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Chapter 1Introdution1.1 Motivations and objetivesThe durability and strutural integrity of materials used in tools and on-strutions has been a big onern sine anient times. Nevertheless, mankindhave generally developed the abilities for the use of any material before ha-ving a full knowledge of its behavior.That fat happens, for example, with omposite and piezoeletri mate-rials and, more reently, with magnetoeletroelasti solids, whih have beenused for a long time and still nowadays, there exists a huge ommunity ofsientists who are working in their haraterization.Magnetoeletroelasti solids are a kind of materials whih present theability of onverting energy among mehani, eletri and magneti �elds.This feature makes them very interesting for their use in smart struturesappliations, suh as sensors or atuators. These materials do exist in anatural form, suh as YMnO3 or BiMnO3 but, for the use in industrialappliations, larger values of the oupling properties are needed. In thisase, omposites of both piezoeletri and elastomagneti phases are usually



2 Chapter 1. Introdutionreated. In the resulting solid, an eletromagneti oupling appears whih isnot present in any onstitutive phases (Avellaneda and Harshe, 1994; Nan,1994; Beneviste, 1995)Piezoeletri and elastomagneti e�ets are usually obtained in non-natural materials after a polarization proess. This feature, as well as theinherent fragility of those material are auses for defets. Moreover, whentwo materials with di�erent material properties are joint in a omposite,the tendeny to develop raks is inreased.Due to the use these materials reeive, the presene of defets not onlyendanger the strutural integrity of the magnetoeletroelasti omponent,but also their funtion as sensors/atuators, sine �aws may distort theenergeti exhange among �elds and, thus, the information transmitted inthe proess.For all the exposed above, the study of frature mehanis in magneto-eletroelasti media is justi�ed in order to understand the frature meha-nisms. For suh purpose, some frature parameters must be alulated, inorder to modelize the e�ets of the presene of a disontinuity in the �eldvariables.A deep analysis of bidimensional raked magnetoeletroelasti solidswill be arried out and some numerial tools developed. In partiular, basedon the Boundary Element Method (BEM) and on the Extended Finite Ele-ment Method (X-FEM). Both tehniques have been proved as powerful toolsfor the study of frature mehanis in di�erent kinds of solids.In this work, three di�erent kind of problems will be studied
• Craked solids under ombined stati eletromagnetomehani loads
• Wave sattering by raks



1.1 Motivations and objetives 3
• Transient analysis of raked solids subjeted to eletromagnetome-hani impat loadsIn this work, the hypersingular (also alled dual) formulation of theBEM (see e.g., Hong and Chen, 1988 and Portela et al., 1992) will bedeveloped and used for the analysis of all those problems. BEM is based onan integral equation formulation, and the dual formulation implies the use oftwo di�erent integral equations depending on whether the boundary wherethe integration is arried out is a rak or not. The formulation presentedherein will be obtained following the ideas developed by Garía-Sánhez ando-workers in several works (2005; 2005a; 2005b; 2008a; 2008b) for the studyin anisotropi and piezoeletri solids of both stati and dynami problems.As it will be deeply disussed in this work, the integral equations maypresent singular integrands, whih will be solved by a regularization pro-ess analogous to the one developed by Garía-Sánhez et al. (2004) foranisotropi solids.BEM formulations requires knowing the so-alled Green's funtions (orFundamental Solution), whih will be used to apply the reiproity theorem.These funtions were available in the literature for the stati ase when thiswork was arried out (Liu et al., 2001), but not the dynami ones. Theywere obtained by the author following a tehnique based on the appliationof the Radon transform as it will be presented in the present work.A X-FEM formulation for the study of stati frature in magnetoele-troelasti raked solids will be also presented. X-FEM requires the useof some enrihment funtions depending on the behavior law of the mate-rial studied and, for magnetoeletroelasti solids, suh funtions were notavailable in the literature when this work started. In this thesis, those fun-tions will be obtained following a similar proedure to the one developed



4 Chapter 1. Introdutionby Béhet et al. (2009) for piezoeletri raked solids.As it will be seen in this doument, when the rak is opened, themedium between the rak surfaes onduts the eletri and magneti �eldsin a di�erent way as the solid does. The assumption of that ondutivityis not a losed topi. Atually, three di�erent onditions are usually onsi-dered: two ideal and a more realisti one. In most of this work, the idealimpermeable ondition has been adopted , but in the last hapter a deeperanalysis of the di�erent rak faes boundary onditions will be arried out,analyzing the impliations of them in the frature parameters.1.2 State of the knowledgeThe number of frature mehanis problems studied by the use of the numer-ial tehniques used in this work is ample. Nevertheless, the hypersingularBEM and X-FEM had never been used for solving either stati or dynamifrature problems in magnetoeletroelasti solids, to the best of the author'sknowledge, when this work was performed.The number of works in whih frature in magnetoeletroelasti solidswere analyzed is relatively limited as ompared for other materials suh asanisotropi or piezoeletri. In this sense, most of the works were analytialor semianalytial and lak the generality of numerial methods.1.2.1 Stati fratureRelated to stati frature, Liu et al. (2001) derived the 2-D Green's fun-tions for anisotropi magnetoeletroelasti solids with a rak as well asthe resulting losed-form expressions for the �eld intensity fators, basedon the extended Stroh's formalism, while Gao et al. (2003a,b,, 2004) pre-



1.2 State of the knowledge 5sented analyti solutions for some basi problems. Sih and oworkers (2003a;2003b; 2003; 2003) analyzed the he in�uene of both eletromagneti �eldsand the volume fration of the magnetoeletroelasti omposite on rak ini-tiation and growth. In works by Wang and Mai (2003; 2004), the analytialexpressions for the stresses, eletri displaements and magneti indutionsin the viinity of the rak tip were derived, as well as path-independentintegrals. Using suh integrals, frature behavior of magnetoeletroelastisolids was analyzed by Tian and Rajapakse (2005b).However, all those analyti proedures are restrited to problems involv-ing simple geometries and loading onditions. Thus, numerial methods be-ome neessary for a deeper study and haraterization of frature behaviorof magnetoeletroelasti solids.It is well known that both BEM and X-FEM present signi�ant advan-tages over other numerial tehniques for the analysis of frature mehanisproblems. Atually, the dual BEM formulation was �rst used in anisotropimaterials by Sollero (1994) and Sollero and Aliabadi (1995). Hypersingu-lar integrals appearing in this formulation are treated by the regularizationproess presented by Portela et al. (1992), whih is limited to the use ofstraight elements. However, Sáez et al. (1995) developed a regularizationproess in whih the shape of the elements is not a limitation anymore. Thatproess was extended for the study of anisotropi and piezoeletri rakedsolids in his PhD thesis by Garía-Sánhez (1995). In the present work,suh formulation will be generalized to the magnetoeletroelasti ase.With respet to the X-FEM, it has been proved as a powerful tool forthe study of frature mehanis and it has been suessfully applied to solverak problems by Möes et al. (1999) in isotropi media, Sukumar et al.(2004) in bimaterials, Asadpoure and Mohammadi (2007) in orthotropi ma-



6 Chapter 1. Introdutionterials, and Béhet et al. (2009) in piezoeletri media. This last formulationwill be generalized in this work to the ase of magnetoeletroelasti solids,due to the similarities existing between the formulation of behavior laws inboth solids.The analysis of rak fae boundary onditions in magnetoeletroelas-ti frature is not a losed topi. Most researhers adopt the impermeableonditions, whih establishes that the rak is isolated of the eletromag-neti �elds. In the other hand, permeable ondition implies that raksondut eletri and magneti �elds. However, both assumptions are notompletely realisti, and it is possible to say that a onsistent rak faeboundary ondition will be between them.In works by Wang and Mai (2006) and Wang and Han (2006b), idealrak faes boundary onditions for a single rak in an in�nite domain wereanalyzed analitially, while Wang and Mai (2007) studied a more realistiboundary ondition by the use of a lassial �nite elements approah.In this thesis, a new algorithm to solve multiple semipermeable raksproblem using the hypersingular BEM formulation and based in the onedeveloped by Denda (2008) for piezoeletri materials is presented.1.2.2 Dynami fratureThe analysis of dynami frature is even more limited than in statis. More-over, in time-harmoni problems the majority of suh analysis deals withanti-plane frature, using semi-analytial solution methods. Zhou and o-workers (2005a; 2005b; 2006a; 2006b; 2008) used the Shmidt method to in-vestigate the dynami behavior of several on�gurations of interfae raksin magnetoeletroelasti omposites under harmoni elasti anti-plane shearwaves. Hu and Li (2005) derived the analytial solution for an anti-plane



1.2 State of the knowledge 7Gri�th moving rak inside an in�nite magnetoeletroelasti medium un-der the assumption of permeable rak faes and later extended this studyto the ase of an anti-plane Gri�th rak moving at the interfae betweentwo dissimilar magnetoeletroelasti media (Hu et al., 2006).With respet transient analysis, most of the works have been arriedout by analytial or semi-analytial tehniques for antiplane on�gurationsas well. Li (2005) investigated the transient response of a magnetoele-troelasti medium ontaining a rak along the poling diretion subjetedto antiplane mehanial and inplane eletri and magneti impats. Fengand oworkers analyzed the dynami anti-plane problem for a funtion-ally graded magnetoeletroelasti strip ontaining an internal rak per-pendiular to the boundary, under both magnetoeletrially impermeableor permeable boundary onditions on the rak faes in 2006, and the dy-nami behavior indued by a penny-shaped rak in a magnetoeletroelastilayer subjeted to presribed stress or presribed displaement at the layersurfaes for both impermeable and permeable raks, in 2007. Su et al.(2007) studied the problem of an arbitrary number of interfae raks be-tween dissimilar magneto-eletro-elasti strips under out-of-plane mehan-ial and in-plane magneto-eletrial impats. Yong and Zhou (2007) on-sidered the transient anti-plane problem of a magnetoeletroelasti stripontaining a rak vertial to the boundary. Liang (2008) derived the solu-tion for the dynami behavior of two parallel symmetri raks in funtion-ally graded piezoeletri/piezomagneti materials subjeted to harmoni an-tiplane shear waves. Feng and Pan (2008) investigated the anti-plane prob-lem for an interfaial rak between two dissimilar magnetoeletroelastiplates subjeted to anti-plane mehanial and in-plane magneto-eletrialimpat loadings under di�erent ombinations of magnetially and eletri-



8 Chapter 1. Introdutionally permeable/impermeable surfae onditions on the rak. More re-ently, Sladek et al. (2008) presented a meshless method based on the lo-al Petrov-Galerkin approah for stationary and transient dynami rakanalysis in two-dimensional and three-dimensional axisymmetri magne-toeletroelasti solids with ontinuously varying material properties. Fi-nally, Zhong et al. (2009) analyzed analytially the transient response ofa raked magnetoeletroelasti material subjeted to in-plane sudden im-pats.In this work, the numerial study of dynami problems will be performedby the use of the BEM. The fundamental solutions or Green's funtionsplay a key role in the formulation and resulting auray of the method.Although the 2-D and 3-D dynami fundamental solutions for anisotropielasti and piezoeletri media have been studied in detail, dynami Green'sfuntions for 2-D and 3-D fully anisotropi magnetoeletroelasti materialswere still unavailable in the literature to the author's knowledge when thiswork was done. Thus, the proedure to obtain the time-harmoni funda-mental solution will be presented in this work for 2-D and 3-D magneto-eletroelasti solids and implemented in a dual BEM ode for bidimensionalsolids. The importane of these Green's funtions is not limited to their usein BEM, but they are also a key ingredient in other analytial and numerialtehniques suh as eigenstrain approahes or disloation methods.To obtain these funtions, an extension of the Radon transform teh-nique developed by Wang and Ahenbah (1994, 1995) for anisotropi elastisolids will be arried out in order to derive the dynami Green's funtionsfor 2-D and 3-D anisotropi magnetoeletroelasti media subjeted to time-harmoni loading onditions. This proedure had been suessfully appliedby Denda et al. (2004) and Wang and Zhang (2005) to derive the funda-



1.3 Organization of the doument 9mental solutions for dynami piezoeletriity.For the transient (time-domain) analysis arried out in this work, thetime disretization will be performed by approximating the onvolutionprodut by the use of Lubih's quadratures, whih require the fundamen-tal solution in terms of the Laplae paramater. This fundamental solu-tion may be obtained following a similar proedure to the one developedfor the obtaining of the time-harmoni one, as it will be analyzed in thiswork. Representative examples of the use of Lubih's quadratures for solv-ing time-domain problems are the visoelasti and the dynami poroelastiproblems, whih have been investigated by Shanz (1999), Gaul and Shanz(1999) and Shanz (2001), or the transient elastodynami rak analysis ofanisotropi solids presented by Zhang (2002b) and Garía-Sánhez et al.(2008b).Both time-harmoni and time-domain formulations will be obtained fol-lowing the ideas presented by Garía-Sánhez et al. (2005b; 2008a; 2008b)and Sáez et al. (2006) for anisotropi and piezoeletri materials.1.3 Organization of the doumentThis doument is organized in seven hapters. After this introdution, inthe seond hapter the fundamentals of magnetoeletroelastiity as wellas of the impliations of the ouplings in the stati and dynami fraturemehanis will be analyzed.In hapter 3, one of the numerial tehniques used in this work willbe introdued: the hypersingular formulation of the Boundary ElementMethod. The method will be brie�y desribed as well as all the funda-mental solutions needed for the study of stati and dynami problems. In



10 Chapter 1. Introdutionhapter 4, the proposed formulation will be validated and several problemswill be solved in order to extrat some onlusions about the behavior ofmagnetoeletroelasti solids.In hapter 5, a seond tehnique, the Extended Finite Element Methodwill be introdued for the study of stati frature mehanis, and the newrak tip enrihment funtions needed for its formulation, derived. Someproblems will be solved and the results will be ompared with those ob-tained by the use of the hypersingular formulation of the Boundary ElementMethod previously desribed.In hapters 3 to 5, the ideal impermeable rak fae boundary onditionis assumed. In hapter 6, however, di�erent rak fae boundary onditionssuh as the permeable and the more realisti semipermeable one will beanalyzed for stati problems.Finally, in the seventh and last hapter, the onlusions extrated duringthe realization of the present work will be summarized and possible futuredevelopments proposed.



Chapter 2
Analysis of rakedmagnetoeletroelasti solids
2.1 IntrodutionIn this hapter, a review of the linear elasti frature mehanis in bidi-mensional magnetoeletroelasti media will be presented, onsidering bothstati and dynami loading.First, the behavior of these solids will be desribed paying speial atten-tion to the generalized plane problem and showing the proedure to solve itbased in the Stroh's formalism. Some extended variables (also alled gene-ralized variables) whih allow the treatment of the problem in an elasti-likefashion, will be de�ned, and both stati and dynami problems will be on-sidered. New frature parameters involving the eletri and magneti e�etswill be also de�ned, and the impliations of those e�ets in both externaland rak faes boundary onditions, desribed



12 Chapter 2. Analysis of raked magnetoeletroelasti solids2.2 Governing equations for statis in in magneto-eletroelasti media2.2.1 Governing equationsThe magnetoeletroelasti e�et onsists in the oupling between the elas-ti, the eletri and the magneti �elds. This statement means that, underthe ation of mehanial loads, both eletri and magneti �elds are in-dued. In the opposite way, if either an eletri or a magneti �eld areapplied, a mehanial deformation is produed, as well as a magneti or aneletri �eld, respetively. Thus, new variables appear in the behavior lawof magnetoeletroelasti solids.These variables are the eletri and magneti potentials, φ(x) and ϕ(x),the eletri and magneti �elds, E(x) and H(x), the eletri displaementand magneti indution, D(x) and B(x) and the eletri harge density andthe eletri urrent density, fe(x) and fm(x).The onstitutive equations relating the mehanial stresses and elastistrains with those new variables are given by (see, e.g., Jiang and Pan, 2004;Liu et al., 2001; Soh and Liu, 2005)
σij = cijklεkl − elijEl − hlijHl (2.1a)
Di = eiklεkl + ǫilEl + βilHl (2.1b)
Bi = hiklεkl + βilEl + γilHl (2.1)where all the indies vary from 1 to 3 and σij denote the omponents of theCauhy stress tensor, Di the eletri displaements and Bi the magnetiindutions; εij are the omponents of the small-strain elasti tensor and Eiand Hi are the eletri and magneti �elds, respetively. cijkl, ǫil and γil



2.2 Governing equations for statis in in magnetoeletroelasti media 13are the elasti sti�ness tensor, the dieletri permittivities and the magnetipermeabilities, respetively, whereas elij, hlij and βil are the piezoeletri,piezomagneti and eletromagneti oupling oe�ients, respetively.Small displaement gradients are assumed, so that the linearized strain-displaement relations hold. The mehanial stresses and the eletri andmagneti �elds are related with the elasti displaements and the eletriand magneti potentials as follows
εij =

1

2
(ui,j + uj,i) (2.2a)

Ei = −φ,i (2.2b)
Hi = −ϕ,i (2.2)The summation rule on repeated indies is implied and a omma standsfor spatial partial di�erentiation. The governing equations are given by theequilibrium equations
σij,j = −fmechi (2.3a)and by the Maxwell equations
Di,i = fe (2.3b)
Bi,i = fm (2.3)In whih it has been onsidered the quasi-stati assumption of the eletriand magneti �elds. Suh assumption an be adopted beause harateris-ti frequenies in pure mehanial and pure eletromagneti problems arevery di�erent (say by 3 orders of magnitude). Therefore, the hanges of



14 Chapter 2. Analysis of raked magnetoeletroelasti solidsthe eletromagneti �elds an be assumed to be immediate (Parton andKudryatsev, 1988).Following the notation �rst introdued by Barnett and Lothe (1975) forpiezoeletriity, some generalized (also alled extended) vetors and tensorsare de�ned so that the problem an be formulated in an elasti-like way. Inthis way, the displaement vetor is extended with the eletri and magnetipotentials as
uI =






ui, I=1,2,3
φ, I=4
ϕ, I=5, (2.4)where the lowerase subsripts (elasti) vary from 1 to 3, whereas the up-perase ones (extended) vary from 1 to 5. The external volume fores vetoris extended with the eletri harge density and the eletri urrent densityas follows

fI =





fmechi , I=1,2,3
−fe, I=4
−fm, I=5, (2.5)The stresses tensor is now extended with the eletri displaement andthe magneti indution as

σIj =





σij, I=1,2,3
Dj , I=4
Bj, I=5, (2.6)with an assoiated generalized tration vetor orresponding to a unit nor-mal n = (n1, n2) given by

pI = σIjnj =






pi = σijnj, I=1,2,3
Dn = Djnj , I=4
Bn = Bjnj , I=5, (2.7)The strains tensor is generalized with the eletromagneti �elds

εIj =





εij , I=1,2,3
−Ej , I=4
−Hj , I=5, (2.8)



2.2 Governing equations for statis in in magnetoeletroelasti media 15Thus, equilibrium equations an be expressed as
σIj,j = fI (2.9)The onstitutive equations (2.1) may be then reast is a more ompatform to yield

σIj = CjIKluK,l (2.10)where the material properties have been grouped together into a generalizedelastiity tensor de�ned as
CiJKl =





cijkl J,K = 1, 2, 3
elij J = 1, 2, 3; K = 4
hlij J = 1, 2, 3; K = 5
eikl J = 4; K = 1, 2, 3
−ǫil J,K = 4
−βil J = 4; K = 5
hikl J = 5; K = 1, 2, 3
−βil J = 5; K = 4
−γil J,K = 5

(2.11)
where the following symmetries hold

cijkl = cjkil = cijlk = cklij ; elij = elji
hlij = hlji ; ǫij = ǫji ; βij = βji ; γij = γji

(2.12)and, using the extended notation, that symmetry takes the form
CiJKl = ClKJi (2.13)For stable materials, cijkl, ǫij and γij are positive de�nite for any realnon-zero tensor ε and vetors E and H. i.e.,

cijklεijεkl > 0 ; ǫijEiEj > 0 ; γijHiHj > 0 (2.14)whih an be expressed in the extended notation as
CjIKlεIjεKl > 0 (2.15)



16 Chapter 2. Analysis of raked magnetoeletroelasti solidsMost ommon magnetoeletroelasti solids in industrial appliations areomposites of piezoeletri and elastomagneti eramis, in whih eletrome-hanial and magnetomehanial ouplings have been indued by a polariza-tion proess whih rearrange the originally isotropi rystalline strutures.Thus, anisotropy is an important feature in magnetoeletroelasti materials.Ting (1996), established for anisotropi materials that, when some termsof the behavior matrix vanish, plane and antiplane problems an be stud-ied separately. This statement an be generalized to magnetoeletroelas-ti solids and, for suh purpose, it is onvenient to use the ontrated Voigtnotation that redues the fourth-order elasti and third-order piezoeletriand piezomagneti tensors to seond-order matries. In this way, using therelation between the indies 11 → 1, 22 → 2, 33 → 3, 23 → 4, 31 → 5,
12 → 6, the behavior law given by equation (2.1) may be rewritten in amatrix form. Let us assume now, that some terms of the behavior matrixvanish, being the resulting matrix like the following
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σ11

σ22

σ33

σ23

σ13

σ12

D1

D2

D3

B1

B2

B3




=




c11 c12 c13 0 0 0 . . .
c12 c22 c23 0 0 0 . . .
c13 c23 c33 0 0 0 . . .
0 0 0 c44 c45 0 . . .
0 0 0 c45 c55 0 . . .
c16 c26 c36 0 0 c66 . . .
e11 e12 e13 0 0 e16 . . .
e21 e22 e23 0 0 e26 . . .
0 0 0 e34 e35 e36 . . .
h11 h12 h13 0 0 h16 . . .
h21 h22 h23 0 0 h26 . . .
0 0 0 h34 h35 h36 . . .

. . . e11 e21 0 h11 h21 0

. . . e12 e22 0 h12 h22 0

. . . e13 e23 0 h13 h23 0

. . . 0 0 e34 0 0 h34

. . . 0 0 e35 0 0 h35

. . . e16 e26 e36 h16 h26 h36

. . . −ǫ11 −ǫ12 0 −β11 −β12 0

. . . −ǫ12 −ǫ22 0 −β12 −β22 0

. . . 0 0 −ǫ33 0 −β32 −β33

. . . −β11 −β12 0 −γ11 −γ12 0

. . . −β12 −β22 0 −γ12 −γ22 0

. . . 0 0 −β33 0 0 −γ33







ε11

ε22

ε33

2ε23

2ε13

2ε12

−E1

−E2

−E3

−H1

−H2

−H3




(2.16)
In that ase, x1 − x2 would be a symmetry plane and the plane andthe antiplane problems may be separated yielding to the following behaviorlaws. For plane problems




σ11

σ22

σ12

D1

D2

B1

B2




=




c11 c12 c16 e11 e21 h11 h21

c12 c22 c26 e12 e22 h12 h22

c16 c26 c66 e16 e26 h16 h26

e11 e12 e16 −ǫ11 −ǫ12 −β11 −β12

e21 e22 e26 −ǫ12 −ǫ22 −β12 −β22

h11 h12 h16 −β11 −β12 −γ11 −γ12

h21 h22 h26 −β12 −β22 −γ12 −γ22







ε11

ε22

2ε12

−E1

−E2

−H1

−H2


(2.17)



18 Chapter 2. Analysis of raked magnetoeletroelasti solidsbeing ε33 = 0 and σ33 = c13ε11 + c23ε22 +2c36ε12−e13E1−e23E2−h13B1−
h23B2 for plane strain and ε33 = (−1/c33)(c13ε11+c23ε22+2c36ε12−e13E1−
e23E2 − h13B1 − h23B2) and σ33 = 0 for plain stress.The antiplane problem law is now given by




σ23

σ13

D3

B3


 =




c44 c45 e34 h34

c45 c55 e35 h35

e34 e35 −ǫ33 −β33

h34 h35 −β33 −γ33







2ε23

2ε13

−E3

−H3


 (2.18)Let us now remark that the plane stress state, de�ned as that in whihthe stress tensor omponents are ontained in a plane is mathematiallyequivalent to the plane strain state, but modifying the elasti onstants asproposed by Lekhnitskii (1963). And, in the same way, an antiplane stressstate may be de�ned as that in whih only σ13 and σ23 are di�erent to zeroand independent of x3.Most extended magnetoeletroelasti materials present a transverselyisotropi behavior. If we assume that x1 − x3 is the isotropy plane, thebehavior law for the plane problem may be rewritten as follows




σ11

σ22

σ12

D1

D2

B1

B2




=




c11 c12 0 0 e21 0 h21

c12 c22 0 0 e22 0 h22

0 0 c66 e16 0 h16 0
0 0 e16 −ǫ11 0 −β11 0
e21 e22 0 0 −ǫ22 0 −β22

0 0 h16 −β11 0 −γ11 0
h21 h22 0 0 −β22 0 −γ22







u1,1

u2,2

u1,2 + u2,1

φ,1
φ,2
ϕ,1
ϕ,2


(2.19)Boundary onditionsExpressions (2.1), (2.2) and (2.3) onstitute a di�erential equations sys-tem whih needs the appliation of some boundary onditions to be solved.



2.2 Governing equations for statis in in magnetoeletroelasti media 19These onditions may be
• Natural boundary onditions, when the generalized trations are knownin some points of the boundary.

pI(x0) = σIj · nj |x=x0
= pI , if x0 ∈ Γp

• Essential boundary onditions, when the generalized displaements areknown in some points of the boundary.
uI(x0) = uI , if x0 ∈ Γuwhere Γ is the external boundary of the magnetoeletroelasti domain, being

Γ = Γt
⋃

Γu and Γt
⋂

Γu = ∅.The boundary onditions on the rak surfaes need speial onsidera-tions and will be analyzed in setion 2.4.1.2.2.2 Solution of the stati plane problem in magnetoele-troelasti materialsLiu et al. (2001), by the use of the extended notation introdued above,established the generalized displaements and stresses �elds in terms ofomplex potentials, in an analogous way to the proedure arried out bySuo, Kuo, Barnett and Willis (1992) for piezoeletri materials.Thus, in a magnetoeletroelasti solid, under generalized plane ondi-tions, extended displaements and stresses, are given by the following ex-pressions
uI = {ui, φ, ϕ} = 2Re

(
5∑

J=1

AIJfJ(zJ)

) (2.20)



20 Chapter 2. Analysis of raked magnetoeletroelasti solids
σ1I = {σ1i, D1, B1} = −2Re

(
5∑

J=1

BIJµJf
′
J (zJ)

) (2.21)
σ2I = {σ2i, D2, B2} = 2Re

(
5∑

J=1

BIJf
′
J (zJ)

) (2.22)where Re stands for the real part, whilst I,J=1,2,4,5 for plane problems andI,J=3,4,5 for antiplane problems.
µJ , AIJ and BIJ are omplex values whih an be obtained from thematerial properties, zJ is the transformation of the real domain into theomplex plane (zJ = x1 + µJx2) to de�ne a point loationand f is anarbitrary analyti funtion whih must be obtained for eah problem.To determine all those omplex values, a proedure based in the ex-tension of the Stroh's formalism to magnetoeletroelasti solid will be pre-sented. That extension is analogous to the one developed by Barnett andLothe (1975) for the piezoeletri ase, based on the formulation by Eshelby,Read and Shokley (1953) for anisotropi materials. The tensors A and B,depending on the materials properties, an be omputed from the followingeigenvalues problem:
( −L−1M −L−1Z−MTL−1M −MTL−1

)( AMBM

)
= µM

( AMBM

) (2.23)with no sum on index M, and being L, M and Z the tensors de�ned asfollows Z := C1IJ1 ; M := C2IJ1 ; L := C2IJ2 (2.24)and µJ , the roots of the harateristi equation of the material, are fouromplex onjugated pairs, but only the four of them with positive imaginarypart are onsidered in equations (2.20-??).



2.3 Governing equations for dynamis in in magnetoeletroelasti media 21Let us remark that the existene of the inverse of C2IJ2 is guaranteedbeause of the positive de�nite harater of the behavior matrix as de�nedin (2.15).2.3 Governing equations for dynamis in in mag-netoeletroelasti mediaIn those ases where boundary onditions of the problem have a strongdependeny on the time variable, inertial e�ets must be onsidered in theequations.In the present work two di�erent dynami problems have been onside-red: time-harmoni and general transient problems.2.3.1 Dynami governing equationsConsidering the time as an independent variable as well as the inertiale�ets, the extended dynami behavior law and the kinemati relations are
σIj(xm, t) = CjIKlεIj(xm, t) (2.25)

εij(xm, t) =
1

2
[ui,j(xm, t) + uj,i(xm, t)] (2.26a)

Ej(xm, t) = −φ,j(xm, t) (2.26b)
Bj(xm, t) = −ϕ,j(xm, t) (2.26)while the dynami equilibrium equation is
σIj,j(xm, t) + fI(xm, t) = ρδ∗IK üK(xm, t) (2.27)where ρ is the density of the material, the supersript · stands for temporalderivative and δ∗JK is the generalized Kroneker delta, de�ned by

δ∗IK =

{
δJK I,K = 1, 2

0 otherwise (2.28)



22 Chapter 2. Analysis of raked magnetoeletroelasti solidsLet us remark that, due to the quasi-stati assumption for the eletriand magneti �elds, no eletri nor magneti inertial e�ets are onsidered.2.3.2 Time-harmoni problemTime-harmoni problems are those in whih all the time dependent variablesvary as sin (ωt) or cos (ωt). Thus, time dependeny may be expressed in theform e±iωt, where ω is the angular frequeny and i is the unit imaginarynumber. In this ase, only the real or the imaginary part would have aphysial meaning. Time-harmoni problems are relevant in elastodynamissine dynami exitations may be deomposed in a Fourier series expansion,the so-alled harmoni expansion. With it, the linear system response maybe obtained by the superposition of the response to eah of the harmoniterms.In these problems all the variables, in every point of the spae, will bea funtion of an amplitude and a frequeny. Thus, if v is a generi �eldvariable, its value for an instant of time t may be expressed as
v(xm, t) = v(xm, ω)e±iωt (2.29)where v(xm, ω) is the amplitude. With this notation, the extended equilib-rium equation an be rewritten as

σIj,j(xm, ω) + fI(xm, ω) = −ρδ∗IKω2uK(xm, ω) (2.30)while the extended behavior law and ompatibility equations are
σIj(xm, ω) = CjIKlεIj(xm, ω) (2.31)

εij(xm, ω) =
1

2
[ui,j(xm, ω) + uj,i(xm, ω)] (2.32a)

Ej(xm, ω) = −φ,j(xm, ω) (2.32b)
Bj(xm, ω) = −ϕ,j(xm, ω) (2.32)



2.4 Linear elasti frature mehanis in magnetoeletroelasti media 232.4 Linear elasti frature mehanis in magneto-eletroelasti mediaIn this setion, the di�erent rak fae boundary onditions whih may beonsidered in magnetoeletroelasti raked solids will be �rst presented.After that, the near-tip generalized displaements and stresses �elds in araked magnetoeletroelasti solid, will be introdued. In those expres-sions, it will be notied that the eletri and magneti potentials have, asthe mehanial displaement do, a √
r behavior, while the eletri displae-ment and magneti indution present an asymptoti 1/

√
r behavior, as thetraditional mehanial stresses in isotropi and anisotropi materials have,being r the distane from the rak tip to the point where the extendeddisplaements and/or extended stresses are being evaluated.After studying those expressions, the impliations of the presene ofraks in dynami problems will be presented, paying speial attention tothe di�ration of time-harmoni waves when they impinge on defets.It will be seen that the variable �elds in raked solids are haraterizedby ertain frature parameters, the so-alled �eld intensity fators: stressintensity fators (SIF), eletri displaement intensity fator (EDIF) andmagneti indution intensity fator (MIIF). In this setion, thus, some pro-edure to alulate them, will be also presented.2.4.1 Crak fae boundary onditionsAn important issue that must be onsidered are the boundary onditionson the rak surfaes. This is not a losed topi and, as in rak problemsin other multi�eld solids suh as piezoeletri materials, three di�erent on-ditions may be onsidered. Those boundary onditions will be desribed



24 Chapter 2. Analysis of raked magnetoeletroelasti solidsbrie�y in this setion, and in deep detail in a hapter 6.While the mehanial boundary onditions on the rak surfaes for anopening rak is always tration free, the eletromagneti boundary ondi-tions omes in di�erent degrees of shielding the eletri displaement andmagneti indution, de�ned, respetively, by the eletri permittivity andby the magneti permeability of the medium in between the rak faes.Then, noting with ” + ” and ” − ” the upper and the lower rak surfaes,a rak along the x1-axis an be onsidered as(i) Fully impermeable rak. The normal eletri displaement and mag-neti indution on the rak surfaes are zero, so
D+

2 = D−
2 = 0 (2.33a)

B+
2 = B−

2 = 0 (2.33b)whih means that the rak is extended trations free on its surfae.(ii) Fully permeable rak. In this ase, the rak does not obstrut anyeletri or magneti �eld, what implies that
D+

2 = D−
2 ; φ+ − φ− = 0 (2.34a)

B+
2 = B−

2 ; ϕ+ − ϕ− = 0 (2.34b)(iii) Semipermeable rak. This ondition, whih gives a more realistiboundary ondition for opened raks, was proposed by Wang andMai (2006) as a generalization of the one proposed by Hao and Shen(1994) and Parton and Kudryatsev (1988) for piezoeletri solids.
D+

2 = D−
2 ; Dc

2(u
+
2 − u−2 ) = −ǫ0(φ+ − φ−) (2.35a)

B+
2 = B−

2 ; Bc
2(u

+
2 − u−2 ) = −γ0(ϕ

+ − ϕ−) (2.35b)



2.4 Linear elasti frature mehanis in magnetoeletroelasti media 25where, sineD+
2 = D−

2 and B+
2 = B−

2 , the upperindex  has been usedto denote either of the rak surfaes. Moreover ǫ0 is the permittivityof the medium between the rak faes and γ0 its permeability. Letus remark that the semipermeable boundary ondition is redued tothe impermeable one when ε0 = 0 and γ0 = 0, and to the permeableone when the jump in the eletri and magneti potential vanish.However, the impermeable boundary ondition is the most used in thesienti� literature and will be the one onsidered in most of this work.2.4.2 Crak-tip asymptoti �eldsAs it has been already said, in magnetoeletroelasti solids some variablesappear in the behavior law, di�erent to the only mehanial ones. Thesevariables will present a disontinuity due to the presene of the rak. More-over, as it has been pointed out above, the generalized displaements andstresses present, respetively, a √
r and 1/

√
r behavior, being r the dis-tane to the rak tip. Consequently, some new frature parameters mustbe de�ned. Thus, in a magnetoeletroelasti material, as well as the tradi-tional stress intensity fators (SIF), an eletri displaement intensity fa-tor (EDIF) and a magneti indution intensity fator (MIIF) are needed tomodel the near tip behavior. All those parameters will reeive the generiname of Extended Stress Intensity Fators (ESIF).In elasti problems, the three rak opening modes I, II and III are iden-ti�ed with a disontinuity in mehanial displaements in the loal rakoordinate system. Now, in magnetoeletroelasti problems, the new ex-tended stress intensity fators, whih are usually alled as KIV and KV ,are related to the jump in the eletri and the magneti potentials.



26 Chapter 2. Analysis of raked magnetoeletroelasti solidsUnder those onditions and if a polar oordinates system (r, θ) withthe origin at the rak tip is used (see �gure 2.1), the near tip extendeddisplaements �elds an be expressed in the following way (see e.g. Wangand Mai, 2003 and, more reently, Rao and Kuna, 2008)
uI(r, θ) =

√
2

π
Re
(
KNAIMB

−1
MN

√
r (cos θ + µM sin θ)

) (2.36)whereas the stresses �elds an be expressed as
σIj(r, θ) = (−1)j

√
1

2π
Re

(
KNBIMB

−1
MN

δj1µM + δj2√
r (cos θ + µM sin θ)

) (2.37)where the summation over N omprises all the frature modes: KI , andKIIdenote the traditional mehanial SIF, whereas KIV and KV haraterizethe jump in the eletri and magneti �elds over the rak. In (2.36) and(2.37), the tensors A and B, depending on the materials properties, an beomputed from the eigenvalue problem de�ned in (2.23).
x1

x2

r

s22

s12

s11

s13

s23

D1 B1

B2D2

D3 B3

qFigure 2.1: Extended stresses and referene system around the rak tip2.4.3 Near-tip extended displaement �elds based on Lau-rent's series expansionAs it will be studied in hapter 5, the asymptoti terms of the generalizeddisplaement �elds in the viinity of a rak tip must be inluded in the for-



2.4 Linear elasti frature mehanis in magnetoeletroelasti media 27mulation of the Extended Finite Element Method (X-FEM) to desribe thedisontinuity imposed by the rak. For this purpose, it is more onvenientto derive the asymptoti �elds in terms of Laurent's series expansions. Theproedure to obtain them, whih is similar to the one followed by Sherzerand Kuna (2004) for piezoeletri materials, will be now introdued.In this work orthotropi magnetoeletroelasti media under generalizedplane strain onditions are onsidered for the X-FEM appliations. In suhase, the onstitutive relations (2.10) may be further redued (Tian andRajapakse, 2005), to
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ε22
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a11 a12 0 0 b21 0 d21

a12 a22 0 0 b22 0 d22

0 0 a33 b13 0 d13 0
0 0 −b13 δ11 0 ∆11 0

−b21 −b22 0 0 δ22 0 ∆22

0 0 −d13 ∆11 0 ζ11 0
−d21 −d22 0 0 ∆22 0 ζ22







σ11

σ22

σ12

D1

D2

B1

B2


(2.38)where the terms in the matrix are listed in appendix A.Let us now introdue some potential funtions with the following de�-nitions:

σ11 = U (x1, x2),22, σ22 = U (x1, x2),11, σ12 = −U (x1, x2),12 (2.39a)
D1 = χ(x1, x2),2, D2 = −χ(x1, x2),1 (2.39b)
B1 = ϑ(x1, x2),2, B2 = −ϑ(x1, x2),1 (2.39)The equilibrium equations (2.9) are satis�ed automatially beause ofthe de�nitions of the potentials. Substituting (2.38) in the kinemati rela-tions (2.2), and expressing the �eld variables through the potentials previ-ously de�ned in equation (2.39), it is possible to obtain
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a11U,2222 + a22U,1111 + (2a12 + a33)U,1122

− (b21 + b13)χ,122 − b22χ,111 (2.40a)
− (d21 + d13)ϑ,122 − d22ϑ,111 = 0

(b21 + b13)U,122 + b22U,111 + δ11χ,22 + δ22χ,11

+ ∆11ϑ,22 + ∆22ϑ,11 = 0 (2.40b)
(d21 + d13)U,122 + d22U,111 + ∆11χ,22 + ∆22χ,11

+ ζ11ϑ,22 + ζ22ϑ,11 = 0 (2.40)De�ning now the following operators
L4 = a22

∂4

∂x4
1

+ a11
∂4

∂x2
4

+ (2a11 + a33)
∂4

∂x2
1x

2
2

(2.41a)
L3 = b22

∂3

∂x3
1

+ (b21 + b13)
∂4

∂x1x2
2

(2.41b)
M3 = d22

∂3

∂x3
1

+ (d21 + d13)
∂4

∂x1x2
2

(2.41)
L2 = δ22

∂2

∂x2
1

+ δ11
∂2

∂x2
2

(2.41d)
M2 = ∆22

∂2

∂x2
1

+ ∆11
∂2

∂x2
2

(2.41e)
P2 = ζ22

∂2

∂x2
1

+ ζ11
∂2

∂x2
2

(2.41f)the ompatibility equations an be redued to a partial di�erential equa-tion of eight order for U (x1, x2) following a similar proedure to the onedeveloped by Sosa (1991) for piezoeletri materials
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L4U (x1, x2) − L3χ(x1, x2) −M3ϑ(x1, x2) = 0 (2.42a)
L3U (x1, x2) + L2χ(x1, x2) +M2ϑ(x1, x2) = 0 (2.42b)
M3U (x1, x2) +M2χ(x1, x2) + P2ϑ(x1, x2) = 0 (2.42)And solving now in terms of the potential U (x1, x2)

[L4(L2P2 −M2
2 ) + L3(L3P2 − 2M3M2) + L2M

2
3 ]U = 0 (2.43)whih solution an be given in the form

U (x1, x2) = U (x1 + µx2), with µ = Re(µ) + iIm(µ) (2.44)where µ is a omplex number.Substituting now (2.44) in equation (2.43), the harateristi equationof magnetoeletroelasti media an be expressed as
[a11µ

4 + (2a12 + a33)µ
2 + a22][(∆11µ

2 + ∆22)
2 − (δ11µ

2 + δ22)(ζ11µ
2 + ζ22)]

− [(b21 + b13)µ
2 + b22]

2(ζ11µ
2 + ζ22) − [(d21 + d13)µ

2 + d22]
2(δ11µ

2 + δ22)

+ 2[(b21 + b13)µ
2 + b22][(d21 + d13)µ

2 + d22](∆11µ
2 + ∆22) = 0 (2.45)The eight roots of that equation (whih are atually four onjugate om-plex pairs) are the same whih an be obtained by solving the eigenvaluesproblem de�ned by equation (2.23). The general solution for U (x1, x2) anbe built up by means of those roots µi as

U (x1, x2) =

8∑

i=1

Ui(x1 + µix2)



30 Chapter 2. Analysis of raked magnetoeletroelasti solidsAnd now, sine the potentials χ(x1, x2) and ϑ(x1, x2) an be alulatedfrom U (x1, x2), every magnetoeletromehanial variable an be obtainedby means of the potential U (x1, x2) by substituting in the system of equa-tions de�ned in (2.42).The generalized displaement solution around the rak tip is now de-rived in an unbounded domain as the one shown in the �gure 2.2, where x2is the polarization diretion. The material oordinate system is rotated byan angle α so that any polarization diretion an be onsidered. In order tosatisfy the onsidered rak fae boundary onditions, it beomes neessaryto expand the general solution in Laurent-like series (see Muÿhelihwilli,1971 and Savin, 1968), using general power funtions for Ui(x1 + µix2)

U (x1, x2) =
∑

k

8∑

i=1

di(λk)(x1 + µix2)
λk+2 (2.46)where the origin of the oordinate system has been taken at the rak-tipand di(λk) are free oe�ients of the series expansion at the origin andan be obtained only from the overall solution of the onsidered boundaryonditions problem. λk are generally omplex and represent the numberof roots of the solvability equation for the rak faes boundary onditionsonsidered.Considering now a polar oordinates system (see �gure 2.2) with originat the rak tip, and taking into aount that the eight roots µi are atuallyfour omplex onjugate pairs, the potential U (r, θ) in (2.46) an be rewrittenas
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U (r, θ) =

4∑

i=1

di(λ)r(cos(θ − α) + µi sin(θ − α))λ+2

+
4∑

i=1

di(λ)r(cos(θ − α) + µi sin(θ − α))λ+2 (2.47)where µi and µi must be ombined mutually for obtaining a real λ, whihwould be the ombination of two omplex λk.
x1

x2

r

y

Figure 2.2: De�nition of the material axes around the rak tipThe real representation of eah term in (2.46) for eah pair µi and µi anbe obtained as extension of those obtained by Sherzer and Kuna (2004)for piezoeletri materials and gives expressions as
eip

λ+2 cos [(λ+ 2)(κ+
π

2
)] + fip

λ+2 sin [(λ+ 2)(κ+
π

2
)], (2.48a)



32 Chapter 2. Analysis of raked magnetoeletroelasti solidswith
p = r

√
(|µK |2 − 1)(sinψ)2 + Re(µi)(sin 2ψ) (2.48b)

κ = arctan
1 + Re(µi) tan(ψ)

|Im(µi)| tan(ψ)
(2.48)

di(λ) = ei(λ) + ifi(λ) (2.48d)
ψ = θ − α (2.48e)If λk is omplex, then the terms of equations (2.48) must be ombinedwith the resulting terms of onsidering λk, so that real values of U (x1, x2)are obtained and, thus, real values of the other potentials χ(x1, x2) and

ϑ(x1, x2).The homogeneous boundary ondition at the rak surfaes for an im-permeable rak (σθθ(r, θ = ±π) = σrθ(r, θ = ±π) = 0, Dθ(r, θ = ±π) = 0and Bθ(r, θ = ±π) = 0) de�ne a linear system of equations for the eightunknown oe�ients ei and fi and their omplex onjugate pairs. NamingX a vetor ontaining those unknowns variables, the system of equationwould have the form S(λ) ·X = 0 (2.49)and now it is neessary to point out that for the impermeable rak faeboundary ondition onsidered in most of this work, an in�nite number of
λk an be obtained so that the previous system of equation has a solution

λ1 = −1/2; λ2 = 0; λ3 = 1/2; λ4 = 1...A value of λ1 = −1
2 generates four independent eigenvetors, based onthe oe�ients ei(λ1) and fi(λ1) (and their respetive onjugate omplexpairs) so that four independent singular eigenfuntions, whih inorporatethe lassial 1/

√
r rak tip singularity, an be onstruted in an analogous



2.4 Linear elasti frature mehanis in magnetoeletroelasti media 33way as done by Béhet et al. (2009) for piezoeletri solids. These indepen-dent eigenfuntions shall be used in hapter 5 for obtaining the rak tipenrihment funtions needed for the X-FEM formulation.2.4.4 Wave satteringWave propagation is an important topi in solid mehanis. A desription ofthat phenomena was given by Gra� (1975): the e�et of a sharply applied,loalized disturbane in a medium soon transmits or 'spreads' to other partsof the medium.Appliations of wave phenomena an be found in nearly every �eld ofengineering. Quantitative non-destrutive testing, seismology, geophysisand, as in this work, dynami frature mehanis.Wave sattering phenomenon onsists in the superposition of the ini-dent �eld and the di�rated one. Thus, the proess to obtain the solutionfor this kind of problems is arried out by means of the superposition prin-iple, whih is illustrated in �gure 2.3. The original problem onsists ina wave impinging on a (extended) trations free rak and an be deom-posed into two subproblems. The �rst one implies a wave traveling along anon-raked solid, whilst the seond one is a rak subjeted on its surfaesto a �eld, equal to the inident one but with the opposite sign.
wi wi

ws
ws

= +

-wi

(0) (1) (2)Figure 2.3: Superposition priniple applied to wave sattering problems



34 Chapter 2. Analysis of raked magnetoeletroelasti solidsLet us remark that the sattered wave �eld must satisfy the radiationondition (Eringen and Suhubi, 1975). BEM presents an important ad-vantage respet to other numerial tehniques when dealing with in�niteor semi-in�nite domains, sine only the internal boundaries need to bemeshed and the radiation onditions at in�nity are automatially satis�ed(see, e.g., Dominguez, 1993).2.4.5 Calulation of extended stress intensity fatorsAs it has been said, stress intensity fators must be understood now in anextended way (ESIF). There are several methods to determine the ESIFfrom the numerially omputed �eld variables. The extrapolation methodand the interation integrals approah are next skethed.
• Stresses or displaement methodThis method, sine requires a lower postproess of the obtained �eldvariables, is the the most diret one. It onsists in the substitution of thevalues of the variables obtained numerially, in the expressions (2.36-2.37),getting some expressions from whih is possible to obtain the ESIF.This method is the one that will be used in all the BEM (stati anddynami) omputations performed in this work and will be analyzed indetail in a later setion.
• Interation integral methodThis method is based on the use of path independent integrals, suh asthe J-integral, whih was �rst introdued by Rie (1968), who de�ned a pathindependent line integral whih is equal to the unit energy release rate G.One that integral is evaluated, the omputation of the ESIF an be arried



2.4 Linear elasti frature mehanis in magnetoeletroelasti media 35out inmediately. In works by Suo et al. (1992) and Pak (1992) the J-integralwas extended to piezoeletri materials, while Tian and Rajapakse (2005b)did it for magnetoeletroelasti solids.Suh integrals may be de�ned for eah mehanial frature modes on-sidered in plane problems as
J1 =

∮

C

[
1

2
(σijεij −DiEi −BiHi)dx2 − niσipup,1ds

− niDiϕ,1ds− niBiφ,1ds] (2.50)
J2 =

∮

C

[−1

2
(σijεij −DiEi −BiHi)dx1 − niσipup,2ds

− niDiϕ,2ds− niBiφ,2ds] (2.51)where C is any losed line around the rak tip.The interation integral method will require the additional use of anauxiliary state whih satis�es the boundary onditions of the problem, aswell as the atual state under study. The ontour J-integral for the sum ofthe two states an be de�ned as
J (S) = J (act) + J (aux) +M (2.52)where J (act) and J (aux) are assoiated, respetively, with the atual and aux-iliary states, while M is the interation integral. By hoosing appropriateauxiliary states, and using the expressions of the J-integral in terms of theESIF, these may be obtained by solving a linear system of equations. Thisproedure will be exposed in detail in hapter 5, devoted to the X-FEM. Inthis work, this method will be used in an equivalent domain form.
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Chapter 3Hypersingular formulation ofthe BEM. Fundamentalsolutions and numerialimplementation3.1 IntrodutionThe main objetive of this work is to develop BEM models for the studyof stati and dynami frature mehanis problems in magnetoeletroelas-ti solids. In this hapter, in order to make the doument self-ontained,the hypersingular formulation of the BEM will be brie�y introdued.It is known as fundamental solution (or Green's funtion) the displae-ment solution to the problem of a point load (in an extended sense formagnetoeletroelasti solids) in an in�nite domain. The BEM is based inthe appliation of the reiproity theorem (Betti's theorem for stati prob-



38 Chapter 3. Hypersingular formulation of the BEMlems; Gra�'s theorem for dynami ones), between this problem and the oneunder onsideration. The appliation of that theorem shall lead to the in-tegral equation that, one it is solved, will provide the sought solution (seefor further details works by Brebbia and Domínguez, 1992 and Dominguez,1993; both for the simply elasti ase).In this hapter the fundamental solution for stati problems alreadyavailable in the literature will be desribed. Nevertheless, the dynamiGreen's funtions were not available when this work was arried out, so theobtaining proess for it, based on the use of the Radon's transform, will bealso desribed in this hapter.3.2 The Boundary Element Method (BEM)LetΩ be a domain with a boundary Γ, as the one showed in �gure 3.1. Let usde�ne a referene oordinates system xi and two ompatible loading states,eah one de�ned by a displaement �eld (u and u∗), boundary trations(p and p∗) and volume fores (f and f∗). The stati reiproity theorembetween both states is
∫

Ω

ρf∗I (x)uI(x) dΩ +

∫

Γ

ρp∗I(x)uI(x) dΓ =

=

∫

Ω

ρfI(x)u∗I(x) dΩ +

∫

Γ

ρpI(x)u∗I(x) dΓ (3.1)where ρ is the material density. Let us onsider now as the state ”∗” theorresponding to an in�nite domain with an unit point load loated in ξ.That load, for the stati ase, takes the form
ρf∗I = δ(x− ξ)δIJ (3.2)



3.2 The Boundary Element Method (BEM) 39where x is a generi point in the domain, δ(·) is the Dira's delta funtion,while δIJ is the Kröneker's delta funtions. The displaement and trationsolution of that problem an be expressed as
u∗IJ (ξ,x) ; p∗IJ (ξ,x) (3.3)In equation (3.3), the �rst index indiates the omponent of the solutionvetor while the seond one denotes the diretion in whih the loading isapplied; ξ is the point where the load is applied (from now on, olloationpoint) while x is the point where the solution is evaluated (from now on,observation point). That solution is known in the whole domain, inludingthe points where the external boundary Γ is loated. The equation (3.1)an now be rewritten, when no volumetri fores are involved, as

uJ(ξ) +

∫

Γ

p∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

u∗IJ (ξ,x)pI(x) dΓ (3.4)This last equation indiates that, one uJ(x) and pJ(x) are known inthe boundary, the values of those �eld variables may be known in any pointof the domain ξ. Thus, it is �rst neessary to know the solution in theboundary.For suh purpose, some transformations must be done in (3.4). A point
ξ on the boundary will be taken but, sine that point must belong to thedomain, the external boundary will be modi�ed with a semiirumfereneof radius r, whose enter is the point ξ, as shown in �gure 3.1. One theequation (3.4) is applied, the radius will be taken to zero.Due to the modi�ation in the external boundary introdued, integralsin equation (3.4) may be deomposed as follows
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x1
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WFigure 3.1: Domain modi�ation for the obtaining of the BIE
∫

Γ

p∗IJ (ξ,x)uI(x) dΓ =

∫

Γr

p∗IJ (ξ,x)uI(x) dΓ+

+

∫

Γ−Γr

p∗IJ (ξ,x)uI(x) dΓ (3.5)
∫

Γ

u∗IJ (ξ,x)pI(x) dΓ =

∫

Γr

u∗IJ (ξ,x)pI(x) dΓ+

+

∫

Γ−Γr

u∗IJ (ξ,x)pI(x) dΓ (3.6)Taking now limits in (3.5), the �rst term beomes
lim
r→0

∫

Γr

p∗IJ(ξ,x)uI(x) dΓ = uI(x) lim
r→0

∫

Γr

p∗IJ(ξ,x) dΓ = cIJuI(ξ) (3.7)where it has been onsidered that trations have a 1/r behavior when rtends to zero. Sine dΓ ∼ O[r], the integral in that equation does notvanish, so
cIJ = lim

r→0

∫

Γr

p∗IJ(ξ,x) dΓ (3.8)



3.2 The Boundary Element Method (BEM) 41whih is the so-alled free term, whih is related with the domain geometry.The seond term in (3.5) beomes, after taking limits,
lim
r→0

∫

Γ−Γr

p∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

−p∗IJ (ξ,x)uI(x) dΓ (3.9)Where ∫− indiates Cauhy's prinipal value integration.If the limit r → 0 is now onsidered in (3.6), the �rst term beomes
lim
r→0

∫

Γr

u∗IJ (ξ,x)pI(x) dΓ = pI(ξ) lim
r→0

∫

Γr

u∗IJ (ξ,x) dΓ = 0 (3.10)That integral vanishes when the distane between the observation and ol-loation points tends to zero, beause the displaement �elds present a
O[ln(r)] asymptoti behavior, while dΓ has a O[r] behavior.The seond term in (3.6) beomes

lim
r→0

∫

Γ−Γr

u∗IJ (ξ,x)pI(x) dΓ =

∫

Γ

−u∗IJ (ξ,x)pI(x) dΓ (3.11)Thus, equation (3.4) may be rewritten for every point in the boundaryas
cIJuJ(ξ) +

∫

Γ

−p∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

−u∗IJ (ξ,x)pI(x) dΓ (3.12)The equation (3.12) is the so-alled displaement boundary integralequation whih, for magnetoeletroelasti solids, is de�ned in an extendedway.If the boundary Γ is disretized in E elements
Γ =

e=E∑

e=1

Γe (3.13)



42 Chapter 3. Hypersingular formulation of the BEMand in those elements, the ontinuous funtions uJ(x) and pJ(x) are de�nedby interpolation of the values in a ertain number n of nodes, by the use ofknown interpolation funtions φq(x). Then
uI(x) =

q=n∑

q=1

φq(x)uI(x
q) =

q=n∑

q=1

φq(x)u
q
I (3.14)

pI(x) =

q=n∑

q=1

φq(x)pI(x
q) =

q=n∑

q=1

φq(x)p
q
I (3.15)and equation (3.12) an be rewritten as follows

cIJuJ (ξ) +

e=E∑

e=1

q=n∑

q=1

∫

Γe

p∗IJ(ξ,x)φq(x)u
q
I dΓ =

=
e=E∑

e=1

q=n∑

q=1

∫

Γe

u∗IJ (ξ,x)φq(x)p
q
I dΓ (3.16)So a problem in whih the unknown variables are ontinuous funtionshas been transformed into one in whih they are the values of those funtionsin N = n ·E nodal points.If that equation is obtained for all the points established in the boundary,an algebrai equation as the following is obtained

cIJuJ + ĤIJuJ = GIJpJ =⇒ HIJuJ = GIJpJ (3.17)If trations and displaements boundary onditions are now appliedand (3.17) is rearranged in a proper way, a system of equations in whihthe known and unknown variables are separated is obtainedAx = b (3.18)



3.2 The Boundary Element Method (BEM) 43Finally, from the �eld variables in the boundary, the displaement valuesin any point of the domain an be obtained by the equation (3.4) and thetrations, in general, by the use of the kinemati relations. However, as itwill be exposed in setion 3.3, in the hypersingular formulation of the BEM,trations are obtained diretly by the appliation of a di�erent boundaryintegral equation.The extension of the previous formulation to the time-harmoni asean be done inmediately by means of the elastodynami reiproity theo-rem by Gra� (1946). The expression of this theorem is analogous to (3.1)but inluding the dependeny of the variables with the frequeny. The re-sulting time-harmoni boundary integral equation, obtained after a similarproedure as the one followed in the stati ase, is then
cIJuJ(ξ, ω) +

∫

Γ

−p∗IJ (ξ,x, ω)uI(x, ω) dΓ =

∫

Γ

−u∗IJ (ξ,x, ω)pI(x, ω) dΓ (3.19)where ω denotes the onsidered frequeny, while the expression for a time-harmoni point load is ρf∗I = δ(x− ξ)δIJe
−iωt.In relation to the transient analysis, the boundary integral equationtakes the form (for further details, see Dominguez, 1993)

cIJuJ(ξ, t) +

∫

Γ

−p∗IJ (ξ,x, t) ∗ uI(x, t) dΓ =

∫

Γ

−u∗IJ (ξ,x, t) ∗ pI(x, t) dΓ (3.20)in whih the time integration is arried out by the Riemann onvolutionprodut (denoted by ∗), whih an be de�ned as
f(t) = g(t) ∗ h(t) =

t∫

0

g(t− τ)h(t) dτ (3.21)



44 Chapter 3. Hypersingular formulation of the BEMUnlike the onventional time-domain BEM (see for details works by Tanet al., 2005a,b; Zhang, 2002b), the time-domain BEM formulation presentedin this work applies the Laplae-domain instead of the time-domain elas-todynami fundamental solutions. This is speially advantageous in aseswhere time-domain dynami fundamental solutions are not available buttheir Laplae-transforms an be obtained.The time integration has been arried out by means of Lubih's quadra-ture formula (1988a; 1988b), whih establishes that, if a time interval isdivided in K subintervals of the same length ∆t, onvolution produt oftwo funtions an be approximated by the following quadrature
f(k · ∆t) =

k·∆t∫

0

g(t− τ)h(t) dτ ∼=
k∑

j=0

ωk−j(∆t)h(j · ∆t) (3.22)where the weights are related with the Laplae transform of the g(t) fun-tion, g(·), as
ωk(∆t) =

r−k

K
=

K−1∑

m=0

g

(
δ(ζm)

∆t

)
e−2πinm/K, k = 0, 1, 2, ...,K (3.23)being i the imaginary unit number and

δ(ςm) =
2∑

j=1

(1 − ζm)j/2 ; ζm = r · e−2πikm/K ; r = ǫ1/(2K) (3.24)where ǫ is the numerial error in omputing the Laplae transform g(·),whih is of the order O (
√
ǫ). Previous works (see, e.g. Garía-Sánhez andZhang, 2007b) reveal that when ǫ is between 10−6 and 10−12, hanges inthe results are negligible.



3.3 Hypersingular BEM formulation for frature mehanis problem inmagnetoeletroelasti solids 453.3 Hypersingular BEM formulation for fraturemehanis problem in magnetoeletroelasti solids3.3.1 IntrodutionGeometrial modelization of a rak is arried out by two oinident sur-faes. This fat implies numerial troubles when trying to solve fraturemehanis problems with the BEM: sine two equal equations are obtainedfor both rak surfaes, a degeneration of the system of equations is pro-voked. To solve that issue, there exist three possibilities.The �rst one is the use of spei� fundamental solutions over domainswhih inlude the rak, as proposed by Snyder and Cruse (1975) for aniso-tropi plates. This method present a big inonvenient sine it needs tailoredGreen's funtions for eah problem rak geometry.Another solution is the so-alled subregions method, whih onsists in theintrodution of a �titious surfae whih separate the original domain in twosubdomains so that eah rak fae belongs to one of them. Thus, di�erentequations for eah rak surfae are obtained, although now is neessaryto apply equilibrium and ompatibility equations on the interfae whihseparates both domains. There exist many works in whih this tehniquehas been applied for anisotropi and piezoeletri materials, suh as thoseby Ishikawa (1990) and Daví and Milazzo (2001).Another possibility, the one adopted in this work, is the use of the hyper-singular (dual) formulation of the BEM. It onsists in the appliation of the(extended) displaement boundary integral equation (EDBIE), presented inthe previous setion, to the external boundary and one of the rak faes,and another boundary integral equation to the other rak fae. This newintegral equation is obtained by derivation of the EDBIE respet to the



46 Chapter 3. Hypersingular formulation of the BEMolloation point, as done by Iokamidis (1983) and Hong and Chen (1988),being the main problem of this method the numerial evaluation of the sin-gular and hypersingular integrals whih appear when the olloation pointbelongs to the element where the integration is arried out.Portela et al. (1992) and Sollero and Aliabadi (1995) applied this methodto bidimensional isotropi and anisotropi frature mehanis problem, butthe way they solve the integrals requires the use of straight elements. Thisrestrition an be avoided by the use of the more general treatment ofthe hypersingular integrals introdued for isotropi behavior by Sáez et al.(1995), and later generalized by Garía-Sánhez et al. for anisotropi andpiezoeletri solids (2004; 2005a).3.3.2 Dual BEM for frature mehanis problemsIn this setion the hypersingular BEM formulation will be �rst introduedfor stati frature mehanis problems, being this formulation extended lateron to the frequeny and time domains, in setions 3.3.3 and 3.3.4, respe-tively.Degeneration of the system of equations. Tration boundary in-tegral equationLet Ω be a 2-D magnetoeletroelasti raked domain with boundary Γ asthe one shown in �gure 3.2, so that Γ = ΓB∪Γcrack , where ΓB is the externalnon-raked boundary and Γcrack = Γ+ ∪ Γ− are the two geometriallyoinident rak surfaes.As it has been said, if the EDBIE is applied to all the boundaries,then a degenerated system of equation will be obtained, sine both rakfaes are geometrially oinident. The dual or hypersingular formulation of
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Gc

+

Gc

-

GB WFigure 3.2: Boundaries in a raked domainthe BEM onsiders two boundary integral representations to overome thatproblem: the extended displaement (EDBIE) and the so-alled extendedtration (ETBIE) boundary integral equation. To obtain this new equation,we start whith the EDBIE for an internal point (3.4) whih will be derivatedwith respet to the olloation point. After applying the relations given byequations (2.2) and the onstitutive equations, equations (2.1), the followingequation is obtained:
CsJKr

∂uK(ξ)

∂ξr
+ CsJKr

∫

Γ

∂p∗KJ(ξ,x)

∂ξr
uI(x) dΓ =

= CsJKr

∫

Γ

∂u∗KI(ξ,x)

∂ξr
pI(x) dΓ (3.25)Now, sine the extended stress tensor in the olloation point is σsK(ξ) =

CsIKruI,r, by multiplying the previous equation by the unit normal on thatpoint (N(ξ)), the extended trations on that point are obtained
pJ(ξ) +

∫

Γ

s∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

d∗IJ (ξ,x)pI(x) dΓ (3.26)where
d∗IK(ξ,x) = Ns(ξ)CsIJru

∗
KJ,r(ξ,x) (3.27)



48 Chapter 3. Hypersingular formulation of the BEM
s∗IK(ξ,x) = Ns(ξ)CsIJrp

∗
KJ,r(ξ,x) (3.28)Now, following for equation (3.26) a similar proedure to the one ar-ried out for the EDBIE, the extended tration boundary integral equation(ETBIE) is obtained as

cIJpJ(ξ) +

∫

Γ

= s∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

−d∗IJ (ξ,x)pI(x) dΓ (3.29)where ∫= indiates Hadamard �nite part integral.The hypersingular formulation of the BEM onsist on the appliationof the EDBIE to the external boundary and one of the rak faes and theappliation of the ETBIE on the other rak surfae.Boundary integral equations in terms of the extended rak open-ing displaementsIn this setion it will be demonstrated that is possible to redue de dualBEM formulation in frature mehani problems to the appliation of theEDBIE to the external boundaries and the ETBIE to only one of the rakfaes.Let us rewrite equations (3.12) and (3.29) to keep the order in the ex-position, onsidering that Γ = ΓB + Γ+
c + Γ−

cEDBIE if ξ ∈ ΓB ,Γ
−
c

cIJuJ(ξ) +

∫

Γ

−p∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

−u∗IJ (ξ,x)pI(x) dΓ (3.30)ETBIE if ξ ∈ Γ+
c

pJ(ξ) +

∫

Γ

= s∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

−d∗IJ (ξ,x)pI(x) dΓ (3.31)
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∫

Γ−
c

− p∗IJ (ξ,x)uI(x−) dΓ = −
∫

Γ+
c

− p∗IJ (ξ,x)uI(x+) dΓ (3.32a)
∫

Γ−
c

−u∗IJ (ξ,x)pI(x−) dΓ =

∫

Γ+
c

−u∗IJ (ξ,x)pI(x+) dΓ (3.32b)
∫

Γ−
c

− s∗IJ (ξ,x)uI(x−) dΓ = −
∫

Γ+
c

− s∗IJ (ξ,x)uI(x+) dΓ (3.32)
∫

Γ−
c

− d∗IJ (ξ,x)pI(x−) dΓ =

∫

Γ+
c

− d∗IJ (ξ,x)pI(x+) dΓ (3.32d)Calling now ∆uI(x) and ∆pI(x), respetively, to the jump in the ge-neralized displaement and the sum of the extended trations on the raksurfaes (aording to de�nition in equation 2.7)
∆uI(x) = (u1(x+) − u1(x−), u2(x+) − u2(x−), . . .

. . . , φ(x+) − φ(x−), ϕ(x+) − ϕ(x−)) (3.33)
∆pI(x) = (p1(x+) + p1(x−), p2(x+) + p2(x−), . . .

. . . Dn(x+) +Dn(x−), Bn(x+) +Bn(x−)) (3.34)then the boundary integral equations an be rewritten, respetively, as
cIJuJ(ξ) +

∫

ΓB

− p∗IJ (ξ,x)uI(x) dΓ +

∫

Γ+
c

p∗IJ (ξ,x)∆uI(x) dΓ =

=

∫

ΓB

−u∗IJ (ξ,x)pI(x) dΓ +

∫

Γ+
c

u∗IJ (ξ,x)∆pI(x) dΓ (3.35)



50 Chapter 3. Hypersingular formulation of the BEM
pJ(ξ) +

∫

ΓB

s∗IJ (ξ,x)uI(x) dΓ +

∫

Γ+
c

= s∗IJ (ξ,x)∆uI(x) dΓ =

=

∫

ΓB

d∗IJ (ξ,x)pI(x) dΓ +

∫

Γ+
c

− d∗IJ (ξ,x)∆pI(x) dΓ (3.36)In this work all the ases studied present impermeable and self-equilibratedraks, what implies that, on the rak, ∆pJ(x) = 0. In this ase, the dualBEM formulation an be expressed asIf ξ ∈ ΓB

cIJuJ(ξ) +

∫

ΓB

− p∗IJ (ξ,x)uI(x) dΓ +

∫

Γ+
c

p∗IJ (ξ,x)∆uI(x) dΓ =

=

∫

ΓB

−u∗IJ (ξ,x)pI(x) dΓ (3.37)If ξ ∈ Γ+
c

pJ(ξ) +

∫

ΓB

s∗IJ (ξ,x)uI(x) dΓ +

∫

Γ+
c

= s∗IJ (ξ,x)∆uI(x) dΓ =

=

∫

ΓB

− d∗IJ (ξ,x)pI(x) dΓ (3.38)3.3.3 Extension to the time-harmoni domainThe extension of the stati extended boundary integral equations (3.37-3.38)to the frequeny domain is inmediate by means of the elastodynami rei-proity theorem by Gra� (1946), inluding the dependeny of the variableswith the frequeny. Thus, if impermeable raks are onsidered, extendedBIE an be expressed as
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cIJuJ(ξ, ω) +

∫

ΓB

− p∗IJ (ξ,x, ω)uI(x, ω) dΓ +

∫

Γ+
c

p∗IJ (ξ,x, ω)∆uI(x, ω) dΓ =

=

∫

ΓB

−u∗IJ (ξ,x, ω)pI(x, ω) dΓ (3.39)If ξ ∈ Γ+
c

pJ(ξ, ω) +

∫

ΓB

s∗IJ (ξ,x, ω)uI(x, ω) dΓ +

∫

Γ+
c

= s∗IJ (ξ,x, ω)∆uI(x, ω) dΓ =

=

∫

ΓB

− d∗IJ (ξ,x, ω)pI(x, ω) dΓ (3.40)3.3.4 Extension to the time domain. Time-stepping shemeBoundary integral equations in the time domain take the formIf ξ ∈ ΓB

cIJuJ(ξ, t) +

∫

ΓB

− p∗IJ (ξ,x, t) ∗ uI(x, t) dΓ +

∫

Γ+
c

p∗IJ (ξ,x, t) ∗ ∆uI(x, t) dΓ =

=

∫

ΓB

−u∗IJ (ξ,x, t) ∗ pI(x, t) dΓ (3.41)If ξ ∈ Γ+
c

pJ(ξ, t) +

∫

ΓB

s∗IJ (ξ,x, t) ∗ uI(x, t) dΓ +

∫

Γ+
c

= s∗IJ (ξ,x, t) ∗ ∆uI(x, t) dΓ =

=

∫

ΓB

− d∗IJ (ξ,x, t) ∗ pI(x, t) dΓ (3.42)The Riemann onvolution produt (denoted by ∗), is arried out by meansof Lubih's quadratures as de�ned by equations (3.22-3.24), leading, after



52 Chapter 3. Hypersingular formulation of the BEMspatial disretization to the Laplae-domain system matries, Ḡ(sm) and
H̄(sm), whih an be omputed by

Ḡ(sm) =






E∑
e=1

∫

Γe

u∗IJ (ξ,x, sm)φq(x) dΓ, for EDBIE,
E∑
e=1

∫

Γe

d∗IJ (ξ,x, sm)φq(x) dΓ, for ETBIE, (3.43)
H̄(sm) =






E∑
e=1

∫

Γe

p∗IJ (ξ,x, sm)φq(x) dΓ, for EDBIE,
E∑
e=1

∫

Γe

s∗IJ (ξ,x, sm)φq(x) dΓ, for ETBIE. (3.44)where sm = δ(ζm)/∆t is the Laplae parameter, and u∗IJ , p∗IJ , d∗IJ and s∗IJare the terms of the fundamental solution, as desribed in setion 3.6.Taking into aount the approximation of the Riemann onvolution in-tegral rede�ned in equations (3.22-3.24), the system matrix at the (k− j)thtime-step an be obtained by
Gk−j =

r−(k−j)

K

K−1∑

m=0

Ḡ(sm) e−2πi(k−j)m/K , (3.45)
Hk−j =

r−(k−j)

K

K−1∑

m=0

H̄(sm) e−2πi(k−j)m/K , (3.46)And now, one that both spatial and time disretizations have beenperformed, the following time sheme is obtained
k∑

j=0

Hk−j · uj =
k∑

j=0

Gk−j · pj , k = 0, 1, 2, ...,K (3.47)where Gk−j and Hk−j are the time-domain system matries at the (k−j)thtime-step, being k the total number of time-steps onsidered, uj is the



3.3 Hypersingular BEM for magnetoeletroelasti solids 53vetor ontaining the disrete boundary displaements and the extendedrak opening displaements (ECOD), and pj is the vetor ontaining thedisrete boundary trations.By onsidering now the boundary onditions, equation (3.47) an berearranged as
k∑

j=0

Ak−j · xj = yj , (3.48)where Ak−j is the rearranged system matrix, xj is the vetor ontain-ing the unknown boundary quantities, and yj is the vetor ontainingthe presribed or known boundary quantities. If zero initial onditions(uI(x, t) = u̇I(x, t) = 0 for t ≤ 0) are onsidered, equation (3.48) leads tothe following expliit time-stepping sheme, as proposed by Zhang (2000,2002a, 2005)
xk =

(
A0
)−1 ·


yk −

k−1∑

j=1

Ak−j · xj

 (3.49)for omputing the unknown ECOD at the nth time-step. In equation (3.49),

(
A0
)−1 is the inverse of the system matrix A0 at the time-step n = 0.3.3.5 Meshing strategyFor the disretization of the geometry and �eld variables, quadrati elementshave been used.Numerial evaluation of the ETBIE requires C1 ontinuity of the dis-plaement to ensure the ontinuity of its derivatives and, thus, the ontinu-ity of trations after the derivation on the node. To ful�ll this requirement,disontinuous quadrati elements with the two extreme olloation nodes



54 Chapter 3. Hypersingular formulation of the BEMshifted towards the enter of the element are used to mesh the rak, as ithas been done in previous works (Garía-Sánhez et al., 2004), following theformulation developed by Sáez et al. (1995). Aording to this, two di�erentelements have been onsidered in this work: ontinuous and disontinuouselements.In ontinuous elements the same points (the extremes and the middlepoint of the element) are used to de�ne the geometry and �eld variables.Shape funtions for these elements (geometri shape funtions) are the fol-lowing ones
φ1G(ζ) =

1

2
ζ(ζ − 1) ; φ2G(ζ) = (1 − ζ2) ; φ3G(ζ) =

1

2
ζ(ζ + 1) (3.50)where ζ is the natural oordinate, whih vary between -1 and +1.In disontinuous elements, for the geometri disretization, the shapefuntions already seen (equation 3.50) are used, while for the �eld variablesnew shape funtions will be used. In them, as it has been said, the extremeolloation points are moved towards the enter. These funtions, the so-alled alulus shape funtions will be equal to one in the points ζ = ζ1, 0, ζ2instead of in ζ = −1, 0, 1. The expressions for them are

φ1(ζ) =
ζ(ζ − ζ2)

ζ1(ζ1 − ζ2)
; φ2(ζ) =

(ζ − ζ1)(ζ − ζ2)

ζ1ζ2
;

φ3(ζ) =
ζ(ζ − ζ1)

ζ2(ζ2 − ζ1)
(3.51)Both geometri and alulus shape funtions are represented in �gure 3.3.In this work values of ζ1 = −3/4 and ζ2 = 3/4 have been taken, as it wasdone by Sáez et al. (1995).Finally, in boundaries whih are interseted by a rak, a disontinuouselement will also be used, but only the node on the extreme interseted is
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Figure 3.3: Geometri (left) and alulus (right) shape funtions

Figure 3.4: Elements used in the domain disretization
shifted towards the enter. In �gure 3.4 the disposition of the elements usedin the work, depending on the boundary whih they belong is summarized.Note that another element, the so-alled disontinuous quarter point ele-ment appears in it. This element, whih is used to modelize properly theasymptoti behavior of the �eld variables around the rak tip, is studiedin detail in setion 3.7.



56 Chapter 3. Hypersingular formulation of the BEM3.4 Green's funtions and numerial evaluation ofthe integrals. Stati ase3.4.1 Fundamental solutionsFundamental solution orresponding to the response of a homogeneous bidi-mensional magnetoeletroelasti solid, due to the appliation of an unitstati extended point fore is available in the literature (see e.g. worksby Liu et al., 2001 and Jiang and Pan, 2004). That solution is obtained bymeans of the generalized Stroh's formalism (1958), following a similar pro-edure to the one developed by Barnett and Lothe (1975) for piezoeletrimaterials. Consequently, the expressions of the Green's funtions presentbig similarities with those previously developed for anisotropi and piezo-eletri materials and used in works by Garía-Sánhez et al. (2004; 2005;2005a).Thus, extended displaement in the observation point x = (x1, x2), inthe J-diretion when a (extended) point load in the olloation point ξ =

(ξ1, ξ2) is applied in the I-diretion, an be expressed as
u∗IJ (zxM , z

ξ
M ) = − 1

π
Re(AJMQMI ln(zxM − zξM )) (3.52)By the appliation of the kinemati relations and the behavior law, onean obtain the expressions for the extended trations Green's funtions

p∗IJ (zxM , z
ξ
M) =

1

π
Re

(
BJMQMI

µMn1 − n2

zxM − zξM

) (3.53)where n is the unit external normal at the observation point. In bothequations (3.52-3.53), Re stands for the real part, the summation rule overrepeated indies applies, and zK and z0
K are the transformation into theomplex plane of the physial oordinates of the observation and olloation



3.4 Stati Green's funtions and numerial integration 57points, by the use of the following transformation:
zxK = x1 + µKx2 (3.54)
zξK = ξ1 + µKξ2 (3.55)being µK the roots of the harateristi equation of the material, de�nedby (2.45), with positive imaginary part. Let us remark that those roots analso be obtained as well as the olumns of the matries A and B, by solvingthe eigenvalues problem de�ned in (2.23).Moreover, the matrix Q an be alulated asQ = A−1

(M−1 +M−1
)−1

; M = iAB−1 (3.56)The derivatives of the fundamental solution displaements and trationsneeded to ompute the kernels s∗IJ and d∗IJ in the ETBIE (3.38) are thenobtained as
u∗IJ,k(x, ξ) =

∂u∗IJ (x, ξ)

∂ξk
=

1

π
Re

[
AIMQMJ

δk1 + µMδk2

zxM − zξM

] (3.57)
p∗IJ,k(x, ξ) =

∂p∗IJ (x, ξ)

∂ξk
=

=
1

π
Re

[
BIMQMJ

µMn1 − n2

(zxM − zξM)2
(δk1 + µMδk2)

] (3.58)3.4.2 Numerial evaluation of singular and hypersingularintegralsAs it ould be seen in setion 3.4.1, all the terms of the fundamental solu-tion present funtional dependenies to the distanes in the omplex plane



58 Chapter 3. Hypersingular formulation of the BEMbetween the olloation and the observation point, (zxM − zξM

). That de-pendeny in u∗IJ has the form ln
(
zxM − zξM

), while in the terms p∗IJ and
d∗IJ , the dependeny present a 1/

(
zxM − zξM

) form and, �nally, the kernels
s∗IJ show a 1/

(
zxM − zξM

)2 dependeny.In all those ases, when the observation point approahes the olloa-tion one, some numerial issues arise. In partiular, logarithmially singular,strongly singular and hypersingular integrals, respetively, must be evalu-ated, while if the integration is arried out in elements whih do not ontainthe olloation point, standard Gauss quadratures are used.Weakly singular integralsThese are the integrals whih ontain the displaement Green's funtion:
∫

ΓB

−u∗IJ (ξ,x)pI(x) dΓ (3.59)Introduing now in that equation the expression of the Green's funtion,and approximating the trations by the nodal values and shape funtions,equation (3.59) leads to integrals of the form
Iw =

∫

Γe

− ln(zxK − zξK)φdΓ (3.60)where, for the sake of larity, the terms that only depend on the materialproperties have been removed from equation (3.60). The kernels present a
0
[
ln(zxM − zξM )

] singularity when the the observation and olloation pointapproah, i.e. x → ξ. These kind of integrals are solved by the use ofspei� logarithmi quadratures when ξ ∈ Γe.



3.4 Stati Green's funtions and numerial integration 59Strongly singular integralsStrongly singular kernels present a 0
[
1/(zxM − zξM)

] singularity when theintegration is performed in the element where the olloation point belongto and are the following
∫

ΓB

− p∗IJ(ξ,x)uI(x) dΓ ;

∫

Γc

− d∗IJ (ξ,x)∆pI(x) dΓ (3.61)Let us remark that when impermeable rak boundary ondition or self-equilibrated raks are onsidered (∆pJ = 0), d∗IJ kernels will never presenta singular behavior. However, in order to omplete the exposition of thiswork, the integration of these singular integrals is presented.If the expressions of the Green's funtions are introdued in (3.61), af-ter the geometri disretizations and nodal approximations of the nodalvariables, the integrals to be evaluated present the following form
Is1 =

∫

Γe

− µKn1 − n2

zxK − zξK
φdΓ (3.62)

Is2 =

∫

Γe

− µKN1 −N2

zxK − zξK
φdΓ (3.63)where n = (n1, n2) and N = (N1, N2) are, respetively, the unit normalat the observation point and at the olloation point and, again, the termswhih only depend on the material properties have been removed from thoseequations.For solving numerially these integrals a hange of variable is arriedout, whih transform every element in the boundary, Γe, to the omplexplane. Thus, the new variable is the distane in the omplex plane betweenboth olloation and observation points:



60 Chapter 3. Hypersingular formulation of the BEM
χK = zxK − zξK = (x1 − ξ1) + µK(x2 − ξ2) (3.64)The jaobian of the transformation is

dχK
dΓ

=
dχK
dx1

dx1

dΓ
+
dχK
dx2

dx2

dΓ
(3.65)where

dχK
dx1

= 1 ;
dχK
dx2

= µK (3.66)
dx1

dΓ
= cos(θ) = −n2 ;

dx2

dΓ
= sin(θ) = n1 (3.67)As �gure 3.5 illustrates, the substitution of (3.66) and (3.67) in thejaobian, leads to the following expression for it

dχK
dΓ

= µKn1 − n2 (3.68)
dx1

q

dx2

n

dGFigure 3.5: Di�erential element in the boundaryNumerial evaluation of Is1If the expression for the jaobian, equation (3.66) is introdued in (3.62),the strongly singular integral, Is1 may be rewritten as
Is1 =

∫

Γe

− µKn1 − n2

zxK − zξK
φdΓ =

∫

Γe

− 1

χK
φdχK (3.69)



3.4 Stati Green's funtions and numerial integration 61whih ould be easily deomposed into
Is1 =

∫

Γe

− 1

χK
φdχK =

∫

Γe

− 1

χK
(φ± 1) dχK =

∫

Γe

1

χK
(φ− 1) dχK+

+

∫

Γe

− 1

χK
dχK = I

(R)
s1 + I

(S)
s1 (3.70)

I
(R)
s1 is a regular integral whih an be determined by an ordinary Gaussquadratures sheme, while I(S)

s1 is still singular, but with the following ana-lytial solution
I

(S)
s1 = ln (χK)|Γe

(3.71)Numerial evaluation of Is2When χK is introdued in (3.63), it yields to
Is2 =

∫

Γe

− µKN1 −N2

χK
φdΓ (3.72)To regularize that integral, dχK/dΓ is added and subtrated, leading tothe following integral

Is2 =

∫

Γe

µKN1 −N2 − (dχK/dΓ)

χK
φdΓ +

∫

Γe

− 1

χK
φdχK (3.73)where the �rst term is a regular integral and the seond one is the alreadyseen Is1 integral.Hypersingular integralsHypersingular kernels present a O

[
1

(zx
K
−zξ

K
)2

] singularity when x → ξ.These integrals are those whih ontain the term s∗IJ in the TBIE



62 Chapter 3. Hypersingular formulation of the BEM
∫

Γc

= s∗IJ (ξ,x)uI(x) dΓ (3.74)After the disretization proedure, hypersingular integrals to be evalu-ated may be rewritten as
Ih =

∫

Γe

=
µKn1 − n2

(zxK − zξK)2
φdΓ (3.75)And now, onsidering the hange of variable proposed in the previoussetion, hypersingular integral an be expressed as a funtion of χK asfollows

Ih =

∫

Γe

=
µKn1 − n2

(zxK − zξK)2
φdΓ =

∫

Γe

=
1

χ2
K

φdχK (3.76)Let us now onsider the Taylor series expansion of φ = f(χK) around
χK = 0

φ(χK ≈ 0) = φ(χK = 0) +
dφ

dχK

∣∣∣∣
χK=0

χK +O[χ2
K ] = φ0 + φ′0χK +O[χ2

K ](3.77)Adding and subtrating the two �rst terms of that expansion to φ inequation (3.76), the hypersingular integral an now be deomposed in theaddition of three di�erent integrals
Ih =

∫

Γe

=
1

χ2
K

φdχK =

∫

Γe

=
1

χ2
K

(φ± (φ0 + φ′0χK)) dχK =

∫

Γe

φ− (φ0 + φ′0χK)

χ2
K

dχK + φ0

∫

Γe

=
1

χ2
K

φdχK + φ′0

∫

Γe

− 1

χK
φdχK (3.78)



3.5 Green's funtions and numerial evaluation of the integrals.Time-harmoni ase 63The �rst of those integrals is a regular one, the third one has beenanalyzed in the strongly singular integrals setion while the seond integralis still hypersingular but with an analytial solution
φ0

∫

Γe

=
1

χ2
K

φdχK = −φ0
1

χK

∣∣∣∣
Γe

(3.79)This regularization proedure is simple and generi sine it is not re-strited to the use of straight elements on the rak. It presents anotheradvantage against other methods whih use spei� quadratures for the nu-merial evaluation of hypersingular integrals (see e.g. Pan, 1997, 1999): ahigher preision is obtained sine the numerial integration is performedonly over regular integrals.3.5 Green's funtions and numerial evaluation ofthe integrals. Time-harmoni ase3.5.1 IntrodutionIn this setion, the Radon transform (Ludwig, 1966; Deans, 1983) is usedto derive 3D and 2D time-harmoni dynami fundamental solution for mag-netoeletroelasti problems. This transform has been suessfully appliedby Wang and Ahenbah (1994; 1995) to derive dynami Green's funtionsfor anisotropi and linear elasti solids, and byDenda et al. (2004) and Wangand Zhang (2005) to derive them for piezoeletri solids. The most inter-esting feature of Radon transform is that redues 3D or 2D wave equationsto 1D equations of the same kind, but easier to deal with. One the 1Dwave equations are solved, the solutions of the 3D and the 2D equations ofmotion will follow by a simple appliation of the inverse Radon transform



64 Chapter 3. Hypersingular formulation of the BEMto yield the Green's funtions in the form of surfae integrals over a unitsphere.Thus, as for anisotropi elasti and piezoeletri solids, the dynamiGreen's funtions are expressed as surfae integrals over a unit sphere inthe 3-D ase and as line integrals over a unit irumferene in the 2-D ase.The dynami Green's funtions derived in this way an be further deom-posed into a singular and a regular part. The singular part orresponds tothe stati magnetoeletroelasti Green's funtions, whilst the regular partrepresents the ontribution of the inertial terms in the equations of motion.In this work, although Green's funtions will be implemented only for 2-D problems, they will also be presented for the 3-D ase, sine the proedureto obtain them is analogous to the bidimensional one, exept for the di�erentexpressions for the Radon transform (and their orresponding inverse Radontransform). After presenting them, the numerial solution of the integralswill be analyzed.3.5.2 Fundamental solutions3-D time-harmoni Green's funtionsTime-harmoni Green's funtions are de�ned as the response of an in�nitehomogeneous linear magnetoeletroelasti solid when a generalized time-harmoni point fore is applied at the origin in the xJ -diretion
FM (x, t) = δJMδ(x)δe−iωt (3.80)where ω is the angular frequeny of exitation, δ(x) is the Dira's deltafuntion while δJM is the generalized Kroneker's delta funtion. The re-sulting generalized displaement �eld in the K-diretion an be expressed,



3.5 Time-harmoni Green's funtions and numerial integration 65in the steady state of harmoni motion, as
uK(x, t) = u∗KM (x, ω)e−iωt (3.81)Substituting (3.81) into the generalized equations of motion (2.27) leadsto

CiJKlu
∗
KM,il(x, ω) + ρω2δJKu

∗
KM (x, ω) = −δJMδ(x) (3.82)The appliation of the Radon transform (see Appendix B) to that equa-tion yields

ΓJK∂
2
s û

∗
KM (s, ω) + ρω2δJK û∗KM (s, ω) = −δJMδ(s) (3.83)where s is the parameter of the Radon-transform, de�ned by s = η ·x with

η being a unit normal vetor whih de�nes the position on a unit radiussphere whose enter is the observation point, andΓJK is the generalizedChristo�el tensor de�ned as by
ΓJK = CiJKlninl (3.84)The solution to equations (3.83) may be obtained as the superpositionof the following three ases:A. Generalized displaements due to the appliation of a mehanial pointloadWhen a mehanial point load is applied at the origin x = 0 in the

xm-diretion, the elasti displaements ukm in the xk diretion, the eletripotential u4m and the magneti potential u5m, all of them evaluated at apoint x, are obtained from the following set of equations
Γjk∂

2
s û

∗
km + Γj4∂

2
s û

∗
4m + Γj5∂

2
s û

∗
5m + ρω2δjkû∗km = −δjmδ(s) (3.85a)

Γ4k∂
2
s û

∗
km + Γ44∂

2
s û

∗
4m + Γ45∂

2
s û

∗
5m = 0 (3.85b)

Γ5k∂
2
s û

∗
km + Γ54∂

2
s û

∗
4m + Γ55∂

2
s û

∗
5m = 0 (3.85)



66 Chapter 3. Hypersingular formulation of the BEMB. Generalized displaements due to the appliation of a point hargeThe elasti displaements in the xk diretion (uk4), the eletri potential(u44) and the magneti potential (u54),all of them evaluated at a generipoint x, due to the appliation of an eletrial point harge at the origin
x = 0, are obtained from the following set of equations

Γjk∂
2
s û

∗
k4 + Γj4∂

2
s û

∗
44 + Γj5∂

2
s û

∗
54 + ρω2δjkû∗k4 = 0 (3.86a)

Γ4k∂
2
s û

∗
k4 + Γ44∂

2
s û

∗
44 + Γ45∂

2
s û

∗
54 = −δ(s) (3.86b)

Γ5k∂
2
s û

∗
k4 + Γ54∂

2
s û

∗
44 + Γ55∂

2
s û

∗
54 = 0 (3.86)C. Generalized displaements due to the appliation of a magneti monopoleThe elasti displaements at a point x in the xk diretion (uk4), theeletri potential at x (u44) and the magneti potential at x (u54) due tothe appliation of magneti monopole at the origin x = 0, are obtained fromthe following set of equations

Γjk∂
2
s û

∗
k5 + Γj4∂

2
s û

∗
45 + Γj5∂

2
s û

∗
55 + ρω2δjkû∗k5 = 0 (3.87a)

Γ4k∂
2
s û

∗
k5 + Γ44∂

2
s û

∗
45 + Γ45∂

2
s û

∗
55 = 0 (3.87b)

Γ5k∂
2
s û

∗
k5 + Γ54∂

2
s û

∗
45 + Γ55∂

2
s û

∗
55 = −δ(s) (3.87)Let us �rst onsider the ase in whih a mehanial point load is applied.From equations (3.85b) and (3.85), the expressions of û∗4m and û∗5m as afuntion of û∗km may be obtained

∂2
s û

∗
4m =

Γ4kΓ55 − Γ45Γ5k

Γ45Γ54 − Γ44Γ55
∂2
s û

∗
km = αk4∂

2
s û

∗
km (3.88)

∂2
s û

∗
5m =

Γ44Γ5k − Γ4kΓ54

Γ45Γ54 − Γ44Γ55
∂2
s û

∗
km = αk5∂

2
s û

∗
km (3.89)



3.5 Time-harmoni Green's funtions and numerial integration 67The substitution of these relations in equation (3.85a) yields
{Zjk∂2

s + ρω2δjk}û∗km = −δjmδ(s) (3.90)where
Zjk = Γjk + αk4Γj4 + αk5Γj5 (3.91)is the so-alled redued Christo�el tensor, whih is symmetri and positivede�nite sine (2.15) applies, and αk4 and αk5 are de�ned in equations (3.88)and (3.89). Thus, its eigenvalues are real-valued and positive. Reallingthem as λq = ρc2q , being cq the phase veloities, they are obtained as theroots of the following harateristi equationsdet(Zjk − ρc2qδjk) = 0 (3.92)Calling Vjq to the q-th eigenvetor of Zjk

ZjkVkq = λqVjq (no sum on q) (3.93)it holds that
VjpVjq = δpq ; ViqVjq = δij (3.94)so that these eigenvetors may be taken as orthonormal bases. û∗km an bethen expressed in the new bases by applying the following transformation

û∗
′

hm = Vkhû∗km ⇐⇒ û∗km = Vkhû∗
′

hm (3.95)The substitution of this bases transformation into equation (3.90) andthe premultipliation of the resulting equation by Vjq lead to
{VjqZjkVkh∂2

s + ρω2VjqδjkVkh}û∗
′

hm = −δjmVjqδ(s) (3.96)



68 Chapter 3. Hypersingular formulation of the BEMThat equation may be further redued to a 1-D wave equation (foreah �xed q and m) by onsidering the relations given by equations (3.93)and (3.94)
{λq∂2

s + ρω2}û∗
′

qm = −Vmqδ(s) (3.97)whose solution is given by the wave equation
u∗qm =

iVmq
2ρc2qkq

eikq|s| (3.98)where kq is the wave number
kq =

ω

cq
(3.99)The onsideration of the inverse bases transformation (3.95) leads to

û∗km =
iVkqVmq
2ρc2qkq

eikq|s| (3.100)Following now an analogous proedure to the one proposed Wang andAhenbah (1995) for anisotropi solids the resolution of the omplete eigen-value problem de�ned by (3.92) will be avoided. This proedure is based inthe idea that VkqVmq in equation (3.100) may be omputed as
VkqVmq =

Eq
km

Eq
pp

(3.101)where
Eq
km = adj{Zkm − ρc2qδkm} (3.102)Considering now the most general ase in whih the three phase veloi-ties cq are distint, the equation (3.100) an be expressed as
û∗km =

iEq
km

2ρc2qkqE
q
pp
eikq|s| (3.103)



3.5 Time-harmoni Green's funtions and numerial integration 69Finally, the appliation of the inverse Radon transform leads to the u∗kmterms of the Green's funtions
u∗km =

−1

8π2

∫

|η|=1

∂2
s û

∗
kmdS(η) =

=
1

16π2

∫

|η|=1

Eq
km

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η) (3.104)where the domain of integration is de�ned by the surfae of a unit sphere
|η| = 1.In the same way, the substitution of equation (3.103) into (3.88) and (3.89),and the appliation of the inverse Radon transform yields

u∗4m =
1

16π2

∫

|η|=1

αl4E
q
km

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η) (3.105)
u∗5m =

1

16π2

∫

|η|=1

αl5E
q
km

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η) (3.106)An analogous proedure for Problem B and Problem C will let us toobtain the other terms of the fundamental solution. For Problem B, ∂2
s û

∗
44and ∂2

s û
∗
54 may be expressed as funtions of ∂2

s û
∗
k4 from equations (3.86b)and (3.86) yielding to

∂2
s û

∗
44 = αk4∂

2
s û

∗
k4 +

Γ55

α
δ(s) (3.107)

∂2
s û

∗
54 = αk5∂

2
s û

∗
k4 −

Γ54

α
δ(s) (3.108)where

α = Γ45Γ54 − Γ44Γ55 (3.109)



70 Chapter 3. Hypersingular formulation of the BEMand the appliation of the inverse Radon transform will lead to
u∗44 =

−1

8π2

∫

|η|=1

∂2
s û

∗
44dS(η)

=
1

16π2

∫

|η|=1

αl4αj4
Eq
lj

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η)

− 1

8π2

∫

|η|=1

Γ55

α
δ(η·x)dS(η) (3.110)

u∗54 =
−1

8π2

∫

|η|=1

∂2
s û

∗
54dS(η)

=
1

16π2

∫

|η|=1

αl5αj4
Eq
lj

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η)

+
1

8π2

∫

|η|=1

Γ54

α
δ(η·x)dS(η) (3.111)Similarly, solution of Problem C will lead to

u∗55 =
1

16π2

∫

|η|=1

αl5αj5
Eq
lj

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η)

− 1

8π2

∫

|η|=1

Γ44

α
δ(η·x)dS(η) (3.112)So, �nally, the dynami time-harmoni magnetoeletroelasti displae-ment Green's funtions just obtained, whih present a symmetry propertysuh as u∗KM (x, ω) = u∗MK(x, ω), may be reast into a ompat form as

u∗KM =
1

16π2

∫

|η|=1

εqKM
ρc2qE

q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η)

+
1

8π2

∫

|η|=1

ΛKMδ(η·x)dS(η) (3.113)



3.5 Time-harmoni Green's funtions and numerial integration 71where
εqKM =






Eq
km K,M = 1, 2, 3

αKl E
q
lm K = 4, 5 ; M = 1, 2, 3

αKl α
M
j E

q
lj K,M = 4, 5

(3.114)and
ΛKM =

1

α

{
ΓKM (δ4Kδ5M + δ5Kδ4M ) − Γ44Γ55

ΓKM
(δ4Kδ4M + δ5Kδ5M )

}The obtained time-harmoni Green's funtions may be split into a sin-gular part plus a regular frequeny dependent part. This deompositionis very useful for BEM implementation purposes, sine the singular partoinides with the stati solution exept for a onstant
u∗KM (x, ω) = u∗SKM (x) + u∗RKM (x, ω) (3.115)where

u∗RKM =
1

16π2

∫

|η|=1

εqKM
ρc2qE

q
pp

{2δ(η·x) + ikq} eikq|η·x| dS(η) (3.116)
u∗SKM =

1

8π2

∫

|η|=1

ΛKMδ(η·x) dS(η) (3.117)As the stati singular part, fundamental solution reently derived byBuroni and Sáez (2010) an be used. Finally, the extended tration Green'sfuntions as well as the kernels d∗IJ and s∗IJ needed for the implementation ofthe ETBIE may be obtained via the frequeny-domain equivalent equationsto (??-3.28)
p∗IK(ξ,x, ω) = Ns(ξ)CsIJru

∗
KJ,r(ξ,x, ω) (3.118)

d∗IK(ξ,x, ω) = Ns(ξ)CsIJru
∗
KJ,r(ξ,x, ω) (3.119)

s∗IK(ξ,x, ω) = Ns(ξ)CsIJrp
∗
KJ,r(ξ,x, ω) (3.120)



72 Chapter 3. Hypersingular formulation of the BEM2-D time-harmoni Green's funtionsThe 2-D Green's funtions may be obtained following the same proedureas for the 3-D ase. In 2-D the lowerase (elasti) subsripts take values 1and 2 only, whilst the upperase (extended) subsripts take values 1, 2, 4(eletri) and 5 (magneti). In this way, Green's funtions are obtained inthe form of line integrals along a unit irumferene |n| = 1 as (see worksby Wang and Ahenbah, 1994 or Wang and Zhang, 2005 for further details)
u∗KM (ξ,x, ω) = u∗SKM (ξ,x) + u∗RKM (ξ,x, ω) (3.121)where

u∗SKM (ξ,x) = − 1

4π2

∫

|η|=1

εqKM
ρc2qE

q
pp

log |η·x| dL(η)−

− 1

4π2

∫

|η|=1

ΛKM log |η·x| dL(η) (3.122)
u∗RKM (ξ,x, ω) =

1

16π2

∫

|η|=1

εqKM
ρc2qE

q
yy

ΦR(kq, |η · x|) dL(η)where, as it has already been said, the singular part oinides with the statifundamental solution exept for a onstant, εqKM is given by (3.114) and
ΦR(kq, |η · x|) = Φ(kq|η · x|) + 2 log (|η · x|) (3.123)with
Φ(ζ) = iπeiζ − 2[cos (ζ)ci(ζ) + sin (ζ)si(ζ)] (3.124)and i and si are the integral osine and the integral sine funtions, whihare de�ned as
ci(ζ) = −

∞∫

ζ

cos z

z
dz ; si(ζ) = −

∞∫

ζ

sin z

z
dz (3.125)



3.5 Time-harmoni Green's funtions and numerial integration 73The extended tration Green's funtions may be obtained by the sub-stitution of u∗KM into the frqueny domain equivalent generalized Hooke'slaw (3.118), while the kernels needed for the implementation of the ETBIEmay be determined as in equations (3.119) and (3.120).
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Figure 3.6: Integration irumferene for frequeny domain fundamentalsolutionThe implementation of the fundamental solution will imply a doubleintegration. One over the element and another one over a unit irle enteredat the observation point, as shown in �gure 3.6, where it an be notied thatthe term |η · x| is equal to |x− ξ| cos (θ)3.5.3 Numerial evaluation of the integralsAs it has been said, time-harmoni Green's funtions may be split into aregular and a singular part, and so has been done in this work with thekernels needed for the implementation of the fundamental solution, in bothEDBIE and ETBIE.As we already know the singular part oinides with the stati funda-mental solution, exept for a onstant. Thus, the integration of it, will be



74 Chapter 3. Hypersingular formulation of the BEMarried out as it has been analyzed in a previous setion 3.4.2.All the regular parts of the time-harmoni fundamental solution an beexpressed as follows
u∗RKM (ξ,x, ω) =

1

8π2

π∫

−π

γqKMΦR(kq, |x− ξ|| cos θ|) dθ (3.126)
p∗RKM (ξ,x, ω) =

1

8π2

π∫

−π

γqKJΓMJkqΥ(kq|x− ξ|| cos θ|)sign(cos θ) dθ (3.127)
d∗RKM (ξ,x, ω) =

= − 1

8π2

π∫

−π

ΓKJγ
q
MJkqΥ(kq|x− ξ|| cos θ|)sign(cos θ) dθ (3.128)

s∗RKM (ξ,x, ω) = − 1

8π2

π∫

−π

ΓKJγ
q
JSΓMSk

2
qΦ(kq|x− ξ|| cos θ|) dθ (3.129)where

• γqKM = εqKM/(ρc
2
qE

q
yy) and ρc2q , Eq

yy and εqKM were de�ned, respe-tively, in equations (3.92), (3.102) and (3.114).
• ΓJK = CrJKlnrηl and ΓJK = CrJKlNrηl, being nr, Nr and ηl theunit outward normals in the observation and olloation point and tothe integration irumferene, respetively.
• Υ(s) = −πe(is)−2[cos (s)si(s)−sin (s)ci(s)], where i is the imaginaryunit number and si and i are, respetively, the integral sine andosine, as de�ned in equation(3.125).



3.5 Time-harmoni Green's funtions and numerial integration 75Introduing now the expressions of the regular part of the fundamentalsolution into both boundary integral equations, the integrals to be solvedare the following
I1 =

∫

Γe




π∫

−π

γqKMΦR(kq, |x− ξ|| cos θ|)dθ


 dΓ (3.130)

I2 =

∫

Γe




π∫

−π

γqKJΓMJkqΥ(kq|x− ξ|| cos θ|)sign(cos θ)dθ dΓ (3.131)
I3 =

∫

Γe




π∫

−π

ΓKJγ
q
MJkqΥ(kq|x− ξ|| cos θ|)sign(cos θ)dθ dΓ (3.132)

I4 =

∫

Γe




π∫

−π

ΓKJγ
q
JSΓMSk

2
qΦ(kq|x− ξ|| cos θ|)dθ


 dΓ (3.133)The �rst three integrals an be evaluated with ordinary Gauss quadra-tures. Nevertheless, in the integrand in I4 it appears again the funtion

Φ, whih have two main features. The �rst one is that it presents a
O [ln (|x− ξ|| cos (θ)|)] singularity when the olloation point tends to theobservation one, and when θ → ±π/2. The other harateristi is that itpresent and osillatory behavior proportional to the produt between thewave number, kq and the distane between both the olloation and obser-vation points.The logarithmi singularity has been treated with logarithmi quadra-tures, while the osillatory behavior would require the implementation ofasymptoti approximations (Sáez and Domínguez, 2000), when high fre-quenies are involved or far �eld problems are analyzed.



76 Chapter 3. Hypersingular formulation of the BEM3.6 Green's funtions and numerial evaluation ofthe integrals. Time-domain aseIn this work, the resolution of time-domain (transient) problems has beenarried out by means of Lubih's onvolution quadratures. The use of themallows the use of a Laplae domain fundamental solution instead of a timedomain one. An important feature of these quadratures is that, althoughLaplae-domain Green's funtions are used, not numerial inverse Laplaetransformation is needed. This fat provides numerial stability to themethod and makes the spatial and temporal disretizations rather indepen-dent.The proedure to obtain Laplae domain fundamental solution is analo-gous to the one presented by Wang and Zhang (2005) for piezoeletri solids,based in the appliation of the Radon transform to the magnetoeletroe-lasti problem, as done in setion 3.5.2. Consequently, Green's funtionswill present similar mathematial struture and the resulting fundamentalsolution an be split in a singular and a regular part, being the singularpart equal to the stati fundamental solution exept for a onstant. Theexpressions for the regular part of the Green's funtions are
u∗RKM (ξ,x, s) =

1

8π2

π∫

−π

γqKMΨR (s/cq, |x− ξ|| cos θ|) dθ (3.134)
p∗RKM (ξ,x, s) =

=
1

8π2

π∫

−π

γqKJΓMJ
s

cq
Ψ′ ((s/cq)|x− ξ|| cos θ|) sign(cos θ) dθ (3.135)
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d∗RKM (ξ,x, s) =

= − 1

8π2

π∫

−π

ΓKJγ
q
MJ

s

cq
Ψ′ ((s/cq)|x− ξ|| cos θ|) sign(cos θ) dθ (3.136)

s∗RKM (ξ,x, s) =

= − 1

8π2

π∫

−π

ΓKJγ
q
JSΓMS

(
s

cq

)2

Ψ((s/cq)|x− ξ|| cos θ|) dθ (3.137)where s is the Laplae parameter and
• γqKM , ΓJK and ΓJK were de�ned in setion 3.5.3.
• Ψ(z) = − [e−zEi(z) + ezEi(−z)], being z a omplex variable and
Ei(z) the exponential integral de�ned as

Ei(z) = −−
∞∫

−1

e−zt

t
dt ; Ei(−z) = −

∞∫

1

e−zt

t
dt , (3.138)Introduing now the expressions of the regular part of the fundamentalsolution into both boundary integral equations, the integrals to be solvedare the following

I1 =

∫

Γe




π∫

−π

γqKMΨR (s/cq, |x− ξ|| cos θ|) dθ


 dΓ (3.139)

I2 =

∫

Γe
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−π

γqKJΓMJ
s

cq
Ψ′ ((s/cq)|x− ξ|| cos θ|) sign(cos θ)dθ


 dΓ (3.140)
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∫

Γe




π∫
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q
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cq
Ψ′ ((s/cq)|x− ξ|| cos θ|) sign(cos θ)dθ


 dΓ (3.141)

I4 =

∫

Γe




π∫

−π

ΓKJγ
q
JSΓMS

(
s

cq

)2

Ψ((s/cq)|x− ξ|| cos θ|) dθ


 dΓ (3.142)



78 Chapter 3. Hypersingular formulation of the BEMThe way to evaluate those integrals is analogous to the time-harmoniase and their numerial omputation has been analyzed in setion 3.5.3.3.7 Computation of frature parameters3.7.1 Computation of the Extended Stress Intensity FatorsFor the omputation of the ESIF, in this work the displaement method hasbeen used, using the extrapolation monopoint formulation proposed by Sáezet al. (1995). For this purpose, the extended displaement on the nearestnode to the rak tip must be omputed and then substituted, as well asits oordinates, in the analytial expressions of the asymptoti �elds (2.36).An algebrai system of equations shall be obtained, whih solution providesthe stress, eletri displaement and magneti indution intensity fators.Due to the generality of the regularization proess followed in this work,it is possible the use of a disontinuous quarter point element whih ontainsthe rak tip. This element, as it an be seen in �gure 3.7, is divided by theentral node in two segments, whih length are L/4 and 3L/4 respetively,being l the whole length of the element. In this quarter point disontinuouselement, whih must be a straight element (Martínez and Domínguez, 1984)in order to apture properly the disontinuity in θ = ±π, the relation be-tween the natural and the radial oordinate of the polar system with originon the rak tip is
ζ = 2

√
r

L
− 1 (3.143)That relation allows to reprodue the √
r behavior around the rak tipof the extended displaements. This fat, together with the existene ofa olloation point very lose to the rak tip allows the diret evaluation
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z= -1 z= -3/4  z= 0                                      z= 3/4             z= 1  Figure 3.7: Quarter point disontinuous elementof the ESIF with a minimal postproess of the displaement and with anexellent auray in the results.The expressions of the ESIF for magnetoeletroelasti were obtained�rst by Gao et al. (2003a) as an extension of those obtained by Suo et al.(1992) for piezoeletri solids. Partiularizing these expressions for the ol-loation point NC1 (see �gure 3.7), the ESIF may be diretly omputedfrom
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KIV

KV


 =

√
8π

l
Y −1




∆u1|r=L/64

∆u2|r=L/64

∆φ|r=L/64

∆ϕ|r=L/64


 (3.144)where Y = Re(iAB−1) (3.145)is the Irwin matrix and A and B are the matries obtained by solving theproblem de�ned in (2.23).In dynami problems, the ESIF shall be de�ned in the orrespondingdomain (frequeny or time domain), but the way to ompute them is thesame as for the stati ase, with the only di�erene that the displaementsare also a funtion of either the frequeny or time.



80 Chapter 3. Hypersingular formulation of the BEM3.7.2 Computation of the Energy Release RatesTian and Rajapakse (2005b) de�ned a total energy release rate (ERR) formagnetoeletroelasti solids. It an be obtained from the ESIF as
G =

1

2
KTYK (3.146)where K =




KII

KI

KIV

KV


 (3.147)In equation (3.146), the mehanial energy release rates (modes I andII) as well as the eletri and magneti ones are involved. Eah term of thetotal ERR may be alulated as

GMI =
1

2
(Y21KIKII + Y22K

2
I + Y23KIKIV + Y24KIKV ) (3.148a)

GMII =
1

2
(Y11K

2
II + Y22KIIKI + Y13KIIKIV + Y24KIIKV ) (3.148b)

GELEC =
1

2
(Y31KIVKII + Y32KIVKI + Y33K

2
IV + Y34KIVKV ) (3.148)

GMAGN =
1

2
(Y41KVKII + Y42KVKI + Y43KVKIV + Y44K

2
V ) (3.148d)Let us remark that a positive value denotes released energy, whilst anegative value represents absorbed energy.



Chapter 4Results4.1 IntrodutionIn this hapter, a wide number of stati, frequeny domain and transientfrature mehanis problems will be solved via the hypersingular formula-tion of the BEM previously introdued, under the assumption of imperme-able raks. In all ases, in order to validate the formulation, the proposedmethod will be �rst used to solve problems already studied with di�erenttehniques.In all ases impermeable and self-equilibrated raks in BaTiO3−CoFe2O4with a phase volume Vf=0.5 omposite will be onsidered and its e�etivematerial properties are shown in table 4.1. The elasti sti�ness tensor,the dieletri permittivities and the magneti permeabilities, as well as thepiezoeletri and piezomagneti oe�ientes, are obtained by the use of thephase rule, whih is given by
κcij = κiij · Vf + κmij · (1 − Vf ) (4.1)



82 Chapter 4. Resultswhere κij is one of the properties mentioned above, the supersripts i and mdenote eah phase and Vf is the phase volume. This rule an not be appliedfor the determination of the eletromagneti onstants, sine no eletro-magneti oupling is present in any of the single phases. Suh oupling annot been derived in a general way, sine it is neessary a mirostruturalanalysis whih onsiders the inlusions shape.Table 4.1: Material properties of BaTiO3�CoFe2O4 (with Vf=0.5)Properties BaTiO3 CoFe2O4 Vf=0.5
c11(GPa) 166 286 226
c12(GPa) 78 170 125
c22(GPa) 162 269.5 216
c66(GPa) 43 45.3 44
e16(C/m

2) 11.6 0 5.8
e21(C/m

2) -4.4 0 -2.2
e22(C/m

2) 18.6 0 9.3
ǫ11(×10−10C2/Nm2) 112 0.8 56.4
ǫ12(×10−10C2/Nm2) 126 0.93 63.5

h16(N/Am) 0 550 275
h21(N/Am) 0 580.3 290.2
h22(N/Am) 0 699.7 350

γ11(×10−6Ns2/C2) 5 590 297
γ12(×10−6Ns2/C2) 10 157 350
β11(×10−12Ns/V C) - - 5.367
β12(×10−12Ns/V C) - - 2737.5In this work, the values of the properties orresponding to �brous om-



4.2 Stati results 83posites have been onsidered. Some authors, like Li and Dunn (1998) (wherethe values adopted here were obtained) published graphis whih provideeletromagneti ouplings, while others, suh as Nan (1994) derived analyt-ial expressions for them.4.2 Stati resultsIn this setion, some stati problems will be solved, as it has been said,onsidering in all ases a BaTiO3 − CoFe2O4 omposite with a Vf = 0.5.First, the proposed formulation will be validated by the omparison withanalytial and semianalytial results available in the literature. In thisepigraph, only raks in unbounded domains will be analyzed, sine statiresults for �nite raked domains will be presented later on, in hapters 5and 6.4.2.1 Straight rak in an unbounded domainThe analytial solution of straight rak in an in�nite domain subjeted tofar �eld uniform eletromagnetomehani loads was �rst derived anallyti-ally by Gao et al. (2003a), who established that the value of the extendedstress intensity fators for suh a ase are independent of the material prop-erties and of the (extended) loads in other diretions. For impermeableraks, those ESIF take the following values
KI = σ∞22

√
πa, KII = σ∞21

√
πa, KIV = D∞

2

√
πa, KV = B∞

2

√
πa.(4.2)The problem is illustrated in �gure 4.1, while in table 4.2, the valuesof the ESIF are listed for two di�erent meshes. In the �rst one �ve equal



84 Chapter 4. Resultsquadrati elements are used, while in the seond one the mesh is arried outwith ten equal elements. An exellent agreement is obtained in both ases.
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Figure 4.1: Straight rak under remote eletromagnetomehani loadingTable 4.2: Extended SIFs for a Gri�th rak in a magnetoeletroelas-ti solid. ESIF 5 Elements 10 Elements
KI/K

Analytic
I 0.9981 0.9989

KII/K
Analytic
II 0.9981 0.9989

KIV /K
Analytic
IV 0.9981 0.9989

KV /K
Analytic
V 0.9981 0.9989Let us now onsider a Gri�th rak subjeted to three di�erent ele-tromagnetomehanial loading ombinations, whose values are shown intable 4.3.In �gure 4.2, normalized ∆u2 is plotted for the three ombinations onsi-dered. It an be easily notied that the presene of positive eletromagnetiloading make the rak tends to open what, onsequently, inrease the ten-



4.2 Stati results 85Table 4.3: Loading ombinations onsidered for the analysis of a Gri�thrak in a magnetoeletroelasti mediaCombination (a) Combination (b) Combination ()
σ∞22(N/m

2) 6= 0 6= 0 6= 0

D∞
2 (C/N) 0 10−9σ∞22 −10−9σ∞22

B∞
2 (A−1 ·m) 0 10−6σ∞22 −10−6σ∞22deny to the frature.
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Figure 4.2: ∆u2 in a Gri�th rak subjeted to three di�erent ombinationsof remote loadingIn table 4.4 the values for total energy release rate as well as total me-hanial energy release rate are inluded, where all the values have beennormalized with the total energy release rate for pure mehanial load. Itan be notied that total energy release rate dereases as soon as either pos-itive or negative eletromagneti loadings are applied, even when the om-bination inreases the rak opening displaement (ombination b). Thisfat implies that the maximum of the total energy release rate an not bea suitable frature riteria for magnetoeletroelasti solids.



86 Chapter 4. ResultsTable 4.4: Energy Release Rates for Gri�th rak in a magnetoeletroelas-ti solid.ERR Combination (a) Combination (b) Combination ()
G∗
TOT 1.0000 -8.8029 -12.2940

G∗
I+II 1.0000 1.8728 0.12724.2.2 Two parallel raksThe ase in whih two parallel raks with variable relative position in anunbounded magnetoeletroelasti domain and subjeted to a ombinationof mehani, eletri and magneti loading is now onsidered, as shown in�gure 4.3. This problem was �rst solved by Tian and Gabbert (2004) forthe material onsidered in this setion.
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Figure 4.3: Two parallel raks under remote eletromagnetomehani load-ing Both raks were meshed with ten equal quadrati elements. In �-gure 4.4, the normalized mode I stress intensity fator as well as the nor-malized magneti indution intensity fator (both evaluated at rak tip



4.2 Stati results 87A) are plotted for di�erent values of the angle θ and for a set of loadingsde�ned by ombination (a) in table 4.5. In �gure 4.5, the normalized modeI energy release rate at rak tip A is plotted for two loading ombinationsde�ned as ombination (b) in table 4.5. In all ases an exellent agreementis obtained.Table 4.5: Loading ombinations onsidered for the analysis of a two parallelraks Combination (a) Combination (b)
σ∞22(N/m

2) 6= 0 6= 0

D∞
2 (C/N) 0 10−8σ∞22

B∞
2 (A−1 ·m) ±10−6σ∞22 ±10−6σ∞22
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∞  CN−1Figure 4.5: Normalized mode I ERR at rak tip A versus angle θ for twoparallel raks4.2.3 Branhed rak in an in�nite domainA branhed rak in a magnetoeletroelasti in�nite plane subjeted to a re-mote ombination of eletromagnetomehani loading is next studied. Thegeometry is illustrated in �gure 4.6 and two di�erent sets of far �eld eletro-magneti loadings are �rst onsidered (sets (a) and (b) in table 4.6). Themesh onsists in ten quadrati elements for the main rak and four for thebranh.Table 4.6: Loading ombinations onsidered for the analysis of a branhedrak Comb. (a) Comb. (b) Comb. () Comb. (d)

σ∞22(N/m
2) 6= 0 6= 0 6= 0 6= 0

D∞
2 (C/N) 0 10−8σ∞22 ±10−8σ∞22 ±10−8σ∞22

B∞
2 (A−1 ·m) ±10−6σ∞22 ±10−6σ∞22 0 ±10−6σ∞22In �gure 4.7, the normalized mehanial stress intensity fators at raktip C versus the branh angle are shown for both ombinations of loads. It
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Figure 4.6: Branhed rak: geometry and loadsan be notied that positive and negative magneti loads indue oppositee�ets on both modes I and II SIF and that there exist ertain angles forwhih the magneti loading has no e�et on them. These angles are nota�eted by the presene of eletri loadings, as an be seen by omparisonbetween �gures 4.7 (left) and 4.7 (right). In partiular, the so-alled neutralmagneti loading angles are θNML
I = 44.3o and θNML

II = 38.1o.In �gure 4.8, the normalized EDIF and MIIF are plotted for both om-bination of loads. As expeted, and aording to the results by Gao et al.(2003a), almost no in�uene of the eletri and magneti loading in theMIIF and EDIF, respetively, is found.In �gure 4.9, the normalized mehanial energy release rates at rak tipC versus the branh angle are shown for both ombinations of loads. Themagnitudes are normalized with the total ERR orresponding to a Gri�thrak with the same length as the mother rak and subjeted only to amehanial load.
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Figure 4.9: Mehanial energy release rates for ombinations (a) and (b)As we know, no frature riteria is unanimously aepted for magneto-eletroelasti materials. However, by observing �gure 4.9 a �rst approahto a riteria may be proposed. Sine the total energy release rate dereasesas soon as either eletri or magneti loading are applied, even when theyare positive. It seems lear that the maximum of the total ERR an not beused as a frature riteria. Moreover, under the polarization diretion andprinipal axes onsidered, it may be expeted that the branhed rak has abigger tendeny to grow if the branh angle θ is equal to zero and, sine themaximum of the total mehanial ERR is reahed just for θ = 0o, the max-imum of suh magnitude might be onsidered as a frature riteria. Thisonsideration is in agreement with the one proposed by Park and Sun (1995)



92 Chapter 4. Resultsfor piezoeletri materials (whih present, as it is already known, a similarbehavior to magnetoeletroelasti solids). Let us remark that the riteriaproposed herein is only a �rst approah and, obviously, would require of ex-perimental analysis of rak growth in magnetoeletroelasti solids, as wellas a more extensive numerial analysis of di�erent problems.Loading sets de�ned as ombinations () and (d) in table 4.6 are nowonsidered. Mehanial and magneti loadings will be now �xed, whilstthe eletri loading will take di�erent values. Normalized mehanial stressintensity fators for suh ombinations are shown in �gure 4.10. Similaronlusions to the previous ases analyzed an be drawn. In partiular, thereexist two neutral eletri loading angles, one for eah mehanial fraturemode, whih are independent of the presene of magneti loads, whih takethe following values: θNELI = 59.6o and θNELII = 48.1o.
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4.2 Stati results 934.2.4 Cirular arh rak in an in�nite domainA irular arh rak subjeted to far �eld eletromagnetomehani loadslike the one in �gure 4.11 is next onsidered. A 10 elements mesh is used todisretize the rak, being the ones at the tips very small (arh length/30)quarter-point straight elements whilst the rest are urved quadrati dison-tinuous boundary elements. Idential mehanial positive loading is onsi-dered for all the ases and two sets of remote eletromagneti loadings areanalyzed, listed in table 4.7.
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Figure 4.11: Cirular arh rak: geometry and loadsFigure 4.12 shows the normalized modes I and II stress intensity fator(K∗
I,II = KI,II/σ

∞
22

√
πr sin θ, being r the arh radius) versus the arh angle,for the two load ombinations onsidered. When D∞

2 = 0, �gure 4.12 (left)shows again that positive and negative magneti load indues an oppositee�et on both the mode I and mode II SIF. However, when eletri loadingomes into play (D∞
2 = 10−8σ∞22CN

−1), �gure 4.12 (right) illustrates howthe SIF are hardly a�eted, for the eletri and magneti loading magnitudes



94 Chapter 4. ResultsTable 4.7: Loading ombinations onsidered for the analysis of a irulararh rak Comb. (a) Comb. (b) Comb. () Comb. (d)
σ∞22(N/m

2) 6= 0 6= 0 6= 0 6= 0

D∞
2 (C/N) 0 10−8σ∞22 ±10−8σ∞22 ±10−8σ∞22

B∞
2 (A−1 ·m) ±10−6σ∞22 ±10−6σ∞22 0 ±10−6σ∞22onsidered in this ase.
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Figure 4.12: Normalized mehanial stress intensity fator for a irulararh rak under stati loads.Normalized total mehanial ERR (GM∗ = (GMI + GMII )/
πr sin θ

2 (σ∞22)
2)versus θ are plotted in �gure 4.13, where it is illustrated how a positiveeletri load triggers the total mehani ERR.
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Figure 4.13: Total Energy Release Rate for a irular arh rak under statiloads.4.3 Time-harmoni resultsIn this setion, some problems in whih plane waves are impinging on im-permeable raks in magnetoeletroelasti solids will be solved, plotting, inall ases, the normalized ESIF against the wave frequeny. Without lak ofgenerality in the proposed formulation, only longitudinal (L) waves will beanalyzed.4.3.1 Plane harmoni waves in magnetoeletroelasti solidsFor solving dynami frature mehanis it is neessary to obtain �rst theboundary onditions whih shall be applied on both rak surfaes. Let usassume that the inident wave impinges along the x2-axis, so the followingextended displaements vetor an be de�ned
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96 Chapter 4. Resultswhere the longitudinal wave veloity, cL, is given by
cL =

√
1

ρ
(c22 + κ1e22 + κ2h22) (4.4)where

κ1 =
γ22e22 − β22h22

γ22ǫ22 − β2
22

; κ2 =
ǫ22h22 − β22e22

γ22ǫ22 − β2
22

(4.5)and ρ is the mass density.The substitution of equation (4.3) in the behavior law yields to



σ11

σ22

σ12

D1

D2

B1

B2




=




c11 c12 0 0 e21 0 . . .
c12 c22 0 0 e22 0 . . .
0 0 c66 e16 0 h16 . . .
0 0 e16 −ǫ11 0 −β11 . . .
e21 e22 0 0 −ǫ22 0 . . .
0 0 h16 −β11 0 −γ11 . . .
h21 h22 0 0 −β22 0 . . .

(4.6)
. . . h11

. . . h22

. . . 0

. . . 0

. . . −β22

. . . 0

. . . −γ22







u1,1

u2,2

u1,2 + u2,1

φ,1
φ,2
ϕ,1
ϕ,2




=




c12u0 + e21φ0 + h21ϕ0

c22u0 + e22φ0 + h22ϕ0

0
0

e22u0 − ǫ22φ0 − β22ϕ0

0
h22u0 − β22φ0 − γ22ϕ0




iω
cL
e

iωx2
cLBy the imposition now of the impermeable rak fae boundary ondi-tion, a relation between the di�erent amplitudes of the generalized displae-ment vetor an be obtained

φ0 = κ1u0 ; ϕ0 = κ2u0 (4.7)And �nally, the extended trations whih shall be applied at the raksurfae with outward unit normal n = (n1, n2) are given by
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pI =






p1 =
2∑
j=1

σ1j nj =
C12 + e21κ1 + h21κ2

C22 + e22κ1 + h22κ2
n1σ0e

iωx2
cL I = 1

p2 =
2∑
j=1

σ2j nj = n2σ0e
iωx2
cL I = 2

Dn =
2∑
j=1

Dj nj = 0 I = 4

Bn =
2∑
j=1

Bj nj = 0 I = 5(4.8)where
σ0 = (C22 + e22κ1 + h22κ2)

iω

cL
u0 (4.9)Let us now introdue some quantities whih will be used in this setionfor normalization purposes

cS =

√
c66

ρ
; ν =

ǫ22

e22
; µ =

γ22

h22
(4.10)4.3.2 Straight rak in an in�nite domainTo the author's knowledge, no results for plane time-harmoni problemsin magnetoeletroelasti solids were available when this work was arriedout. Thus, to hek the presented formulation and taking into aount thatpiezoeletri behavior an be understood, from a mathematial point ofview, as a degenerated ase of the magnetoeletroelasti behavior, the prob-lem of L-waves impinging on a Gri�th rak in a PZT-6B material is solvedand results ompared with those obtained semianallytially by Shindo andOzawa (1990). Material properties are shown in table 4.3.2, while the ini-dent wave motion for suh a ase is de�ned by
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=




c11 c12 0 0 e21

c12 c22 0 0 e22

0 0 c66 e16 0
0 0 e16 −ǫ11 0
e21 e22 0 0 −ǫ22
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c12u0 + e21φ0

c22u0 + e22φ0

0
0

e22u0 − ǫ22φ0



iω

cL
e

iωx2
cL (4.11)Table 4.8: Material properties of PZT-6BProperties PZT − 6B

c11(GPa) 168
c12(GPa) 60
c22(GPa) 163
c66(GPa) 27.1
e16(C/m

2) 4.6
e21(C/m

2) -0.9
e22(C/m

2) 7.1
ǫ11(×10−10C2/Nm2) 3.6
ǫ12(×10−10C2/Nm2) 3.4The rak is meshed with 10 disontinuous quadrati elements, being theones at the tip quarter-point ones. Figure 4.14 shows, for the normalizedmode I SIF, the good agreement between the obtained results for a quasi-piezoeletri material and Shindo and Ozawa's solution.The ESIF for a L-wave impinging a straight rak in a BaTiO3 −

CoFe2O4 omposite with a Vf=0.5 domain are shown in �gures 4.15 and 4.16,
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Figure 4.18: L-wave sattering by a branhed rak: ESIF at branh tip vs.frequeny for di�erent branh anglesThe in�uene of the frequeny of the inident wave motion is lear fromthe �gures, with peak values of the mode I SIF around ωa/cS = 0.8, around
1.0 for the EDIF and 1.1 for the MIIF. Again, �utuations in the dynamiSIF and the EDIF of the magnetoeletroelasti omposite exhibit a similarbehavior to the previously observed for piezoeletri materials by Sáez et al.(2006). As expeted, larger peak values of KI are obtained with dereasingvalues of the angle branh β, while the opposite an be stated about KII .For low frequenies, both KIV and KV derease when the branh angleis inreased, but that tendeny hanges more quikly in KV . Moreover,peak values of the EDIF are similar for the di�erent branh angles, while,



102 Chapter 4. Resultsdereasing branh angles produe larger peak values of the MIIF.4.3.4 Cirular arh rak in an in�nite domainSattering of L-waves by a irular arh rak is next onsidered. Thegeometry of the problem is shown in �gure 4.19. Results are obtainedfor di�erent values of the arh semi-angle α. The rak is meshed with 8disontinuous quadrati urved elements with dereasing size towards thetip, plus 2 very small straight quarter-point elements at the tips with asmall length of arh-length/30. The normalized �eld intensity fators atthe rak tip are plotted against the dimensionless frequeny in �gure 4.20.
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Figure 4.19: L-wave impinging on a irular arh rakDue to the modi�ation of the relative angle between the tangent at therak tip and the inident motion, as it ould be expeted, normalized KIdereases as the arh-angle α is inreased, whilst mode-II SIF presents theopposite tendeny.To better illustrate the dynami oupling e�ets, maps of the ampli-
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Figure 4.20: L-wave sattering by irular arh rak: ESIF at tip vs. fre-queny for di�erent arh anglestudes of the vertial displaement (u2/u0), the eletri potential (φ/φ0)and the magneti potential (ϕ/ϕ0) are presented (�gures 4.21-4.22) for anarh semi-angle α = 45. Three di�erent frequenies (ωa/cS = 0.3, 0.8, 1.5)are onsidered, being them, respetively, smaller than the resonane fre-queny, around that value, and larger than it. Those plots show amplitudesfor total �elds, i.e., inident plus sattered �elds due to the presene of therak.
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106 Chapter 4. Results4.3.5 Two raks interation in an in�nite domainIn this setion, interation between two raks in an in�nite domain when aL-wave impinges on them is studied. The geometry of the problem is illus-trated in �gure 4.23, and several di�erent ases will be analyzed dependingon the relative position of the raks.
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Figure 4.23: L-wave impinging on two interating raksParallel raks in an in�nite domainThe ase of two parallel raks is now analyzed. Three di�erent distanesbetween the raks have been onsidered, namely a/2, a and 2a, a being thehalf rak-length. The geometry of the problem is illustrated in �gure 4.23with θ = 0, x0 = 0 and y0 = a/2, a, 2a.Figure 4.24 shows the normalized ESIF, versus the dimensionless fre-queny ωa/cS. Results are given for the rak �rst hit by the inidentL-wave (at tip A). In order to illustrate the e�ets of rak interations,in the �gures are inluded the results for a single rak. Suh interationsinrease as the distane between the raks dereases. The in�uene of thefrequeny of the inident wave motion is lear from the �gures, with peak
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112 Chapter 4. Resultsonly produe a shift in the frequeny of the peak value for rak separationsbelow the rak-length. However, due to the magnetoeletroelasti ou-pling, suh interation e�ets are more signi�ant in the ase of the EDIF(�gure 4.29 -top right) and the MIIF (�gure 4.29 -bottom).
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Figure 4.29: L-wave sattering by two ollinear raks: ESIF at rak tip B(�gure 4.23) vs. frequenyTwo raks with an inlination angleThe ase of two raks at an angle will be the last frequeny-domain problemsolved and presented in this work. The geometry of the problem is shownin �gure 4.23 with θ = π/4, x0 = a/
√

2 and y0 = a/
√

2+ a/2, a, 2a.The mode-I SIF is plotted against the frequeny in �gure 4.30 (top left)



4.3 Time-harmoni results 113for the lower rak tip B and in �gure 4.30 (top right) for the upper raktip C. At tip B the interation e�ets are small in the low frequeny range.However, at tip C rak-shielding is observed due to the presene of thelower rak. Mode-II SIF appears as a onsequene of rak interation, asshown in �gures 4.30 (bottom left) and 4.30 (bottom right) for rak tips Band C, respetively.
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Figure 4.30: L-wave sattering by two raks at an angle: KI and KII attip B (top line) and tip C (bottom line) vs. frequeny (�gure 4.23)In �gure 4.31 the EDIF and MIIF behaviors versus the frequeny atrak tips B and C are illustrated. Larger and shifted values of both theEDIF and the MIIF are observed for the upper rak, as ompared with theone rak ase. This phenomenon may be aused by the magnetoeletroe-
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Figure 4.31: L-wave sattering by two raks at an angle: KIV and KV attip B (top line) and tip C (bottom line) vs. frequeny (�gure 4.23)
4.4 Time-domain resultsIn this setion, transient dynami analysis of two-dimensional homogeneousand linear magnetoeletroelasti raked solids will be arried out by solvingseveral problems in either �nite or in�nite domain under impat loading.In all the problems solved a BaTiO3 − CoFe2O4 omposite with a
Vf=0.5 is onsidered and, for the onveniene of the presentation, the fol-lowing normalized dynami EDIF and MIIF are introdued
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K∗
IV = e22

ε22
KIV

Kst
I

; K∗
V = h22

γ22
KV

Kst
I

(4.12)where Kst
I = σ0

√
(πa).Moreover, to measure the intensity of the eletromagneti impats, thefollowing loading parameters are de�ned

λ = e22
ε22

D2

σ22
; Λ = h22

γ22
B2

σ22
(4.13)Previous works for other materials, suh as Dominguez (1993) for ho-mogeneous isotropi solids, establish that, to ensure the stability of thetime-stepping sheme of a time domain formulation, the spatial size of theelements and the time step an not be hosen independently, but they shouldsatisfy the following relation

η =
cmax∆t

le
≈ 1 (4.14)where cmax is the maximum of the plane wave phase veloities, ∆t is thetime step and le is the element length.Choosing too small time steps will inrease the omputational ost, whilehoosing too large ones will not permit a proper representation of quikhanges in the exat solution (Dominguez, 1993).It should be remarked that formulations based on Lubih's quadraturesto ompute the onvolution integrals in the time domain BEM are extremelystable and the spatial and temporal disretizations are rather independent,as ompared to formulations based on diret integration in the time domain.4.4.1 Straight rak in an in�nite domainIn order to validate the proposed time-domain formulation, a straight rakin an in�nite domain subjeted to an impat tensile mehanial loading



116 Chapter 4. Resultsof the form σ22(t) = σ0 · H(t), where H(t) is the Heaviside step funtion,is analyzed. Three di�erent time steps have been onsidered: a/(15 · cS),
a/(30 · cS) and a/(60 · cS) and ten equal quadrati elements have been used.The obtained results are ompared with those presented by Zhong et al.(2009) by the appliation of the Stehfest's method (see e.g. Stehfest, 1996)to derive the Laplae transform, and shown in �gure 4.32, where it an benotied that both results reah the stationary value at a similar instant oftime, but they are very di�erent in the transient period sine the resultspresented herein show a higher peak.Stehfest's inversion algorithm establishes that a time-dependent fun-tion f(t) an be approximated by

f(t) =
ln 2

t

N∑

n=1

νnf̂(n ln 2/t) (4.15)where f̂(s) is the laplae transform of f(t) and
νn = (−1)n+N/2 ·

min{n,N/2}∑

k=(n+1)/2

(2k)!kN/2

(N/2 − k)!k!(k − 1)!(n− k)!(2k − n)!
(4.16)
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4.4 Time-domain results 117Stehfest suggested in his works to use, at least, N=10 while Zhong usesonly N=3. This is the ause of an exessively high softening of the urve inthe transient period. As a matter of fat, a higher value of the peak shouldbe expeted, as works by Garía-Sánhez and o-workers for anisotropiand piezoeletri solids reveal (see, e.g., Garía-Sánhez and Zhang, 2007b;Garía-Sánhez et al., 2008a). Thus, it an be onluded that the modelpresented herein provides orret results.As it has been said above, three di�erent time steps have been onside-red, obtaining in all ases good and stable results, even for the minimum ηonsidered here whih value is η ≈ 0.167.Let us now onsider di�erent ombinations of loadings de�ned by theinteration of an impat tensile mehanial loading (σ22(t) = σ0 ·H(t)), animpat eletrial loading (D2(t) = D0 · H(t)) and/or an impat mehani-al loading (B2(t) = B0 ·H(t)). In �gure 4.33 the normalized mode-I SIFis shown. As expeted for all ombinations of loadings, de�ned by equa-tions (4.13), the value of that parameter tends to one, due to the fat thatmehanial SIF for Gri�th raks are independent of the presene of eletriand magneti loadings. Moreover, as it has been said in this work, posi-tive eletri and magneti loads make the rak open wider and this e�et,although is not notied in the permanent value, is shown in the transientperiod as a higher peak.In �gure 4.34, the mode-I mehanial energy release rate is plotted.The values have been normalized with the orresponding one to a raksubjeted to a stati mehanial loading. Positive eletromagneti loadingsmake higher both the peaks and the permanent values.
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Figure 4.33: Normalized dynami KI versus the dimensionless time for aGri�th rak in a magnetoeletroelasti solid subjeted to di�erent impatloading ombinations
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λ and Λ, aording to the poling diretion indiated in �gure 4.35.In �gures 4.37 and 4.38, normalized KIV and KV are plotted versusdimensionless time. Due to the quasi eletrostati assumption of the ele-tromagneti �elds , almost onstants values for those frature parameters



4.4 Time-domain results 121are obtained when eletri or magneti loadings, respetively, are applied.Moreover, an almost negligible in�uene of the eletri and magneti load-ings is found in MIIF and EDIF, respetively, as seen in �gures 4.37 (topleft) and 4.37 (top right).
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Figure 4.37: Normalized dynami KIV versus the dimensionless time in amagnetoeletroelasti raked plate subjeted to di�erent impat loadingombinationsTo better illustrate the transient e�ets, maps of the vertial displae-ment (u2), and the eletri and magneti potentials (φ and ϕ) are alsoinluded in this work for three di�erent ombinations of loads (de�ned, re-spetively, by the pairs λ = Λ = 0, λ = 1; Λ = 0 and λ = 0; Λ = 1) and twoinstants of time, smaller and bigger than one,respetively: t∗ = 0.4275 and
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t∗ = 1.52. When t∗ ≤ 1 and only mehanial loading is applied, vertialdisplaements are negligible in almost all the plate.
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Figure 4.38: Normalized dynami KV versus the dimensionless time in amagnetoeletroelasti raked plate subjeted to di�erent impat loadingombinations
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Figure 4.39: Absolute value of the normalized vertial displaement for
t∗ = 0.4275 when λ = 0; Λ = 0 (top left), λ = 1; Λ = 0 (top right) and
λ = 0; Λ = 1 (bottom)
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Figure 4.40: Absolute value of the normalized vertial displaement for
t∗ = 1.52 when λ = 0; Λ = 0 (top left), λ = 1; Λ = 0 (top right) and
λ = 0; Λ = 1 (bottom)4.4.3 Slanted edge rak in a magnetoeletroelasti plateLet us onsider now a slanted edge rak of length a in a homogeneousand linear magnetoeletroelasti plate as the one shown in �gure 4.41. Therak is inlined 45o respet to the horizontal, and the geometry of the plateis given by h=22mm, w=32mm, =6mm and a=22.63mm.The mesh is performed with 24 quadrati elements for the externalboundary, and 4 disontinuous quadrati elements for the rak; the timestep adopted in the simulations is given by 0.15 · a/cL. In �gures 4.42
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Figure 4.42: Normalized dynami KI versus the dimensionless time in amagnetoeletroelasti raked plate ontaining an slanted edge rak sub-jeted to di�erent impat loading ombinations
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Figure 4.43: Normalized dynami KII versus the dimensionless time in amagnetoeletroelasti raked plate ontaining an slanted edge rak sub-jeted to di�erent impat loading ombinations
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Chapter 5Extended Finite Elementformulation for the analysis ofraked magnetoeletroelastisolids5.1 IntrodutionIn this hapter, a di�erent numerial tehnique for the study of stati fra-ture mehanis in magnetoeletroelasti materials is presented.The analysis of raked media with the Finite Element Method (FEM)present a big inonvenient, sine the rak must merge with the mesh. Thisfat provokes the neessity of remeshing when rak growth problems arestudied. Additionally, mesh re�nement and/or singular elements suh asquarter-point elements are also neessary near the rak-tip to apture thestress singularity.



130 Chapter 5.0. X-FEM for raked magnetoeletroelasti solidsTo irumvent these di�ulties, the eXtended Finite Element Method(X-FEM), �rst presented by Belytshko and Blak (1999) and Möes et al.(1999), is a powerful alternative in omputational frature, whih have beensuessfully applied to solve rak problems in materials with di�erent be-havior laws (see, e.g., works by Möes et al., 1999 in isotropi media, Sukumaret al., 2004 in bimaterials, Asadpoure and Mohammadi, 2007 in orthotropimaterials and Béhet et al., 2009 in piezoeletri solids). To this end, ad-ditional (enrihment) funtions are added to the lassial �nite elementapproximation through the framework of partition of unity (Babuska andMelenk, 1997). In other words, in ertain nodes of the mesh, new degreesof freedom are added in order to modelize the disontinuity existing due tothe presene of the rak. The rak interior is represented by a disonti-nuous (Heaviside) funtion and the rak-tip is modeled by the asymptotirak-tip funtions.In this work, we present a X-FEM approah for frature analysis inplane anisotropi magnetoeletroelasti materials. For this purpose, newrak-tip enrihment funtions will be derived and, in order to validate theproposed method, some problems solved omparing the results with thoseobtained by the BEM formulation previously introdued.5.2 X-FEM formulation5.2.1 Crak modelling and seletion of enrihed nodesLet us onsider an arbitrary raked domain, disretized in elements so thatthe nodal set is N . Then, the displaement of a point x belonging to thedomain onsidered an be determined by (Möes et al., 1999)



5.2 X-FEM formulation 131
u(x) =

∑

i∈N

Ni(x)ui+ ∑

j∈NH

Nj(x)H(x)aj+ ∑

k∈N CT

Nk(x)
∑

α

Fα(x)bαk (5.1)where Ni is the shape funtion assoiated to the node i, ui is the ve-tor of the traditional nodal degrees of freedom de�ned in a �nite elementsdisretization while aj and blk are the added set of degrees of freedom inthose elements whih ontain the rak. H(x) is the generalized Heavisidefuntion, that simulates the displaement disontinuity on both sides of therak faes, and Fα are the rak tip enrihment funtions. In a �nite ele-ment mesh, as seen in �gure 5.1, the set of nodes whih have to be enrihedwith Heaviside funtions (NH) are marked with a solid irle, while theset of nodes whih must be enrihed with rak tip enrihment funtions(NCT ) are marked with a square.
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Figure 5.1: Node seletion for enrihmentIn a magnetoeletroelati solid, the variables whih appear in equa-tion (5.1) are de�ned in an extended way, so ui and ai are four omponentsvetors and bi is a 32 omponents vetor, as it will be exposed in a latersetion.



132 Chapter 5.0. X-FEM for raked magnetoeletroelasti solids5.2.2 Weak formulation and disrete equationsLet us onsider an arbitrary raked domain Ω whih ontains a boundary Γtwhere the extended trations are presribed and in whih impermeable rakfaes ondition is onsidered (extended tration-free rak faes). Let ũ bethe mehanial displaement and σ̃ the mehanial stress tensor, while uand σ are, respetively, the extended displaement vetor and the extendedstress tensor. The weak form (priniple of virtual work) for a ontinuousproblem in a magnetoeletroelasti solid is given by
∫

Ω

σ̃ : δε̃ dΩ −
∫

Ω

D : δE dΩ −
∫

Ω

B : δH dΩ =

∫

Γt

pmech · δũdΓ

−
∫

Γt

pe · δφ dΓ −
∫

Γt

pm · δϕdΓ +

∫

Ω

fmech · δũ dΩ

−
∫

Ω

f e · δφ dΩ −
∫

Ω

fm · δϕdΩ. (5.2)where the supersripts meh, e, and m denote, respetively mehanial,eletrial and magneti trations or volume fores.The use of the generalized notation introdued in hapter 2 allows ex-pressing the weak form in an elasti-like way
∫

Ω

σ : δε dΩ =

∫

Γt

p · δu + dΓ +

∫

Ω

f · δu dΩ (5.3)where : and · denotes, respetively, tensorial and salar produts, f is theextended fore vetor per unit volume and p are the presribed extendedtrations. In partiular, pmech are the mehanial trations and pe and pmare, respetively, their eletri and magneti ounterpartsAfter the appropriate disretizations of the governing equations, the



5.2 X-FEM formulation 133following magnetoeletroelasti �nite element equations an be derivedkeueuũ+ keuφφ + keuϕϕ = fmech (5.4a)kφeuũ− kφφφ − kφϕϕ = fe (5.4b)kϕeuũ− kϕφφ − kϕϕϕ = fm (5.4)whih an be also expressed like a simply elasti problem by means of thegeneralized notation kelemuelem = felem (5.5)wherekelem =

∫

Ωelem

GTCGdΩ =

+1∫

−1

+1∫

−1

GT (ξ, η)CG(ξ, η)|J |dξ dη (5.6)where G is the matrix of shape funtion derivative.The global sti�ness matrix K is obtained by the assembly of all theelementary sti�ness matries, and an be obtained as followskelemij =



kuuij kuaij kubijkauij kaaij kabijkbuij kbaij kbbij  (5.7)while the element ontribution to the global element fore vetor, f isfelemi = {fui fai fb1i . . . fbαi }T (5.8)where, in equations (5.7-5.8), α is the number of rak tip enrihment fun-tions (eight in magnetoeletroelasti solids), and the indexes u, a and brefer, respetively, to the extended displaement vetors and the extendednew degrees of freedom vetors. The submatries and vetors that appearin it an be alulated as
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krsij =

∫

Ωe

(Br
i )
TC(Bs

i ) dΩ (r, s = u, a, b) (5.9a)fui =

∫

∂Ωe

NitdΓ +

∫

Ωe

Nif dΩ (5.9b)fai =

∫

∂Ωe

NiHtdΓ +

∫

Ωe

NiHf dΩ (5.9)fbαi =

∫

∂Ωe

NiFαtdΓ +

∫

Ωe

NiFαf dΩ (α = 1, 8) (5.9d)In equation (5.9) Ni is the standard �nite element shape funtion de�nedat node i, and Gu
i , Ga

i and Gb
i are the nodal matries of shape funtionderivatives, whih, for a magnetoeletroelasti material, are given by

Gu
i =




Ni,x1
0 0 0

0 Ni,x2
0 0

Ni,x2
Ni,x1

0 0
0 0 Ni,x1

0
0 0 Ni,x2

0
0 0 0 Ni,x1

0 0 0 Ni,x2




(5.10)
Ga
i =




(NiH),x1
0 0 0

0 (NiH),x2
0 0

(NiH),x2
(NiH),x1

0 0
0 0 (NiH),x1

0
0 0 (NiH),x2

0
0 0 0 (NiH),x1

0 0 0 (NiH),x2




(5.11)
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Gb
i =

[ Gb1
i Gb2

i Gb3
i Gb4

i Gb5
i Gb6

i Gb7
i Gb8

i

] (5.12a)Gbα
i =




(NiFα),x1
0 0 0

0 (NiFα),x2
0 0

(NiFα),x2
(NiFα),x1

0 0
0 0 (NiFα),x1

0
0 0 (NiFα),x2

0
0 0 0 (NiFα),x1

0 0 0 (NiFα),x2




(5.12b)
where the omma denotes spatial derivation.5.2.3 Enrihment funtionsThe asymptoti displaement �elds around the rak tip in an unboundedmagnetoeletroelasti domain were presented in hapter 2. From them, aset of elementary funtions that span the asymptoti �elds an be obtained,for any orientation of the rak and loading ombination.While for isotropi and piezoeletri materials, only four or six funtions,respetively, are neessary to desribe all the possible generalized displae-ment states around the rak tip, for magnetoeletroelasti materials eightfuntions are needed. These funtions, named as Fα in equation (5.1), areobtained from the asymptoti singular solution presented in setion 2.4.2,and present a similar mathematial struture to those obtained by Béhetet al. (2009) for piezoeletri materials.

Fα(r, θ) =
√
r
{
ρ1 cos(θ1/2) ρ2 cos(θ2/2) ρ3 cos(θ3/2) ρ4 cos(θ4/2)

ρ1 sin(θ1/2) ρ2 sin(θ2/2) ρ3 sin(θ3/2) ρ4 sin(θ4/2)
} (5.13a)
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ρK(ψ, µK) =

1√
2

4
√

2(|µK |2 − 1)(sinψ)2 + Re(µK) sin (2ψ) − 1 (5.13b)and
θK = πInt(ψ

π

)
+ arctan

|Im(µK)| tan (ψ − πInt(ψπ ))

1 + Re(µK) tan (ψ − πInt(ψπ ))
. (5.13)where Int denotes the integer part of a real number, µI are the four rootsof the harateristi equation (2.45) whih imaginary part are positive (orequivalently, roots of the eigenvalues problem de�ned by 2.23) and ψ = θ−α,being ψ the orientation angle of the material axes with respet to the rak(Figure 5.2). Thus, the enrihment funtions may be alulated for everypoling diretion with respet to the rak path.

x1

x2

r

y

Figure 5.2: De�nition of the material axes around the rak tip



5.3 Element partitioning and numerial integration 1375.3 Element partitioning and numerial integra-tionAs it has been said, one of the main advanes of the X-FEM respet tothe lassial FEM approahes in frature mehanis problems, is the lak ofneessity in mathing the rak with the mesh.However, if an element is interseted by a rak, displaement �elds tobe integrated (see equation 5.3) over the element beome disontinuous, dueto the disontinuous behavior of both Heaviside and rak tip enrihmentfuntions. As a result of this, the use of ordinary Gauss rules do not provideaurate results of the integration.In this sense, Dolbow (1999) proposed two methods to overome thisnumerial di�ulty, onsisting in subdividing the interseted element intoeither triangles or squares.In this work, triangulation of the partitioned elements have been adopted.This method implies that the sub-triangles edges must be adapted to rakfaes (see �gure 5.3), sine the domain Ω must be divided into non overlap-ping subdomains, in whih ontinuous funtions shall be integrated.
Figure 5.3: Partitioning of a square �nite element in 2-D totally (left) orpartially (right) interseted by the rak (dark line).



138 Chapter 5.0. X-FEM for raked magnetoeletroelasti solidsMoreover, ordinary Gauss quadratures have been used for the integra-tion over non enrihed elements and for non partitioned enrihed elements(in this last ase, a higher number of gauss points are onsidered). Nonpartitioned enrihed elements our when not all the nodes are enrihed.In other words, either those elements whih are "the transition" betweenpartitioned elements and the non enrihed elements, or, in ases where therak merges with the mesh, those elements whih are separated by therak.It should be remarked that when an element is subdivided in triangles, aremeshing is not arried out. As it has been said, the element belonging tothe FEM mesh (parent element), must be partitioned into non overlappingtriangular elements Ω△
e (hildren elements) so that Ω =

m⋃
e=1

Ω△
e , being mthe number of subtriangles in the partition. This partition proedure di�ersfrom remeshing in two key features. First, element partitioning is performedonly to arry out the numerial integration (no additional degrees of freedomare added); seond, the basis funtions are tied to the parent element andnot to the subtriangles.

5.4 Computation of generalized stress intensity fa-torsIn this part of the work, the omputation of ESIF has been arried outby means of an energy integral method, following the tehnique developedby Rao and Kuna (2008, 2010). A brief desription of this approah follows.



5.4 Computation of generalized stress intensity fators 1395.4.1 Interation integral method for magnetoeletroelastimaterialsWorks by Wang and Mai (2003, 2004) provide the expression for the pathindependent J -integral in a magnetoeletroelasti raked solid:
J =

∫

ΓA

(Wδ1j − σijui,1 −Djφ,1 −Bjϕ,1)nj dΓ (5.14)where the index i and j vary from 1 to 2 in two-dimensional solids, ΓAis an arbitrary enlosing ontour around the rak tip and nj is the j−thomponent of the outward unit vetor normal to it. W is the eletromag-neti enthalpy density whih, for a linear magnetoeletroelasti solid, anbe expressed as
W =

1

2
(σijεij −DjEj −BjHj) (5.15)If the divergene theorem is now applied to equation (5.14), J-integralan be transformed into an equivalent domain form as

J =

∫

A

(σijui,1 +Djφ,1 +Bjϕ,1 −Wδ1j)q,j dA

+

∫

A

(σijui,1 +Djφ,1 +Bjϕ,1 −Wδ1j),jq dA (5.16)where A is the area inside the ontour ΓA and q is an arbitrary smoothingfuntion suh that it is unity at the rak tip and zero on the boundarydomain ΓA. In equation 5.16, the seond term vanishes in homogeneousmagnetoeletroelasti materials, sine the material properties are onstantin suh solids. Thus, the expression for the J-integral results as follows



140 Chapter 5.0. X-FEM for raked magnetoeletroelasti solids
J =

∫

A

(σijui,1 +Djφ,1 +Bjϕ,1 −Wδ1j)q,j dA. (5.17)Equations (5.15) and (5.17) an be rewritten in terms of the extendedvariables de�ned in hapter 2 as
J =

∫

A

(σIjuI,1 −Wδ1j)q,j dA, W =
1

2
σIjεIj . (5.18)Let us now onsider two independent equilibrium states for the rakedbody. The �rst one orresponds to the state that must be solved, and theseond one orresponds to an auxiliary state, whih an be the near-tipdisplaement �eld for any of the extended opening frature modes. In thiswork, for the sake of onveniene, the asymptoti �elds expressed in termsof the generalized Stroh's formalism introdued in setion 2.2.2 have beenused.The superposition of those two states onsidered produes another equi-librium state for whih the J -integral is

J (S) =

∫

A

((σ1
Ij + σ2

Ij)(u
1
I,1 + u2

I,1) −WSδ1j)q,jdA

W (S) =
1

2
[(σ

(1)
Ij + σ

(2)
Ij )(ε

(1)
Ij + ε

(2)
Ij )] (5.19)

J -integral given in equation (5.19) an be deomposed into
J (S) = J (1) + J (2) +M (1,2) (5.20)The interation integral M is then given by

M (1,2) =

∫

A

(σ
(1)
Ij u

(2)
I,1 + σ

(2)
Ij u

(1)
I,1 −W (1,2)δ1j)q,jdA (5.21)with

W (1,2) =
1

2
(σ

(1)
Ij ε

(2)
Ij + σ

(2)
Ij ε

(1)
Ij ) (5.22)



5.4 Computation of generalized stress intensity fators 141Sine the eleromagnetomehanial J -integral is equal to the total en-ergy release rate and this an be expressed in terms of the extended stressintensity fators (Tian and Rajapakse, 2005b) as seen in equation (3.146),for two dimensional problems, one an write, for any equilibrium state
J =

1

2
K2
IIY11 +

1

2
K2
IY22 +

1

2
K2
IV Y44 +

1

2
K2
V Y55 +KIKIIY12 (5.23)

+KIKIV Y24 +KIKV Y25 +KIIKIV Y14 +KIIKV Y15 +KIVKV Y45whih, substituted in (5.20), leads to the following expression of the inter-ation integral
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IV )Y45The individual extended stress intensity fators are evaluated by solvingthe system of linear algebrai equations obtained from (5.24) by hoosingappropriate auxiliary states. For instane, if auxiliary state is taken so that

K
(2)
I = 1 and K(2)

II = 0, K(2)
IV = 0, K(2)

V = 0, equation (5.24) an be reduedto
M (1,I) = K

(1)
I Y22 +K

(1)
II Y12 +K

(1)
IV Y24 +K

(1)
V Y25 (5.25)Similarly, other three equations an be obtained

M (1,II) = K
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(1)
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V Y15 (5.26)
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V Y45 (5.27)

M (1,B) = K
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II Y15 +K

(1)
IV Y45 +K
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V Y55 (5.28)



142 Chapter 5.0. X-FEM for raked magnetoeletroelasti solidsSo, �nally, the determination of the extended stress intensity fators isredued to solving the following system of linear equations:
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5.5 ValidationSome stati rak problems in magnetoeletroelasti media are solved tovalidate the formulation. The numerial results obtained by the X-FEMare ompared with those obtained by the boundary element formulationpresented previously. As in the previous haper, a BaTiO3 − CoFe2O4omposite with a Vf=0.5 is onsidered. The properties of suh material areshown in table 4.1.In all omputations linear quadrilateral elements are used. A 2 × 2Gauss quadrature rule is used in every non-enrihed element, whereas fornon-partitioned enrihed elements a 5 × 5 Gauss rule is used. For enrihedelements that are partitioned into subtriangles, a seven point Gauss rule isused in eah one.5.5.1 Slanted entral rak in a magnetoeletroelasti plateA �nite magnetoeletroelasti plate with a entral inlined rak under om-bined eletro-magneto-mehanial loads is analyzed. In Figure 5.4 the ge-ometry and loading are desribed. The ratio between the rak lengthand plate width is a/w = 0.2. The plate is under uniform tension in the

x2 diretion, σ22, and subjeted to both eletri and magneti loadings:
D2 = 0.1 · 10−9σ22(C · N−1) and B2 = 1 · 10−9σ22(A

−1 · m). The prob-



5.5 Validation 143Table 5.1: Benhmark results for a rak in a �nite plate.
θ KI/(σ22

√
πa) KII/(σ22

√
πa) KIV /(D2

√
πa) KV /(B2

√
πa)

0o 1.0241 ∼ 0 1.0226 1.0395
15o 0.9562 0.2506 0.9869 1.0103
30o 0.7720 0.4361 0.8845 0.9206lem has been solved for three di�erent uniform meshes (25 × 50, 50 × 100,

75× 150), and for three di�erent angles of the rak with respet to the x1axis (θ = 0◦, 15◦, 30◦). The polarization diretion oinides with the x2-axis, and the benhmark results, obtained by means of the BEM formulationproposed in this thesis are presented in table 5.1.
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Figure 5.4: Geometry and loads for a magnetoeletroelasti plate with aslanted rakIn table 5.2, the extended �nite element results, normalized with theBEM ones, are presented for three meshes. A good agreement between



144 Chapter 5.0. X-FEM for raked magnetoeletroelasti solidsboth formulations is found.Table 5.2: ESIF for a rak in a �nite plate.
θ ESIF (25 × 50) (50 × 100) (75 × 150)
0o KI

∗ 0.9822 0.9911 0.9916
K∗
II ∼ 1 ∼ 1 ∼ 1

K∗
IV 0.9901 0.9940 0.9952
K∗
V 0.9561 0.9827 0.9846

15o K∗
I 1.0256 0.9918 0.9951

K∗
II 1.0311 0.9885 0.9876

K∗
IV 1.0359 1.0181 1.0186
K∗
V 0.9718 0.9575 0.9723

30o K∗
I 0.9803 1.0062 1.0116

K∗
II 1.0541 1.0071 0.9998

K∗
IV 1.0372 1.0178 1.0137
K∗
V 0.9472 0.9995 0.99875.5.2 Double-edge rak in magnetoeletroelasti plateA double-edge rak in a �nite magnetoeletroelasti plate under ombinedeletro-magneto-mehanial loads is next analyzed. The geometry and load-ing are illustrated in Figure 5.5. The ratio between the rak length and theplate width is given by a/w = 0.25, being the load values and polarizationangle the same as in the previous example. In table 5.3 the benhmarkresults for the normalized ESIF are shown.In table 5.4, the extended �nite element results, normalized with theBEM ones, are presented for three meshes. A good agreement between
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Figure 5.5: Geometry and loads for a magnetoeletroelasti plate with adouble-edge rakTable 5.3: Benhmark results for a double edge rak in a �nite plate.
KI/(σ22

√
πa) KII/(σ22

√
πa) KIV /(D2

√
πa) KV /(B2

√
πa)1.1197 ∼ 0 1.1062 1.3636both formulations is found. It should be remarked that idential results forboth rak tips are obtained.Table 5.4: ESIF for a double edge rak in a �nite plate.

ESIF (25 × 50) (50 × 100) (75 × 150)
K∗
I 0.9732 0.9844 0.9845

K∗
II ∼ 1 ∼ 1 ∼ 1

K∗
IV 0.9778 0.9855 0.9848
K∗
V 0.9408 0.9825 0.9840
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Chapter 6Crak fae boundaryonditions6.1 IntrodutionIn frature mehanis analysis of multi�eld materials in general, and of mag-netoeletroelasti media in partiular, three di�erent boundary onditionson open rak surfaes an be onsidered, depending on the eletromag-neti ondutivity onsidered between both rak faes. These onditionswere summarized in hapter 2 and, in this hapter, the proedure to solve afrature mehanis problems onsidering any of those rak fae boundaryonditions will be introdued, and the impliations of them on the fratureparameters, studied by solving simple and multiple raks problem.For solving impermeable and permeable rak problems (ideal rak faeboundary onditions), it will be enough to apply the orresponding bound-ary onditions to the system of equations obtained by the evaluation ofthe boundary integral equations (3.37-3.38). However, the more realisti



148 Chapter 6. Crak fae boundary onditionssemipermeable ondition is given by a non-linear equation. Then, for solv-ing that problem, an iterative algorithm will be proposed and implemented.That algorithm is a generalization of the one proposed by Denda (2008) forpiezoeletri raked solids.6.2 Numerial solution algorithm for semiperme-able raksLet us all the jumps of the eletri and magneti potentials in the rak as
δ4 = (φ+ − φ−) and δ5 = (ϕ+ − ϕ−). The semipermeable solution impliesthat the eletri and magneti potentials, the eletri displaement andthe magneti indution on the rak faes are generally di�erent to zero.Thus, the semipermeable rak solution is somewhere in between the twoideal rak surfae boundary ondition, so the semipermeable values of thejump in the eletri and magneti potentials, δ4 and δ5, will be equal to theimpermeable values multiplied by a proportionality fator, he and hm, lowerthan one. An iteration proedure to determine these fators is proposedherein. This proedure is based on the searh of adequate values of δ4 and
δ5. The use of them as boundary onditions of the problem, shall lead to thevalues of the permittivity and permeability in the rak, equation (2.35).The iteration will be arried out until those values are equal to the referenevalues of the permittivity and the permeability in the medium between therak surfaes, ǫ0 and γ0. The following iteration proedure for multipleraks problem is proposed.1. Get the impermeable solution δ[0]

4 , δ[0]
5 , whih will be used as the start-ing point of the iteration proedure. The number between braketsdenotes number of iteration step.



6.2 Numerial solution algorithm for semipermeable raks 1492. De�ne, for eah rak k, two pairs of proportionality parameters hkieand hkim (i=1,2), whih vary in the interval (0,1). In �gure 6.1 itis shown the behaviors of the permittivity and the permeability ina rak with respet to parameters he and hm. In suh �gure, the�at grey surfaes denotes the values of ǫ0 (left) and γ0 (right). Letus remark that the sought point will be the intersetion between theintersetion lines appearing in eah �gure.3. (a) Take, for eah rak, hk1e and hk1m slightly bigger than zero (whatwould orrespond to the quasi-permeable solution) and hk2e and
hk2m slightly lower than one (what would orrespond to the quasi-impermeable solution). Then, set

δ
[k1]
4 = hk1e δ

[0]
4 ; δ

[k2]
4 = hk2e δ

[0]
4

δ
[k1]
5 = hk1m δ

[0]
5 ; δ

[k2]
5 = hk2m δ

[0]
5(b) Calulate the mehanial rak opening displaement, the eletridisplaement and the magneti indution based on the set valuesintrodued in the previous item.() Calulate for eah rak k and eah parameter hk1e , hk2e , hk1m , hk2mat M points (nodal points) ξj

ǫkij = Dki
n (ξj)

δki2 (ξj)

δki4 (ξj)
(6.2)

γkij = Bki
n (ξj)

δki2 (ξj)

δki5 (ξj)
(6.3)whih are obtained by the substitution in equation (2.35) of theorresponding ECOD and the eletri (Dn) and magneti (Bn)trations previously obtained in step (3b).



150 Chapter 6. Crak fae boundary onditions(d) Calulate the averages for eah rak and eah pair of parameters
hkie and hkim of the parameteres de�ned in setion (3).

ǫki =

∑M
j=1 ǫ

ki
j

M
(6.4)

γki =

∑M
j=1 γ

ki
j

M
(6.5)This parameter are the so-alled eletri permittivity in the rakand magneti permeability in the rak, respetively.(e) While the eletri permittivity and magneti permeability of anyrak is not equal to the values for the medium between the raksurfaes, iterate using a proedure to solve non-linear equations,until a pair of values hk[n]

e and hk[n]
m for eah rak is obtained.Let us remark that all those values may be di�erent.4. After setting δk[n]

4 = h
ki[n]
e δ

[0]
4 and δk[n]

5 = h
ki[n]
m δ

[0]
5 , solve the problemrequired to get the semipermeable solution searhed.
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Figure 6.1: Behavior of the permittivity (left) and the permeability (right)in the rak with respet to parameters hkie and hkim



6.3 Validation of the algorithm 1516.3 Validation of the algorithmIn this setion, several frature mehanis problems for di�erent rak faesboundary onditions will be solved. In all simulations, a BaTiO3−CoFe2O4magnetoeletroelasti solid with a Vf = 0.5, whih properties are listedin table 4.1, will be onsidered. In all ases, the medium between bothrak faes is air, what implies that the eletri permittivity and magnetipermeability are, respetively, ǫ0 = 8.8542 · 10−12N/V 2 and γ0 = 4π ·
10−7N/A2.6.3.1 Gri�th rak in a magnetoeletroelasti solidIn order to validate the proposed algorithm, numerial results are obtainedand ompared with the analytial solution of a single horizontal rak oflength 2a in an in�nite magnetoeletroelasti domain (see �gure 4.1). Thissolution, �rst obtained by Wang and Mai (2006), will be brie�y presented.The extended rak opening displaements δI , I = 1, ..., 5; are given by

δI = u+
I − u−I = 2YIJ (σ∞J2 − σcJ2)

√
a2 − x2

1 (6.6)where Y is the ompliane (Irwin) matrix de�ned in equation (3.145), σ∞J2are the omponents of the extended stress tensor applied, σcJ2 are the om-ponents of the extended stress tensor on the rak surfaes, and the sum-mation rule over repeated is applied. The di�erent rak fae boundaryonditions that may be onsidered for the rak are(i) Fully impermeable rak. In this ase, the rak is extended trationfree, what implies that
Dc

2 = 0 ; Bc
2 = 0 (6.7)



152 Chapter 6. Crak fae boundary onditionswhere, sine D+
2 = D−

2 and B+
2 = B−

2 , the upperindex  has beenused to denote either of the rak surfaes.(ii) Fully permeable rak. For fully permeable raks no jump in the ele-tromagneti potential appear. This ondition an be expressed as
δ4 = 0 ; δ5 = 0 (6.8)The substitution of that ondition in (6.6) will lead to a system ofequation whose solution provides the analytial expressions of the ex-tended trations on the rak faes

Dc
2 =

(Y4JY55 − Y5JY45)

(Y44Y55 − Y54Y45)
σ∞J2 (6.9a)

Bc
2 =

(Y5JY44 − Y4JY54)

(Y44Y55 − Y54Y45)
σ∞J2 (6.9b)(iii) Semipermeable rak. The semipermeable rak onditions are

Dc
2δ2 = −ǫ0δ4 ; Bc

2δ2 = −γ0δ5 (6.10)where ǫ0 is the permittivity of the medium between the rak faes and
γ0 its permeability. Substituting now (6.10) in (6.6) and operating anon-linear system of equations whih de�nes the extended trationsin a semipermeable rak, it will be obtained.

Dc
2 = −ǫ0

Y4Jσ
∞
J2 − Y44D

c
2 − Y45B

c
2

Y2Jσ∞J2 − Y24Dc
2 − Y25Bc

2

(6.11a)
Bc

2 = −γ0
Y5Jσ

∞
J2 − Y54D

c
2 − Y55B

c
2

Y2Jσ∞J2 − Y24Dc
2 − Y25Bc

2

(6.11b)



6.3 Validation of the algorithm 153where ǫ0 is the permittivity of the medium between the rak faesand γ0 its permeability.The analytial solution previously dedued will be ompared with theresults obtained with the proposed formulation. In �gure 6.2 the mehani-al opening displaement are shown for the ase in whih only a mehanialloading is applied and in the ase in whih a ombination of loads de�nedby σ∞22 = 1N/m2, D∞
2 = 10−9C/N and B∞

2 = 10−8A−1 · m is applied.The analytial solution is plotted in lines, omparing them with the resultsobtained numerially (points), and those magnitudes are normalized withtheir respetive value under permeable onditions in x1 = 0. Exellentagreement between both sets of solutions is observed. It an be seen that,in both ases, the semipermeable solution is between the permeable andthe impermeable ones. When only mehanial loading is applied, the rakopening displaement under impermeable ondition, δimp2 , is the smallestvalue, while the presene of positive eletromagneti loads, whih tend toopen the rak, leads to the largest values, beause any degree of permeabil-ity provokes that the in�uene of those loads dereases. Let us remark thatthe permeable solution is independent of the presene of eletromagnetiloading and the resulting mehanial stress intensity fators are indepen-dent of the boundary ondition onsidered.In �gure 6.3 the analytially obtained jumps in the eletri and magnetipotentials are ompared with the results obtained numerially (points) withan exellent agreement again. Those magnitudes are normalized with theirrespetive values under impermeable onditions in the enter of the rak(x1 = 0).In �gure 6.4, the eletri displaement and magneti indution on therak surfaes are shown in omparison with the analytial results (lines),
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Figure 6.3: Eletri (left) and magneti (right) potentials jumps on therak.also for the three boundary onditions onsidered and normalized with theapplied eletri and magneti loads. In all �gures, an exellent agreementbetween the numerial and analytial results an be observed.
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Figure 6.4: Eletri displaement (left) and magneti indution (right) onthe rak surfaes.6.3.2 Central straight rak in a �nite plateA entral rak in a magnetoeletroelasti plate like the one in Figure 4.35 isanalyzed. The ratio between the rak length and the plate width is a/ω =

0.2. Thirty two quadrati elements were used for meshing the externalboundary, while ten equal quadrati elements were taken for the rak.In table 6.1 the normalized frature parameters are shown when the load-ing ombination is σ∞22 = 1N/m2, D∞
2 = 10−9C/N and B∞

2 = 10−8A−1 ·m.ESIF are normalized for the orresponding values to a Gri�th impermeablerak subjeted to the same loads, while the di�erent energy release ratesare normalized with the absolute value of the total energy release rate foran impermeable rak in an in�nite domain. Considerable di�erenes werefound in the eletromagneti stress intensity fators when di�erent rakfae boundary onditions (CFBC) were onsidered but not in the mehani-al SIF. As expeted, eletri and magneti energy release rates are negligi-ble when permeable raks are analyzed, what implies that mehanial andtotal energies are the same.



156 Chapter 6. Crak fae boundary onditionsTable 6.1: Frature parameters for straight rak in a plateERR CFBC TIP A-B ESIF CFBC TIP A-B
GTot Imp -1.0354 KI Imp 1.0255Semip -0.9162 Semip 1.0255Perm 0.1276 Perm 1.0258
G
I+II
M Imp 0.2240 KII Imp 2.4187e-009Semip 0.2188 Semip 2.4185e-009Perm 0.1276 Perm 2.4145e-009

GELEC Imp -1.2565 KIV Imp 1.0190Semip -1.1330 Semip 0.9696Perm ∼ 0 Perm 0.0777
GMAGN Imp -0.2894·10−2 KV Imp 1.0205Semip -0.1946·10−2 Semip 0.8893Perm ∼ 0 Perm 0.2212In �gure 6.5, total energy release rate is shown for σ∞22 = 1N/m2,

D∞
2 = 10−9C/N and di�erent values of magneti loading, for the threerak fae boundary onditions onsidered. The results are normalized withthe value of the total energy release rate orresponding to a Gri�th imper-meable rak subjeted only to a mehanial load. If a permeable rak isonsidered, the normalized GTot takes a onstant value equal to G∗

Tot=1.124,whih is the same for any loading ombination. The presene of eletromag-neti �elds shall derease the energy release rate when the rak is not fullypermeable. This fat implies that the total energy release rate an not beadopted as a frature riteria. Moreover, it an be realized that the non-linear e�et of loadings and that the energy release rate is always smaller
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PermeableFigure 6.5: Total energy release rate for straight rak in a plate.6.3.3 Three parallel raks in an unbounded domainTo further on�rm the validity of the iteration sheme, a ase involvinginteration among three parallel raks in an in�nite will be next onsidered.In this ase the solutions for the upper or lower raks are di�erent to themiddle one's. The distane between raks is half the semilength of eahrak as shown in Figure 6.6. The values of the loads are again σ∞22 =

1N/m2, D∞
2 = 10−9C/N and B∞

2 = 10−8A−1 ·m, and ten equal elementsfor eah rak are used for meshing purposes.In �gure 6.7, mehanial opening displaement as well as the jump inthe eletri and the magneti potentials are plotted. Absolute values of theECOD are always smaller in the entral rak, and any degree of perme-ability in the rak shall redue them.In table 6.2 the normalized ESIF in tips A and B (�gure 6.6) are shown.Suh ESIF are normalized with the orresponding ones to an impermeableGri�th rak.
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6.3 Validation of the algorithm 159Table 6.2: ESIF in tips A and B (�gure 6.6) for three parallel raksESIF CFBC TIP A TIP B
KI Imp 0.6865 0.4634Semip 0.6872 0.4626Perm 0.6865 0.4634
KII Imp 0.1379 ∼ 0Semip 0.1385 ∼ 0Perm 0.1467 ∼ 0

KIV Imp 0.7405 0.5992Semip 0.7068 0.5429Perm 0.0514 0.0345
KV Imp 0.7939 0.6643Semip 0.6717 0.4739Perm 0.1482 0.0993Moreover, in tables 6.3 and 6.4, the energy release rates at tips A and B,respetively, are shown for two di�erent ombination of loads; the �rst one(Comb. 1 ) is only a mehanial loading, while the seond one (Comb. 2 ) isthe ombination desribed above. The values obtained are normalized withtotal energy orresponding to a Gri�th impermeable rak subjeted onlyto a mehanial load. Total and mehanial energy release rates present thesame value and are independent of the presene of eletromagneti load-ings when a permeable rak fae boundary ondition is onsidered. Thepresene of those loads, however, hange the tendeny of the behavior ofthe mehanial energy release rate: when only a mehanial load is applied,

GI+IIM is inreased with the permeability and permittivity of the medium



160 Chapter 6. Crak fae boundary onditionswhile, in the other hand the ation of eletromagnetial loadings make thatmagnitude maximum when the medium is onsidered to be impermeable.Table 6.3: ERR in tip A for three parallel raks (�gure 6.6)ERR CFBC TIP A - Comb1 TIP A - Comb2
GTot Imp 0.4889 -0.4975Semip 0.4949 -4.4644Perm 0.5241 0.5241
G
I+II
M Imp 0.4912 0.9254Semip 0.4941 0.9064Perm 0.5241 0.5241

GELEC Imp -2.2063·10−3 -5.9026Semip 0.6037·10−3 -5.3601Perm ∼ 0 ∼ 0

GMAGN Imp -1.0118·10−4 -1.7043·10−2Semip 0.2032·10−3 -1.0714·10−2Perm ∼ 0 ∼ 0
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Table 6.4: ERR in tip B for three parallel raks (�gure 6.6)ERR CFBC TIP B - Comb1 TIP B - Comb2

GTot Imp 0.2017 -3.4715Semip 0.2119 -2.7697Perm 0.2257 0.2257
G
I+II
M Imp 0.2073 0.4530Semip 0.2119 0.4287Perm 0.2257 0.2257

GELEC Imp -5.3847·10−3 -3.9117Semip -0.0691·10−3 -3.1933Perm ∼ 0 ∼ 0

GMAGN Imp -0.2358·10−3 -1.2837·10−2Semip -0.9695·10−4 -0.5118·10−2Perm ∼ 0 ∼ 0
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Chapter 7Conlusions and futuredevelopments7.1 ConlusionsIn this work, a deep study about the behavior of raked magnetoeletroelas-ti solids under stati, time-harmoni and impat eletromagnetomehaniloadings has been arried out. For that purpose two numerial tools havebeen implemented, based on the hypersingular formulation of the boundaryelement method and the extended �nite element method.The BEM model was performed following the ideas proposed by Garía-Sánhez and oworkers (2005; 2008a; 2008b) for anisotropi and piezoeletrimaterial models. For its development, ertain fundamental solutions areneeded. In stati problems, that fundamental solution (already availablein literature, like in the work by Liu et al., 2001) has an expliit form.However, for dynami problems, the fundamental solution needed presentsan integral form. These dynami Green's funtions have been obtained



164 Chapter 7. Conlusions and future developmentsduring the realization of this work.When those fundamental solutions are implemented in a BEM ode,some singular integrals arise in those ases in whih the olloation pointbelongs to the element where the integration is being performed. The mostdeliate issue in the dual formulation is the treatment of the strongly singu-lar and hypersingular integrals, whih are suessfully arried out by meansof a hange of variable that deompose those integrals in some regular inte-grals plus singular integrals with known analytial solutions. In other words,numerial integrations are restrited to regular integrals, thus inreasing theauray of the proposed approah.Regarding BEM for the study of dynami frature, the implementationof the dynami Green's funtions admit a deomposition in two parts, asingular (whih oinides with the stati solution, exept for a onstantand, thus, is independent of the frequeny) and a regular one. However,that regular part presents, in the terms orresponding to the hypersingularintegrals, a logarithmi singularity (whih an be solved by the use of log-arithmi quadratures). Moreover, it presents and osillatory behavior forhigh frequenies or integration points far from the soure.The time domain BEM formulation involves Riemann onvolution prod-uts whih, in this work, has been approximated by the Lubih's quadratureformula. The solution of several problems reveal a high stability in the for-mulation as well as an independeny between spatial and time disretization,not present in other formulations.For the omputation of the frature parameters, a quarter point dis-ontinuous element at the rak tip has been used. This element presenta olloation point very lose to the rak tip, where displaements andeletri and magneti potentials have known expressions in terms of the



7.1 Conlusions 165extended stress intensity fators. The substitution in them of the extendeddisplaements in the nearest olloation point to the rak tip allows to ob-tain the frature parameters with almost no omputational ost and a greatauray, as it has been demonstrated by omparing the results obtainednumerially with the results available in the literature obtained by di�erentmethods.Most of the work has been arried out under the assumption of imper-meable raks. However, an algorithm for the study of semipermeable andpermeable raks subjeted to stati loads, has been designed and imple-mented in the last setion of this thesis. The analysis of the results obtainedonsidering other rak faes boundary onditions reveal di�erenes, whihmight be onsiderable, in the frature parameters depending on the on-dition adopted. However, it suggests that the approximated impermeableondition is good enough to obtain a �rst approximation of the mehanialenergy release rate, whih may be involved in a frature riteria, when airor vauum is onsidered between rak surfaes. As a matter of fat, thatmagnitude, as well as eletri and magneti energy release rates, dereasewhen the permittivity and/or permeability of the medium is inreased.In this work, a X-FEM model has been developed as well for the studyof stati frature. For that purpose, new rak tip enrihment funtionshave been obtained, and some problems solved, omparing the results withthose obtained with the BEM formulation also presented. A good aurayis obtained in the frature parameters, whih have been obtained by meansof the equivalent domain form of the Interation Integral Method.Let us now remark that all the models developed in this work maybe used for the analysis of raked anisotropi and piezoeletri solids, byvanishing the orresponding oupling properties.



166 Chapter 7. Conlusions and future developments7.2 Future DevelopmentsThis work presented robust and aurate numerial models for the study offrature mehanis problems in 2-D magnetoeletroelasti media. However,some issues are still open.The most diret future development whih an be performed in themodel, might be onsidering di�erent rak faes boundary onditions indynami problems, adopting the more realisti ondition in transient peri-ods. Reently, Landis (2004) suggested the so alled energetially onsistentboundary onditions for piezoeletri solids, whih improved the rak faesboundary onditions obtained by the apaitor analogy proposed by Haoand Shen (1994). This new ondition leads to the presene of mehanialtrations on the rak surfaes. An extension of this model and a om-parative study with the results obtained in this work should be a futurework.As it has been already said, time-harmoni fundamental solution presentsan osillatory behavior whih makes more di�ult to obtain results forhigh frequeny and/or far �eld. In this sense, it is neessary to obtain anasymptoti far �eld solution as an extension of the obtained by Sáez andDomínguez (2000) for transversely isotropi materials.Both BEM and X-FEM have been proved to be aurate numerial toolsfor the study of rak growth in raked solids. However, no frature riteriais unanimously aepted for magnetoeletroelasti solids. In this sense, theperformane of extensive experimental tests are de�nitely needed to advanein the frature knowledge of magnetoeletroelasti materials.The X-FEM model may be improved in a double way. First, by ob-taining more ompat rak tip enrihment funtions based on the matrixform (Stroh's formalism) of the asymptoti displaement �elds. This is an



7.2 Future Developments 167already started work by the author. Moreover, the model may be improvedby the use of blending elements, as well as by inorporating seond orderterms to the asymptoti expressions of the �elds (T-stress), in order to de-velop a Hybrid Analytial and X-FEM (HAX-FEM) model in an similarway as done by Réthoré et al. (2009) for isotropi materials. With suhimprovements, the approximation of the ECOD may be aurate enough toobtain the frature parameters by a diret evaluation, what would reduethe omputational ost in the postproessing.
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Appendix ADe�nition of thetwo-dimensional harateristisThe two dimensional material parameters introdued in setion 2.4.3 followfrom the three dimensional material properties de�ned in setion 2.2.
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Appendix BRadon transformThe Radon transform of an arbitrary funtion f(x) is de�ned by
f̂(s,n) = R {f(x)} =

∫

s

f(x)δ(s− n · x)dx , (B.1)where s = n ·x is a real transform parameter and n is a unit normal vetor.The Radon transform is an integration of f(x) over n · x = s, i.e., over asurfae for 3-D and along a line for 2-D.The inverse Radon-transform is given by
f(x) = R∗

{
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f(s,n) = K{f̂(s,n)

}
=





− 1
8π2∂

2
s f̂(s,n) , for 3-D

1
4π2

∞∫
−∞

∂σf̂(σ,n)
s− σ dσ , for 2-D (B.3)The inverse Radon transform R∗ de�ned by (B.2) is a surfae integral overa unit sphere in 3-D ase and a line integral over a unit irle in 2-D ase.The main properties of the Radon transform de�ned in equation (B.1)are
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f̂(cs, cn) =

1
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f̂(s,n) (B.4)B Linearity

R{c1f + c2g} = c1f̂ + c2ĝ (B.5)C Transform of derivatives
R

{
∂

∂xi
f(x)

}
= ni

∂

∂s
f̂(s,n) (B.6)

R

{
∂

∂xi

∂

∂xj
f(x)

}
= ninj

∂2

∂2s
f̂(s,n) (B.7)D Transform of Dira's delta

R{δ(x)} = δ(s) (B.8)



BibliographyA. Asadpoure and S. Mohammadi. Developing new enrihment funtionsfor rak simulation in orthotropi media by the extended �nite elementmethod. International Journal for Numerial Methods in Engineering,69:2150�2172, 2007.M. Avellaneda and G. Harshe. Magnetoeletri e�et in piezoele-tri/magnetostritive multiplayer (2�2) omposites. Journal of IntelligentMaterial Systems and Strutures, 5:501�513, 1994.I. Babuska and J. Melenk. The partition of unity method. InternationalJournal for Numerial Methods in Engineering, 4:607�632, 1997.D. Barnett and J. Lothe. Disloations and line harges in anisotropi piezo-eletri insulators. Phys. stat. sol., 76:105�111, 1975.E. Béhet, M. Sherzer, and M. Kuna. Appliation of the X-FEM to thefrature of piezoeletri materials. International Journal for NumerialMethods in Engineering, 77:1535�1565, 2009.T. Belytshko and T. Blak. Elasti rak growth in �nite elements withminimal remeshing. International Journal for Numerial Methods in En-gineering, 45:601�620, 1999.



174 BIBLIOGRAPHYY. Beneviste. Magnetoeletri e�et in �brous omposites with piezoeletriand piezomagneti phases. Physial Review, B 51:16424�16427, 1995.C. Brebbia and J. Domínguez. Boundary Elements: An Introdutory Course(seond edition). Computational Mehanis Publiations, 1992.G. Daví and A. Milazzo. Multidomain boudary integral formulation forpiezoeletri materials frature mehanis. International Journal of Solidsand Strutures, 38:7065�7078, 2001.S. Deans. The Radon transform and some of its appliations. Wiley-Intersiene Publiation, 1983.M. Denda. BEM analysis of semipermeable piezoeletri raks. Key Engi-neering Materials, 383:67�84, 2008.M. Denda, Y. Araki, and Y. Yong. Time-harmoni BEM for 2-d piezoele-triity applied to eigenvalue problems. International Journal of Solidsand Strutures, 26:7241�7265, 2004.J. Dolbow. An Extended Finite Element Method with Disontinuous En-rihment for Applied Mehanis). PhD thesis, Northwestern University,USA, 1999.J. Dominguez. Boundary Elements in Dynamis. Computational MehanisPubliations, 1993.A. Eringen and E. Suhubi. Elastodynamis, Vol. 2: Linear Theory. Aa-demi Press, New York, 1975.W. Feng and E. Pan. Dynami frature behavior of an internal interfaialrak between two dissimilar magneto-eletro-elasti plates. EngineeringFrature Mehanis, 75:1468�1487, 2008.



BIBLIOGRAPHY 175W. Feng and R. Su. Dynami internal rak problem of a funtionallygraded magneto-eletro-elasti strip. International Journal of Solids andStrutures, 43:5196�5216, 2006.W. Feng, E. Pan, and X. Wang. Dynami frature analysis of a penny-shaped rak in a magnetoeletroelasti layer. International Journal ofSolids and Strutures, 44:7955�7974, 2007.C. Gao, H. Kessler, and H. Balke. Crak problems in magnetoeletroe-lasti solids. part i: exat solution of a rak. International Journal ofEngineering Siene, 41:969�981, 2003a.C. Gao, H. Kessler, and H. Balke. Crak problems in magnetoeletroelastisolids. part ii: General solution of ollinear raks. International Journalof Engineering Siene, 41:983�994, 2003b.C. Gao, P. Tong, and T. Zhang. Interfaial rak problems in magneto-eletroelasti solids. International Journal of Engineering Siene, 41:2105�2121, 2003.C. Gao, P. Tong, and T. Zhang. Frature mehanis for a mode III rak ina magnetoeletroelasti solid. International Journal of Solids and Stru-tures, 41:6613�6629, 2004.F. Garía-Sánhez. Numerial study of frature problems in anisotropielasti and piezoeleti solids (in Spanish. English version available). PhDthesis, University of Sevilla, Spain, 2005.F. Garía-Sánhez and C. Zhang. A omparative study of three bem fortrnasient dynami rak analysis of 2-d anisotropi solids. ComputationalMehanis Frature Mehanis, 40:753�769, 2007b.



176 BIBLIOGRAPHYF. Garía-Sánhez, A. Sáez, and J. Domínguez. Tration boundary elementsfor raks in anisotropi solids. Engineering Analysis with Boundary El-ements, 28:667�676, 2004.F. Garía-Sánhez, A. Sáez, and J. Domínguez. Anisotropi and piezoele-tri materials frature analysis by BEM. Computer and Strutures, 83:804�820, 2005a.F. Garía-Sánhez, A. Sáez, and J. Domínguez. Two-dimensional time-harmoni BEM for raked anisotropi solids. Engineering Analysis withBoundary Elements, 2005b.F. Garía-Sánhez, C. Zhang, and A. Sáez. 2-d transient dynami analysisof raked piezoeletri solids by a time-domain BEM. Computer Methodsin Applied Mehanis and Engineering, 197, 33-40:3108�3121, 2008a.F. Garía-Sánhez, C. Zhang, and A. Sáez. A two-dimensional time-domainboundary element method for dynami rak problems in anisotropisolids. Engineering Frature Mehanis, 75, 33-40:1412�1430, 2008b.L. Gaul and M. Shanz. A omparative study of three boundary elementapproahes to alulate the transient response of visoeleasti solids withunbounded domains. Computer Methods in Applied Mehanis and En-gineering, 179:11�123, 1999.K. Gra�. Wave motion in elasti solids. Oxford University press, 1975.D. Gra�. Sul teorema di reiproitá nella dinamia dei orpi elastii. Mem.Aad. Si., Bologna, Ser 10, Vol 4:103�111, 1946.T. Hao and Y. Shen. A new eletrial boundary ondition of eletri frature



BIBLIOGRAPHY 177mehanis and its appliations. Engineering Frature Mehanis, 47:793�802, 1994.H. Hong and J. Chen. Derivations od integral equations of elastiity. ASCE,114:1028�1044, 1988.K. Hu and G. Li. Constant moving rak in a magnetoeletroelasti mate-rial under anti-plane shear loading. International Journal of Solids andStrutures, 42:2823�2835, 2005.K. Hu, Y. L. Kang, and G.Q. Moving rak at the interfae between twodissimilar magnetoeletroelasti materials. Ata Mehania, 182:1�16,2006.N. Iokamidis. A new singular integral equation for the lassial rak prob-lem in plane and antiplane elastiity. International Journal of Frature,21:115�122, 1983.H. Ishikawa. Appliation of the BEM to anisotropi rak problems. InM. A. y C.A. Brebbia, editor, Advanes in boundary element methods forfrature mehanis, Computational mehanis publiations. Southamptonand Elsevier Applied Siene, London, 1990.X. Jiang and E. Pan. Exat solution for 2d polygonal inlusion problemin anisotropi magnetoeletroelasti full-, half-, and bimaterial-planes.International Journal of Solids and Strutures, 41:4361�4382, 2004.C. Landis. Energetially onsistent boundary onditions for eletromehani-al frature. International Journal of Solids and Strutures, 41:6291�6315,2004.



178 BIBLIOGRAPHYS. Lekhnitskii. Theory of elastiity of an anisotropi elasti body. Holden-Day, San Franiso, 1963.J. Li and M. Dunn. Miromehanis of magnetoeletroelasti ompositematerials: average �eld and e�etive behavior. Journal of IntelligentMaterial Systems and Strutures, 9:404�416, 1998.X. Li. Dynami analysis of a raked magnetoeletroelasti medium underantiplane mehanial and inplane eletri and magneti impats. Inter-national Journal of Solids and Strutures, 42:3185�3205, 2005.J. Liang. The dynami behavior of two parallel symmetri raks in fun-tionally graded piezoeletri/piezomagneti materials. Arhive of AppliedMehanis, 78:443�464, 2008.J. Liu, X. Liu, and Y. Zhao. Green's funtions for anisotropi magnetoele-troelasti solids with an elliptial avity or a rak. International Journalof Engineering Siene, 39:1405�1418, 2001.C. Lubih. Convolution quadrature and disretized operational alulus.part i. Numerishe mathematik, 52:129�145, 1988a.C. Lubih. Convolution quadrature and disretized operational aluluspart ii. Numerishe mathematik, 52:413�425, 1988b.D. Ludwig. The radon transform on eulidean spae. Communiations onpure and applied mathematis, 19:49�81, 1966.J. Martínez and J. Domínguez. On the use of quarte-point boundary ele-ments for stress intensity fator omputations. International Journal forNumerial Methods in Engineering, 20:1941�1950, 1984.



BIBLIOGRAPHY 179N. Möes, J. Dolbow, and T. Belytshko. A �nite element method for rakgrowth without remeshing. International Journal for Numerial Methodsin Engineering, 46:131�150, 1999.M. Muÿhelihwilli. Einige Grundaufgaben zur mathematishen Elastizitaet-stheorie. VEB Fahbuhverlag: Leipzig, 1971.C.-W. Nan. Magnetoeletri e�et in omposite of piezoeletri and piezo-magneti phases. Physis Review, B 50:6082�6088, 1994.Y. Pak. Linear eletro-elasti frature mehanis of piezoeletri materials.International Journal of Frature, 54:79�100, 1992.E. Pan. A general BEM analysis of 2D linear elasti frature mehanis.International Journal of Frature, 88:41�59, 1997.E. Pan. A BEM analysis of frature mehanis in 2d anisotropi piezoeletrisolids. Engineering Analysis with Boundary Elements, 23:67�76, 1999.S. Park and C. Sun. Frature riteria for piezoeletri eramis. Journal ofAmerian Ceramis Soiety, 78:1475�1480, 1995.V. Parton and B. Kudryatsev. Eletromagnetoelastiity. Gordon and Breahsiene publisher, New York, 1988.A. Portela, M. Aliabadi, and D. Rooke. The dual BEM: e�etive implemen-tation for rak problems. International Journal for Numerial Methodsin Engineering, 33:1269�1287, 1992.B. Rao and M. Kuna. Interation integrals for frature analysis of fun-tionally graded magnetoeletroelasti materials. International Journal ofFrature, 153:15�37, 2008.



180 BIBLIOGRAPHYB. Rao and M. Kuna. Erratum to: Interation integrals for frature analy-sis of funtionally graded magnetoeletroelasti materials. InternationalJournal of Frature, 161:199�201, 2010.J. Réthoré, S. Roux, and F. Hild. Hybrid analytial and extended �niteelement method (HAX-FEM): A new enrihment proedure for rakedsolids. International Journal for Numerial Methods in Engineering, 81(3):269�285, 2009.J. Rie. A path independent integral and the approximate analysis of strainonentration by nothes and raks. Journal of Applied Mehanis, 33:379�386, 1968.A. Sáez and J. Domínguez. Far �eld dynami green's funtions for bem intransversely isotropi solids. Wave motion, 32 (2):113�123, 2000.A. Sáez, R. Gallego, and J. Domínguez. Hypersingular quarter-point bound-ary elements for rak problems. International Journal for NumerialMethods in Engineering, 38:1681�1701, 1995.A. Sáez, F. Garía-Sánhez, and J. Domínguez. Hypersingular BEM fordynami frature in 2-d piezoeletri solids. Computer Methods in AppliedMehanis and Engineering, 196:235�246, 2006.G. Savin. Distribution of Stresses at Holes. Naukova Dumka: Kiev, 1968.M. Shanz. A boundary element formulation in time domain for visoelastisolids. Communiations in Numerial Methods in Engineering, 15:799�809, 1999.M. Shanz. Wave propagation in visoelasti and poroelasti ontinua.Springer-Verlag, Berlin, Heidelberg, 2001.



BIBLIOGRAPHY 181M. Sherzer and M. Kuna. Combined analytial and numerial solution of 2dinterfae orner on�gurations between dissimilar piezoeletri materials.International Journal of Frature, 153:61�99, 2004.Y. Shindo and E. Ozawa. Dynami analysis of a raked piezoeletri ma-terial. In R. Hsieh, editor, Mehanial Modelling of New EletromagnetiMaterials. Elsevier, 1990.G. Sih and E. Chen. Dilatational and distortional behavior of raks in mag-netoeletroelasti materials. Theoretial and Applied Frature Mehanis:Mehanis and Physis of Frature, 40:1�21, 2003b.G. Sih and Z. Song. Magneti and eletri poling e�ets assoiated withrak growth in batio3-cofe2o4 omposite. Theoretial and Applied Fra-ture Mehanis: Mehanis and Physis of Frature, 39:209�227, 2003a.G. Sih, R. Jones, and Z. Song. Piezomagneti and piezoeletri polinge�ets on mode I and II rak initiation behavior of magnetoeletroelastimaterials. Theoretial and Applied Frature Mehanis: Mehanis andPhysis of Frature, 40:161�186, 2003.J. Sladek, V. Sladek, P. Solek, and E. Pan. Frature analysis of raks inmagneto-eletro-elasti solids by the MLPG. Computational Mehanis,42:697�714, 2008.M. Snyder and T. Cruse. Boundary-integral analysis of anisotropi rakedplates. International Journal of Frature mehanis, 315-328, 1975.A. Soh and J. Liu. On the onstitutive equations of magnetoeletroelastisolids. Journal of Intelligent Material Systems and Strutures, 16:597�602, 2005.



182 BIBLIOGRAPHYP. Sollero. Frature analysis of anisotropi omposite laminates by theboundary element method. PhD thesis, Wessex Institute of Tehnology,UK, 1994.P. Sollero and M. Aliabadi. Anisotropi analysis of raks in ompositelaminates using the dual BEM. Composite Strutures, 31:229�233, 1995.Z. Song and G. Sih. Crak initiation behavior in magnetoeletroelastiomposite under in-plane deformation. Theoretial and Applied FratureMehanis: Mehanis and Physis of Frature, 39:189�207, 2003.H. Sosa. Plane problems in piezoeletri media with defets. InternationalJournal of Solids and Strutures, 28:491�505, 1991.H. Stehfest. Comun. algorithm 368: numerial inversion of laplae trans-form; an overview and reent developments. Computational Methods inApplied Mehanis and Engineering, 139:3�47, 1996.A. Stroh58. Disloation and raks in anisotrpi elastiity. Philosophialmagazine, 3:625�646, 1958.R. Su, W. Feng, and J. Liu. Transient response of interfae raks be-tween dissimilar magneto-eletro-elasti strips under out-ofplane mehan-ial and in-plane magneto-eletrial impat loads. Composite Strutures,78:119�128, 2007.N. Sukumar, Z. Y. Huang, J.-H. Prévost, and Z. Suo. Partition of unityenrihment for bimaterial interfae raks. International Journal for Nu-merial Methods in Engineering, 59:1075�1102, 2004.Z. Suo, C.-M. Kuo, D. Barnett, and J. Willis. Frature mehanis for



BIBLIOGRAPHY 183piezoeletri eramis. Journal of Mehanis and Physis of Solids, 4:739�765, 1992.A. Tan, S. Hirose, C. Zhang, and C.-Y. Wang. A time-domain BEM fortransient wave sattering analysis by a rak in anisotropi solids. Engi-neering Analysis with Boundary Elements, 29:610�623, 2005a.A. Tan, S. Hirose, and C. Zhang. A time-domain olloation-galerkin BEMfor transient dynami rak analysis in anisotropi solids. EngineeringAnalysis with Boundary Elements, 29:1025�1038, 2005b.W. Tian and U. Gabbert. Multiple rak interation problem in magne-toeletroelasti solids. European Journal of Mehanis - A/Solids, 23:599�614, 2004.W. Tian and R. Rajapakse. Frature analysis of magnetoeletroelasti solidsby using path independent integrals. International Journal of Frature,131:311�335, 2005b.W. Tian and R. Rajapakse. Theoretial modelling of a onduting rak ina magnetoeletroelasti solid. International Journal of Applied Eletro-magnetis and Mehanis, 22:141�158, 2005.T. Ting. Anisotropi Elastiity. Oxford University Press, New York, 1996.B. Wang and J. Han. Disussion on eletromagneti rak fae boundaryonditions for the frature mehanis of magneto-eletro-elasti materials.Ata Mehania Sinia, 22:233�242, 2006b.B. Wang and Y. Mai. Crak tip �eld in piezoeletri/piezomagneti media.European Journal of Mehanis - A/Solids, 22:591�602, 2003.



184 BIBLIOGRAPHYB. Wang and Y. Mai. Frature of piezoeletromagneti materials. MehanisResearh Communiations, 31:65�73, 2004.B. Wang and Y. Mai. Appliability of the rak-fae boundary onditionsfor frature of magnetoeletroelasti materials. International Journal ofSolids and Strutures, 44:387�398, 2006.B. Wang and Y. Mai. Self-onsistent analysis of oupled magnetoele-troelasti frature. theoretial investigation and �nite element veri�a-tion. Computer Methods in Applied Mehanis and Engineering, 196:2044�2054, 2007.C.-Y. Wang and J. Ahenbah. Elastodynami fundamental solutions foranisotropi solids. Geophysial Journal International, 18:384�392, 1994.C.-Y. Wang and J. Ahenbah. 3-d time-harmoni elastodynami green'sfuntions for anisotropi solids. Proeedings Royal Soiety of London,A449:441�458, 1995.C.-Y. Wang and C. Zhang. 3-d and 2-d dynami green's funtions and time-domain BIEs for piezoeletri solids. Engineering Analysis with BoundaryElements, 29:454�465, 2005.H. Yong and Y. Zhou. Transient response of a raked magnetoeletroe-lasti strip under anti-plane impat. International Journal of Solids andStrutures, 44:705�717, 2007.C. Zhang. Transient elastodynami antiplane rak analysis of anisotro-pi solids. International Journal of Solids and Strutures, 37:6107�6130,2000.



BIBLIOGRAPHY 185C. Zhang. A 2-d time-domain BIEM for dynami analysis of raked or-thotropi solids. Computer Modelling in Engineering and Sienes, 3:381�398, 2002a.C. Zhang. A 2d hypersingular time�domain tration BEM for transientelastodynami rak analysis. Wave Motion, 35:17�40, 2002b.C. Zhang. Transient dynami rak analysis in anisotropi solids. InA. Ivankovi and M. Aliabadi, editors, Crak Dynamis. WIT Press,Southampton, Boston, 2005.X. Zhong, X.-F. Li, and K. Lee. Transient response of a raked magneto-eletri material under the ation of in-plane sudden impats. Computa-tional Materials Siene, 45:905�911, 2009.Z.-G. Zhou and B. Wang. Sattering of harmoni anti-plane shear waves byan interfae rak in magneto-eletro-elasti omposites. Applied Mathe-matis and Mehanis, 26:17�26, 2005a.Z.-G. Zhou and B. Wang. Dynami behavior of two parallel symmetryraks in magneto-eletro-elasti omposites under harmoni anti-planewaves. Applied Mathematis and Mehanis, 27:583�591, 2006a.Z.-G. Zhou and B. Wang. An interfae rak between two dissimilar fun-tionally graded piezoeletri/piezomagneti material half in�nite planessubjeted to the harmoni anti-plane shear stress waves. InternationalJournal of Applied Eletromagnetis and Mehanis, 27:117�132, 2008.Z.-G. Zhou, L.-Z. Wu, and B. Wang. The dynami behavior of two ollinearinterfae raks in magneto-eletro-elasti materials. European Journal ofMehanis, A/Solids, 24:253�262, 2005b.



186 BIBLIOGRAPHYZ.-G. Zhou, L.-Z. Wu, and S.-Y. Du. The dynami behavior of two parallelinterfae raks in magneto-eletro-elasti materials under the harmonianti-plane shear stress waves. Strength, Frature and Complexity, 4:169�184, 2006b.



PubliationsThe present work has given rise to the following national and interna-tional publiations.Journal PapersInternational
• R. Rojas-Díaz, F. Garía-Sánhez, A. Sáez. Analysis ofraked magnetoeletroelasti omposites under time-harmoniloading. International Journal of Solids and Strutures,47:71�80, 2010.
• R. Rojas-Díaz, F. Garía-Sánhez, A. Sáez, Ch. Zhang. Dy-nami rak interations in magnetoeletroelasti ompositematerials. International Journal of Frature, 157:119-130,2009.
• R. Rojas-Díaz, A. Sáez, F. Garía-Sánhez, Ch. Zhang.Time-harmoni Green's funtions for anisotropi magneto-eletroelastiity. International Journal of Solids and Stru-tures, 45:144-158, 2008.
• R. Rojas-Díaz, F. Garía-Sánhez, A. Sáez, Ch. Zhang.Frature analysis of magnetoeletroelasti omposite mate-rials. Key Engineering Materials, 348-349:69-72, 2007.
• F. Garía-Sánhez, R. Rojas-Díaz, A. Sáez, Ch. Zhang.Frature of magnetoeletroelasti omposite materials usingboundary element method (BEM). Theoretial and AppliedFrature Mehanis: Mehanis and Physis of Frature,47:192-204, 2007.



188 Publiations
• R. Rojas-Díaz, N. Sukumar, A. Sáez, F. Garía-Sánhez.Frature in Magnetoeletroelasti Materials using the Ex-tended Finite Element Method. Submitted for publiationto International Journal of Numerial Methods in Engineer-ing.
• R. Rojas-Díaz, F. Garía-Sánhez, A. Sáez, Ch. Zhang.Frature Analysis of plane piezoeletri/piezomagneti mul-tiphase omposites under transient loading. Submitted forpubliation to Computer Methods in Applied Mehanis andEngineering.
• R. Rojas-Díaz, M. Denda, A. Sáez, F. Garía-Sánhez. DualBEM Analysis of di�erent rak faes boundary onditionsin magnetoeletroelasti solids. Submitted for publiationto European Journal of Mehanis - A/Solids.National
• F. Garía-Sánhez, R. Rojas-Díaz, A. Sáez. Formulaióndel Método de los Elementos de Contorno para problemasdinámios transitorios de fratura en sólidos magnetoele-troelástios. Anales de Meánia de la Fratura, 2:445-450,2008.
• A. Sáez, R. Rojas-Díaz, F. Garía-Sánhez. Modelo numériopara problemas de fratura en materiales ompuestos mag-netoeletroelástios bajo arga dinámia armónia. Analesde Meánia de la Fratura, 2:439-444, 2008.
• R. Rojas-Díaz, F. Garía-Sánhez, A. Sáez. Simulaión numériade fratura en sólidos magnetoeletroelástios. Anales deMeánia de la Fratura, 2:439-444, 2008.



Publiations 189Conferenes papersInternational
• R. Rojas-Díaz, M. Denda, F. Garía-Sánhez, A. Sáez. Hy-persingular BEM analysis of semipermeable raks in mag-netoeletroelasti solids. BeTeq 2010 July 12th-14th, Berlin,Germany
• R. Rojas-Díaz, A. Sáez, N. Sukumar, F. Garía-Sánhez.Uni�ed formulation of the XFEM for fully anisotropi mul-ti�eld problems based on the Stroh's formalism. IV Euro-pean Conferene on Computational Mehanis, May, 16th-21th, 2010, Paris, Frane
• R. Rojas-Díaz, N. Sukumar, A. Sáez, F. Garía-Sánhez.Crak Analysis in magnetoeletroelasti media using the Ex-tended Finite Element Method. X-FEM 2009: The Inter-national Conferene on Extended Finite Element Method-Reent Developments and Appliations, September, 28th-30th,Aahen, Germany
• R. Rojas-Díaz, F. Garía-Sánhez, A. Sáez, Ch. Zhang. A2D hypersingular BEM for transient analysis of raked mag-netoeletroelasti solids. BeTeq 2008 July 9th-11th, Seville,Spain (Keynote Leture)
• A. Sáez, R. Rojas-Díaz, F. Garía-Sánhez. Crak Inter-ation in plane Magnetoeletroelasti solids under DynamiLoading. ECCOMAS 2008: Proeedings of the 8th WorldCongress on Computational Mehanis and 5th EuropeanCongress on Computational Methods in Applied Sienes and



190 PubliationsEngineering, June 30th- July 4th, Venie, Italy
• R. Rojas-Díaz, A. Sáez, F. Garía-Sánhez. Frature Anal-ysis of magnetoeletroelasti media under dynami loading.Inaugural Conferene of the Engineering Mehanis Insti-tute, May 18th- 21st, Minneapolis (USA)
• R. Rojas-Díaz, A. Sáez, F. Garía-Sánhez, Ch. Zhang.Frature Analysis of magnetoeletroelasti solids under time-harmoni loading. BeTeq 2007 : July, 24th-26th , Naples,Italy
• F. Garía-Sánhez, A. Sáez, R. Rojas-Díaz, Ch. Zhang.Dual BEM for Frature Analysis of magnetoeletroelastisolids. BeTeq 2006 : September, 4th-6th , Paris, FraneNational
• R. Rojas-Díaz, N. Sukumar, A. Sáez, F. Garía-Sánhez.Simulaión Numéria de Problemas de Fratura en Materi-ales Magnetoeletroelástios mediante X-FEM. MetNum09,June 29th - July 2nd, Barelona, Spain
• F. Garía-Sánhez, R. Rojas-Díaz, A. Sáez. Formulaióndel Método de los Elementos de Contorno para problemasdinámios transitorios de fratura en sólidos magnetoele-troelástios. XXV Enuentro del GEF, Sigüenza (Spain)Marh, 5th-7th
• R. Rojas-Díaz, F. Garía-Sánhez, A. Sáez. Formulaióndinámia del método de los elementos de ontorno para elanálisis de sólidos magnetoeletroelástios �surados. CMNE :June, 14th-16th , Porto, Portugal
• R. Rojas-Díaz, F. Garía-Sánhez, A. Sáez. Simulaión numéria



Publiations 191de fratura en sólidos magnetoeletroelástios. XXIV En-uentro del GEF, Marh 21st-23rd, Burgos, Spain


