of the behavior of these joints could solve
some problems of actual structures that include these kind of joints. An
extensive research of adhesively bonded joints where the mode mixity is
present (caused by non-symmetrical geometries or due to different proper-
ties of the adherents) seems to be straightforward with the LEBI formula-
tion. A comparison with experimental data obtained in the standard tests
will be fundamental in properties determination and fitting parameters of
the numerical models.

The study of symmetric problems with non-symmetric solutions in pres-
ence of crack onset and growth is still an open topic. In the present thesis it
has been shown that the LEBI formulation implemented using the sequen-
tially linear analysis is able to capture this phenomena. Nevertheless, an
extensive study regarding this topic, using the CZM and the LEBI model,
could be performed for the delamination problem in [0/90] symmetric lam-
inates as well as in the isolated fibre or a symmetric fibre cluster embedded
in a matrix under transversal loads.

A deeper study of the delamination problem in [0/90] symmetric lam-
inates, studied in Chapter 11, will be done. A parametric study of the
influence of the interface properties on the transversal crack as well as on
the delamination crack could help to understand this damage mechanism.

In the Single Fibre Fragmentation Test it will be interesting to study the
influence of contact between crack faces of the fibre-matrix interface. All
the results showed in the Chapter 12 neglected the effect of contact. The
influence of residual stresses caused by the curing procedure should also be
studied.

In the study of the failure of fibre-matrix interface in an isolated fibre
embedded in a matrix, the effect of uniaxial compressive transversal loads
could be analyzed. The analysis of fibre-matrix debonding under bi-axial
transverse loads will be extended for problems with dominant transversal
compressive loads. These numerical results will allow us to extend the
obtained failure curves for a cylindrical inclusion under transversal biaxial
loads.

In the same sense, the effect of the presence of contiguos fibres will
be studied, starting with the effect of two fibres (influence of the distance
between them and their relative positions with respect to the remote load).
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Then, clusters of fibres with more than 10 fibres will be studied trying
to understand from a more realistic point of view the problem of damage
initiation in composite materials subjected to transverse loads. All the load
patterns used for the isolated fibre will be used in the multifibre models.

A study of spherical inclusions will also be carried out, by the use of
the axisymmetric formulation and the LEBI model, which could help to
understand the debonding problem in particulate composites.

In all the above mentioned problems, perhaps with the exception of
SFTT, the three dimensional effects could play a relevant role and should be
investigated in-depth. In particular, they could help to clarify the adequacy
of the simplified 2D or axisymmetric models for analysis of some damage
mechanisms in composites.
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Appendix A

Explicit expressions of the
integral kernels in 3D BIEs for
transversely isotropic elastic
materials

A.1 Modular functions of the fundamental solu-
tion and its derivatives

In order to achieve expressions of modulations functions Ûik, Ûik;j and Ûik;jℓ
suitable for implementation in BEM codes we need to deduce general and
as simple and compact as possible expressions of modular functions Hik,
Ĥik;j and Ĥik;jℓ. In fact, as it was shown for transversely isotropic materi-
als, simple and compact expressions of these modulation functions are only
needed for a particular coordinate plane including the x3-axis, the plane
x2 = 0 being used herein.

With reference to the plane x2 = 0 (i.e. � = 0) it will be useful to
evaluate the particular expressions of Ω(�) and its derivatives with respect
to � = 0:

Ω(�)∣�=0 =

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ , Ω

′(�)∣�=0 =

⎛
⎝
0 −1 0
1 0 0
0 0 0

⎞
⎠ , (A.1)
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Ω
′′(�)∣�=0 =

⎛
⎝
−1 0 0
0 −1 0
0 0 0

⎞
⎠ ,

The expressions of the derivatives with respect to cartesian coordinates
of a modulation function f(�, �) for � = 0 take the simple form:

f,1 = r−1c∂�f, f,2 = r−1s−1∂�f, f,3 = −r−1s∂�f, (A.2)

and the components of the unit vector x̂ are:

r,1 = s, r,2 = 0, r,3 = c. (A.3)

A.1.1 Modular function Ûik

Explicit expressions for the non-zero terms of the modulation function
Ûik(� = 0, �) = Hik(� = 0, �) in the plane x2 = 0:

H(x̂) =

⎛
⎝
H11 0 H13

0 H22 0
H13 0 H33

⎞
⎠ , (A.4)

were shown in (9.17).

A.1.2 Modular function Ûik;j

Expression of Ûik;j(� = 0, �) are calculated by (9.36). Thus, the derivatives
of the Barnett-Lothe tensor, Hik, appearing in (9.36) are evaluated. Using
formulas in (A.2) applied to (A.4) ( (9.17)) the following expressions of
Ĥik;j(� = 0, �) are easily obtained:

Ĥik;1 = c∂�Hik,

Ĥik;2 = s−1∂�Hik, (A.5)

Ĥik;3 = −s∂�Hik,

The expressions of the first order partial derivatives of Hik(�, �) with
respect to angles � and � can be obtained as follows:

∂�Hik(�, �) =Ωim(�)Ωjn(�)H
′
mn(�), (A.6)

∂�Hik(�, �) =Ω′
im(�)Ωjn(�)Hmn(�) + Ωim(�)Ω

′
jn(�)Hmn(�). (A.7)



A.1 Modular functions of the fundamental solution and its derivatives 219

Then, these expressions can be easily computed for the particular case
of � = 0 and in view of (A.1), giving;

∂�Hik(�, �)∣�=0 =[ΩimΩjnH
′
mn]∣�=0

=

⎛
⎝
H ′

11 0 H ′
13

0 H ′
22 0

H ′
13 0 H ′

33

⎞
⎠ ,

(A.8)

∂�Hik(�, �)∣�=0 =[Ω′
imΩjnHmn +ΩimΩ

′
jnHmn]∣�=0

=

⎛
⎝

0 H11 −H22 0
H11 −H22 0 H13

0 H13 0

⎞
⎠ ,

(A.9)

A.1.3 Modular function Ûik;jℓ

Expressions of Ûik;jℓ(� = 0, �), are calculated by (9.37). The second or-
der derivatives of Hik appearing in (9.37) are evaluated. Using formulas
in (A.2) applied to (A.5). The following expressions of Ĥik;jℓ(� = 0, �) are
obtained:

Ĥik;11 = c2∂2��Hik − 2cs∂�Hik,

Ĥik;22 = s−2∂2��Hik + cs−1∂�Hik,

Ĥik;33 = s2∂2��Hik + 2cs∂�Hik,

Ĥik;12 = cs−1∂2��Hik − s−2∂�Hik, (A.10)

Ĥik;13 = −cs∂2��Hik − (c2 − s2)∂�Hik,

Ĥik;23 = −∂2��Hik.

The following symmetry relations, due to interchange of partial derivatives,
it holds

Ĥik;jℓ = Ĥik;ℓj. (A.11)

Then, the expressions of the second order partial derivatives of Hik(�, �)
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with respect to the angles � and � are obtained:

∂�Hik(�, �) =Ωim(�)Ωjn(�)H
′′
mn(�) (A.12)

∂�Hik(�, �) =Ω′
im(�)Ωjn(�)H

′
mn(�) + Ωim(�)Ω

′
jn(�)H

′
mn(�) (A.13)

∂�Hik(�, �) =Ω′′
im(�)Ωjn(�)Hmn(�) + 2Ω′

im(�)Ω
′
jn(�)Hmn(�)

+ Ωim(�)Ω
′′
jn(�)Hmn(�). (A.14)

Then, for the particular case of � = 0, and in view of (A.1), these
expressions can be easily expressed as:

∂2��Hik(�, �)∣�=0 =[ΩimΩjnH
′′
mn]∣�=0

=

⎛
⎝
H ′′

11 0 H ′′
13

0 H ′′
22 0

H ′′
13 0 H ′′

33

⎞
⎠ , (A.15)

∂2��Hik(�, �)∣�=0 =[Ω′
imΩjnH

′
mn +ΩimΩ

′
jnH

′
mn]∣�=0

=

⎛
⎝

0 H ′
11 −H ′

22 0
H ′

11 −H ′
22 0 H ′

13

0 H ′
13 0

⎞
⎠ , (A.16)

∂2��Hik(�, �)∣�=0 =[Ω′′
imΩjnHmn + 2Ω′

imΩ
′
jnHmn +ΩimΩ

′′
jnHmn]∣�=0

=

⎛
⎝
−2(H11 −H22) 0 −H13

0 2(H11 −H22) 0
−H13 0 0

⎞
⎠ . (A.17)

A.2 Explicit expressions of Hik(x), Ûik;j(x) and Σ̂ijk(x)

In this section the explicit expressions corresponding to (9.20), (9.24) and (9.31)
which are suitable for a direct and efficient implementation in three-dimensional
BEM codes are introduced.

For the sake of simplicity of the expressions presented below, the fol-
lowing notation conventions will be used: the quantities on the left-hand
side are evaluated at the point x and the quantities on the right-hand side
at the point x̂, the symbols x and x̂ being omitted, and C = cos(�) and
S = sin(�).
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Then, Hik(x) can be expressed in terms of Hik(x̂) as follows:

H11 = H11C
2 +H22S

2,

H12 = (H11 −H22)CS,

H13 = H13C,

H22 = H22C
2 −H11S

2,

H23 = H13S,

H33 = H33.

(A.18)

In general,
Hik(x) = f(Hik(x̂), C(�), S(�)) (A.19)

Ûik;j(x) can be expressed in terms of Ûik;j(x̂) as follows:

Û11;1 = {Û11;1C
2 + (2Û12;2 + Û22;1)S

2}C,
Û11;2 = {(Û11;1 − 2Û12;2)C

2 + Û22;1S
2}S,

Û11;3 = Û11;3C
2 + Û22;3S

2,

Û12;1 = {Û12;2S
2 + (Û11;1 − Û12;2 − Û22;1)C

2}S,
Û12;2 = {Û12;2C

2 + (Û11;1 − Û12;2 − Û22;1)S
2}C,

Û12;3 = (Û11;3 − Û22;3)CS,

Û13;1 = Û13;1C
2 + Û23;2S

2,

Û13;2 = (Û13;1 − Û23;2)CS,

Û13;3 = Û13;3C,

Û22;1 = {(Û11;1 − 2Û12;2)S
2 + Û22;1C

2}C,
Û22;2 = {Û11;1S

2 + (2Û12;2 + Û22;1)C
2}S,

Û22;3 = Û11;3S
2 + Û22;3C

2,

Û23;1 = (Û13;1 − Û23;2)CS,

Û23;2 = Û13;1S
2 + Û23;2C

2,

Û23;3 = Û13;3S,

Û33;1 = Û33;1C,

Û33;2 = Û33;1S,

Û33;3 = Û33;3.

(A.20)
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Σ̂ijk(x) can be expressed in terms of Σ̂ijk(x̂) as follows:

Σ̂111 = {Σ̂111C
2 + (2Σ̂122 + Σ̂221)S

2}C,
Σ̂112 = {(Σ̂111 − 2Σ̂122)C

2 + Σ̂221S
2}S,

Σ̂113 = Σ̂113C
2 + Σ̂223S

2,

Σ̂121 = {Σ̂122S
2 + (Σ̂111 − Σ̂122 − Σ̂221)C

2}S,
Σ̂122 = {Σ̂122C

2 + (Σ̂111 − Σ̂122 − Σ̂221)S
2}C,

Σ̂123 = (Σ̂113 − Σ̂223)CS,

Σ̂131 = Σ̂131C
2 + Σ̂232S

2,

Σ̂132 = (Σ̂131 − Σ̂232)CS,

Σ̂133 = Σ̂133C,

Σ̂221 = {(Σ̂111 − 2Σ̂122)S
2 + Σ̂221C

2}C,
Σ̂222 = {Σ̂111S

2 + (2Σ̂122 + Σ̂221)C
2}S,

Σ̂223 = Σ̂113S
2 + Σ̂223C

2,

Σ̂231 = (Σ̂131 − Σ̂232)CS,

Σ̂232 = Σ̂131S
2 + Σ̂232C

2,

Σ̂233 = Σ̂133S,

Σ̂331 = Σ̂331C,

Σ̂332 = Σ̂331S,

Σ̂333 = Σ̂333.

(A.21)

A.3 Explicit expressions of Ŝijk(x̂)

In this section the expressions corresponding to (9.43) are introduced.
Sijk(x) can be expressed in terms of a modulation function as

Sijk(n,x) =
Ŝijk(n,x)

4�r3
, (A.22)

n being explicitly indicated for the sake of clarity, and

Ŝijk(n,x) = ΩiaΩjbΩkcŜabc(ñ, x̂). (A.23)
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where ñ is the unit normal vector of x̂, for � = 0. It is necessary to mention
that the terms of the normal vector used in the following expressions of
Ŝijk(x̂), ñ, are defined by the following transformation:

ñi = Ωaina, (A.24)

where ñi can be expressed in a expanded way as:

ñ1 =Cn1 + Sn2,

ñ2 =Cn2 − Sn1,

ñ3 =n3.

(A.25)

where C = cos(�) and S = sin(�). Finally, Ŝijk(ñ, x̂) terms are as follows:

Ŝ111 = c12

{
c44ñ3

[
−H ′

11 +H
′

22 − H̃13 (2s+ 
c)− H̃12cs−H13

]
+ c66ñ1

[
−3H̃12

+
(
2H̃11 − H̃22

)
c− 2H11 +H22

]}
+ c13

{
c44ñ1

[
H

′′

11s
2 −H

′′

13cs− 2H ′

13

(
c
2 − s

2
)

+ 4H ′

11cs+H11

(
2c2 − s

2
)
+ 3H13cs

]
+ ñ3

[
c13

(
−H ′′

11cs− 2H ′

11

(
c
2 − s

2
)
−H

′

11

+ H
′

22 − H̃12cs+ 3H11cs
)
+ c33

(
H

′′

13s
2 + 4H ′

13cs+H13

(
2c2 − s

2))]}

+ c11
{
c44ñ3

[
−H ′′

11cs+H
′′

13c
2 − 2H ′

11

(
c
2 − s

2
)
− 4H ′

13cs+ 3H11cs+H13

(
2s2 − c

2
)]

+ ñ1

[
c12

(
−H̃12 +

(
H̃11 − H̃22

)
c−H11 +H22

)
+ c13

(
−H ′′

13cs− 2H ′

13

(
c
2 − s

2)

+ 3H13cs) + c11
(
H

′′

11c
2 − 4H ′

11cs+H11

(
2s2 − c

2 ))
]}
,

Ŝ112 = c
2
66ñ2

{(
2H̃11 − H̃22

)
c− 3H̃12 − 2H11 +H22

}
+ c66ñ2

{
c11

[(
H̃11 − H̃22

)
c

− H̃12 −H11 +H22

]
+ c13

[
−H ′′

13cs− 2H ′

13

(
c
2 − s

2)+ 3H13cs
]
+ c12

[
H

′′

11c
2

− 4H ′

11cs+H11

(
2s2 − c

2)]}
,

Ŝ113 = c44
{
c44ñ3

[
H

′′

11s
2 −H

′′

13cs− 2H ′

13

(
c
2 − s

2
)
+ 4H ′

11cs+H11

(
2c2 − s

2
)
+ 3H13cs

]

+ ñ1

[
c12

(
−H̃12cs−H

′

11 +H
′

22

)
+ c11

(
−H ′′

11cs− 2H ′

11

(
c
2 − s

2)+ 3H11cs
)

+ c13
(
H

′′

13s
2 + 4H ′

13cs+H13

(
2c2 − s

2
))]

+ c44ñ1

[
−H ′′

11cs+H
′′

13c
2 − 2H ′

11

(
c
2 − s

2
)

− 4H ′

13cs+ 3H11cs+H13

(
2s2 − c

2)]+ ñ3

[
c13

(
−H̃12 +

(
H̃11 − H̃22

)
c−H11 +H22

)

+ c33
(
−H ′′

13cs− 2H ′

13

(
c
2 − s

2)+ 3H13cs
)
+ c13

(
H

′′

11c
2 − 4H ′

11cs+H11

(
2s2 − c

2 ))
]}
,

Ŝ123 = c
2
44ñ2

{
−H̃12cs− H̃13 (2s+ 
c)−H

′

11 +H
′

22 −H13

}
+ c44ñ2

{
c11

[
−H̃12 −H

′

11

+ H
′

22

]
+ c12

[
−H ′′

11cs− 2H ′

11

(
c
2 − s

2
)
+ 3H11cs

]
+ c13

[
H

′′

13s
2 + 4H ′

13cs

+ H13

(
2c2 − s

2)]}
,
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Ŝ122 = c11

{
c44ñ3

[
−H ′

11 +H
′

22 − H̃13 (2s+ 
c)− H̃12cs−H13

]
+ c66ñ1

[
−3H̃12

+
(
2H̃11 − H̃22

)
c− 2H11 +H22

]}
+ c13

{
c44ñ1

[
H

′′

11s
2 −H

′′

13cs− 2H ′

13

(
c
2 − s

2)

+ 4H ′

11cs+H11

(
2c2 − s

2
)
+ 3H13cs

]
+ ñ3

[
c13

(
−H ′′

11cs− 2H ′

11

(
c
2 − s

2
)
−H

′

11

+ H
′

22 − H̃12cs+ 3H11cs
)
+ c33

(
H

′′

13s
2 + 4H ′

13cs+H13

(
2c2 − s

2))]}

+ c12
{
c44ñ3

[
−H ′′

11cs+H
′′

13c
2 − 2H ′

11

(
c
2 − s

2)− 4H ′

13cs+ 3H11cs+H13

(
2s2 − c

2)]

+ ñ1

[
c12

(
−H̃12 +

(
H̃11 − H̃22

)
c−H11 +H22

)
+ c13

(
−H ′′

13cs− 2H ′

13

(
c
2 − s

2
)

+ 3H13cs) + c11
(
H

′′

11c
2 − 4H ′

11cs +H11

(
2s2 − c

2 ))
]}
,

Ŝ133 = c13

{
c44ñ3

[
−H ′

11 +H
′

22 − H̃13 (2s+ 
c)− H̃12cs−H13

]
+ c66ñ1

[
−3H̃12

+
(
2H̃11 − H̃22

)
c− 2H11 +H22

]}
+ c33

{
c44ñ1

[
H

′′

11s
2 −H

′′

13cs− 2H ′

13

(
c
2 − s

2
)

+ 4H ′

11cs+H11

(
2c2 − s

2)+ 3H13cs
]
+ ñ3

[
c13

(
−H ′′

11cs− 2H ′

11

(
c
2 − s

2)−H
′

11

+ H
′

22 − H̃12cs+ 3H11cs
)
+ c33

(
H

′′

13s
2 + 4H ′

13cs+H13

(
2c2 − s

2))]}

+ c13
{
c44ñ3

[
−H ′′

11cs+H
′′

13c
2 − 2H ′

11

(
c
2 − s

2
)
− 4H ′

13cs+ 3H11cs+H13

(
2s2 − c

2
)]

+ ñ1

[
c12

(
−H̃12 +

(
H̃11 − H̃22

)
c−H11 +H22

)
+ c13

(
−H ′′

13cs− 2H ′

13

(
c
2 − s

2)

+ 3H13cs) + c11
(
H

′′

11c
2 − 4H ′

11cs +H11

(
2s2 − c

2 ))
]}
,

Ŝ211 = c12ñ2

{
c13

[
−H̃13c−H

′

13

]
+ c12

[
−H̃12 +

(
H̃11 − H̃22

)
c−H11 +H22

]
+ c11

[
2H̃12

+ H̃22c−H22

]}
+ c13c44ñ2

{
H

′′

22s
2 + 4H ′

22cs− H̃13c−H
′

13 +H22

(
2c2 − s

2)}

+ c11c66ñ2

{
H

′′

22c
2 − 4H ′

22cs− H̃12 +
(
H̃11 − H̃22

)
c+H22

(
2s2 − c

2)−H11 +H22

}
,

Ŝ212 = c66

{
ñ1

[
c13

(
−H̃13 −H

′

13

)
+ c11

(
−H̃12 +

(
H̃11 − H̃22

)
c−H11 +H22

)

+ c12

(
2H̃12 + H̃22c−H22

)]
+ c44ñ3

[
−H̃13 (2s + 
c)− H̃12cs−H

′

11 +H
′

22 −H13

]}

+ c66

{
c44ñ3

[
−H ′′

22cs− 2H ′

22

(
c
2 − s

2)− H̃13 (2s + 
c) + 3H22cs−H13

]

+ c66ñ1

[
H

′′

22c
2 − 4H ′

22cs− H̃12 +
(
H̃11 − H̃22

)
c+H22

(
2s2 − c

2
)
−H11 +H22

]}
,

Ŝ213 = c
2
44ñ2

{
−H ′′

22cs− 2H ′

22

(
c
2 − s

2
)
− H̃13 (2s+ 
c) + 3H22cs −H13

}

+ c44c66ñ2

{
−H ′′

22cs− 2H ′

22

(
c
2 − s

2)− H̃12cs−H
′

11 +H
′

22 + 3H22cs
}
,

Ŝ222 = c11ñ2

{
c13

[
−H̃13c−H

′

13

]
+ c12

[
−H̃12 +

(
H̃11 − H̃22

)
c−H11 +H22

]
+ c11

[
2H̃12

+ H̃22c−H22

]}
+ c13c44ñ2

{
H

′′

22s
2 + 4H ′

22cs− H̃13c−H
′

13 +H22

(
2c2 − s

2
)}

+ c12c66ñ2

{
H

′′

22c
2 − 4H ′

22cs− H̃12 +
(
H̃11 − H̃22

)
c+H22

(
2s2 − c

2)−H11 +H22

}
,
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Ŝ223 = c44

{
ñ3

[
c33

(
−H̃13c−H

′

13

)
+ c13

(
H̃12 + H̃11c−H11

)]
+ c44ñ1

[
−H̃12cs

− H̃13 (2s+ 
c)−H
′

11 +H
′

22 −H13

]
+ c66ñ1

[
−H ′′

22cs− 2H ′

22

(
c
2 − s

2)−H
′

11 −H
′

22

− H̃12cs+ 3H22cs
]
+ c44ñ3

[
H

′′

22s
2 + 4H ′

22cs−H
′

13 − H̃13c+H22

(
2c2 − s

2)]}
,

Ŝ233 = c13ñ2

{
c13

[
−H̃13c−H

′

13

]
+ c12

[
−H̃12 +

(
H̃11 − H̃22

)
c−H11 +H22

]
+ c11

[
2H̃12

+ H̃22c−H22

]}
+ c33c44ñ2

{
H

′′

22s
2 + 4H ′

22cs− H̃13c−H
′

13 +H22

(
2c2 − s

2)}

+ c13c66ñ2

{
H

′′

22c
2 − 4H ′

22cs− H̃12 +
(
H̃11 − H̃22

)
c+H22

(
2s2 − c

2)−H11 +H22

}
,

Ŝ311 = c12

{
c66ñ1

[
−2H̃13 (2s + 
c)− 2H13

]
+ c44ñ3

[
H̃33c− H̃13c−H

′

13 −H33

]}

+ c13
{
c44ñ1

[
H

′′

13s
2 −H

′′

33cs+ 4H ′

13cs− 2H ′

33

(
c
2 − s

2
)
+H13

(
2c2 − s

2
)
+ 3H33cs

]

+ ñ3

[
c13

(
−H ′′

13cs− 2H ′

13

(
c
2 − s

2)−H
′

13 − H̃13c+ 3H13cs
)
+ c33

(
H

′′

33s
2 + 4H ′

33cs

+ H33

(
2c2 − s

2
))]}

+ c11
{
c44ñ3

[
H

′′

33c
2 −H

′′

13cs− 4H ′

33cs− 2H ′

13

(
c
2 − s

2
)
+ 3H13cs

+ H33

(
2s2 − c

2)]+ ñ1

[
c12

(
−H̃13 (2s+ 
c)−H13

)
+ c13

(
−H ′′

33cs− 2H ′

33

(
c
2 − s

2)

+ 3H33cs) + c11
(
H

′′

13c
2 − 4H ′

13cs+H13

(
2s2 − c

2))]}
,

Ŝ312 = c
2
66ñ2

{
−2H̃13 (2s+ 
c)− 2H13

}
− c66ñ2

{
c11

[
−H̃13 (2s + 
c) −H13

]

+ c13
[
−H ′′

33cs− 2H ′

33

(
c
2 − s

2
)
+ 3H33cs

]
+ c12

[
H

′′

13c
2 − 4H ′

13cs+H13

(
2s2 − c

2
)]}

,

Ŝ313 = c44
{
c44ñ3

[
H

′′

13s
2 −H

′′

33cs+ 4H ′

13cs − 2H ′

33

(
c
2 − s

2)+H13

(
2c2 − s

2)+ 3H33cs
]

+ ñ1

[
c12

(
−H ′

13 − H̃13c
)
+ c11

(
−H ′′

13cs− 2H ′

13

(
c
2 − s

2
)
+ 3H13cs

)
+ c13

(
H

′′

33s
2

+ 4H ′

33cs+H33

(
2c2 − s

2))]}+ c44
{
c44ñ1

[
H

′′

33c
2 −H

′′

13cs− 4H ′

33cs− 2H ′

13

(
c
2 − s

2)

+ 3H13cs+H33

(
2s2 − c

2
)]

+ ñ3

[
c13

(
−H̃13 (2s+ 
c)−H13

)
+ c33

(
−H ′′

33cs

− 2H ′

33

(
c
2 − s

2
)
+ 3H33cs

)
+ c13

(
H

′′

13c
2 − 4H ′

13cs+H13

(
2s2 − c

2
))]}

,

Ŝ322 = c11

{
c66ñ1

[
−2H̃13 (2s + 
c)− 2H13

]
+ c44ñ3

[
H̃33c− H̃13c−H

′

13 −H33

]}

+ c13
{
c44ñ1

[
H

′′

13s
2 −H

′′

33cs+ 4H ′

13cs− 2H ′

33

(
c
2 − s

2
)
+H13

(
2c2 − s

2
)
+ 3H33cs

]

+ ñ3

[
c13

(
−H ′′

13cs− 2H ′

13

(
c
2 − s

2)−H
′

13 − H̃13c+ 3H13cs
)
+ c33

(
H

′′

33s
2 + 4H ′

33cs

+ H33

(
2c2 − s

2))]}+ c12
{
c44ñ3

[
H

′′

33c
2 −H

′′

13cs− 4H ′

33cs− 2H ′

13

(
c
2 − s

2)+ 3H13cs

+ H33

(
2s2 − c

2
)]

+ ñ1

[
c12

(
−H̃13 (2s+ 
c)−H13

)
+ c13

(
−H ′′

33cs− 2H ′

33

(
c
2 − s

2
)

+ 3H33cs) + c11
(
H

′′

13c
2 − 4H ′

13cs+H13

(
2s2 − c

2
))]}

,

Ŝ323 = c
2
44ñ2

{
H̃33c− H̃13c−H

′

13 −H33

}
+ c44ñ2

{
c11

[
−H̃13c−H

′

13

]
+ c12

[
−H ′′

13cs

− 2H ′

13

(
c
2 − s

2
)
+ 3H13cs

]
+ c13

[
H

′′

33s
2 + 4H ′

33cs+H33

(
2c2 − s

2
)]}

,
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Ŝ333 = c13

{
c66ñ1

[
−2H̃13 (2s+ 
c)− 2H13

]
+ c44ñ3

[
H̃33c− H̃13c−H

′

13 −H33

]}

+ c33
{
c44ñ1

[
H

′′

13s
2 −H

′′

33cs+ 4H ′

13cs − 2H ′

33

(
c
2 − s

2)+H13

(
2c2 − s

2)+ 3H33cs
]

+ ñ3

[
c13

(
−H ′′

13cs− 2H ′

13

(
c
2 − s

2
)
−H

′

13 − H̃13c+ 3H13cs
)
+ c33

(
H

′′

33s
2 + 4H ′

33cs

+ H33

(
2c2 − s

2
))]}

+ c13
{
c44ñ3

[
H

′′

33c
2 −H

′′

13cs− 4H ′

33cs− 2H ′

13

(
c
2 − s

2
)
+ 3H13cs

+ H33

(
2s2 − c

2)]+ ñ1

[
c12

(
−H̃13 (2s + 
c)−H13

)
+ c13

(
−H ′′

33cs− 2H ′

33

(
c
2 − s

2)

+ 3H33cs) + c11
(
H

′′

13c
2 − 4H ′

13cs +H13

(
2s2 − c

2))]}
. (A.26)

In general,

Ŝijk(ñ, x̂) = f(Hik(x̂), ñ, x̂, c(�), s(�)) (A.27)

A.4 Explicit expressions of Ûik;jl(x), Σ̂loop
ijkl(x,n) and

Ŝijk(x) useful for an efficient computational im-

plementation

In this section the expressions corresponding to (9.31), (9.44) and (A.23)
which are suitable for a direct and efficient implementation in three-
dimensional BEM codes are introduced.

For the sake of simplicity of the expressions presented below the follow-
ing notation conventions will be used: the quantities on the left-hand side
are evaluated at point x (and for the normal vector n in the case of Ŝijk) and
the quantities on the right-hand side at point x̂ (and for the normal vector
ñ in the case of Ŝijk), the symbols x and x̂ being omitted, and C = cos(�)
and S = sin(�).

The modular function Ûik;jl(x) of the second derivative kernel Uik,jl(x),
is presented in the left hand side of (A.28), can be expressed in terms of
Ûik;jl(x̂), right hand side in (A.28), defined in (9.45) as follows:
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Û11;11 =Û11;11C
4 + Û11;22C

2
S

2 + 4Û12;12C
2
S

2 + Û22;11C
2
S

2 + Û22;22S
4

Û11;12 =Û11;11C
3
S − Û11;22C

3
S − 2Û12;12C

3
S + 2Û12;12CS

3 + Û22;11CS
3 − Û22;22CS

3

Û11;13 =Û11;13C
3 + 2Û12;23CS

2 + Û22;13CS
2

Û11;22 =Û11;11C
2
S

2 + Û11;22C
4 − 4Û12;12C

2
S

2 + Û22;11S
4 + Û22;22C

2
S

2

Û11;23 =Û11;13C
2
S − 2Û12;23C

2
S + Û22;13S

3

Û11;33 =Û11;33C
2 + Û22;33S

2

Û12;11 =Û11;11C
3
S + Û11;22CS

3 − 2Û12;12C
3
S + 2Û12;12CS

3 − Û22;11C
3
S − Û22;22CS

3

Û12;12 =Û11;11C
2
S

2 − Û11;22C
2
S

2 + Û12;12C
4 − 2Û12;12C

2
S

2 + Û12;12S
4 − Û22;11C

2
S

2

+ Û22;22C
2
S

2

Û12;13 =Û11;13C
2
S − Û12;23C

2
S + Û12;23S

3 − Û22;13C
2
S

Û12;22 =Û11;11CS
3 + Û11;22C

3
S + 2Û12;12C

3
S − 2Û12;12CS

3 − Û22;11CS
3 − Û22;22C

3
S

Û12;23 =Û11;13CS
2 + Û12;23C

3 − Û12;23CS
2 − Û22;13CS

2

Û12;33 =Û11;33CS − Û22;33CS

Û13;11 =Û13;11C
3 + 3Û13;22CS

2

Û13;12 =Û13;11C
2
S − 2Û13;22C

2
S + Û13;22S

3

Û13;13 =Û13;13C
2 + Û23;23S

2

Û13;22 =Û13;11CS
2 + Û13;22C

3 − 2Û13;22CS
2 (A.28)

Û13;23 =Û13;13CS − Û23;23CS

Û13;33 =Û13;33C

Û22;11 =Û11;11C
2
S

2 + Û11;22S
4 − 4Û12;12C

2
S

2 + Û22;11C
4 + Û22;22C

2
S

2

Û22;12 =Û11;11CS
3 − Û11;22CS

3 + 2Û12;12C
3
S − 2Û12;12CS

3 + Û22;11C
3
S − Û22;22C

3
S

Û22;13 =Û11;13CS
2 − 2Û12;23CS

2 + Û22;13C
3

Û22;22 =Û11;11S
4 + Û11;22C

2
S

2 + 4Û12;12C
2
S

2 + Û22;11C
2
S

2 + Û22;22C
4

Û22;23 =Û11;13S
3 + 2Û12;23C

2
S + Û22;13C

2
S

Û22;33 =Û11;33S
2 + Û22;33C

2

Û23;11 =Û13;11C
2
S − 2Û13;22C

2
S + Û13;22S

3

Û23;12 =Û13;11CS
2 + Û13;22C

3 − 2Û13;22CS
2

Û23;13 =Û13;13CS − Û23;23CS

Û23;22 =Û13;11S
3 + 3Û13;22C

2
S

Û23;23 =Û13;13S
2 + Û23;23C

2

Û23;33 =Û13;33S

Û33;11 =Û33;11C
2 + Û33;22S

2

Û33;12 =Û33;11CS − Û33;22CS
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Û33;13 =Û33;13C

Û33;22 =Û33;11S
2 + Û33;22C

2

Û33;23 =Û33;13S

Û33;33 =Û33;33

Ûik;jl = Ûki;jl

Ûik;jl = Ûik;lj . (A.29)

The modular function Σ̂loopijkl (x) of the kernel Σloopijkl (x), can be expressed

in terms of Σ̂loopijkl (x̂), defined in (9.51), as follows:

Σ̂1111 =Σ̂1111C
4 + 2Σ̂1122C

2
S

2 + 4Σ̂1212C
2
S

2 + Σ̂2222S
4
,

Σ̂1112 =Σ̂1111C
3
S − Σ̂1122C

3
S − 2Σ̂1212C

3
S + 2Σ̂1212CS

3 + Σ̂1122CS
3 − Σ̂2222CS

3;

Σ̂1113 =Σ̂1113C
3 + 2Σ̂1223CS

2 + Σ̂1322CS
2
,

Σ̂1122 =Σ̂1111C
2
S

2 + Σ̂1122C
4 − 4Σ̂1212C

2
S

2 + Σ̂1122S
4 + Σ̂2222C

2
S

2
,

Σ̂1123 =Σ̂1113C
2
S − 2Σ̂1223C

2
S + Σ̂1322S

3
,

Σ̂1133 =Σ̂1133C
2 + Σ̂2233S

2
,

Σ̂1212 =Σ̂1111C
2
S

2 − 2Σ̂1122C
2
S

2 + Σ̂1212C
4 − 2Σ̂1212C

2
S

2 + Σ̂1212S
4 + Σ̂2222C

2
S

2
,

Σ̂1213 =Σ̂1113C
2
S − Σ̂1223C

2
S + Σ̂1223S

3 − Σ̂1322C
2
S,

Σ̂1222 =Σ̂1111CS
3 + Σ̂1122C

3
S + 2Σ̂1212C

3
S − 2Σ̂1212CS

3 − Σ̂1122CS
3 − Σ̂2222C

3
S,

Σ̂1223 =Σ̂1113CS
2 + Σ̂1223C

3 − Σ̂1223CS
2 − Σ̂1322CS

2
,

Σ̂1233 =Σ̂1133CS − Σ̂2233CS, (A.30)

Σ̂1313 =Σ̂1313C
2 + Σ̂2323S

2
,

Σ̂1322 =Σ̂1113CS
2 + Σ̂1322C

3 − 2Σ̂1223CS
2
,

Σ̂1323 =Σ̂1313CS − Σ̂2323CS,

Σ̂1333 =Σ̂1333C,

Σ̂2222 =Σ̂1111S
4 + 2Σ̂1122C

2
S

2 + 4Σ̂1212C
2
S

2 + Σ̂2222C
4
,

Σ̂2223 =Σ̂1113S
3 + 2Σ̂1223C

2
S + Σ̂1322C

2
S,

Σ̂2233 =Σ̂1133S
2 + Σ̂2233C

2
,

Σ̂2323 =Σ̂1313S
2 + Σ̂2323C

2
,

Σ̂2333 =Σ̂1333S,

Σ̂3333 =Σ̂3333.
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Finally, the modular function Ŝijk(x,n) of the integral kernel Sijk(x,n),

can be expressed in terms of Ŝijk(x̂, ñ) defined in (A.26), as follows:

Ŝ111 = {Ŝ111C
2 + (2Ŝ122 + Ŝ221)S

2}C,

Ŝ112 = {(Ŝ111 − 2Ŝ122)C
2 + Ŝ221S

2}S,

Ŝ113 = Ŝ113C
2 + Ŝ223S

2
,

Ŝ121 = {Ŝ122S
2 + (Ŝ111 − Ŝ122 − Ŝ221)C

2}S,

Ŝ122 = {Ŝ122C
2 + (Ŝ111 − Ŝ122 − Ŝ221)S

2}C,

Ŝ123 = (Ŝ113 − Ŝ223)CS,

Ŝ131 = Ŝ131C
2 + Ŝ232S

2
,

Ŝ132 = (Ŝ131 − Ŝ232)CS,

Ŝ133 = Ŝ133C,

Ŝ221 = {(Ŝ111 − 2Ŝ122)S
2 + Ŝ221C

2}C,

Ŝ222 = {Ŝ111S
2 + (2Ŝ122 + Ŝ221)C

2}S,

Ŝ223 = Ŝ113S
2 + Ŝ223C

2
,

Ŝ231 = (Ŝ131 − Ŝ232)CS,

Ŝ232 = Ŝ131S
2 + Ŝ232C

2
,

Ŝ233 = Ŝ133S,

Ŝ331 = Ŝ331C,

Ŝ332 = Ŝ331S,

Ŝ333 = Ŝ333.

(A.31)



230 Appendix A. Modular functions for transversely isotropic materials



Bibliography

[1] A. Agrawal and A.M. Karlsson. On the reference length and mode
mixity for a bimaterial interface. Journal of Engineering Materials
and Technology, 129:580–587, 2007.

[2] Airbus. Carbon Fibre Reinforced Plastics. Determination of fracture
toughness energy of bonded joints. Mode I. G1C. Issue 1. AITM
1-0053, 2006.

[3] MH. Aliabadi. A new generation of boundary element methods in frac-
ture mechanics. International Journal of Fracture, 86:91–125, 1997.

[4] MH. Aliabadi. Boundary Element Formulations in Fracture Mechan-
ics. Applied Mechanics Reviews, 50:83–96, 1997.

[5] MH. Aliabadi. The Boundary Element Method, Applications in Solids
and Structures, volume 2. John Wiley & Sons: Chichester, 2002.

[6] MH. Aliabadi and AL. Saleh. Fracture mechanics analysis of cracking
in plain and reinforced concrete using the boundary element method.
Engineering Fracture Mechanics, 69:267–280, 2002.

[7] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition, 1999.

[8] MP. Ariza and J. Domínguez. Boundary element formulation for 3D
transversely isotropic cracked bodies. International Journal for Nu-
merical Methods in Engineering, 60:719–753, 2004.

[9] R. Avila, V. Mantič, and F. París. Aplication of the boundary ele-
ment method to elastic orthotropic materials in 2D: numerical aspects.



232 BIBLIOGRAPHY

In: Boundary Elements XIX. Computational Mechanics Publications:
Southampton, Boston, 1997.

[10] J. Baláš, J. Sládek, and V. Sládek. Stress Analysis by Boundary
Element Method. Elsevier: Amsterdam, 1989.

[11] L. Bank-Sills and D. Ashkenazi. A note on fracture criteria for inter-
face fracture. International Journal of Fracture, 103:177–188, 2000.

[12] GI. Barenblatt. The formation of equilibrium cracks during brit-
tle fracture. General ideas and hypotheses. Axially-symmetric cracks.
Journal of Applied Mathematics and Mechanics, 23:622–636, 1959.

[13] DM. Barnett. The precise evaluation of derivatives of the anisotropic
elastic Green’s functions. Physica Status Solidi (b), 49:741–748, 1972.

[14] A. Barroso, V. Mantič, and F. París. Computing stress singularities
in transversely isotropic multimaterial corners by means of explicit
expressions of the orthonormalized Stroh-eigenvectors. Engineering
Fracture Mechanics, 76:250–268, 2009.

[15] Z. Bažant and J. Planas. Fracture and size effect in concrete and other
quasibrittle materials. CRC PRESS: Boca Raton, 1998.

[16] Y. Benveniste and T. Miloh. Imperfect soft and stiff interfaces in
two-dimensional elasticity. Mech Mater, 33:309–323, 2001.

[17] JM. Berthelot. Transverse cracking and delamination in cross-ply
glass–fiber and carbon–fiber reinforced plastic laminates: static and
fatigue loading. Applied Mechanics Reviews, 56:111–147, 2003.

[18] D. Bigoni, SK. Serkov, M. Valentini, and AB. Movchan. Asymptotic
models of dilute composites with imperfectly bonded inclusions. In-
ternational Journal of Solids and Structures, 35:3239–3258, 1998.

[19] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stan-
ley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[20] A. Blázquez. Non-conforming contact between orthotropic solids. Apli-
cation to Iosipescu test (in Spanish). PhD. Thesis, Universidad de
Sevilla, 1996.



BIBLIOGRAPHY 233

[21] A. Blázquez. Transversal and delamination crack onset and growth
in [0/90]S laminates. GERM Private Comunication, 2010.

[22] A. Blázquez, V. Mantič, F. París, and J. Cañas. On the removal of
rigid body motions in the solution of elastostatic problems by direct
BEM. International Journal for Numerical Methods in Engineering,
39:4021–4038, 1996.

[23] A. Blázquez, V. Mantič, F. París, and L. N. McCartney. Stress State
characterization of delamination cracks in [0/90] symmetric laminates
by BEM. International Journal of Solids and Structures, 45:1632–
1662, 2008.

[24] A. Blázquez, V. Mantič, F. París, and L. N. McCartney. BEM analy-
sis of damage progress in 0/90 laminates. Engineering Analysis with
Boundary Elements, 33:762–769, 2009.

[25] A. Blázquez, F. París, and V. Mantič. BEM solution of two-
dimensional contact problems by weak application of contact con-
ditions with nonconforming discretizations. International Journal of
Solids and Structures, 35:3259–3278, 1998.

[26] G. Bolzon, R. Fedele, and G. Maier. Parameter identification of a
cohesive crack model by Kalman filter. Computer Methods in Applied
Mechanics and Engineering, 13:74–89, 2002.

[27] M. Bonnet. Boundary Integral Equation Methods for Solids and Flu-
ids. Wiley: Chichster, 1995.

[28] M. Bonnet, G. Maier, and C. Polizzotto. Symmetric Galerkin bound-
ary element method. Applied Mechanics Reviews, 51:669–704, 1998.

[29] CA. Brebbia, JCF. Telles, and LC. Wrobel. Boundary Element Tech-
niques. Springer: Berlin, 1984.

[30] JM. Burgers. Some considerations on the field of stress connected with
dislocations in a regular crystal lattice. Proc. Koninklijke Nederlandse
Akademie van Wetenschappen, 42:293–378, 1939.

[31] FC. Buroni and A. Saez. Three-dimensional Green’s function and
its derivative for materials with general anisotropic magneto-electro-
elastic coupling. Proceedings of the Royal Society A, 466:515–537,
2010.



234 BIBLIOGRAPHY

[32] G.T. Camacho and M. Ortiz. Computational modelling of impact
damage in brittle materials. International Journal of Solid and Struc-
tures, 33:2899–2938, 1996.

[33] G.G. Camanho, C.G. Dávila, and M.F. de Moura. Numerical simula-
tion of mixed-mode progressive delamination in composite materials.
Journal of Composite Materials, 37:1415–1438, 2003.

[34] A. Carpinteri. Cusp catastrophe interpretation of fracture instability.
Journal of the Mechanics and Physics of Solids, 37:567–582, 1989.

[35] A. Carpinteri. Post-peak and post-bifurcation analysis on cohe-
sive crack propagation. Engineering Fracture Mechanics, 32:265–278,
1989.

[36] A. Carpinteri and G. Colombo. Numerical analysis of catastrophic
softening behaviour (snap-back instability). Computers & Structures,
31:607–636, 1989.

[37] A. Carpinteri, P. Cornetti, and N. Pugno. Edge debonding in FRP
strengthened beams: Stress versus energy failure criteria. Engineering
Structures, 31:2436–2447, 2009.

[38] A. Carpinteri, M. Paggi, and G. Zavarise. Snap-back instability in
micro-structured composites and its connection with superplasticity.
Strength, Fracture and Complexity, 3:61––72, 2005.

[39] A. Chandra and S. Mukherjee. Boundary Element Methods in Man-
ufacturing. Oxford University Press: Oxford, 1997.

[40] N. Chandra and C. Shet. A Micromechanistic Perspective of Cohe-
sive Zone Approach in Modeling Fracture. Computer Modeling in
Engineering and Sciences, 5:21–34, 2004.

[41] C. Chang and M. Mear. Boundary element method for two dimen-
sional linear elastic fracture analysis. International Journal of Frac-
ture, 74:219–251, 1995.

[42] T. Chen and FZ. Lin. Numerical evaluation of derivatives of the
anisotropic piezoelctric Green’s functions. Mechanics Research Com-
munications, 20:501–506, 1993.

[43] WT. Chen. On some problems in transversely isotropic elastic mate-
rials. Journal of Applied Mechanics, 33:347–355, 1966.



BIBLIOGRAPHY 235

[44] J. Cook, J. E. Gordon, C.C. Evans, and D.M. Marsh. A Mechanism for
the Control of Crack Propagation in All-Brittle Systems. Proceedings
of the Royal Society of London. Series A, Mathematical and Physical
Sciences, 282:508–520, 1964.

[45] E. Correa. Micromechanical study of the “matrix failure” in fiber rein-
forced composites (in Spanish). PhD. Thesis, Universidad de Sevilla,
2008.

[46] E. Correa, V. Mantič, and F. París. A micromechanical view of inter-
fibre failure of composite materials under compression transverse to
the fibres. Composites Science and Technology, 68:2010–2021, 2008.

[47] E. Correa, V. Mantič, and F. París. Numerical characterisation of the
fibre-matrix interface crack growth in composites under transverse
compression. Engineering Fracture Mechanics, 75:4085–4103, 2008.

[48] MA. Crisfield. Non-linear Finite Element Analysis of Solids and
Structures, volume 2. Wiley: Chichester, 1997.

[49] TA. Cruse. Boundary Element Analysis in Computational Fracture
Mechanics. Kuwler Academic Publishers: Boston, 1988.

[50] C. Dávila, C. Rose, and P. Camanho. A procedure for superposing
linear cohesive laws to represent multiple damage mechanisms in the
fracture of composites. International Journal of Fracture, 158:211–
223, 2009.

[51] PH. Dederichs and G. Liebfried. Elastic Green’s function for
anisotropic cubic crystals. Physical Review, 188:1175–1183, 1969.

[52] E. Denarié, VE. Saouma, A. Iocco, and D. Varelas. Concrete fracture
process zone characterization with fiber optics. Journal of Engineering
Mechanics, 127:494–502, 2001.

[53] P. Destuynder, F. Michavila, A. Santos, and Y. Ousset. Some theoret-
ical aspects in computational analysis of adhesive lap joints. Interna-
tional Journal for Numerical Methods in Engineering, 35:1237–1262,
1992.

[54] J. Dongarra, J. Bunch, C. Moler, and P. Stewart. Linpack, 1984.

[55] D. Dugdale. Yielding of steel sheets containing slits. Journal of the
Mechanics and Physics of Solids, 8:100–104, 1960.



236 BIBLIOGRAPHY

[56] M. Elices, GV. Guinea, J. Gómez, and J. Planas. The cohesive zone
model: advantages, limitations and challenges. Engineering Fracture
Mechanics, 69:137–163, 2002.

[57] HA. Elliot. Three-dimensional stress distributions in hexagonal
aelotropic crystals. Proceedings of the Cambridge Philosophical So-
ciety, 44:522–533, 1948.

[58] F. Erdogan. Fracture mechanics of interfaces, In: Damage and Failure
of Interfaces. Balkema Publishers: Rotterdam, 1997.

[59] A. G. Evans, M. Rühle, B. J. Dalgleish, and P. G. Charalambides. The
fracture energy of bimaterial interfaces. Metallurgical Transactions A,
21:2419–2429, 1990.

[60] VI. Fabrikant. Applications of Potential Theory in Mechanics. Selec-
tion of New Results. Kluwer Academic Publishers: Dordrecht, 1989.

[61] M. Fafard and B. Massicotte. Geometrical Interpretation of the arc-
length method. Computers & Structures, 46:603–615, 1993.

[62] G. Fairweather and A. Karageorghis. The method of fundamental
solutions for elliptic boundary value problems. Advances in Compu-
tational Mathematics, 9:69–95, 1998.

[63] A. Frangi. Regularization of boundary element formulations by the
derivative transfer method, In: Singular Integrals in the Boundary
Element Method. Computational Mechanics Publishers, 1998.

[64] A. Frangi and G. Novati. Symmetric BE method in two-dimensional
elasticity: evaluation of double integrals for curved elements. Com-
putational Mechanics, 19:58–68, 1996.

[65] I. Fredholm. Sur les équations de l’équilibre d’um corps solide élas-
tique. Acta Mathematica, 23:1–42, 1900.

[66] Z. Gao. A circular inclusion with imperfect interface: Eshelby’s ten-
sor and related problems. Journal of Applied Mechanics, 62:860–866,
1995.

[67] AC. Garg. Delamination - A damage mode in composite structures.
Engineering Fracture Mechanics, 29:557–584, 1988.



BIBLIOGRAPHY 237

[68] G. Geymonat, F. Krasucki, and S. Lenci. Mathematical analysis of a
bonded joint with a soft thin adhesive. Mathematics and Mechanics
of Solids, 4:201–225, 1999.

[69] M. Goland and E. Reissner. The stresses in cemented joints. Journal
of Applied Mechanics, 11:A17–A27, 1944.

[70] GH. Golub and CF. Van Loan. Matrix Computations. Johns Hopkins
University Press, third edition, 1996.

[71] E. Graciani. BEM formulation and implementation for axisymmetric
contact problems. Application to fiber-matrix interface in composite
materials (in Spanish). PhD. Thesis, Universidad de Sevilla, 2006.

[72] E. Graciani, V. Mantič, F. París, and A. Blázquez. Weak formu-
lation of axi-symmetric frictionless contact problems with boundary
elements: Application to interface cracks. Computer and Structures,
83:836–855, 2005.

[73] E. Graciani, V. Mantič, F. París, and J. Varna. Numerical analysis of
debond propagation in the single fibre fragmentation test. Composites
Science and Technology, 69:2514–2520, 2009.

[74] LJ. Gray. Evaluation of singular and hypersingular Galerkin boundary
integrals: direct limits and symbolic computation, In: Singular Inte-
grals in the Boundary Element Method. Computational Mechanics
Publishers, 1998.

[75] LJ. Gray and GH. Paulino. Symmetric Galerkin boundary integral
fracture analysis for plane orthotropic elasticity. Computational Me-
chanics, 20:26–33, 1997.

[76] R. Han, MS. Ingber, and HL. Schreyer. Progression of failure in fiber-
reinforced materials. Computers Materials & Continua, 4:163–176,
2006.

[77] MT. Hanson. Some observations on the potential functions for trans-
verse isotropy in the presence of body forces. International Journal
of Solids and Structures, 35:3793–3813, 1998.

[78] F. Hartmann, C. Katz, and B. Protopsaltis. Boundary elements and
symmetry. Archive of Applied Mechanics (Ingenieur Archiv), 55:440–
449, 1985.



238 BIBLIOGRAPHY

[79] Z. Hashin. Thermoelastic properties of fiber composites with imper-
fect interface. Mechanics of Materials, 8:333–348, 1990.

[80] Z. Hashin. Thin interphase/imperfect interface in elasticity with ap-
plication to coated fiber composites. Journal of the Mechanics and
Physics of Solids, 50:2509–2537, 2002.

[81] AK. Head. The Galois unsolvability of the sextic equation of
anisotropic elasticity. Journal of Elasticity, 9:9–20, 1979.

[82] A. Hilleborg, M. Modeer, and P.E. Petersson. Analysis of a crack
formation and crack growth in concrete by fracture mechanics and
finite elements. Cement and Concrete Research, 6:773–782, 1976.

[83] SM. Hölzer. How to deal with hypersingular integrals in the symmetric
BEM. Communications in Numerical Methods in Engineering, 9:219–
232, 1993.

[84] TB. Hu, CD. Wang, and JL. Laio. Elastic solutions of displacements
for a transversely isotropic full space with inclined planes of symmetry
subjected to a point load. International Journal for Numerical and
Analytical Methods in Geomechanics, 31:1401–1442, 2007.

[85] JW. Hutchinson and Z. Suo. Mixed mode cracking in layered mate-
rials, volume 29 of Advances in Applied Mechanics. Academic Press:
New York, 1992.

[86] VL. Indenbom and SS. Orlov. Construction of Green’s functions in
terms of Green’s function of lower dimension. Journal of Applied
Mathematics and Mechanics, 32:414—-420, 1968.

[87] ISO. Fibre-reinforced plastic composites – Determination of mode I
interlaminar fracture toughness, GIC , for unidirectionally reinforced
materials. ISO 15024, 2001.

[88] M.E. Jiménez. Modeling of the interlaminar fracture toughness test
in composite materials (in Spanish). Final Project, Universidad de
Sevilla, 2006.

[89] M.E. Jiménez, J. Cañas, V. Mantič, and J.E. Ortiz. Numerical and
experimental study of the interlaminar fracture test of composite-
composite adhesively bonded joints. (in Spanish). Materiales Com-
puestos 07, Asociación Española de Materiales Compuestos, Univer-
sidad de Valladolid, pages 499–506, 2007.



BIBLIOGRAPHY 239

[90] M. F. Kanninen. An augmented double cantilever beam model for
studying crack propagation and arrest. International Journal of Frac-
ture, 9:83–92, 1973.

[91] A. Kelly and WR. Tyson. Tensile properties of fiber reinforced metals:
copper/tungsten and copper/molybdenum. Journal of the Mechanics
and Physics of Solids, 13:329–350, 1965.

[92] A. Klarbring. Derivation of a model of adhesively bonded joints by the
asymptotic expansion method. International Journal of Engineering
Science, 29:493–512, 1991.

[93] M. Kočvara, A. Mielke, and T. Roubíček. A rate-independent ap-
proach to the delamination problem. Mathematics and Mechanics of
Solids, 11:423–427, 2006.

[94] E. Kröner. Das Fundamentalintegral der anisotropen elastischen Dif-
ferentialgleichungen. Zeitschrift für Physik, 136:402—-410, 1953.

[95] G. Kuhn and H. Mang. On symmetrization in boundary element elas-
tic and elastoplastic analysis, In: Discretization methods in structural
mechanics. Springer: Berlin, 1990.

[96] JC. Lachat and JO. Watson. Effective numerical treatment of bound-
ary integral equations: a formulation for three-dimensional elasto-
statics. International Journal for Numerical Methods in Engineering,
10:991–1005, 1976.

[97] F. Lebon and F. Zaittouni. Asymptotic modelling of interfaces taking
contact conditions into account: Asymptotic expansions and numer-
ical implementation. International Journal of Engineering Science,
48:111–127, 2010.

[98] VG. Lee. Explicit expression of derivatives of elastic Green’s functions
for general anisotropic materials. Mechanics Research Communica-
tions, 30:241––249, 2003.

[99] VG. Lee. Derivatives of the three-dimensional Green’s functions for
anisotropic materials. International Journal of Solids and Structures,
46:3471––3479, 2009.

[100] L. Lejček. The Green function of the theory of elasticity in an
anisotropic hexagonal medium. Czechoslovak Journal of Physics,
B19:799–803, 1969.



240 BIBLIOGRAPHY

[101] S. G. Lekhnitskii. Theory of Elasticity of an Anisotropic Body. Mir
Publishers: Moscow, 1981.

[102] S. Lenci. Analysis of a crack at a weak interface. International Journal
of Fracture, 108:275–290, 2001.

[103] IM. Lifshitz and LN. Rozentsweig. Construction of the Green ten-
sor for the fundamental equation of elasticity theory in the case of
unbounded elastically anisotropic medium. Zhurnal Eksper. i Teo-
reticheskoi Fiziki, 17:783–791, 1947.

[104] M. Loloi. Boundary integral equation solution of three-dimensional
elastostatic problems in transversely isotropic solids using closed-form
displacement fundamental solutions. International Journal for Nu-
merical Methods in Engineering, 48:823–842, 2000.

[105] J. Lothe. Disclocations in anisotropic media. In: Elastic Strain Fields
and Dislocation Mobility. North-Holland: Amsterdam, 1992.

[106] G. Maier and A. Frangi. Symmetric boundary element method for
‘discrete’ crack modelling of fracture processes. Computer Assisted
Mechanics and Engineering Sciences, 5:201–226, 1998.

[107] G. Maier, S. Miccoli, G. Novati, and S. Sirtori. A Galerkin symmet-
ric boundary element method in plasticity: formulation and imple-
mentation, In: Advances in Boundary Element Techniques. Springer:
Berlin, 1993.

[108] G. Maier, G. Novati, and Z. Cen. Symmetric boundary element
method for quasi-brittle fracture and frictional problems. Compu-
tational Mechanics, 13:74–89, 1993.

[109] G. Maier and C. Polizzotto. A Galerkin approach to boundary element
elastoplastic analysis. Computer Methods in Applied Mechanics and
Engineering, 60:175–194, 1987.

[110] K. Malén. A unified six-dimensional treatment of elastic Green’s func-
tions and dislocations. Physica Status Solidi B, 44:661–672, 1971.

[111] V. Mantič. A new formula for the C-matrix in the Somigliana identity.
Journal of Elasticity, 33:191–201, 1993.



BIBLIOGRAPHY 241

[112] V. Mantič. Interface crack onset at a circular cylindrical inclusion
under a remote transverse tension. Application of a coupled stress
and energy criterion. International Journal of Solids and Structures,
46:1287–1304, 2009.

[113] V. Mantič, A. Blázquez, E. Correa, and F. París. Analysis of interface
cracks with contact in composites by 2D BEM. In: Fracture and dam-
age of composites, Series: Advances in fracture mechanics, volume 8.
WIT Press: Southampton, Boston, 2006.

[114] V. Mantič and F. París. Explicit formulae of the integral kernels
and C-matrix in the 2D Somigliana identity for orthotropic materials.
Engineering Analysis with Boundary Elements, 15(3):283–288, 1995.

[115] V. Mantič and F. París. Symmetrical representation of stresses in the
Stroh formalism and its application to a dislocation and a dislocation
dipole in an anisotropic elastic medium. Journal of Elasticity, 47:101–
120, 1997.

[116] V. Mantič and F. París. Symmetry properties of the kernels of the
hypersingular integral and the corresponding regularized integral in
the 2D Somigliana stress identity for isotropic materials. Engineering
Analysis with Boundary Elements, 20:163–168, 1997.

[117] V. Mantič and F. París. Relation between SIF and ERR based mea-
sures of fracture mode mixity in interface cracks. International Jour-
nal of Fracture, 130:557–569, 2004.

[118] LN. McCartney and A. Blázquez. Delamination model for cross-plu
laminates subject to triaxial loading and thermal stresses. ICCM 17,
Edinburgh, 2009.

[119] S.G. Mogilevskaya and S.L. Crouch. A Galerkin boundary integral
method for multiple circular elastic inclusions with homogeneously
imperfect interfaces. International Journal of Solids and Structures,
39:4723–4746, 2002.

[120] S. Mukherjee and YX. Mukherjee. Boundary methods: elements, con-
tours and nodes. CRC Press: Boca Raton, 2005.

[121] C. Müller-Karger, C. González, MH. Aliabadi, and M. Cerrolaza.
Three dimensional BEM and FEM stress analysis of the human tibia
under pathological conditions. Computer Modeling in Engineering &
Sciences, 2:1–13, 2001.



242 BIBLIOGRAPHY

[122] JA. Nairn. Numerical implementation of imperfect interfaces. Com-
putational Materials Science, 40:525–536, 2007.

[123] G. Nakamura and K. Tanuma. A formula for the fundamental solution
of anisotropic elasticity. Quarterly Journal of Mechanics and Applied
Mathematics, 50:179–194, 1997.

[124] A. Needleman. A continuum model for void nucleation by inclusion
debonding. Journal of Applied Mechanics, 54:525–532, 1987.

[125] D. Ngo, K. Park, G.H. Paulino, and Y. Huang. On the constitu-
tive relation of materials with microstructure using a potential-based
cohesive model for interface interaction. Strength, Fracture and Com-
plexity, 77:1153––1174, 2010.

[126] T.K. O’Brien. Analysis of local delaminations and their influence
on composite laminate behavior. In: Delamination and debonding of
materials. ASTM STP 876, Philadelphia, 1984.

[127] JE. Ortiz and AP. Cisilino. Boundary element method for J-integral
and stress intensity factor computations in three-dimensional interface
cracks. International Journal of Fracture, 133:197–222, 2005.

[128] M. Ortiz and A. Pandolfi. Finite-Deformation irreversible cohesive
elements for three dimensional crack propagation analysis. Interna-
tional Journal for Numerical Methods in Engineering, 44:1267–1283,
1999.

[129] Y. Pan and T. Chou. Point force solution for an infinitetransversely
isotropic solid. Journal of Applied Mechanics, 98:608–612, 1976.

[130] F. París, A. Blázquez, L. N. McCartney, and V. Mantič. Characteriza-
tion and evolution of matrix and interface related damage in [0/90]S
laminates under tension. Part I: Numerical predictions. Composites
Science and Technology, 70:1168–1175, 2010.

[131] F. París and J. Cañas. Boundary Element Method, Fundamentals
and Applications. Oxford University Press: Oxford, 1997.

[132] F. París, E. Correa, and V. Mantič. Kinking of transverse inter-
face cracks between fiber and matrix. Journal of Applied Mechanics,
74:703–716, 2007.



BIBLIOGRAPHY 243

[133] F. París, E. Correa, and J. Ca nas. Micromechanical view of failure
of the matrix in fibrous composite materials. Composites Science and
Technology, 63:1041–1052, 2003.

[134] F. París, J.C. del Caño, and J. Varna. The fiber-matrix interface
crack — A numerical analysis using boundary elements. International
Journal of Fracture, 82:11––29, 1996.

[135] A-V. Phan, JAL. Napier, LJ. Gray, and T. Kaplan. Symmetric-
Galerkin BEM simulation of fracture with frictional contact. Inter-
national Journal for Numerical Methods in Engineering, 57:835–851,
2003.

[136] AV. Phan, LJ. Gray, and T. Kaplan. On the residue calculus evalua-
tion of the 3-D anisotropic elastic Green’s function. Communications
in Numerical Methods in Engineering, 20:335–341, 2004.

[137] AV. Phan, LJ. Gray, and T. Kaplan. Residue approach for evaluating
the 3D anisotropic elastic Green’s function: multiple roots. Engineer-
ing Analysis with Boundary Elements, 29:570–576, 2005.

[138] J. Planas, M. Elices, GV. Guinea, FJ. Gómez, DA. Cendón, and I. Ar-
billa. Generalizations and specializations of cohesive crack models.
Engineering Fracture Mechanics, 70:1759–1776, 2003.

[139] WH. Press, SA. Teukolsky, WT. Vetterling, and BP. Flannery. Nu-
merical Recipes in FORTRAN. The art of scientific computing. Cam-
bridge University Press: Cambridge, 2 edition, 1992.

[140] SA. Ragon, Z. Gürdal, and LT. Watson. A comparison of three algo-
rithms for tracing nonlinear equilibrium paths of structural systems.
International Journal of Solids and Structures, 39:689–698, 2002.

[141] E. Ramm. Strategies for tracing the non-linear response near limit-
points. In: Non-linear finite element analysis in structural mechanics.
Proceeding European US Workshop. Springer: Berlin, 1981.

[142] T. Reilly and A. Burstein. The elastic and ultimate properties of
compact bone tissue. Journal of Biomechanics, 8:393–405, 1975.

[143] E. Riks. An incremental approach to the solution of snapping and
buckling problems. International Journal of Solids and Structures,
15:529–551, 1979.



244 BIBLIOGRAPHY

[144] FJ. Rizzo. An integral equation approach to boundary value problems
of classical elastostatics. Quarterly of Applied Mathematics, 25:83–95,
1967.

[145] FJ. Rizzo and DJ. Shippy. Some observations on Kelvin’s solution
in classical elastostatics as a double tensor field with implications for
Somigliana integral. Journal of Elasticity, 13:91–97, 1983.

[146] DJ. Roberts, A-V. Phan, HV. Tippur, LJ. Gray, and T. Kaplan.
SGBEM modeling of fatigue crack growth in particulate composites.
Archive of Applied Mechanics, 80:307–322, 2010.

[147] T. Roubíček, L. Scardia, and C. Zanini. Quasistatic delamination
problem. Continuum Mechanics and Thermodynamics, 21:223–235,
2009.

[148] J. Rungamornrat. A Computational Procedure for Analysis of Frac-
tures in Three Dimensional Anisotropic Media. PhD Thesis, The
University of Texas, 2004.

[149] J. Rungamornrat. Weakly-singular, weak-form integral equations for
cracks in three-dimensional anisotropic media. International Journal
of Solids and Structures, 45:1283—-1301, 2008.

[150] A. Sáez, MP. Ariza, and J. Domínguez. Three-dimensional fracture
analysis in tranversely isotropic solids. Engineering Analysis with
Boundary Elements, 20:287–298, 1997.

[151] MA. Sales and LJ. Gray. Evaluation of the anisotropic Green’s func-
tion and its derivatives. Computers and Structures, 69:247–254, 1998.

[152] A. Salvadori. Quasi brittle fracture mechanics by cohesive crack mod-
els and symmetric galerkin boundary element method. PhDF Thesis,
Politecnico di Milano, 1999.

[153] A. Salvadori. A symmetric boundary integral formulation for cohesive
interface problems. Computational Mechanics, 22:381–391, 2003.

[154] A. Salvadori. Numerical simulations of cohesive interface problems
via boundary integral equations. Proceedings of IABEM 2006: Graz,
2006.

[155] NA. Schclar. Anisotropic Analysis Using Boundary Elements. Com-
putational Mechanics Publications: Southampton, 1994.



BIBLIOGRAPHY 245

[156] R. Seydel. Practical Bifurcation And Stability Analysis - From Equi-
librium to Chaos. Springer: New York, 1994.

[157] YC. Shiah, CL. Tan, and VG. Lee. Evaluation of explicit-form funda-
mental solutions for displacements and stresses in 3D anisotropic elas-
tic solids. Computer Modeling in Engineering and Sciences, 34:205–
226, 2008.

[158] G. B. Sinclair. On the influence of cohesive stress-separation laws on
elastic stress singularities. Journal of Elasticity, 44:203–221, 1996.

[159] S. Sirtori. General stress analysis method by means of integral equa-
tions and boundary elements. Meccanica, 14:210–218, 1979.

[160] S. Sirtori, G. Maier, G. Novati, and S. Miccoli. A Galerkin symmetric
boundary element method in elasticity: formulation and implemen-
tation. International Journal for Numerical Methods in Engineering,
35:255–282, 1992.

[161] A. Sutradhar, G. Paulino, and LJ. Gray. Symmetric Galerkin Bound-
ary Element Method. Springer: Berlin, 2008.

[162] CL. Tan, YC. Shiah, and CW. Lin. Stress analysis of 3D generally
anisotropic elastic solids using the boundary element method. Com-
puter Modeling in Engineering and Sciences, 41:195–214, 2009.

[163] K. Tanuma. Surface-impedance tensors of transversely isotropic elas-
tic materials. Quarterly Journal of Mechanics and Applied Mathemat-
ics, 49:29–48, 1996.

[164] TE. Tay. Characterization and analysis of delamination fracture in
composites: An overview of developments from 1990 to 2001. Applied
Mechanics Reviews, 56:1–31, 2003.

[165] TCT. Ting. Anisotropic Elasticity Theory and Applications. Oxford
University Press: Oxford, 1996.

[166] TCT. Ting. A modified Leknitskii formalism à la Stroh for anisotropic
elasticity and classifications of the 6× 6 matrix N. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
455:69–89, 1999.



246 BIBLIOGRAPHY

[167] TCT. Ting and VG. Lee. The three-dimensional elastostatic Green’s
function for general anisotropic linear elastic solids. Quarterly Journal
of Mechanics and Applied Mathematics, 50:407–426, 1997.

[168] F. Tonon, E. Pan, and B. Amadei. Green’s functions and boundary
element method formulation for 3D anisotropic media. Computers
and Structures, 79:469–482, 2001.

[169] M. Toya. A crack along the interface of a circular inclusion embedded
in an infinite solid. Journal of the Mechanics and Physics of Solids,
22:325—-348, 1974.

[170] J. Varna, LA. Berglund, and ML. Ericson. Transverse single fiber
test for interfacial debonding in composites 2: Modelling. Composites
Part A: Applied Science and Manufacturing, 28:317––326, 1997.

[171] J. Varna, F. París, and JC. del Caño. The effect of crack-face contact
and fibre/matrix debonding in transverse tensile loading. Composites
Science and Technology, 57:523—-532, 1997.

[172] R. Vodička, V. Mantič, and F. París. Note on the removal of rigid
body motions in the solution of elastostatic traction boundary value
problems by SGBEM. Engineering Analysis with Boundary Elements,
30:790–798, 2006.

[173] CY. Wang. Elastic fields produced by a point source in solids of
general anisotropy. Journal of Engineering Mathematics, 32:41–52,
1997.

[174] X. Wang, E. Pan, and LJ. Sudak. Uniform stresses inside an elliptical
inhomogeneity with an imperfect interface in plane elasticity. Journal
of Applied Mechanics, 75:054501.1–054501.6, 2008.

[175] P. Wen. The elastic solution of concentrated force acting in orthogo-
nal anisotropic half-plane and constant element fundamental formulae
of boundary element method. Applied Mathematics and Mechanics,
13:1163–1172, 1992.

[176] DJ. Wilkins, JR. Eisenmann, RA. Camin, WS. Margolis, and RA.
Benson. Characterizing Delamination Growth in Graphite-Epoxy.
In: Damage in Composite Materials. ASTM - STP/STP775-
EB/STP34326S, 1982.



BIBLIOGRAPHY 247

[177] RC. Williams, A-V. Phan, HV. Tippur, T. Kaplan, and LJ. Gray.
SGBEM analysis of crack growth and particle(s) interactions due
to elastic constants mismatch. Engineering Fracture Mechanics,
74:314—-331, 2007.

[178] JR. Willis. The elastic interaction energy of dislocation loops in
anisotropic media. Quarterly Journal of Mechanics and Applied Math-
ematics, 18:419–433, 1965.

[179] R. Wilson and T. Cruse. Efficient implementation of anisotropic three
dimensional boundary-integral equation stress analysis. International
Journal for Numerical Methods in Engineering, 12:1383–1397, 1978.

[180] S. Wolfram. Mathematica, A system for doing mathematics by com-
puter. Addison-Wesley:Redwood City, 1991.

[181] K. Wu. Generalization of the Stroh Formalism to 3-Dimensional
Anisotropic Elasticity. Journal of Elasticity, 51:213–225, 1998.

[182] M. Xie and A. Levy. Defect propagation at a circular interface. In-
ternational Journal of Fracture, 144:1–20, 2007.

[183] X-P. Xu and A. Needleman. Void nucleation by inclusion debonding
in a crystal matrix. Modelling and Simulation in Materials Science
and Engineering, 1:111–132, 1993.

[184] H. Zhang, ML. Ericson, J. Varna, and LA. Berglund. Transverse
single-fiber test for interfacial debonding in composites: 1. Experi-
mental observations. Composites Part A: Applied Science and Man-
ufacturing, 28A:309—-315, 1997.



Publications

The following international and national publications have been origi-
nated during the work in the present thesis.

International Journal Papers

1. L. Távara, J.E. Ortiz, V. Mantič, F. París. Unique real-variable exr-
pessions of displacement and traction fundamental solutions covering
all transversely isotropic elastic materials for 3D BEM. International
Journal for Numerical Methods in Engineering, 74:776–798, 2008.

2. L. Távara, V. Mantič, E. Graciani, J. Cañas, F. París. Analysis of
a crack in a thin adhesive layer between orthotropic materials: An
application to composite interlaminar fracture toughness test. CMES
- Computer Modeling in Engineering and Sciences, 58:247-270, 2010.

3. L. Távara, V. Mantič, A. Salvadori, L.J. Gray, F. París. SGBEM for
cohesive cracks in homogeneous media. Key Engineering Materials,
In press, 2010.

4. L. Távara, V. Mantič, E. Graciani, F. París. BEM analysis of crack on-
set and propagation along fiber-matrix interface under transverse ten-
sion using a linear elastic-brittle interface model. Engineering Analy-
sis with Boundary Elements, In press, 2010.

5. L. Távara, V. Mantič, J.E. Ortiz, F. París. Unique real-variable ex-
pressions of the integral kernels in the stress hypersingular boundary
integral equation covering all transversely isotropic elastic materials
for 3D BEM. In preparation.

6. V. Mantič, L. Távara, J.E. Ortiz, F. París. Recent developments in
the evaluation of the 3D fundamental solution and its derivatives for
transversely isotropic materials. In preparation.

7. L. Távara, V. Mantič, A. Salvadori, L.J. Gray, F. París. Cohesive
crack formulation and implementation in 2D SGBEM. In preparation.



Publications 249

Book Chapters

1. L. Távara, V. Mantič, J. Cañas, E. Graciani, F. París. BEM analysis
of crack onset and growth in composites using the linear elastic-brittle
interface model. In: E.J. Sapountzakis (Eds.), Recent Developments
in Boundary Element Methods , WIT Press, Southampton, 2010, pp.
281–294.

Conferences papers

International

1. L. Távara, V. Mantič, E. Graciani, J. Cañas, F. París. BEM model
of mode I crack propagation along a weak interface applied to the
interlaminar fracture toughness test of composites. BeTeq 2008 July
9tℎ-11tℎ 2008, Seville, Spain

2. V. Mantič, L. Távara, J.E. Ortiz, F. París. Application of the Stroh
formalism for anisotropic elasticity to the evaluation of the 3D fun-
damental solution and its derivatives. Recent developments for trans-
versely isotropic elastic materials. BeTeq 2008 July 9tℎ-11tℎ 2008,
Seville, Spain (Keynote Lecture)

3. L. Távara, V. Mantič, E. Graciani, J. Cañas, F. París. Analysis of a
crack in a thin adhesive layer between orthotropic materials applied
to composite interlaminar fracture toughness test. Composites 2009 -
2nd ECCOMAS Thematic Conference on the Mechanical Response of
Composites April 1st-3rd 2009, London, UK

4. L. Távara, V. Mantič, A. Salvadori, L.J. Gray, F. París. Implementa-
tion of a symmetric boundary integral formulation for cohesive cracks
in homogeneous media and at interfaces. BeTeq 2009 July 22tℎ-24tℎ

2009, Athens, Greece

5. L. Távara, V. Mantič, E. Graciani, J. Cañas, F. París. Caracteri-
zación de inicio y crecimiento de grietas de interfaz entre fibra y matriz
bajo cargas transversales usando el modelo de interfaz débil COMAT-
COMP’09 - V International Conference on Science and Technology of
Composite Materials October 7tℎ-9tℎ 2009, Donostia - San Sebastián,
Spain



250 Publications

6. L. Távara, V. Mantič, A. Salvadori, L.J. Gray, F. París. Implementa-
tion of a symmetric boundary integral formulation for cohesive cracks
in homogeneous media and at interfaces. Integral Equations: recent
numerical developments and new applications October 29tℎ-30tℎ 2009,
Parma, Italy

7. L. Távara, V. Mantič, J.E. Ortiz, F. París. Real-variable expressions
of the integral kernels in the 3D somigliana displacement and stress
identities for transversely isotropic materials. Integral Equations: re-
cent numerical developments and new applications October 29tℎ-30tℎ

2009, Parma, Italy

8. L. Távara, V. Mantič, E. Graciani, F. París. A BEM analysis of the
fibre size effect on the debond growth along the fibre-matrix interface.
BeTeq 2010 July 12tℎ-14tℎ 2010, Berlin, Germany

National

1. L. Távara, V. Mantič, E. Graciani, J. Cañas, F. París. Modelado
del crecimiento de una grieta en modo I a lo largo de una interfaz
débil mediante el MEC. Aplicación al ensayo de fractura interlaminar
de materiales compuestos. XXV Encuentro del GEF March, 5tℎ-7tℎ

2008, Sigüenza (Spain).

2. L. Távara, V. Mantič, L.J. Gray, F. París, A. Salvadori. Formula-
tion and implementation of cohesive fracture models in the symmetric
galerkin boundary element method. Study of mode I crack growth.
XXVI Encuentro del GEF March, 25tℎ-27tℎ 2009, Santander (Spain).

3. L. Távara, V. Mantič, E. Graciani, F. París. Caracterización de grietas
de interfaz entre fibra y matriz bajo cargas transversales uniaxiales
usando la teoría de interfaz débil. MetNum09 June 29tℎ - July 2nd

2009, Barcelona (Spain).


