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Chapter 1Introdu
tion1.1 Motivations and obje
tivesThe durability and stru
tural integrity of materials used in tools and 
on-stru
tions has been a big 
on
ern sin
e an
ient times. Nevertheless, mankindhave generally developed the abilities for the use of any material before ha-ving a full knowledge of its behavior.That fa
t happens, for example, with 
omposite and piezoele
tri
 mate-rials and, more re
ently, with magnetoele
troelasti
 solids, whi
h have beenused for a long time and still nowadays, there exists a huge 
ommunity ofs
ientists who are working in their 
hara
terization.Magnetoele
troelasti
 solids are a kind of materials whi
h present theability of 
onverting energy among me
hani
, ele
tri
 and magneti
 �elds.This feature makes them very interesting for their use in smart stru
turesappli
ations, su
h as sensors or a
tuators. These materials do exist in anatural form, su
h as YMnO3 or BiMnO3 but, for the use in industrialappli
ations, larger values of the 
oupling properties are needed. In this
ase, 
omposites of both piezoele
tri
 and elastomagneti
 phases are usually
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reated. In the resulting solid, an ele
tromagneti
 
oupling appears whi
h isnot present in any 
onstitutive phases (Avellaneda and Harshe, 1994; Nan,1994; Beneviste, 1995)Piezoele
tri
 and elastomagneti
 e�e
ts are usually obtained in non-natural materials after a polarization pro
ess. This feature, as well as theinherent fragility of those material are 
auses for defe
ts. Moreover, whentwo materials with di�erent material properties are joint in a 
omposite,the tenden
y to develop 
ra
ks is in
reased.Due to the use these materials re
eive, the presen
e of defe
ts not onlyendanger the stru
tural integrity of the magnetoele
troelasti
 
omponent,but also their fun
tion as sensors/a
tuators, sin
e �aws may distort theenergeti
 ex
hange among �elds and, thus, the information transmitted inthe pro
ess.For all the exposed above, the study of fra
ture me
hani
s in magneto-ele
troelasti
 media is justi�ed in order to understand the fra
ture me
ha-nisms. For su
h purpose, some fra
ture parameters must be 
al
ulated, inorder to modelize the e�e
ts of the presen
e of a dis
ontinuity in the �eldvariables.A deep analysis of bidimensional 
ra
ked magnetoele
troelasti
 solidswill be 
arried out and some numeri
al tools developed. In parti
ular, basedon the Boundary Element Method (BEM) and on the Extended Finite Ele-ment Method (X-FEM). Both te
hniques have been proved as powerful toolsfor the study of fra
ture me
hani
s in di�erent kinds of solids.In this work, three di�erent kind of problems will be studied
• Cra
ked solids under 
ombined stati
 ele
tromagnetome
hani
 loads
• Wave s
attering by 
ra
ks



1.1 Motivations and obje
tives 3
• Transient analysis of 
ra
ked solids subje
ted to ele
tromagnetome-
hani
 impa
t loadsIn this work, the hypersingular (also 
alled dual) formulation of theBEM (see e.g., Hong and Chen, 1988 and Portela et al., 1992) will bedeveloped and used for the analysis of all those problems. BEM is based onan integral equation formulation, and the dual formulation implies the use oftwo di�erent integral equations depending on whether the boundary wherethe integration is 
arried out is a 
ra
k or not. The formulation presentedherein will be obtained following the ideas developed by Gar
ía-Sán
hez and
o-workers in several works (2005; 2005a; 2005b; 2008a; 2008b) for the studyin anisotropi
 and piezoele
tri
 solids of both stati
 and dynami
 problems.As it will be deeply dis
ussed in this work, the integral equations maypresent singular integrands, whi
h will be solved by a regularization pro-
ess analogous to the one developed by Gar
ía-Sán
hez et al. (2004) foranisotropi
 solids.BEM formulations requires knowing the so-
alled Green's fun
tions (orFundamental Solution), whi
h will be used to apply the re
ipro
ity theorem.These fun
tions were available in the literature for the stati
 
ase when thiswork was 
arried out (Liu et al., 2001), but not the dynami
 ones. Theywere obtained by the author following a te
hnique based on the appli
ationof the Radon transform as it will be presented in the present work.A X-FEM formulation for the study of stati
 fra
ture in magnetoele
-troelasti
 
ra
ked solids will be also presented. X-FEM requires the useof some enri
hment fun
tions depending on the behavior law of the mate-rial studied and, for magnetoele
troelasti
 solids, su
h fun
tions were notavailable in the literature when this work started. In this thesis, those fun
-tions will be obtained following a similar pro
edure to the one developed
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tionby Bé
het et al. (2009) for piezoele
tri
 
ra
ked solids.As it will be seen in this do
ument, when the 
ra
k is opened, themedium between the 
ra
k surfa
es 
ondu
ts the ele
tri
 and magneti
 �eldsin a di�erent way as the solid does. The assumption of that 
ondu
tivityis not a 
losed topi
. A
tually, three di�erent 
onditions are usually 
onsi-dered: two ideal and a more realisti
 one. In most of this work, the idealimpermeable 
ondition has been adopted , but in the last 
hapter a deeperanalysis of the di�erent 
ra
k fa
es boundary 
onditions will be 
arried out,analyzing the impli
ations of them in the fra
ture parameters.1.2 State of the knowledgeThe number of fra
ture me
hani
s problems studied by the use of the numer-i
al te
hniques used in this work is ample. Nevertheless, the hypersingularBEM and X-FEM had never been used for solving either stati
 or dynami
fra
ture problems in magnetoele
troelasti
 solids, to the best of the author'sknowledge, when this work was performed.The number of works in whi
h fra
ture in magnetoele
troelasti
 solidswere analyzed is relatively limited as 
ompared for other materials su
h asanisotropi
 or piezoele
tri
. In this sense, most of the works were analyti
alor semianalyti
al and la
k the generality of numeri
al methods.1.2.1 Stati
 fra
tureRelated to stati
 fra
ture, Liu et al. (2001) derived the 2-D Green's fun
-tions for anisotropi
 magnetoele
troelasti
 solids with a 
ra
k as well asthe resulting 
losed-form expressions for the �eld intensity fa
tors, basedon the extended Stroh's formalism, while Gao et al. (2003a,b,
, 2004) pre-
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 solutions for some basi
 problems. Sih and 
oworkers (2003a;2003b; 2003
; 2003) analyzed the he in�uen
e of both ele
tromagneti
 �eldsand the volume fra
tion of the magnetoele
troelasti
 
omposite on 
ra
k ini-tiation and growth. In works by Wang and Mai (2003; 2004), the analyti
alexpressions for the stresses, ele
tri
 displa
ements and magneti
 indu
tionsin the vi
inity of the 
ra
k tip were derived, as well as path-independentintegrals. Using su
h integrals, fra
ture behavior of magnetoele
troelasti
solids was analyzed by Tian and Rajapakse (2005b).However, all those analyti
 pro
edures are restri
ted to problems involv-ing simple geometries and loading 
onditions. Thus, numeri
al methods be-
ome ne
essary for a deeper study and 
hara
terization of fra
ture behaviorof magnetoele
troelasti
 solids.It is well known that both BEM and X-FEM present signi�
ant advan-tages over other numeri
al te
hniques for the analysis of fra
ture me
hani
sproblems. A
tually, the dual BEM formulation was �rst used in anisotropi
materials by Sollero (1994) and Sollero and Aliabadi (1995). Hypersingu-lar integrals appearing in this formulation are treated by the regularizationpro
ess presented by Portela et al. (1992), whi
h is limited to the use ofstraight elements. However, Sáez et al. (1995) developed a regularizationpro
ess in whi
h the shape of the elements is not a limitation anymore. Thatpro
ess was extended for the study of anisotropi
 and piezoele
tri
 
ra
kedsolids in his PhD thesis by Gar
ía-Sán
hez (1995). In the present work,su
h formulation will be generalized to the magnetoele
troelasti
 
ase.With respe
t to the X-FEM, it has been proved as a powerful tool forthe study of fra
ture me
hani
s and it has been su

essfully applied to solve
ra
k problems by Möes et al. (1999) in isotropi
 media, Sukumar et al.(2004) in bimaterials, Asadpoure and Mohammadi (2007) in orthotropi
 ma-
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tionterials, and Bé
het et al. (2009) in piezoele
tri
 media. This last formulationwill be generalized in this work to the 
ase of magnetoele
troelasti
 solids,due to the similarities existing between the formulation of behavior laws inboth solids.The analysis of 
ra
k fa
e boundary 
onditions in magnetoele
troelas-ti
 fra
ture is not a 
losed topi
. Most resear
hers adopt the impermeable
onditions, whi
h establishes that the 
ra
k is isolated of the ele
tromag-neti
 �elds. In the other hand, permeable 
ondition implies that 
ra
ks
ondu
t ele
tri
 and magneti
 �elds. However, both assumptions are not
ompletely realisti
, and it is possible to say that a 
onsistent 
ra
k fa
eboundary 
ondition will be between them.In works by Wang and Mai (2006) and Wang and Han (2006b), ideal
ra
k fa
es boundary 
onditions for a single 
ra
k in an in�nite domain wereanalyzed analiti
ally, while Wang and Mai (2007) studied a more realisti
boundary 
ondition by the use of a 
lassi
al �nite elements approa
h.In this thesis, a new algorithm to solve multiple semipermeable 
ra
ksproblem using the hypersingular BEM formulation and based in the onedeveloped by Denda (2008) for piezoele
tri
 materials is presented.1.2.2 Dynami
 fra
tureThe analysis of dynami
 fra
ture is even more limited than in stati
s. More-over, in time-harmoni
 problems the majority of su
h analysis deals withanti-plane fra
ture, using semi-analyti
al solution methods. Zhou and 
o-workers (2005a; 2005b; 2006a; 2006b; 2008) used the S
hmidt method to in-vestigate the dynami
 behavior of several 
on�gurations of interfa
e 
ra
ksin magnetoele
troelasti
 
omposites under harmoni
 elasti
 anti-plane shearwaves. Hu and Li (2005) derived the analyti
al solution for an anti-plane



1.2 State of the knowledge 7Gri�th moving 
ra
k inside an in�nite magnetoele
troelasti
 medium un-der the assumption of permeable 
ra
k fa
es and later extended this studyto the 
ase of an anti-plane Gri�th 
ra
k moving at the interfa
e betweentwo dissimilar magnetoele
troelasti
 media (Hu et al., 2006).With respe
t transient analysis, most of the works have been 
arriedout by analyti
al or semi-analyti
al te
hniques for antiplane 
on�gurationsas well. Li (2005) investigated the transient response of a magnetoele
-troelasti
 medium 
ontaining a 
ra
k along the poling dire
tion subje
tedto antiplane me
hani
al and inplane ele
tri
 and magneti
 impa
ts. Fengand 
oworkers analyzed the dynami
 anti-plane problem for a fun
tion-ally graded magnetoele
troelasti
 strip 
ontaining an internal 
ra
k per-pendi
ular to the boundary, under both magnetoele
tri
ally impermeableor permeable boundary 
onditions on the 
ra
k fa
es in 2006, and the dy-nami
 behavior indu
ed by a penny-shaped 
ra
k in a magnetoele
troelasti
layer subje
ted to pres
ribed stress or pres
ribed displa
ement at the layersurfa
es for both impermeable and permeable 
ra
ks, in 2007. Su et al.(2007) studied the problem of an arbitrary number of interfa
e 
ra
ks be-tween dissimilar magneto-ele
tro-elasti
 strips under out-of-plane me
han-i
al and in-plane magneto-ele
tri
al impa
ts. Yong and Zhou (2007) 
on-sidered the transient anti-plane problem of a magnetoele
troelasti
 strip
ontaining a 
ra
k verti
al to the boundary. Liang (2008) derived the solu-tion for the dynami
 behavior of two parallel symmetri
 
ra
ks in fun
tion-ally graded piezoele
tri
/piezomagneti
 materials subje
ted to harmoni
 an-tiplane shear waves. Feng and Pan (2008) investigated the anti-plane prob-lem for an interfa
ial 
ra
k between two dissimilar magnetoele
troelasti
plates subje
ted to anti-plane me
hani
al and in-plane magneto-ele
tri
alimpa
t loadings under di�erent 
ombinations of magneti
ally and ele
tri-
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ally permeable/impermeable surfa
e 
ondi
tions on the 
ra
k. More re-
ently, Sladek et al. (2008) presented a meshless method based on the lo-
al Petrov-Galerkin approa
h for stationary and transient dynami
 
ra
kanalysis in two-dimensional and three-dimensional axisymmetri
 magne-toele
troelasti
 solids with 
ontinuously varying material properties. Fi-nally, Zhong et al. (2009) analyzed analyti
ally the transient response ofa 
ra
ked magnetoele
troelasti
 material subje
ted to in-plane sudden im-pa
ts.In this work, the numeri
al study of dynami
 problems will be performedby the use of the BEM. The fundamental solutions or Green's fun
tionsplay a key role in the formulation and resulting a

ura
y of the method.Although the 2-D and 3-D dynami
 fundamental solutions for anisotropi
elasti
 and piezoele
tri
 media have been studied in detail, dynami
 Green'sfun
tions for 2-D and 3-D fully anisotropi
 magnetoele
troelasti
 materialswere still unavailable in the literature to the author's knowledge when thiswork was done. Thus, the pro
edure to obtain the time-harmoni
 funda-mental solution will be presented in this work for 2-D and 3-D magneto-ele
troelasti
 solids and implemented in a dual BEM 
ode for bidimensionalsolids. The importan
e of these Green's fun
tions is not limited to their usein BEM, but they are also a key ingredient in other analyti
al and numeri
alte
hniques su
h as eigenstrain approa
hes or dislo
ation methods.To obtain these fun
tions, an extension of the Radon transform te
h-nique developed by Wang and A
henba
h (1994, 1995) for anisotropi
 elasti
solids will be 
arried out in order to derive the dynami
 Green's fun
tionsfor 2-D and 3-D anisotropi
 magnetoele
troelasti
 media subje
ted to time-harmoni
 loading 
onditions. This pro
edure had been su

essfully appliedby Denda et al. (2004) and Wang and Zhang (2005) to derive the funda-



1.3 Organization of the do
ument 9mental solutions for dynami
 piezoele
tri
ity.For the transient (time-domain) analysis 
arried out in this work, thetime dis
retization will be performed by approximating the 
onvolutionprodu
t by the use of Lubi
h's quadratures, whi
h require the fundamen-tal solution in terms of the Lapla
e paramater. This fundamental solu-tion may be obtained following a similar pro
edure to the one developedfor the obtaining of the time-harmoni
 one, as it will be analyzed in thiswork. Representative examples of the use of Lubi
h's quadratures for solv-ing time-domain problems are the vis
oelasti
 and the dynami
 poroelasti
problems, whi
h have been investigated by S
hanz (1999), Gaul and S
hanz(1999) and S
hanz (2001), or the transient elastodynami
 
ra
k analysis ofanisotropi
 solids presented by Zhang (2002b) and Gar
ía-Sán
hez et al.(2008b).Both time-harmoni
 and time-domain formulations will be obtained fol-lowing the ideas presented by Gar
ía-Sán
hez et al. (2005b; 2008a; 2008b)and Sáez et al. (2006) for anisotropi
 and piezoele
tri
 materials.1.3 Organization of the do
umentThis do
ument is organized in seven 
hapters. After this introdu
tion, inthe se
ond 
hapter the fundamentals of magnetoele
troelasti
ity as wellas of the impli
ations of the 
ouplings in the stati
 and dynami
 fra
tureme
hani
s will be analyzed.In 
hapter 3, one of the numeri
al te
hniques used in this work willbe introdu
ed: the hypersingular formulation of the Boundary ElementMethod. The method will be brie�y des
ribed as well as all the funda-mental solutions needed for the study of stati
 and dynami
 problems. In
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hapter 4, the proposed formulation will be validated and several problemswill be solved in order to extra
t some 
on
lusions about the behavior ofmagnetoele
troelasti
 solids.In 
hapter 5, a se
ond te
hnique, the Extended Finite Element Methodwill be introdu
ed for the study of stati
 fra
ture me
hani
s, and the new
ra
k tip enri
hment fun
tions needed for its formulation, derived. Someproblems will be solved and the results will be 
ompared with those ob-tained by the use of the hypersingular formulation of the Boundary ElementMethod previously des
ribed.In 
hapters 3 to 5, the ideal impermeable 
ra
k fa
e boundary 
onditionis assumed. In 
hapter 6, however, di�erent 
ra
k fa
e boundary 
onditionssu
h as the permeable and the more realisti
 semipermeable one will beanalyzed for stati
 problems.Finally, in the seventh and last 
hapter, the 
on
lusions extra
ted duringthe realization of the present work will be summarized and possible futuredevelopments proposed.



Chapter 2
Analysis of 
ra
kedmagnetoele
troelasti
 solids
2.1 Introdu
tionIn this 
hapter, a review of the linear elasti
 fra
ture me
hani
s in bidi-mensional magnetoele
troelasti
 media will be presented, 
onsidering bothstati
 and dynami
 loading.First, the behavior of these solids will be des
ribed paying spe
ial atten-tion to the generalized plane problem and showing the pro
edure to solve itbased in the Stroh's formalism. Some extended variables (also 
alled gene-ralized variables) whi
h allow the treatment of the problem in an elasti
-likefashion, will be de�ned, and both stati
 and dynami
 problems will be 
on-sidered. New fra
ture parameters involving the ele
tri
 and magneti
 e�e
tswill be also de�ned, and the impli
ations of those e�e
ts in both externaland 
ra
k fa
es boundary 
onditions, des
ribed



12 Chapter 2. Analysis of 
ra
ked magnetoele
troelasti
 solids2.2 Governing equations for stati
s in in magneto-ele
troelasti
 media2.2.1 Governing equationsThe magnetoele
troelasti
 e�e
t 
onsists in the 
oupling between the elas-ti
, the ele
tri
 and the magneti
 �elds. This statement means that, underthe a
tion of me
hani
al loads, both ele
tri
 and magneti
 �elds are in-du
ed. In the opposite way, if either an ele
tri
 or a magneti
 �eld areapplied, a me
hani
al deformation is produ
ed, as well as a magneti
 or anele
tri
 �eld, respe
tively. Thus, new variables appear in the behavior lawof magnetoele
troelasti
 solids.These variables are the ele
tri
 and magneti
 potentials, φ(x) and ϕ(x),the ele
tri
 and magneti
 �elds, E(x) and H(x), the ele
tri
 displa
ementand magneti
 indu
tion, D(x) and B(x) and the ele
tri
 
harge density andthe ele
tri
 
urrent density, fe(x) and fm(x).The 
onstitutive equations relating the me
hani
al stresses and elasti
strains with those new variables are given by (see, e.g., Jiang and Pan, 2004;Liu et al., 2001; Soh and Liu, 2005)
σij = cijklεkl − elijEl − hlijHl (2.1a)
Di = eiklεkl + ǫilEl + βilHl (2.1b)
Bi = hiklεkl + βilEl + γilHl (2.1
)where all the indi
es vary from 1 to 3 and σij denote the 
omponents of theCau
hy stress tensor, Di the ele
tri
 displa
ements and Bi the magneti
indu
tions; εij are the 
omponents of the small-strain elasti
 tensor and Eiand Hi are the ele
tri
 and magneti
 �elds, respe
tively. cijkl, ǫil and γil



2.2 Governing equations for stati
s in in magnetoele
troelasti
 media 13are the elasti
 sti�ness tensor, the diele
tri
 permittivities and the magneti
permeabilities, respe
tively, whereas elij, hlij and βil are the piezoele
tri
,piezomagneti
 and ele
tromagneti
 
oupling 
oe�
ients, respe
tively.Small displa
ement gradients are assumed, so that the linearized strain-displa
ement relations hold. The me
hani
al stresses and the ele
tri
 andmagneti
 �elds are related with the elasti
 displa
ements and the ele
tri
and magneti
 potentials as follows
εij =

1

2
(ui,j + uj,i) (2.2a)

Ei = −φ,i (2.2b)
Hi = −ϕ,i (2.2
)The summation rule on repeated indi
es is implied and a 
omma standsfor spatial partial di�erentiation. The governing equations are given by theequilibrium equations
σij,j = −fmechi (2.3a)and by the Maxwell equations
Di,i = fe (2.3b)
Bi,i = fm (2.3
)In whi
h it has been 
onsidered the quasi-stati
 assumption of the ele
tri
and magneti
 �elds. Su
h assumption 
an be adopted be
ause 
hara
teris-ti
 frequen
ies in pure me
hani
al and pure ele
tromagneti
 problems arevery di�erent (say by 3 orders of magnitude). Therefore, the 
hanges of
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ra
ked magnetoele
troelasti
 solidsthe ele
tromagneti
 �elds 
an be assumed to be immediate (Parton andKudryatsev, 1988).Following the notation �rst introdu
ed by Barnett and Lothe (1975) forpiezoele
tri
ity, some generalized (also 
alled extended) ve
tors and tensorsare de�ned so that the problem 
an be formulated in an elasti
-like way. Inthis way, the displa
ement ve
tor is extended with the ele
tri
 and magneti
potentials as
uI =






ui, I=1,2,3
φ, I=4
ϕ, I=5, (2.4)where the lower
ase subs
ripts (elasti
) vary from 1 to 3, whereas the up-per
ase ones (extended) vary from 1 to 5. The external volume for
es ve
toris extended with the ele
tri
 
harge density and the ele
tri
 
urrent densityas follows

fI =





fmechi , I=1,2,3
−fe, I=4
−fm, I=5, (2.5)The stresses tensor is now extended with the ele
tri
 displa
ement andthe magneti
 indu
tion as

σIj =





σij, I=1,2,3
Dj , I=4
Bj, I=5, (2.6)with an asso
iated generalized tra
tion ve
tor 
orresponding to a unit nor-mal n = (n1, n2) given by

pI = σIjnj =






pi = σijnj, I=1,2,3
Dn = Djnj , I=4
Bn = Bjnj , I=5, (2.7)The strains tensor is generalized with the ele
tromagneti
 �elds

εIj =





εij , I=1,2,3
−Ej , I=4
−Hj , I=5, (2.8)
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s in in magnetoele
troelasti
 media 15Thus, equilibrium equations 
an be expressed as
σIj,j = fI (2.9)The 
onstitutive equations (2.1) may be then re
ast is a more 
ompa
tform to yield

σIj = CjIKluK,l (2.10)where the material properties have been grouped together into a generalizedelasti
ity tensor de�ned as
CiJKl =





cijkl J,K = 1, 2, 3
elij J = 1, 2, 3; K = 4
hlij J = 1, 2, 3; K = 5
eikl J = 4; K = 1, 2, 3
−ǫil J,K = 4
−βil J = 4; K = 5
hikl J = 5; K = 1, 2, 3
−βil J = 5; K = 4
−γil J,K = 5

(2.11)
where the following symmetries hold

cijkl = cjkil = cijlk = cklij ; elij = elji
hlij = hlji ; ǫij = ǫji ; βij = βji ; γij = γji

(2.12)and, using the extended notation, that symmetry takes the form
CiJKl = ClKJi (2.13)For stable materials, cijkl, ǫij and γij are positive de�nite for any realnon-zero tensor ε and ve
tors E and H. i.e.,

cijklεijεkl > 0 ; ǫijEiEj > 0 ; γijHiHj > 0 (2.14)whi
h 
an be expressed in the extended notation as
CjIKlεIjεKl > 0 (2.15)
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ra
ked magnetoele
troelasti
 solidsMost 
ommon magnetoele
troelasti
 solids in industrial appli
ations are
omposites of piezoele
tri
 and elastomagneti
 
erami
s, in whi
h ele
trome-
hani
al and magnetome
hani
al 
ouplings have been indu
ed by a polariza-tion pro
ess whi
h rearrange the originally isotropi
 
rystalline stru
tures.Thus, anisotropy is an important feature in magnetoele
troelasti
 materials.Ting (1996), established for anisotropi
 materials that, when some termsof the behavior matrix vanish, plane and antiplane problems 
an be stud-ied separately. This statement 
an be generalized to magnetoele
troelas-ti
 solids and, for su
h purpose, it is 
onvenient to use the 
ontra
ted Voigtnotation that redu
es the fourth-order elasti
 and third-order piezoele
tri
and piezomagneti
 tensors to se
ond-order matri
es. In this way, using therelation between the indi
es 11 → 1, 22 → 2, 33 → 3, 23 → 4, 31 → 5,
12 → 6, the behavior law given by equation (2.1) may be rewritten in amatrix form. Let us assume now, that some terms of the behavior matrixvanish, being the resulting matrix like the following
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


σ11

σ22

σ33

σ23

σ13

σ12

D1

D2

D3

B1

B2

B3




=




c11 c12 c13 0 0 0 . . .
c12 c22 c23 0 0 0 . . .
c13 c23 c33 0 0 0 . . .
0 0 0 c44 c45 0 . . .
0 0 0 c45 c55 0 . . .
c16 c26 c36 0 0 c66 . . .
e11 e12 e13 0 0 e16 . . .
e21 e22 e23 0 0 e26 . . .
0 0 0 e34 e35 e36 . . .
h11 h12 h13 0 0 h16 . . .
h21 h22 h23 0 0 h26 . . .
0 0 0 h34 h35 h36 . . .

. . . e11 e21 0 h11 h21 0

. . . e12 e22 0 h12 h22 0

. . . e13 e23 0 h13 h23 0

. . . 0 0 e34 0 0 h34

. . . 0 0 e35 0 0 h35

. . . e16 e26 e36 h16 h26 h36

. . . −ǫ11 −ǫ12 0 −β11 −β12 0

. . . −ǫ12 −ǫ22 0 −β12 −β22 0

. . . 0 0 −ǫ33 0 −β32 −β33

. . . −β11 −β12 0 −γ11 −γ12 0

. . . −β12 −β22 0 −γ12 −γ22 0

. . . 0 0 −β33 0 0 −γ33







ε11

ε22

ε33

2ε23

2ε13

2ε12

−E1

−E2

−E3

−H1

−H2

−H3




(2.16)
In that 
ase, x1 − x2 would be a symmetry plane and the plane andthe antiplane problems may be separated yielding to the following behaviorlaws. For plane problems




σ11

σ22

σ12

D1

D2

B1

B2




=




c11 c12 c16 e11 e21 h11 h21

c12 c22 c26 e12 e22 h12 h22

c16 c26 c66 e16 e26 h16 h26

e11 e12 e16 −ǫ11 −ǫ12 −β11 −β12

e21 e22 e26 −ǫ12 −ǫ22 −β12 −β22

h11 h12 h16 −β11 −β12 −γ11 −γ12

h21 h22 h26 −β12 −β22 −γ12 −γ22







ε11

ε22

2ε12

−E1

−E2

−H1

−H2


(2.17)
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ra
ked magnetoele
troelasti
 solidsbeing ε33 = 0 and σ33 = c13ε11 + c23ε22 +2c36ε12−e13E1−e23E2−h13B1−
h23B2 for plane strain and ε33 = (−1/c33)(c13ε11+c23ε22+2c36ε12−e13E1−
e23E2 − h13B1 − h23B2) and σ33 = 0 for plain stress.The antiplane problem law is now given by




σ23

σ13

D3

B3


 =




c44 c45 e34 h34

c45 c55 e35 h35

e34 e35 −ǫ33 −β33

h34 h35 −β33 −γ33







2ε23

2ε13

−E3

−H3


 (2.18)Let us now remark that the plane stress state, de�ned as that in whi
hthe stress tensor 
omponents are 
ontained in a plane is mathemati
allyequivalent to the plane strain state, but modifying the elasti
 
onstants asproposed by Lekhnitskii (1963). And, in the same way, an antiplane stressstate may be de�ned as that in whi
h only σ13 and σ23 are di�erent to zeroand independent of x3.Most extended magnetoele
troelasti
 materials present a transverselyisotropi
 behavior. If we assume that x1 − x3 is the isotropy plane, thebehavior law for the plane problem may be rewritten as follows




σ11

σ22

σ12

D1

D2

B1

B2




=




c11 c12 0 0 e21 0 h21

c12 c22 0 0 e22 0 h22

0 0 c66 e16 0 h16 0
0 0 e16 −ǫ11 0 −β11 0
e21 e22 0 0 −ǫ22 0 −β22

0 0 h16 −β11 0 −γ11 0
h21 h22 0 0 −β22 0 −γ22







u1,1

u2,2

u1,2 + u2,1

φ,1
φ,2
ϕ,1
ϕ,2


(2.19)Boundary 
onditionsExpressions (2.1), (2.2) and (2.3) 
onstitute a di�erential equations sys-tem whi
h needs the appli
ation of some boundary 
onditions to be solved.



2.2 Governing equations for stati
s in in magnetoele
troelasti
 media 19These 
onditions may be
• Natural boundary 
onditions, when the generalized tra
tions are knownin some points of the boundary.

pI(x0) = σIj · nj |x=x0
= pI , if x0 ∈ Γp

• Essential boundary 
onditions, when the generalized displa
ements areknown in some points of the boundary.
uI(x0) = uI , if x0 ∈ Γuwhere Γ is the external boundary of the magnetoele
troelasti
 domain, being

Γ = Γt
⋃

Γu and Γt
⋂

Γu = ∅.The boundary 
onditions on the 
ra
k surfa
es need spe
ial 
onsidera-tions and will be analyzed in se
tion 2.4.1.2.2.2 Solution of the stati
 plane problem in magnetoele
-troelasti
 materialsLiu et al. (2001), by the use of the extended notation introdu
ed above,established the generalized displa
ements and stresses �elds in terms of
omplex potentials, in an analogous way to the pro
edure 
arried out bySuo, Kuo, Barnett and Willis (1992) for piezoele
tri
 materials.Thus, in a magnetoele
troelasti
 solid, under generalized plane 
ondi-tions, extended displa
ements and stresses, are given by the following ex-pressions
uI = {ui, φ, ϕ} = 2Re

(
5∑

J=1

AIJfJ(zJ)

) (2.20)
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ra
ked magnetoele
troelasti
 solids
σ1I = {σ1i, D1, B1} = −2Re

(
5∑

J=1

BIJµJf
′
J (zJ)

) (2.21)
σ2I = {σ2i, D2, B2} = 2Re

(
5∑

J=1

BIJf
′
J (zJ)

) (2.22)where Re stands for the real part, whilst I,J=1,2,4,5 for plane problems andI,J=3,4,5 for antiplane problems.
µJ , AIJ and BIJ are 
omplex values whi
h 
an be obtained from thematerial properties, zJ is the transformation of the real domain into the
omplex plane (zJ = x1 + µJx2) to de�ne a point lo
ationand f is anarbitrary analyti
 fun
tion whi
h must be obtained for ea
h problem.To determine all those 
omplex values, a pro
edure based in the ex-tension of the Stroh's formalism to magnetoele
troelasti
 solid will be pre-sented. That extension is analogous to the one developed by Barnett andLothe (1975) for the piezoele
tri
 
ase, based on the formulation by Eshelby,Read and Sho
kley (1953) for anisotropi
 materials. The tensors A and B,depending on the materials properties, 
an be 
omputed from the followingeigenvalues problem:
( −L−1M −L−1Z−MTL−1M −MTL−1

)( AMBM

)
= µM

( AMBM

) (2.23)with no sum on index M, and being L, M and Z the tensors de�ned asfollows Z := C1IJ1 ; M := C2IJ1 ; L := C2IJ2 (2.24)and µJ , the roots of the 
hara
teristi
 equation of the material, are four
omplex 
onjugated pairs, but only the four of them with positive imaginarypart are 
onsidered in equations (2.20-??).



2.3 Governing equations for dynami
s in in magnetoele
troelasti
 media 21Let us remark that the existen
e of the inverse of C2IJ2 is guaranteedbe
ause of the positive de�nite 
hara
ter of the behavior matrix as de�nedin (2.15).2.3 Governing equations for dynami
s in in mag-netoele
troelasti
 mediaIn those 
ases where boundary 
onditions of the problem have a strongdependen
y on the time variable, inertial e�e
ts must be 
onsidered in theequations.In the present work two di�erent dynami
 problems have been 
onside-red: time-harmoni
 and general transient problems.2.3.1 Dynami
 governing equationsConsidering the time as an independent variable as well as the inertiale�e
ts, the extended dynami
 behavior law and the kinemati
 relations are
σIj(xm, t) = CjIKlεIj(xm, t) (2.25)

εij(xm, t) =
1

2
[ui,j(xm, t) + uj,i(xm, t)] (2.26a)

Ej(xm, t) = −φ,j(xm, t) (2.26b)
Bj(xm, t) = −ϕ,j(xm, t) (2.26
)while the dynami
 equilibrium equation is
σIj,j(xm, t) + fI(xm, t) = ρδ∗IK üK(xm, t) (2.27)where ρ is the density of the material, the supers
ript · stands for temporalderivative and δ∗JK is the generalized Krone
ker delta, de�ned by

δ∗IK =

{
δJK I,K = 1, 2

0 otherwise (2.28)
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ra
ked magnetoele
troelasti
 solidsLet us remark that, due to the quasi-stati
 assumption for the ele
tri
and magneti
 �elds, no ele
tri
 nor magneti
 inertial e�e
ts are 
onsidered.2.3.2 Time-harmoni
 problemTime-harmoni
 problems are those in whi
h all the time dependent variablesvary as sin (ωt) or cos (ωt). Thus, time dependen
y may be expressed in theform e±iωt, where ω is the angular frequen
y and i is the unit imaginarynumber. In this 
ase, only the real or the imaginary part would have aphysi
al meaning. Time-harmoni
 problems are relevant in elastodynami
ssin
e dynami
 ex
itations may be de
omposed in a Fourier series expansion,the so-
alled harmoni
 expansion. With it, the linear system response maybe obtained by the superposition of the response to ea
h of the harmoni
terms.In these problems all the variables, in every point of the spa
e, will bea fun
tion of an amplitude and a frequen
y. Thus, if v is a generi
 �eldvariable, its value for an instant of time t may be expressed as
v(xm, t) = v(xm, ω)e±iωt (2.29)where v(xm, ω) is the amplitude. With this notation, the extended equilib-rium equation 
an be rewritten as

σIj,j(xm, ω) + fI(xm, ω) = −ρδ∗IKω2uK(xm, ω) (2.30)while the extended behavior law and 
ompatibility equations are
σIj(xm, ω) = CjIKlεIj(xm, ω) (2.31)

εij(xm, ω) =
1

2
[ui,j(xm, ω) + uj,i(xm, ω)] (2.32a)

Ej(xm, ω) = −φ,j(xm, ω) (2.32b)
Bj(xm, ω) = −ϕ,j(xm, ω) (2.32
)
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ture me
hani
s in magnetoele
troelasti
 media 232.4 Linear elasti
 fra
ture me
hani
s in magneto-ele
troelasti
 mediaIn this se
tion, the di�erent 
ra
k fa
e boundary 
onditions whi
h may be
onsidered in magnetoele
troelasti
 
ra
ked solids will be �rst presented.After that, the near-tip generalized displa
ements and stresses �elds in a
ra
ked magnetoele
troelasti
 solid, will be introdu
ed. In those expres-sions, it will be noti
ed that the ele
tri
 and magneti
 potentials have, asthe me
hani
al displa
ement do, a √
r behavior, while the ele
tri
 displa
e-ment and magneti
 indu
tion present an asymptoti
 1/

√
r behavior, as thetraditional me
hani
al stresses in isotropi
 and anisotropi
 materials have,being r the distan
e from the 
ra
k tip to the point where the extendeddispla
ements and/or extended stresses are being evaluated.After studying those expressions, the impli
ations of the presen
e of
ra
ks in dynami
 problems will be presented, paying spe
ial attention tothe di�ra
tion of time-harmoni
 waves when they impinge on defe
ts.It will be seen that the variable �elds in 
ra
ked solids are 
hara
terizedby 
ertain fra
ture parameters, the so-
alled �eld intensity fa
tors: stressintensity fa
tors (SIF), ele
tri
 displa
ement intensity fa
tor (EDIF) andmagneti
 indu
tion intensity fa
tor (MIIF). In this se
tion, thus, some pro-
edure to 
al
ulate them, will be also presented.2.4.1 Cra
k fa
e boundary 
onditionsAn important issue that must be 
onsidered are the boundary 
onditionson the 
ra
k surfa
es. This is not a 
losed topi
 and, as in 
ra
k problemsin other multi�eld solids su
h as piezoele
tri
 materials, three di�erent 
on-ditions may be 
onsidered. Those boundary 
onditions will be des
ribed
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ra
ked magnetoele
troelasti
 solidsbrie�y in this se
tion, and in deep detail in a 
hapter 6.While the me
hani
al boundary 
onditions on the 
ra
k surfa
es for anopening 
ra
k is always tra
tion free, the ele
tromagneti
 boundary 
ondi-tions 
omes in di�erent degrees of shielding the ele
tri
 displa
ement andmagneti
 indu
tion, de�ned, respe
tively, by the ele
tri
 permittivity andby the magneti
 permeability of the medium in between the 
ra
k fa
es.Then, noting with ” + ” and ” − ” the upper and the lower 
ra
k surfa
es,a 
ra
k along the x1-axis 
an be 
onsidered as(i) Fully impermeable 
ra
k. The normal ele
tri
 displa
ement and mag-neti
 indu
tion on the 
ra
k surfa
es are zero, so
D+

2 = D−
2 = 0 (2.33a)

B+
2 = B−

2 = 0 (2.33b)whi
h means that the 
ra
k is extended tra
tions free on its surfa
e.(ii) Fully permeable 
ra
k. In this 
ase, the 
ra
k does not obstru
t anyele
tri
 or magneti
 �eld, what implies that
D+

2 = D−
2 ; φ+ − φ− = 0 (2.34a)

B+
2 = B−

2 ; ϕ+ − ϕ− = 0 (2.34b)(iii) Semipermeable 
ra
k. This 
ondition, whi
h gives a more realisti
boundary 
ondition for opened 
ra
ks, was proposed by Wang andMai (2006) as a generalization of the one proposed by Hao and Shen(1994) and Parton and Kudryatsev (1988) for piezoele
tri
 solids.
D+

2 = D−
2 ; Dc

2(u
+
2 − u−2 ) = −ǫ0(φ+ − φ−) (2.35a)

B+
2 = B−

2 ; Bc
2(u

+
2 − u−2 ) = −γ0(ϕ

+ − ϕ−) (2.35b)
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ture me
hani
s in magnetoele
troelasti
 media 25where, sin
eD+
2 = D−

2 and B+
2 = B−

2 , the upperindex 
 has been usedto denote either of the 
ra
k surfa
es. Moreover ǫ0 is the permittivityof the medium between the 
ra
k fa
es and γ0 its permeability. Letus remark that the semipermeable boundary 
ondition is redu
ed tothe impermeable one when ε0 = 0 and γ0 = 0, and to the permeableone when the jump in the ele
tri
 and magneti
 potential vanish.However, the impermeable boundary 
ondition is the most used in thes
ienti�
 literature and will be the one 
onsidered in most of this work.2.4.2 Cra
k-tip asymptoti
 �eldsAs it has been already said, in magnetoele
troelasti
 solids some variablesappear in the behavior law, di�erent to the only me
hani
al ones. Thesevariables will present a dis
ontinuity due to the presen
e of the 
ra
k. More-over, as it has been pointed out above, the generalized displa
ements andstresses present, respe
tively, a √
r and 1/

√
r behavior, being r the dis-tan
e to the 
ra
k tip. Consequently, some new fra
ture parameters mustbe de�ned. Thus, in a magnetoele
troelasti
 material, as well as the tradi-tional stress intensity fa
tors (SIF), an ele
tri
 displa
ement intensity fa
-tor (EDIF) and a magneti
 indu
tion intensity fa
tor (MIIF) are needed tomodel the near tip behavior. All those parameters will re
eive the generi
name of Extended Stress Intensity Fa
tors (ESIF).In elasti
 problems, the three 
ra
k opening modes I, II and III are iden-ti�ed with a dis
ontinuity in me
hani
al displa
ements in the lo
al 
ra
k
oordinate system. Now, in magnetoele
troelasti
 problems, the new ex-tended stress intensity fa
tors, whi
h are usually 
alled as KIV and KV ,are related to the jump in the ele
tri
 and the magneti
 potentials.
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ra
ked magnetoele
troelasti
 solidsUnder those 
onditions and if a polar 
oordinates system (r, θ) withthe origin at the 
ra
k tip is used (see �gure 2.1), the near tip extendeddispla
ements �elds 
an be expressed in the following way (see e.g. Wangand Mai, 2003 and, more re
ently, Rao and Kuna, 2008)
uI(r, θ) =

√
2

π
Re
(
KNAIMB

−1
MN

√
r (cos θ + µM sin θ)

) (2.36)whereas the stresses �elds 
an be expressed as
σIj(r, θ) = (−1)j

√
1

2π
Re

(
KNBIMB

−1
MN

δj1µM + δj2√
r (cos θ + µM sin θ)

) (2.37)where the summation over N 
omprises all the fra
ture modes: KI , andKIIdenote the traditional me
hani
al SIF, whereas KIV and KV 
hara
terizethe jump in the ele
tri
 and magneti
 �elds over the 
ra
k. In (2.36) and(2.37), the tensors A and B, depending on the materials properties, 
an be
omputed from the eigenvalue problem de�ned in (2.23).
x1

x2

r

s22

s12

s11

s13

s23

D1 B1

B2D2

D3 B3

qFigure 2.1: Extended stresses and referen
e system around the 
ra
k tip2.4.3 Near-tip extended displa
ement �elds based on Lau-rent's series expansionAs it will be studied in 
hapter 5, the asymptoti
 terms of the generalizeddispla
ement �elds in the vi
inity of a 
ra
k tip must be in
luded in the for-
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ture me
hani
s in magnetoele
troelasti
 media 27mulation of the Extended Finite Element Method (X-FEM) to des
ribe thedis
ontinuity imposed by the 
ra
k. For this purpose, it is more 
onvenientto derive the asymptoti
 �elds in terms of Laurent's series expansions. Thepro
edure to obtain them, whi
h is similar to the one followed by S
herzerand Kuna (2004) for piezoele
tri
 materials, will be now introdu
ed.In this work orthotropi
 magnetoele
troelasti
 media under generalizedplane strain 
onditions are 
onsidered for the X-FEM appli
ations. In su
h
ase, the 
onstitutive relations (2.10) may be further redu
ed (Tian andRajapakse, 2005
), to



ε11

ε22

2ε12

E1

E2

H1

H2




=




a11 a12 0 0 b21 0 d21

a12 a22 0 0 b22 0 d22

0 0 a33 b13 0 d13 0
0 0 −b13 δ11 0 ∆11 0

−b21 −b22 0 0 δ22 0 ∆22

0 0 −d13 ∆11 0 ζ11 0
−d21 −d22 0 0 ∆22 0 ζ22







σ11

σ22

σ12

D1

D2

B1

B2


(2.38)where the terms in the matrix are listed in appendix A.Let us now introdu
e some potential fun
tions with the following de�-nitions:

σ11 = U (x1, x2),22, σ22 = U (x1, x2),11, σ12 = −U (x1, x2),12 (2.39a)
D1 = χ(x1, x2),2, D2 = −χ(x1, x2),1 (2.39b)
B1 = ϑ(x1, x2),2, B2 = −ϑ(x1, x2),1 (2.39
)The equilibrium equations (2.9) are satis�ed automati
ally be
ause ofthe de�nitions of the potentials. Substituting (2.38) in the kinemati
 rela-tions (2.2), and expressing the �eld variables through the potentials previ-ously de�ned in equation (2.39), it is possible to obtain
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troelasti
 solids
a11U,2222 + a22U,1111 + (2a12 + a33)U,1122

− (b21 + b13)χ,122 − b22χ,111 (2.40a)
− (d21 + d13)ϑ,122 − d22ϑ,111 = 0

(b21 + b13)U,122 + b22U,111 + δ11χ,22 + δ22χ,11

+ ∆11ϑ,22 + ∆22ϑ,11 = 0 (2.40b)
(d21 + d13)U,122 + d22U,111 + ∆11χ,22 + ∆22χ,11

+ ζ11ϑ,22 + ζ22ϑ,11 = 0 (2.40
)De�ning now the following operators
L4 = a22

∂4

∂x4
1

+ a11
∂4

∂x2
4

+ (2a11 + a33)
∂4

∂x2
1x

2
2

(2.41a)
L3 = b22

∂3

∂x3
1

+ (b21 + b13)
∂4

∂x1x2
2

(2.41b)
M3 = d22

∂3

∂x3
1

+ (d21 + d13)
∂4

∂x1x2
2

(2.41
)
L2 = δ22

∂2

∂x2
1

+ δ11
∂2

∂x2
2

(2.41d)
M2 = ∆22

∂2

∂x2
1

+ ∆11
∂2

∂x2
2

(2.41e)
P2 = ζ22

∂2

∂x2
1

+ ζ11
∂2

∂x2
2

(2.41f)the 
ompatibility equations 
an be redu
ed to a partial di�erential equa-tion of eight order for U (x1, x2) following a similar pro
edure to the onedeveloped by Sosa (1991) for piezoele
tri
 materials
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L4U (x1, x2) − L3χ(x1, x2) −M3ϑ(x1, x2) = 0 (2.42a)
L3U (x1, x2) + L2χ(x1, x2) +M2ϑ(x1, x2) = 0 (2.42b)
M3U (x1, x2) +M2χ(x1, x2) + P2ϑ(x1, x2) = 0 (2.42
)And solving now in terms of the potential U (x1, x2)

[L4(L2P2 −M2
2 ) + L3(L3P2 − 2M3M2) + L2M

2
3 ]U = 0 (2.43)whi
h solution 
an be given in the form

U (x1, x2) = U (x1 + µx2), with µ = Re(µ) + iIm(µ) (2.44)where µ is a 
omplex number.Substituting now (2.44) in equation (2.43), the 
hara
teristi
 equationof magnetoele
troelasti
 media 
an be expressed as
[a11µ

4 + (2a12 + a33)µ
2 + a22][(∆11µ

2 + ∆22)
2 − (δ11µ

2 + δ22)(ζ11µ
2 + ζ22)]

− [(b21 + b13)µ
2 + b22]

2(ζ11µ
2 + ζ22) − [(d21 + d13)µ

2 + d22]
2(δ11µ

2 + δ22)

+ 2[(b21 + b13)µ
2 + b22][(d21 + d13)µ

2 + d22](∆11µ
2 + ∆22) = 0 (2.45)The eight roots of that equation (whi
h are a
tually four 
onjugate 
om-plex pairs) are the same whi
h 
an be obtained by solving the eigenvaluesproblem de�ned by equation (2.23). The general solution for U (x1, x2) 
anbe built up by means of those roots µi as

U (x1, x2) =

8∑

i=1

Ui(x1 + µix2)
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ra
ked magnetoele
troelasti
 solidsAnd now, sin
e the potentials χ(x1, x2) and ϑ(x1, x2) 
an be 
al
ulatedfrom U (x1, x2), every magnetoele
trome
hani
al variable 
an be obtainedby means of the potential U (x1, x2) by substituting in the system of equa-tions de�ned in (2.42).The generalized displa
ement solution around the 
ra
k tip is now de-rived in an unbounded domain as the one shown in the �gure 2.2, where x2is the polarization dire
tion. The material 
oordinate system is rotated byan angle α so that any polarization dire
tion 
an be 
onsidered. In order tosatisfy the 
onsidered 
ra
k fa
e boundary 
onditions, it be
omes ne
essaryto expand the general solution in Laurent-like series (see Muÿ
heli
hwilli,1971 and Savin, 1968), using general power fun
tions for Ui(x1 + µix2)

U (x1, x2) =
∑

k

8∑

i=1

di(λk)(x1 + µix2)
λk+2 (2.46)where the origin of the 
oordinate system has been taken at the 
ra
k-tipand di(λk) are free 
oe�
ients of the series expansion at the origin and
an be obtained only from the overall solution of the 
onsidered boundary
onditions problem. λk are generally 
omplex and represent the numberof roots of the solvability equation for the 
ra
k fa
es boundary 
onditions
onsidered.Considering now a polar 
oordinates system (see �gure 2.2) with originat the 
ra
k tip, and taking into a

ount that the eight roots µi are a
tuallyfour 
omplex 
onjugate pairs, the potential U (r, θ) in (2.46) 
an be rewrittenas
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U (r, θ) =

4∑

i=1

di(λ)r(cos(θ − α) + µi sin(θ − α))λ+2

+
4∑

i=1

di(λ)r(cos(θ − α) + µi sin(θ − α))λ+2 (2.47)where µi and µi must be 
ombined mutually for obtaining a real λ, whi
hwould be the 
ombination of two 
omplex λk.
x1

x2

r

y

Figure 2.2: De�nition of the material axes around the 
ra
k tipThe real representation of ea
h term in (2.46) for ea
h pair µi and µi 
anbe obtained as extension of those obtained by S
herzer and Kuna (2004)for piezoele
tri
 materials and gives expressions as
eip

λ+2 cos [(λ+ 2)(κ+
π

2
)] + fip

λ+2 sin [(λ+ 2)(κ+
π

2
)], (2.48a)
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ra
ked magnetoele
troelasti
 solidswith
p = r

√
(|µK |2 − 1)(sinψ)2 + Re(µi)(sin 2ψ) (2.48b)

κ = arctan
1 + Re(µi) tan(ψ)

|Im(µi)| tan(ψ)
(2.48
)

di(λ) = ei(λ) + ifi(λ) (2.48d)
ψ = θ − α (2.48e)If λk is 
omplex, then the terms of equations (2.48) must be 
ombinedwith the resulting terms of 
onsidering λk, so that real values of U (x1, x2)are obtained and, thus, real values of the other potentials χ(x1, x2) and

ϑ(x1, x2).The homogeneous boundary 
ondition at the 
ra
k surfa
es for an im-permeable 
ra
k (σθθ(r, θ = ±π) = σrθ(r, θ = ±π) = 0, Dθ(r, θ = ±π) = 0and Bθ(r, θ = ±π) = 0) de�ne a linear system of equations for the eightunknown 
oe�
ients ei and fi and their 
omplex 
onjugate pairs. NamingX a ve
tor 
ontaining those unknowns variables, the system of equationwould have the form S(λ) ·X = 0 (2.49)and now it is ne
essary to point out that for the impermeable 
ra
k fa
eboundary 
ondition 
onsidered in most of this work, an in�nite number of
λk 
an be obtained so that the previous system of equation has a solution

λ1 = −1/2; λ2 = 0; λ3 = 1/2; λ4 = 1...A value of λ1 = −1
2 generates four independent eigenve
tors, based onthe 
oe�
ients ei(λ1) and fi(λ1) (and their respe
tive 
onjugate 
omplexpairs) so that four independent singular eigenfun
tions, whi
h in
orporatethe 
lassi
al 1/

√
r 
ra
k tip singularity, 
an be 
onstru
ted in an analogous
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het et al. (2009) for piezoele
tri
 solids. These indepen-dent eigenfun
tions shall be used in 
hapter 5 for obtaining the 
ra
k tipenri
hment fun
tions needed for the X-FEM formulation.2.4.4 Wave s
atteringWave propagation is an important topi
 in solid me
hani
s. A des
ription ofthat phenomena was given by Gra� (1975): the e�e
t of a sharply applied,lo
alized disturban
e in a medium soon transmits or 'spreads' to other partsof the medium.Appli
ations of wave phenomena 
an be found in nearly every �eld ofengineering. Quantitative non-destru
tive testing, seismology, geophysi
sand, as in this work, dynami
 fra
ture me
hani
s.Wave s
attering phenomenon 
onsists in the superposition of the in
i-dent �eld and the di�ra
ted one. Thus, the pro
ess to obtain the solutionfor this kind of problems is 
arried out by means of the superposition prin-
iple, whi
h is illustrated in �gure 2.3. The original problem 
onsists ina wave impinging on a (extended) tra
tions free 
ra
k and 
an be de
om-posed into two subproblems. The �rst one implies a wave traveling along anon-
ra
ked solid, whilst the se
ond one is a 
ra
k subje
ted on its surfa
esto a �eld, equal to the in
ident one but with the opposite sign.
wi wi

ws
ws

= +

-wi

(0) (1) (2)Figure 2.3: Superposition prin
iple applied to wave s
attering problems



34 Chapter 2. Analysis of 
ra
ked magnetoele
troelasti
 solidsLet us remark that the s
attered wave �eld must satisfy the radiation
ondition (Eringen and Suhubi, 1975). BEM presents an important ad-vantage respe
t to other numeri
al te
hniques when dealing with in�niteor semi-in�nite domains, sin
e only the internal boundaries need to bemeshed and the radiation 
onditions at in�nity are automati
ally satis�ed(see, e.g., Dominguez, 1993).2.4.5 Cal
ulation of extended stress intensity fa
torsAs it has been said, stress intensity fa
tors must be understood now in anextended way (ESIF). There are several methods to determine the ESIFfrom the numeri
ally 
omputed �eld variables. The extrapolation methodand the intera
tion integrals approa
h are next sket
hed.
• Stresses or displa
ement methodThis method, sin
e requires a lower postpro
ess of the obtained �eldvariables, is the the most dire
t one. It 
onsists in the substitution of thevalues of the variables obtained numeri
ally, in the expressions (2.36-2.37),getting some expressions from whi
h is possible to obtain the ESIF.This method is the one that will be used in all the BEM (stati
 anddynami
) 
omputations performed in this work and will be analyzed indetail in a later se
tion.
• Intera
tion integral methodThis method is based on the use of path independent integrals, su
h asthe J-integral, whi
h was �rst introdu
ed by Ri
e (1968), who de�ned a pathindependent line integral whi
h is equal to the unit energy release rate G.On
e that integral is evaluated, the 
omputation of the ESIF 
an be 
arried
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 media 35out inmediately. In works by Suo et al. (1992) and Pak (1992) the J-integralwas extended to piezoele
tri
 materials, while Tian and Rajapakse (2005b)did it for magnetoele
troelasti
 solids.Su
h integrals may be de�ned for ea
h me
hani
al fra
ture modes 
on-sidered in plane problems as
J1 =

∮

C

[
1

2
(σijεij −DiEi −BiHi)dx2 − niσipup,1ds

− niDiϕ,1ds− niBiφ,1ds] (2.50)
J2 =

∮

C

[−1

2
(σijεij −DiEi −BiHi)dx1 − niσipup,2ds

− niDiϕ,2ds− niBiφ,2ds] (2.51)where C is any 
losed line around the 
ra
k tip.The intera
tion integral method will require the additional use of anauxiliary state whi
h satis�es the boundary 
onditions of the problem, aswell as the a
tual state under study. The 
ontour J-integral for the sum ofthe two states 
an be de�ned as
J (S) = J (act) + J (aux) +M (2.52)where J (act) and J (aux) are asso
iated, respe
tively, with the a
tual and aux-iliary states, while M is the intera
tion integral. By 
hoosing appropriateauxiliary states, and using the expressions of the J-integral in terms of theESIF, these may be obtained by solving a linear system of equations. Thispro
edure will be exposed in detail in 
hapter 5, devoted to the X-FEM. Inthis work, this method will be used in an equivalent domain form.
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Chapter 3Hypersingular formulation ofthe BEM. Fundamentalsolutions and numeri
alimplementation3.1 Introdu
tionThe main obje
tive of this work is to develop BEM models for the studyof stati
 and dynami
 fra
ture me
hani
s problems in magnetoele
troelas-ti
 solids. In this 
hapter, in order to make the do
ument self-
ontained,the hypersingular formulation of the BEM will be brie�y introdu
ed.It is known as fundamental solution (or Green's fun
tion) the displa
e-ment solution to the problem of a point load (in an extended sense formagnetoele
troelasti
 solids) in an in�nite domain. The BEM is based inthe appli
ation of the re
ipro
ity theorem (Betti's theorem for stati
 prob-
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 ones), between this problem and the oneunder 
onsideration. The appli
ation of that theorem shall lead to the in-tegral equation that, on
e it is solved, will provide the sought solution (seefor further details works by Brebbia and Domínguez, 1992 and Dominguez,1993; both for the simply elasti
 
ase).In this 
hapter the fundamental solution for stati
 problems alreadyavailable in the literature will be des
ribed. Nevertheless, the dynami
Green's fun
tions were not available when this work was 
arried out, so theobtaining pro
ess for it, based on the use of the Radon's transform, will bealso des
ribed in this 
hapter.3.2 The Boundary Element Method (BEM)LetΩ be a domain with a boundary Γ, as the one showed in �gure 3.1. Let usde�ne a referen
e 
oordinates system xi and two 
ompatible loading states,ea
h one de�ned by a displa
ement �eld (u and u∗), boundary tra
tions(p and p∗) and volume for
es (f and f∗). The stati
 re
ipro
ity theorembetween both states is
∫

Ω

ρf∗I (x)uI(x) dΩ +

∫

Γ

ρp∗I(x)uI(x) dΓ =

=

∫

Ω

ρfI(x)u∗I(x) dΩ +

∫

Γ

ρpI(x)u∗I(x) dΓ (3.1)where ρ is the material density. Let us 
onsider now as the state ”∗” the
orresponding to an in�nite domain with an unit point load lo
ated in ξ.That load, for the stati
 
ase, takes the form
ρf∗I = δ(x− ξ)δIJ (3.2)



3.2 The Boundary Element Method (BEM) 39where x is a generi
 point in the domain, δ(·) is the Dira
's delta fun
tion,while δIJ is the Kröne
ker's delta fun
tions. The displa
ement and tra
tionsolution of that problem 
an be expressed as
u∗IJ (ξ,x) ; p∗IJ (ξ,x) (3.3)In equation (3.3), the �rst index indi
ates the 
omponent of the solutionve
tor while the se
ond one denotes the dire
tion in whi
h the loading isapplied; ξ is the point where the load is applied (from now on, 
ollo
ationpoint) while x is the point where the solution is evaluated (from now on,observation point). That solution is known in the whole domain, in
ludingthe points where the external boundary Γ is lo
ated. The equation (3.1)
an now be rewritten, when no volumetri
 for
es are involved, as

uJ(ξ) +

∫

Γ

p∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

u∗IJ (ξ,x)pI(x) dΓ (3.4)This last equation indi
ates that, on
e uJ(x) and pJ(x) are known inthe boundary, the values of those �eld variables may be known in any pointof the domain ξ. Thus, it is �rst ne
essary to know the solution in theboundary.For su
h purpose, some transformations must be done in (3.4). A point
ξ on the boundary will be taken but, sin
e that point must belong to thedomain, the external boundary will be modi�ed with a semi
ir
umferen
eof radius r, whose 
enter is the point ξ, as shown in �gure 3.1. On
e theequation (3.4) is applied, the radius will be taken to zero.Due to the modi�
ation in the external boundary introdu
ed, integralsin equation (3.4) may be de
omposed as follows
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x1

x2

Gx

r
Gr

WFigure 3.1: Domain modi�
ation for the obtaining of the BIE
∫

Γ

p∗IJ (ξ,x)uI(x) dΓ =

∫

Γr

p∗IJ (ξ,x)uI(x) dΓ+

+

∫

Γ−Γr

p∗IJ (ξ,x)uI(x) dΓ (3.5)
∫

Γ

u∗IJ (ξ,x)pI(x) dΓ =

∫

Γr

u∗IJ (ξ,x)pI(x) dΓ+

+

∫

Γ−Γr

u∗IJ (ξ,x)pI(x) dΓ (3.6)Taking now limits in (3.5), the �rst term be
omes
lim
r→0

∫

Γr

p∗IJ(ξ,x)uI(x) dΓ = uI(x) lim
r→0

∫

Γr

p∗IJ(ξ,x) dΓ = cIJuI(ξ) (3.7)where it has been 
onsidered that tra
tions have a 1/r behavior when rtends to zero. Sin
e dΓ ∼ O[r], the integral in that equation does notvanish, so
cIJ = lim

r→0

∫

Γr

p∗IJ(ξ,x) dΓ (3.8)



3.2 The Boundary Element Method (BEM) 41whi
h is the so-
alled free term, whi
h is related with the domain geometry.The se
ond term in (3.5) be
omes, after taking limits,
lim
r→0

∫

Γ−Γr

p∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

−p∗IJ (ξ,x)uI(x) dΓ (3.9)Where ∫− indi
ates Cau
hy's prin
ipal value integration.If the limit r → 0 is now 
onsidered in (3.6), the �rst term be
omes
lim
r→0

∫

Γr

u∗IJ (ξ,x)pI(x) dΓ = pI(ξ) lim
r→0

∫

Γr

u∗IJ (ξ,x) dΓ = 0 (3.10)That integral vanishes when the distan
e between the observation and 
ol-lo
ation points tends to zero, be
ause the displa
ement �elds present a
O[ln(r)] asymptoti
 behavior, while dΓ has a O[r] behavior.The se
ond term in (3.6) be
omes

lim
r→0

∫

Γ−Γr

u∗IJ (ξ,x)pI(x) dΓ =

∫

Γ

−u∗IJ (ξ,x)pI(x) dΓ (3.11)Thus, equation (3.4) may be rewritten for every point in the boundaryas
cIJuJ(ξ) +

∫

Γ

−p∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

−u∗IJ (ξ,x)pI(x) dΓ (3.12)The equation (3.12) is the so-
alled displa
ement boundary integralequation whi
h, for magnetoele
troelasti
 solids, is de�ned in an extendedway.If the boundary Γ is dis
retized in E elements
Γ =

e=E∑

e=1

Γe (3.13)
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ontinuous fun
tions uJ(x) and pJ(x) are de�nedby interpolation of the values in a 
ertain number n of nodes, by the use ofknown interpolation fun
tions φq(x). Then
uI(x) =

q=n∑

q=1

φq(x)uI(x
q) =

q=n∑

q=1

φq(x)u
q
I (3.14)

pI(x) =

q=n∑

q=1

φq(x)pI(x
q) =

q=n∑

q=1

φq(x)p
q
I (3.15)and equation (3.12) 
an be rewritten as follows

cIJuJ (ξ) +

e=E∑

e=1

q=n∑

q=1

∫

Γe

p∗IJ(ξ,x)φq(x)u
q
I dΓ =

=
e=E∑

e=1

q=n∑

q=1

∫

Γe

u∗IJ (ξ,x)φq(x)p
q
I dΓ (3.16)So a problem in whi
h the unknown variables are 
ontinuous fun
tionshas been transformed into one in whi
h they are the values of those fun
tionsin N = n ·E nodal points.If that equation is obtained for all the points established in the boundary,an algebrai
 equation as the following is obtained

cIJuJ + ĤIJuJ = GIJpJ =⇒ HIJuJ = GIJpJ (3.17)If tra
tions and displa
ements boundary 
onditions are now appliedand (3.17) is rearranged in a proper way, a system of equations in whi
hthe known and unknown variables are separated is obtainedAx = b (3.18)



3.2 The Boundary Element Method (BEM) 43Finally, from the �eld variables in the boundary, the displa
ement valuesin any point of the domain 
an be obtained by the equation (3.4) and thetra
tions, in general, by the use of the kinemati
 relations. However, as itwill be exposed in se
tion 3.3, in the hypersingular formulation of the BEM,tra
tions are obtained dire
tly by the appli
ation of a di�erent boundaryintegral equation.The extension of the previous formulation to the time-harmoni
 
ase
an be done inmediately by means of the elastodynami
 re
ipro
ity theo-rem by Gra� (1946). The expression of this theorem is analogous to (3.1)but in
luding the dependen
y of the variables with the frequen
y. The re-sulting time-harmoni
 boundary integral equation, obtained after a similarpro
edure as the one followed in the stati
 
ase, is then
cIJuJ(ξ, ω) +

∫

Γ

−p∗IJ (ξ,x, ω)uI(x, ω) dΓ =

∫

Γ

−u∗IJ (ξ,x, ω)pI(x, ω) dΓ (3.19)where ω denotes the 
onsidered frequen
y, while the expression for a time-harmoni
 point load is ρf∗I = δ(x− ξ)δIJe
−iωt.In relation to the transient analysis, the boundary integral equationtakes the form (for further details, see Dominguez, 1993)

cIJuJ(ξ, t) +

∫

Γ

−p∗IJ (ξ,x, t) ∗ uI(x, t) dΓ =

∫

Γ

−u∗IJ (ξ,x, t) ∗ pI(x, t) dΓ (3.20)in whi
h the time integration is 
arried out by the Riemann 
onvolutionprodu
t (denoted by ∗), whi
h 
an be de�ned as
f(t) = g(t) ∗ h(t) =

t∫

0

g(t− τ)h(t) dτ (3.21)



44 Chapter 3. Hypersingular formulation of the BEMUnlike the 
onventional time-domain BEM (see for details works by Tanet al., 2005a,b; Zhang, 2002b), the time-domain BEM formulation presentedin this work applies the Lapla
e-domain instead of the time-domain elas-todynami
 fundamental solutions. This is spe
ially advantageous in 
aseswhere time-domain dynami
 fundamental solutions are not available buttheir Lapla
e-transforms 
an be obtained.The time integration has been 
arried out by means of Lubi
h's quadra-ture formula (1988a; 1988b), whi
h establishes that, if a time interval isdivided in K subintervals of the same length ∆t, 
onvolution produ
t oftwo fun
tions 
an be approximated by the following quadrature
f(k · ∆t) =

k·∆t∫

0

g(t− τ)h(t) dτ ∼=
k∑

j=0

ωk−j(∆t)h(j · ∆t) (3.22)where the weights are related with the Lapla
e transform of the g(t) fun
-tion, g(·), as
ωk(∆t) =

r−k

K
=

K−1∑

m=0

g

(
δ(ζm)

∆t

)
e−2πinm/K, k = 0, 1, 2, ...,K (3.23)being i the imaginary unit number and

δ(ςm) =
2∑

j=1

(1 − ζm)j/2 ; ζm = r · e−2πikm/K ; r = ǫ1/(2K) (3.24)where ǫ is the numeri
al error in 
omputing the Lapla
e transform g(·),whi
h is of the order O (
√
ǫ). Previous works (see, e.g. Gar
ía-Sán
hez andZhang, 2007b) reveal that when ǫ is between 10−6 and 10−12, 
hanges inthe results are negligible.
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hani
s problem inmagnetoele
troelasti
 solids 453.3 Hypersingular BEM formulation for fra
tureme
hani
s problem in magnetoele
troelasti
 solids3.3.1 Introdu
tionGeometri
al modelization of a 
ra
k is 
arried out by two 
oin
ident sur-fa
es. This fa
t implies numeri
al troubles when trying to solve fra
tureme
hani
s problems with the BEM: sin
e two equal equations are obtainedfor both 
ra
k surfa
es, a degeneration of the system of equations is pro-voked. To solve that issue, there exist three possibilities.The �rst one is the use of spe
i�
 fundamental solutions over domainswhi
h in
lude the 
ra
k, as proposed by Snyder and Cruse (1975) for aniso-tropi
 plates. This method present a big in
onvenient sin
e it needs tailoredGreen's fun
tions for ea
h problem 
ra
k geometry.Another solution is the so-
alled subregions method, whi
h 
onsists in theintrodu
tion of a �
titious surfa
e whi
h separate the original domain in twosubdomains so that ea
h 
ra
k fa
e belongs to one of them. Thus, di�erentequations for ea
h 
ra
k surfa
e are obtained, although now is ne
essaryto apply equilibrium and 
ompatibility equations on the interfa
e whi
hseparates both domains. There exist many works in whi
h this te
hniquehas been applied for anisotropi
 and piezoele
tri
 materials, su
h as thoseby Ishikawa (1990) and Daví and Milazzo (2001).Another possibility, the one adopted in this work, is the use of the hyper-singular (dual) formulation of the BEM. It 
onsists in the appli
ation of the(extended) displa
ement boundary integral equation (EDBIE), presented inthe previous se
tion, to the external boundary and one of the 
ra
k fa
es,and another boundary integral equation to the other 
ra
k fa
e. This newintegral equation is obtained by derivation of the EDBIE respe
t to the
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ollo
ation point, as done by Iokamidis (1983) and Hong and Chen (1988),being the main problem of this method the numeri
al evaluation of the sin-gular and hypersingular integrals whi
h appear when the 
ollo
ation pointbelongs to the element where the integration is 
arried out.Portela et al. (1992) and Sollero and Aliabadi (1995) applied this methodto bidimensional isotropi
 and anisotropi
 fra
ture me
hani
s problem, butthe way they solve the integrals requires the use of straight elements. Thisrestri
tion 
an be avoided by the use of the more general treatment ofthe hypersingular integrals introdu
ed for isotropi
 behavior by Sáez et al.(1995), and later generalized by Gar
ía-Sán
hez et al. for anisotropi
 andpiezoele
tri
 solids (2004; 2005a).3.3.2 Dual BEM for fra
ture me
hani
s problemsIn this se
tion the hypersingular BEM formulation will be �rst introdu
edfor stati
 fra
ture me
hani
s problems, being this formulation extended lateron to the frequen
y and time domains, in se
tions 3.3.3 and 3.3.4, respe
-tively.Degeneration of the system of equations. Tra
tion boundary in-tegral equationLet Ω be a 2-D magnetoele
troelasti
 
ra
ked domain with boundary Γ asthe one shown in �gure 3.2, so that Γ = ΓB∪Γcrack , where ΓB is the externalnon-
ra
ked boundary and Γcrack = Γ+ ∪ Γ− are the two geometri
ally
oin
ident 
ra
k surfa
es.As it has been said, if the EDBIE is applied to all the boundaries,then a degenerated system of equation will be obtained, sin
e both 
ra
kfa
es are geometri
ally 
oin
ident. The dual or hypersingular formulation of
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Gc

+

Gc

-

GB WFigure 3.2: Boundaries in a 
ra
ked domainthe BEM 
onsiders two boundary integral representations to over
ome thatproblem: the extended displa
ement (EDBIE) and the so-
alled extendedtra
tion (ETBIE) boundary integral equation. To obtain this new equation,we start whith the EDBIE for an internal point (3.4) whi
h will be derivatedwith respe
t to the 
ollo
ation point. After applying the relations given byequations (2.2) and the 
onstitutive equations, equations (2.1), the followingequation is obtained:
CsJKr

∂uK(ξ)

∂ξr
+ CsJKr

∫

Γ

∂p∗KJ(ξ,x)

∂ξr
uI(x) dΓ =

= CsJKr

∫

Γ

∂u∗KI(ξ,x)

∂ξr
pI(x) dΓ (3.25)Now, sin
e the extended stress tensor in the 
ollo
ation point is σsK(ξ) =

CsIKruI,r, by multiplying the previous equation by the unit normal on thatpoint (N(ξ)), the extended tra
tions on that point are obtained
pJ(ξ) +

∫

Γ

s∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

d∗IJ (ξ,x)pI(x) dΓ (3.26)where
d∗IK(ξ,x) = Ns(ξ)CsIJru

∗
KJ,r(ξ,x) (3.27)
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s∗IK(ξ,x) = Ns(ξ)CsIJrp

∗
KJ,r(ξ,x) (3.28)Now, following for equation (3.26) a similar pro
edure to the one 
ar-ried out for the EDBIE, the extended tra
tion boundary integral equation(ETBIE) is obtained as

cIJpJ(ξ) +

∫

Γ

= s∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

−d∗IJ (ξ,x)pI(x) dΓ (3.29)where ∫= indi
ates Hadamard �nite part integral.The hypersingular formulation of the BEM 
onsist on the appli
ationof the EDBIE to the external boundary and one of the 
ra
k fa
es and theappli
ation of the ETBIE on the other 
ra
k surfa
e.Boundary integral equations in terms of the extended 
ra
k open-ing displa
ementsIn this se
tion it will be demonstrated that is possible to redu
e de dualBEM formulation in fra
ture me
hani
 problems to the appli
ation of theEDBIE to the external boundaries and the ETBIE to only one of the 
ra
kfa
es.Let us rewrite equations (3.12) and (3.29) to keep the order in the ex-position, 
onsidering that Γ = ΓB + Γ+
c + Γ−

cEDBIE if ξ ∈ ΓB ,Γ
−
c

cIJuJ(ξ) +

∫

Γ

−p∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

−u∗IJ (ξ,x)pI(x) dΓ (3.30)ETBIE if ξ ∈ Γ+
c

pJ(ξ) +

∫

Γ

= s∗IJ (ξ,x)uI(x) dΓ =

∫

Γ

−d∗IJ (ξ,x)pI(x) dΓ (3.31)
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∫

Γ−
c

− p∗IJ (ξ,x)uI(x−) dΓ = −
∫

Γ+
c

− p∗IJ (ξ,x)uI(x+) dΓ (3.32a)
∫

Γ−
c

−u∗IJ (ξ,x)pI(x−) dΓ =

∫

Γ+
c

−u∗IJ (ξ,x)pI(x+) dΓ (3.32b)
∫

Γ−
c

− s∗IJ (ξ,x)uI(x−) dΓ = −
∫

Γ+
c

− s∗IJ (ξ,x)uI(x+) dΓ (3.32
)
∫

Γ−
c

− d∗IJ (ξ,x)pI(x−) dΓ =

∫

Γ+
c

− d∗IJ (ξ,x)pI(x+) dΓ (3.32d)Calling now ∆uI(x) and ∆pI(x), respe
tively, to the jump in the ge-neralized displa
ement and the sum of the extended tra
tions on the 
ra
ksurfa
es (a

ording to de�nition in equation 2.7)
∆uI(x) = (u1(x+) − u1(x−), u2(x+) − u2(x−), . . .

. . . , φ(x+) − φ(x−), ϕ(x+) − ϕ(x−)) (3.33)
∆pI(x) = (p1(x+) + p1(x−), p2(x+) + p2(x−), . . .

. . . Dn(x+) +Dn(x−), Bn(x+) +Bn(x−)) (3.34)then the boundary integral equations 
an be rewritten, respe
tively, as
cIJuJ(ξ) +

∫

ΓB

− p∗IJ (ξ,x)uI(x) dΓ +

∫

Γ+
c

p∗IJ (ξ,x)∆uI(x) dΓ =

=

∫

ΓB

−u∗IJ (ξ,x)pI(x) dΓ +

∫

Γ+
c

u∗IJ (ξ,x)∆pI(x) dΓ (3.35)
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pJ(ξ) +

∫

ΓB

s∗IJ (ξ,x)uI(x) dΓ +

∫

Γ+
c

= s∗IJ (ξ,x)∆uI(x) dΓ =

=

∫

ΓB

d∗IJ (ξ,x)pI(x) dΓ +

∫

Γ+
c

− d∗IJ (ξ,x)∆pI(x) dΓ (3.36)In this work all the 
ases studied present impermeable and self-equilibrated
ra
ks, what implies that, on the 
ra
k, ∆pJ(x) = 0. In this 
ase, the dualBEM formulation 
an be expressed asIf ξ ∈ ΓB

cIJuJ(ξ) +

∫

ΓB

− p∗IJ (ξ,x)uI(x) dΓ +

∫

Γ+
c

p∗IJ (ξ,x)∆uI(x) dΓ =

=

∫

ΓB

−u∗IJ (ξ,x)pI(x) dΓ (3.37)If ξ ∈ Γ+
c

pJ(ξ) +

∫

ΓB

s∗IJ (ξ,x)uI(x) dΓ +

∫

Γ+
c

= s∗IJ (ξ,x)∆uI(x) dΓ =

=

∫

ΓB

− d∗IJ (ξ,x)pI(x) dΓ (3.38)3.3.3 Extension to the time-harmoni
 domainThe extension of the stati
 extended boundary integral equations (3.37-3.38)to the frequen
y domain is inmediate by means of the elastodynami
 re
i-pro
ity theorem by Gra� (1946), in
luding the dependen
y of the variableswith the frequen
y. Thus, if impermeable 
ra
ks are 
onsidered, extendedBIE 
an be expressed as
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cIJuJ(ξ, ω) +

∫

ΓB

− p∗IJ (ξ,x, ω)uI(x, ω) dΓ +

∫

Γ+
c

p∗IJ (ξ,x, ω)∆uI(x, ω) dΓ =

=

∫

ΓB

−u∗IJ (ξ,x, ω)pI(x, ω) dΓ (3.39)If ξ ∈ Γ+
c

pJ(ξ, ω) +

∫

ΓB

s∗IJ (ξ,x, ω)uI(x, ω) dΓ +

∫

Γ+
c

= s∗IJ (ξ,x, ω)∆uI(x, ω) dΓ =

=

∫

ΓB

− d∗IJ (ξ,x, ω)pI(x, ω) dΓ (3.40)3.3.4 Extension to the time domain. Time-stepping s
hemeBoundary integral equations in the time domain take the formIf ξ ∈ ΓB

cIJuJ(ξ, t) +

∫

ΓB

− p∗IJ (ξ,x, t) ∗ uI(x, t) dΓ +

∫

Γ+
c

p∗IJ (ξ,x, t) ∗ ∆uI(x, t) dΓ =

=

∫

ΓB

−u∗IJ (ξ,x, t) ∗ pI(x, t) dΓ (3.41)If ξ ∈ Γ+
c

pJ(ξ, t) +

∫

ΓB

s∗IJ (ξ,x, t) ∗ uI(x, t) dΓ +

∫

Γ+
c

= s∗IJ (ξ,x, t) ∗ ∆uI(x, t) dΓ =

=

∫

ΓB

− d∗IJ (ξ,x, t) ∗ pI(x, t) dΓ (3.42)The Riemann 
onvolution produ
t (denoted by ∗), is 
arried out by meansof Lubi
h's quadratures as de�ned by equations (3.22-3.24), leading, after
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retization to the Lapla
e-domain system matri
es, Ḡ(sm) and
H̄(sm), whi
h 
an be 
omputed by

Ḡ(sm) =






E∑
e=1

∫

Γe

u∗IJ (ξ,x, sm)φq(x) dΓ, for EDBIE,
E∑
e=1

∫

Γe

d∗IJ (ξ,x, sm)φq(x) dΓ, for ETBIE, (3.43)
H̄(sm) =






E∑
e=1

∫

Γe

p∗IJ (ξ,x, sm)φq(x) dΓ, for EDBIE,
E∑
e=1

∫

Γe

s∗IJ (ξ,x, sm)φq(x) dΓ, for ETBIE. (3.44)where sm = δ(ζm)/∆t is the Lapla
e parameter, and u∗IJ , p∗IJ , d∗IJ and s∗IJare the terms of the fundamental solution, as des
ribed in se
tion 3.6.Taking into a

ount the approximation of the Riemann 
onvolution in-tegral rede�ned in equations (3.22-3.24), the system matrix at the (k− j)thtime-step 
an be obtained by
Gk−j =

r−(k−j)

K

K−1∑

m=0

Ḡ(sm) e−2πi(k−j)m/K , (3.45)
Hk−j =

r−(k−j)

K

K−1∑

m=0

H̄(sm) e−2πi(k−j)m/K , (3.46)And now, on
e that both spatial and time dis
retizations have beenperformed, the following time s
heme is obtained
k∑

j=0

Hk−j · uj =
k∑

j=0

Gk−j · pj , k = 0, 1, 2, ...,K (3.47)where Gk−j and Hk−j are the time-domain system matri
es at the (k−j)thtime-step, being k the total number of time-steps 
onsidered, uj is the
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tor 
ontaining the dis
rete boundary displa
ements and the extended
ra
k opening displa
ements (ECOD), and pj is the ve
tor 
ontaining thedis
rete boundary tra
tions.By 
onsidering now the boundary 
onditions, equation (3.47) 
an berearranged as
k∑

j=0

Ak−j · xj = yj , (3.48)where Ak−j is the rearranged system matrix, xj is the ve
tor 
ontain-ing the unknown boundary quantities, and yj is the ve
tor 
ontainingthe pres
ribed or known boundary quantities. If zero initial 
onditions(uI(x, t) = u̇I(x, t) = 0 for t ≤ 0) are 
onsidered, equation (3.48) leads tothe following expli
it time-stepping s
heme, as proposed by Zhang (2000,2002a, 2005)
xk =

(
A0
)−1 ·


yk −

k−1∑

j=1

Ak−j · xj

 (3.49)for 
omputing the unknown ECOD at the nth time-step. In equation (3.49),

(
A0
)−1 is the inverse of the system matrix A0 at the time-step n = 0.3.3.5 Meshing strategyFor the dis
retization of the geometry and �eld variables, quadrati
 elementshave been used.Numeri
al evaluation of the ETBIE requires C1 
ontinuity of the dis-pla
ement to ensure the 
ontinuity of its derivatives and, thus, the 
ontinu-ity of tra
tions after the derivation on the node. To ful�ll this requirement,dis
ontinuous quadrati
 elements with the two extreme 
ollo
ation nodes



54 Chapter 3. Hypersingular formulation of the BEMshifted towards the 
enter of the element are used to mesh the 
ra
k, as ithas been done in previous works (Gar
ía-Sán
hez et al., 2004), following theformulation developed by Sáez et al. (1995). A

ording to this, two di�erentelements have been 
onsidered in this work: 
ontinuous and dis
ontinuouselements.In 
ontinuous elements the same points (the extremes and the middlepoint of the element) are used to de�ne the geometry and �eld variables.Shape fun
tions for these elements (geometri
 shape fun
tions) are the fol-lowing ones
φ1G(ζ) =

1

2
ζ(ζ − 1) ; φ2G(ζ) = (1 − ζ2) ; φ3G(ζ) =

1

2
ζ(ζ + 1) (3.50)where ζ is the natural 
oordinate, whi
h vary between -1 and +1.In dis
ontinuous elements, for the geometri
 dis
retization, the shapefun
tions already seen (equation 3.50) are used, while for the �eld variablesnew shape fun
tions will be used. In them, as it has been said, the extreme
ollo
ation points are moved towards the 
enter. These fun
tions, the so-
alled 
al
ulus shape fun
tions will be equal to one in the points ζ = ζ1, 0, ζ2instead of in ζ = −1, 0, 1. The expressions for them are

φ1(ζ) =
ζ(ζ − ζ2)

ζ1(ζ1 − ζ2)
; φ2(ζ) =

(ζ − ζ1)(ζ − ζ2)

ζ1ζ2
;

φ3(ζ) =
ζ(ζ − ζ1)

ζ2(ζ2 − ζ1)
(3.51)Both geometri
 and 
al
ulus shape fun
tions are represented in �gure 3.3.In this work values of ζ1 = −3/4 and ζ2 = 3/4 have been taken, as it wasdone by Sáez et al. (1995).Finally, in boundaries whi
h are interse
ted by a 
ra
k, a dis
ontinuouselement will also be used, but only the node on the extreme interse
ted is
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Figure 3.3: Geometri
 (left) and 
al
ulus (right) shape fun
tions

Figure 3.4: Elements used in the domain dis
retization
shifted towards the 
enter. In �gure 3.4 the disposition of the elements usedin the work, depending on the boundary whi
h they belong is summarized.Note that another element, the so-
alled dis
ontinuous quarter point ele-ment appears in it. This element, whi
h is used to modelize properly theasymptoti
 behavior of the �eld variables around the 
ra
k tip, is studiedin detail in se
tion 3.7.
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tions and numeri
al evaluation ofthe integrals. Stati
 
ase3.4.1 Fundamental solutionsFundamental solution 
orresponding to the response of a homogeneous bidi-mensional magnetoele
troelasti
 solid, due to the appli
ation of an unitstati
 extended point for
e is available in the literature (see e.g. worksby Liu et al., 2001 and Jiang and Pan, 2004). That solution is obtained bymeans of the generalized Stroh's formalism (1958), following a similar pro-
edure to the one developed by Barnett and Lothe (1975) for piezoele
tri
materials. Consequently, the expressions of the Green's fun
tions presentbig similarities with those previously developed for anisotropi
 and piezo-ele
tri
 materials and used in works by Gar
ía-Sán
hez et al. (2004; 2005;2005a).Thus, extended displa
ement in the observation point x = (x1, x2), inthe J-dire
tion when a (extended) point load in the 
ollo
ation point ξ =

(ξ1, ξ2) is applied in the I-dire
tion, 
an be expressed as
u∗IJ (zxM , z

ξ
M ) = − 1

π
Re(AJMQMI ln(zxM − zξM )) (3.52)By the appli
ation of the kinemati
 relations and the behavior law, one
an obtain the expressions for the extended tra
tions Green's fun
tions

p∗IJ (zxM , z
ξ
M) =

1

π
Re

(
BJMQMI

µMn1 − n2

zxM − zξM

) (3.53)where n is the unit external normal at the observation point. In bothequations (3.52-3.53), Re stands for the real part, the summation rule overrepeated indi
es applies, and zK and z0
K are the transformation into the
omplex plane of the physi
al 
oordinates of the observation and 
ollo
ation
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al integration 57points, by the use of the following transformation:
zxK = x1 + µKx2 (3.54)
zξK = ξ1 + µKξ2 (3.55)being µK the roots of the 
hara
teristi
 equation of the material, de�nedby (2.45), with positive imaginary part. Let us remark that those roots 
analso be obtained as well as the 
olumns of the matri
es A and B, by solvingthe eigenvalues problem de�ned in (2.23).Moreover, the matrix Q 
an be 
al
ulated asQ = A−1

(M−1 +M−1
)−1

; M = iAB−1 (3.56)The derivatives of the fundamental solution displa
ements and tra
tionsneeded to 
ompute the kernels s∗IJ and d∗IJ in the ETBIE (3.38) are thenobtained as
u∗IJ,k(x, ξ) =

∂u∗IJ (x, ξ)

∂ξk
=

1

π
Re

[
AIMQMJ

δk1 + µMδk2

zxM − zξM

] (3.57)
p∗IJ,k(x, ξ) =

∂p∗IJ (x, ξ)

∂ξk
=

=
1

π
Re

[
BIMQMJ

µMn1 − n2

(zxM − zξM)2
(δk1 + µMδk2)

] (3.58)3.4.2 Numeri
al evaluation of singular and hypersingularintegralsAs it 
ould be seen in se
tion 3.4.1, all the terms of the fundamental solu-tion present fun
tional dependen
ies to the distan
es in the 
omplex plane
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ollo
ation and the observation point, (zxM − zξM

). That de-penden
y in u∗IJ has the form ln
(
zxM − zξM

), while in the terms p∗IJ and
d∗IJ , the dependen
y present a 1/

(
zxM − zξM

) form and, �nally, the kernels
s∗IJ show a 1/

(
zxM − zξM

)2 dependen
y.In all those 
ases, when the observation point approa
hes the 
ollo
a-tion one, some numeri
al issues arise. In parti
ular, logarithmi
ally singular,strongly singular and hypersingular integrals, respe
tively, must be evalu-ated, while if the integration is 
arried out in elements whi
h do not 
ontainthe 
ollo
ation point, standard Gauss quadratures are used.Weakly singular integralsThese are the integrals whi
h 
ontain the displa
ement Green's fun
tion:
∫

ΓB

−u∗IJ (ξ,x)pI(x) dΓ (3.59)Introdu
ing now in that equation the expression of the Green's fun
tion,and approximating the tra
tions by the nodal values and shape fun
tions,equation (3.59) leads to integrals of the form
Iw =

∫

Γe

− ln(zxK − zξK)φdΓ (3.60)where, for the sake of 
larity, the terms that only depend on the materialproperties have been removed from equation (3.60). The kernels present a
0
[
ln(zxM − zξM )

] singularity when the the observation and 
ollo
ation pointapproa
h, i.e. x → ξ. These kind of integrals are solved by the use ofspe
i�
 logarithmi
 quadratures when ξ ∈ Γe.
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al integration 59Strongly singular integralsStrongly singular kernels present a 0
[
1/(zxM − zξM)

] singularity when theintegration is performed in the element where the 
ollo
ation point belongto and are the following
∫

ΓB

− p∗IJ(ξ,x)uI(x) dΓ ;

∫

Γc

− d∗IJ (ξ,x)∆pI(x) dΓ (3.61)Let us remark that when impermeable 
ra
k boundary 
ondition or self-equilibrated 
ra
ks are 
onsidered (∆pJ = 0), d∗IJ kernels will never presenta singular behavior. However, in order to 
omplete the exposition of thiswork, the integration of these singular integrals is presented.If the expressions of the Green's fun
tions are introdu
ed in (3.61), af-ter the geometri
 dis
retizations and nodal approximations of the nodalvariables, the integrals to be evaluated present the following form
Is1 =

∫

Γe

− µKn1 − n2

zxK − zξK
φdΓ (3.62)

Is2 =

∫

Γe

− µKN1 −N2

zxK − zξK
φdΓ (3.63)where n = (n1, n2) and N = (N1, N2) are, respe
tively, the unit normalat the observation point and at the 
ollo
ation point and, again, the termswhi
h only depend on the material properties have been removed from thoseequations.For solving numeri
ally these integrals a 
hange of variable is 
arriedout, whi
h transform every element in the boundary, Γe, to the 
omplexplane. Thus, the new variable is the distan
e in the 
omplex plane betweenboth 
ollo
ation and observation points:
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χK = zxK − zξK = (x1 − ξ1) + µK(x2 − ξ2) (3.64)The ja
obian of the transformation is

dχK
dΓ

=
dχK
dx1

dx1

dΓ
+
dχK
dx2

dx2

dΓ
(3.65)where

dχK
dx1

= 1 ;
dχK
dx2

= µK (3.66)
dx1

dΓ
= cos(θ) = −n2 ;

dx2

dΓ
= sin(θ) = n1 (3.67)As �gure 3.5 illustrates, the substitution of (3.66) and (3.67) in theja
obian, leads to the following expression for it

dχK
dΓ

= µKn1 − n2 (3.68)
dx1

q

dx2

n

dGFigure 3.5: Di�erential element in the boundaryNumeri
al evaluation of Is1If the expression for the ja
obian, equation (3.66) is introdu
ed in (3.62),the strongly singular integral, Is1 may be rewritten as
Is1 =

∫

Γe

− µKn1 − n2

zxK − zξK
φdΓ =

∫

Γe

− 1

χK
φdχK (3.69)
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h 
ould be easily de
omposed into
Is1 =

∫

Γe

− 1

χK
φdχK =

∫

Γe

− 1

χK
(φ± 1) dχK =

∫

Γe

1

χK
(φ− 1) dχK+

+

∫

Γe

− 1

χK
dχK = I

(R)
s1 + I

(S)
s1 (3.70)

I
(R)
s1 is a regular integral whi
h 
an be determined by an ordinary Gaussquadratures s
heme, while I(S)

s1 is still singular, but with the following ana-lyti
al solution
I

(S)
s1 = ln (χK)|Γe

(3.71)Numeri
al evaluation of Is2When χK is introdu
ed in (3.63), it yields to
Is2 =

∫

Γe

− µKN1 −N2

χK
φdΓ (3.72)To regularize that integral, dχK/dΓ is added and subtra
ted, leading tothe following integral

Is2 =

∫

Γe

µKN1 −N2 − (dχK/dΓ)

χK
φdΓ +

∫

Γe

− 1

χK
φdχK (3.73)where the �rst term is a regular integral and the se
ond one is the alreadyseen Is1 integral.Hypersingular integralsHypersingular kernels present a O

[
1

(zx
K
−zξ

K
)2

] singularity when x → ξ.These integrals are those whi
h 
ontain the term s∗IJ in the TBIE
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∫

Γc

= s∗IJ (ξ,x)uI(x) dΓ (3.74)After the dis
retization pro
edure, hypersingular integrals to be evalu-ated may be rewritten as
Ih =

∫

Γe

=
µKn1 − n2

(zxK − zξK)2
φdΓ (3.75)And now, 
onsidering the 
hange of variable proposed in the previousse
tion, hypersingular integral 
an be expressed as a fun
tion of χK asfollows

Ih =

∫

Γe

=
µKn1 − n2

(zxK − zξK)2
φdΓ =

∫

Γe

=
1

χ2
K

φdχK (3.76)Let us now 
onsider the Taylor series expansion of φ = f(χK) around
χK = 0

φ(χK ≈ 0) = φ(χK = 0) +
dφ

dχK

∣∣∣∣
χK=0

χK +O[χ2
K ] = φ0 + φ′0χK +O[χ2

K ](3.77)Adding and subtra
ting the two �rst terms of that expansion to φ inequation (3.76), the hypersingular integral 
an now be de
omposed in theaddition of three di�erent integrals
Ih =

∫

Γe

=
1

χ2
K

φdχK =

∫

Γe

=
1

χ2
K

(φ± (φ0 + φ′0χK)) dχK =

∫

Γe

φ− (φ0 + φ′0χK)

χ2
K

dχK + φ0

∫

Γe

=
1

χ2
K

φdχK + φ′0

∫

Γe

− 1

χK
φdχK (3.78)
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al evaluation of the integrals.Time-harmoni
 
ase 63The �rst of those integrals is a regular one, the third one has beenanalyzed in the strongly singular integrals se
tion while the se
ond integralis still hypersingular but with an analyti
al solution
φ0

∫

Γe

=
1

χ2
K

φdχK = −φ0
1

χK

∣∣∣∣
Γe

(3.79)This regularization pro
edure is simple and generi
 sin
e it is not re-stri
ted to the use of straight elements on the 
ra
k. It presents anotheradvantage against other methods whi
h use spe
i�
 quadratures for the nu-meri
al evaluation of hypersingular integrals (see e.g. Pan, 1997, 1999): ahigher pre
ision is obtained sin
e the numeri
al integration is performedonly over regular integrals.3.5 Green's fun
tions and numeri
al evaluation ofthe integrals. Time-harmoni
 
ase3.5.1 Introdu
tionIn this se
tion, the Radon transform (Ludwig, 1966; Deans, 1983) is usedto derive 3D and 2D time-harmoni
 dynami
 fundamental solution for mag-netoele
troelasti
 problems. This transform has been su

essfully appliedby Wang and A
henba
h (1994; 1995) to derive dynami
 Green's fun
tionsfor anisotropi
 and linear elasti
 solids, and byDenda et al. (2004) and Wangand Zhang (2005) to derive them for piezoele
tri
 solids. The most inter-esting feature of Radon transform is that redu
es 3D or 2D wave equationsto 1D equations of the same kind, but easier to deal with. On
e the 1Dwave equations are solved, the solutions of the 3D and the 2D equations ofmotion will follow by a simple appli
ation of the inverse Radon transform



64 Chapter 3. Hypersingular formulation of the BEMto yield the Green's fun
tions in the form of surfa
e integrals over a unitsphere.Thus, as for anisotropi
 elasti
 and piezoele
tri
 solids, the dynami
Green's fun
tions are expressed as surfa
e integrals over a unit sphere inthe 3-D 
ase and as line integrals over a unit 
ir
umferen
e in the 2-D 
ase.The dynami
 Green's fun
tions derived in this way 
an be further de
om-posed into a singular and a regular part. The singular part 
orresponds tothe stati
 magnetoele
troelasti
 Green's fun
tions, whilst the regular partrepresents the 
ontribution of the inertial terms in the equations of motion.In this work, although Green's fun
tions will be implemented only for 2-D problems, they will also be presented for the 3-D 
ase, sin
e the pro
edureto obtain them is analogous to the bidimensional one, ex
ept for the di�erentexpressions for the Radon transform (and their 
orresponding inverse Radontransform). After presenting them, the numeri
al solution of the integralswill be analyzed.3.5.2 Fundamental solutions3-D time-harmoni
 Green's fun
tionsTime-harmoni
 Green's fun
tions are de�ned as the response of an in�nitehomogeneous linear magnetoele
troelasti
 solid when a generalized time-harmoni
 point for
e is applied at the origin in the xJ -dire
tion
FM (x, t) = δJMδ(x)δe−iωt (3.80)where ω is the angular frequen
y of ex
itation, δ(x) is the Dira
's deltafun
tion while δJM is the generalized Krone
ker's delta fun
tion. The re-sulting generalized displa
ement �eld in the K-dire
tion 
an be expressed,



3.5 Time-harmoni
 Green's fun
tions and numeri
al integration 65in the steady state of harmoni
 motion, as
uK(x, t) = u∗KM (x, ω)e−iωt (3.81)Substituting (3.81) into the generalized equations of motion (2.27) leadsto

CiJKlu
∗
KM,il(x, ω) + ρω2δJKu

∗
KM (x, ω) = −δJMδ(x) (3.82)The appli
ation of the Radon transform (see Appendix B) to that equa-tion yields

ΓJK∂
2
s û

∗
KM (s, ω) + ρω2δJK û∗KM (s, ω) = −δJMδ(s) (3.83)where s is the parameter of the Radon-transform, de�ned by s = η ·x with

η being a unit normal ve
tor whi
h de�nes the position on a unit radiussphere whose 
enter is the observation point, andΓJK is the generalizedChristo�el tensor de�ned as by
ΓJK = CiJKlninl (3.84)The solution to equations (3.83) may be obtained as the superpositionof the following three 
ases:A. Generalized displa
ements due to the appli
ation of a me
hani
al pointloadWhen a me
hani
al point load is applied at the origin x = 0 in the

xm-dire
tion, the elasti
 displa
ements ukm in the xk dire
tion, the ele
tri
potential u4m and the magneti
 potential u5m, all of them evaluated at apoint x, are obtained from the following set of equations
Γjk∂

2
s û

∗
km + Γj4∂

2
s û

∗
4m + Γj5∂

2
s û

∗
5m + ρω2δjkû∗km = −δjmδ(s) (3.85a)

Γ4k∂
2
s û

∗
km + Γ44∂

2
s û

∗
4m + Γ45∂

2
s û

∗
5m = 0 (3.85b)

Γ5k∂
2
s û

∗
km + Γ54∂

2
s û

∗
4m + Γ55∂

2
s û

∗
5m = 0 (3.85
)



66 Chapter 3. Hypersingular formulation of the BEMB. Generalized displa
ements due to the appli
ation of a point 
hargeThe elasti
 displa
ements in the xk dire
tion (uk4), the ele
tri
 potential(u44) and the magneti
 potential (u54),all of them evaluated at a generi
point x, due to the appli
ation of an ele
tri
al point 
harge at the origin
x = 0, are obtained from the following set of equations

Γjk∂
2
s û

∗
k4 + Γj4∂

2
s û

∗
44 + Γj5∂

2
s û

∗
54 + ρω2δjkû∗k4 = 0 (3.86a)

Γ4k∂
2
s û

∗
k4 + Γ44∂

2
s û

∗
44 + Γ45∂

2
s û

∗
54 = −δ(s) (3.86b)

Γ5k∂
2
s û

∗
k4 + Γ54∂

2
s û

∗
44 + Γ55∂

2
s û

∗
54 = 0 (3.86
)C. Generalized displa
ements due to the appli
ation of a magneti
 monopoleThe elasti
 displa
ements at a point x in the xk dire
tion (uk4), theele
tri
 potential at x (u44) and the magneti
 potential at x (u54) due tothe appli
ation of magneti
 monopole at the origin x = 0, are obtained fromthe following set of equations

Γjk∂
2
s û

∗
k5 + Γj4∂

2
s û

∗
45 + Γj5∂

2
s û

∗
55 + ρω2δjkû∗k5 = 0 (3.87a)

Γ4k∂
2
s û

∗
k5 + Γ44∂

2
s û

∗
45 + Γ45∂

2
s û

∗
55 = 0 (3.87b)

Γ5k∂
2
s û

∗
k5 + Γ54∂

2
s û

∗
45 + Γ55∂

2
s û

∗
55 = −δ(s) (3.87
)Let us �rst 
onsider the 
ase in whi
h a me
hani
al point load is applied.From equations (3.85b) and (3.85
), the expressions of û∗4m and û∗5m as afun
tion of û∗km may be obtained

∂2
s û

∗
4m =

Γ4kΓ55 − Γ45Γ5k

Γ45Γ54 − Γ44Γ55
∂2
s û

∗
km = αk4∂

2
s û

∗
km (3.88)

∂2
s û

∗
5m =

Γ44Γ5k − Γ4kΓ54

Γ45Γ54 − Γ44Γ55
∂2
s û

∗
km = αk5∂

2
s û

∗
km (3.89)



3.5 Time-harmoni
 Green's fun
tions and numeri
al integration 67The substitution of these relations in equation (3.85a) yields
{Zjk∂2

s + ρω2δjk}û∗km = −δjmδ(s) (3.90)where
Zjk = Γjk + αk4Γj4 + αk5Γj5 (3.91)is the so-
alled redu
ed Christo�el tensor, whi
h is symmetri
 and positivede�nite sin
e (2.15) applies, and αk4 and αk5 are de�ned in equations (3.88)and (3.89). Thus, its eigenvalues are real-valued and positive. Re
allingthem as λq = ρc2q , being cq the phase velo
ities, they are obtained as theroots of the following 
hara
teristi
 equationsdet(Zjk − ρc2qδjk) = 0 (3.92)Calling Vjq to the q-th eigenve
tor of Zjk

ZjkVkq = λqVjq (no sum on q) (3.93)it holds that
VjpVjq = δpq ; ViqVjq = δij (3.94)so that these eigenve
tors may be taken as orthonormal bases. û∗km 
an bethen expressed in the new bases by applying the following transformation

û∗
′

hm = Vkhû∗km ⇐⇒ û∗km = Vkhû∗
′

hm (3.95)The substitution of this bases transformation into equation (3.90) andthe premultipli
ation of the resulting equation by Vjq lead to
{VjqZjkVkh∂2

s + ρω2VjqδjkVkh}û∗
′

hm = −δjmVjqδ(s) (3.96)



68 Chapter 3. Hypersingular formulation of the BEMThat equation may be further redu
ed to a 1-D wave equation (forea
h �xed q and m) by 
onsidering the relations given by equations (3.93)and (3.94)
{λq∂2

s + ρω2}û∗
′

qm = −Vmqδ(s) (3.97)whose solution is given by the wave equation
u∗qm =

iVmq
2ρc2qkq

eikq|s| (3.98)where kq is the wave number
kq =

ω

cq
(3.99)The 
onsideration of the inverse bases transformation (3.95) leads to

û∗km =
iVkqVmq
2ρc2qkq

eikq|s| (3.100)Following now an analogous pro
edure to the one proposed Wang andA
henba
h (1995) for anisotropi
 solids the resolution of the 
omplete eigen-value problem de�ned by (3.92) will be avoided. This pro
edure is based inthe idea that VkqVmq in equation (3.100) may be 
omputed as
VkqVmq =

Eq
km

Eq
pp

(3.101)where
Eq
km = adj{Zkm − ρc2qδkm} (3.102)Considering now the most general 
ase in whi
h the three phase velo
i-ties cq are distin
t, the equation (3.100) 
an be expressed as
û∗km =

iEq
km

2ρc2qkqE
q
pp
eikq|s| (3.103)
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 Green's fun
tions and numeri
al integration 69Finally, the appli
ation of the inverse Radon transform leads to the u∗kmterms of the Green's fun
tions
u∗km =

−1

8π2

∫

|η|=1

∂2
s û

∗
kmdS(η) =

=
1

16π2

∫

|η|=1

Eq
km

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η) (3.104)where the domain of integration is de�ned by the surfa
e of a unit sphere
|η| = 1.In the same way, the substitution of equation (3.103) into (3.88) and (3.89),and the appli
ation of the inverse Radon transform yields

u∗4m =
1

16π2

∫

|η|=1

αl4E
q
km

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η) (3.105)
u∗5m =

1

16π2

∫

|η|=1

αl5E
q
km

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η) (3.106)An analogous pro
edure for Problem B and Problem C will let us toobtain the other terms of the fundamental solution. For Problem B, ∂2
s û

∗
44and ∂2

s û
∗
54 may be expressed as fun
tions of ∂2

s û
∗
k4 from equations (3.86b)and (3.86
) yielding to

∂2
s û

∗
44 = αk4∂

2
s û

∗
k4 +

Γ55

α
δ(s) (3.107)

∂2
s û

∗
54 = αk5∂

2
s û

∗
k4 −

Γ54

α
δ(s) (3.108)where

α = Γ45Γ54 − Γ44Γ55 (3.109)



70 Chapter 3. Hypersingular formulation of the BEMand the appli
ation of the inverse Radon transform will lead to
u∗44 =

−1

8π2

∫

|η|=1

∂2
s û

∗
44dS(η)

=
1

16π2

∫

|η|=1

αl4αj4
Eq
lj

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η)

− 1

8π2

∫

|η|=1

Γ55

α
δ(η·x)dS(η) (3.110)

u∗54 =
−1

8π2

∫

|η|=1

∂2
s û

∗
54dS(η)

=
1

16π2

∫

|η|=1

αl5αj4
Eq
lj

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η)

+
1

8π2

∫

|η|=1

Γ54

α
δ(η·x)dS(η) (3.111)Similarly, solution of Problem C will lead to

u∗55 =
1

16π2

∫

|η|=1

αl5αj5
Eq
lj

ρc2qE
q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η)

− 1

8π2

∫

|η|=1

Γ44

α
δ(η·x)dS(η) (3.112)So, �nally, the dynami
 time-harmoni
 magnetoele
troelasti
 displa
e-ment Green's fun
tions just obtained, whi
h present a symmetry propertysu
h as u∗KM (x, ω) = u∗MK(x, ω), may be re
ast into a 
ompa
t form as

u∗KM =
1

16π2

∫

|η|=1

εqKM
ρc2qE

q
pp

{2δ(η·x) + ikq} eikq|η·x|dS(η)

+
1

8π2

∫

|η|=1

ΛKMδ(η·x)dS(η) (3.113)
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tions and numeri
al integration 71where
εqKM =






Eq
km K,M = 1, 2, 3

αKl E
q
lm K = 4, 5 ; M = 1, 2, 3

αKl α
M
j E

q
lj K,M = 4, 5

(3.114)and
ΛKM =

1

α

{
ΓKM (δ4Kδ5M + δ5Kδ4M ) − Γ44Γ55

ΓKM
(δ4Kδ4M + δ5Kδ5M )

}The obtained time-harmoni
 Green's fun
tions may be split into a sin-gular part plus a regular frequen
y dependent part. This de
ompositionis very useful for BEM implementation purposes, sin
e the singular part
oin
ides with the stati
 solution ex
ept for a 
onstant
u∗KM (x, ω) = u∗SKM (x) + u∗RKM (x, ω) (3.115)where

u∗RKM =
1

16π2

∫

|η|=1

εqKM
ρc2qE

q
pp

{2δ(η·x) + ikq} eikq|η·x| dS(η) (3.116)
u∗SKM =

1

8π2

∫

|η|=1

ΛKMδ(η·x) dS(η) (3.117)As the stati
 singular part, fundamental solution re
ently derived byBuroni and Sáez (2010) 
an be used. Finally, the extended tra
tion Green'sfun
tions as well as the kernels d∗IJ and s∗IJ needed for the implementation ofthe ETBIE may be obtained via the frequen
y-domain equivalent equationsto (??-3.28)
p∗IK(ξ,x, ω) = Ns(ξ)CsIJru

∗
KJ,r(ξ,x, ω) (3.118)

d∗IK(ξ,x, ω) = Ns(ξ)CsIJru
∗
KJ,r(ξ,x, ω) (3.119)

s∗IK(ξ,x, ω) = Ns(ξ)CsIJrp
∗
KJ,r(ξ,x, ω) (3.120)



72 Chapter 3. Hypersingular formulation of the BEM2-D time-harmoni
 Green's fun
tionsThe 2-D Green's fun
tions may be obtained following the same pro
edureas for the 3-D 
ase. In 2-D the lower
ase (elasti
) subs
ripts take values 1and 2 only, whilst the upper
ase (extended) subs
ripts take values 1, 2, 4(ele
tri
) and 5 (magneti
). In this way, Green's fun
tions are obtained inthe form of line integrals along a unit 
ir
umferen
e |n| = 1 as (see worksby Wang and A
henba
h, 1994 or Wang and Zhang, 2005 for further details)
u∗KM (ξ,x, ω) = u∗SKM (ξ,x) + u∗RKM (ξ,x, ω) (3.121)where

u∗SKM (ξ,x) = − 1

4π2

∫

|η|=1

εqKM
ρc2qE

q
pp

log |η·x| dL(η)−

− 1

4π2

∫

|η|=1

ΛKM log |η·x| dL(η) (3.122)
u∗RKM (ξ,x, ω) =

1

16π2

∫

|η|=1

εqKM
ρc2qE

q
yy

ΦR(kq, |η · x|) dL(η)where, as it has already been said, the singular part 
oin
ides with the stati
fundamental solution ex
ept for a 
onstant, εqKM is given by (3.114) and
ΦR(kq, |η · x|) = Φ(kq|η · x|) + 2 log (|η · x|) (3.123)with
Φ(ζ) = iπeiζ − 2[cos (ζ)ci(ζ) + sin (ζ)si(ζ)] (3.124)and 
i and si are the integral 
osine and the integral sine fun
tions, whi
hare de�ned as
ci(ζ) = −

∞∫

ζ

cos z

z
dz ; si(ζ) = −

∞∫

ζ

sin z

z
dz (3.125)



3.5 Time-harmoni
 Green's fun
tions and numeri
al integration 73The extended tra
tion Green's fun
tions may be obtained by the sub-stitution of u∗KM into the frquen
y domain equivalent generalized Hooke'slaw (3.118), while the kernels needed for the implementation of the ETBIEmay be determined as in equations (3.119) and (3.120).
x1

x2

q

G
n(x)

x

x-x

x

1

h(q)

Figure 3.6: Integration 
ir
umferen
e for frequen
y domain fundamentalsolutionThe implementation of the fundamental solution will imply a doubleintegration. One over the element and another one over a unit 
ir
le 
enteredat the observation point, as shown in �gure 3.6, where it 
an be noti
ed thatthe term |η · x| is equal to |x− ξ| cos (θ)3.5.3 Numeri
al evaluation of the integralsAs it has been said, time-harmoni
 Green's fun
tions may be split into aregular and a singular part, and so has been done in this work with thekernels needed for the implementation of the fundamental solution, in bothEDBIE and ETBIE.As we already know the singular part 
oin
ides with the stati
 funda-mental solution, ex
ept for a 
onstant. Thus, the integration of it, will be



74 Chapter 3. Hypersingular formulation of the BEM
arried out as it has been analyzed in a previous se
tion 3.4.2.All the regular parts of the time-harmoni
 fundamental solution 
an beexpressed as follows
u∗RKM (ξ,x, ω) =

1

8π2

π∫

−π

γqKMΦR(kq, |x− ξ|| cos θ|) dθ (3.126)
p∗RKM (ξ,x, ω) =

1

8π2

π∫

−π

γqKJΓMJkqΥ(kq|x− ξ|| cos θ|)sign(cos θ) dθ (3.127)
d∗RKM (ξ,x, ω) =

= − 1

8π2

π∫

−π

ΓKJγ
q
MJkqΥ(kq|x− ξ|| cos θ|)sign(cos θ) dθ (3.128)

s∗RKM (ξ,x, ω) = − 1

8π2

π∫

−π

ΓKJγ
q
JSΓMSk

2
qΦ(kq|x− ξ|| cos θ|) dθ (3.129)where

• γqKM = εqKM/(ρc
2
qE

q
yy) and ρc2q , Eq

yy and εqKM were de�ned, respe
-tively, in equations (3.92), (3.102) and (3.114).
• ΓJK = CrJKlnrηl and ΓJK = CrJKlNrηl, being nr, Nr and ηl theunit outward normals in the observation and 
ollo
ation point and tothe integration 
ir
umferen
e, respe
tively.
• Υ(s) = −πe(is)−2[cos (s)si(s)−sin (s)ci(s)], where i is the imaginaryunit number and si and 
i are, respe
tively, the integral sine and
osine, as de�ned in equation(3.125).



3.5 Time-harmoni
 Green's fun
tions and numeri
al integration 75Introdu
ing now the expressions of the regular part of the fundamentalsolution into both boundary integral equations, the integrals to be solvedare the following
I1 =

∫

Γe




π∫

−π

γqKMΦR(kq, |x− ξ|| cos θ|)dθ


 dΓ (3.130)

I2 =

∫

Γe




π∫

−π

γqKJΓMJkqΥ(kq|x− ξ|| cos θ|)sign(cos θ)dθ dΓ (3.131)
I3 =

∫

Γe




π∫

−π

ΓKJγ
q
MJkqΥ(kq|x− ξ|| cos θ|)sign(cos θ)dθ dΓ (3.132)

I4 =

∫

Γe




π∫

−π

ΓKJγ
q
JSΓMSk

2
qΦ(kq|x− ξ|| cos θ|)dθ


 dΓ (3.133)The �rst three integrals 
an be evaluated with ordinary Gauss quadra-tures. Nevertheless, in the integrand in I4 it appears again the fun
tion

Φ, whi
h have two main features. The �rst one is that it presents a
O [ln (|x− ξ|| cos (θ)|)] singularity when the 
ollo
ation point tends to theobservation one, and when θ → ±π/2. The other 
hara
teristi
 is that itpresent and os
illatory behavior proportional to the produ
t between thewave number, kq and the distan
e between both the 
ollo
ation and obser-vation points.The logarithmi
 singularity has been treated with logarithmi
 quadra-tures, while the os
illatory behavior would require the implementation ofasymptoti
 approximations (Sáez and Domínguez, 2000), when high fre-quen
ies are involved or far �eld problems are analyzed.



76 Chapter 3. Hypersingular formulation of the BEM3.6 Green's fun
tions and numeri
al evaluation ofthe integrals. Time-domain 
aseIn this work, the resolution of time-domain (transient) problems has been
arried out by means of Lubi
h's 
onvolution quadratures. The use of themallows the use of a Lapla
e domain fundamental solution instead of a timedomain one. An important feature of these quadratures is that, althoughLapla
e-domain Green's fun
tions are used, not numeri
al inverse Lapla
etransformation is needed. This fa
t provides numeri
al stability to themethod and makes the spatial and temporal dis
retizations rather indepen-dent.The pro
edure to obtain Lapla
e domain fundamental solution is analo-gous to the one presented by Wang and Zhang (2005) for piezoele
tri
 solids,based in the appli
ation of the Radon transform to the magnetoele
troe-lasti
 problem, as done in se
tion 3.5.2. Consequently, Green's fun
tionswill present similar mathemati
al stru
ture and the resulting fundamentalsolution 
an be split in a singular and a regular part, being the singularpart equal to the stati
 fundamental solution ex
ept for a 
onstant. Theexpressions for the regular part of the Green's fun
tions are
u∗RKM (ξ,x, s) =

1

8π2

π∫

−π

γqKMΨR (s/cq, |x− ξ|| cos θ|) dθ (3.134)
p∗RKM (ξ,x, s) =

=
1

8π2

π∫

−π

γqKJΓMJ
s

cq
Ψ′ ((s/cq)|x− ξ|| cos θ|) sign(cos θ) dθ (3.135)



3.6 Time-domain Green's fun
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al integration 77
d∗RKM (ξ,x, s) =

= − 1

8π2

π∫

−π

ΓKJγ
q
MJ

s

cq
Ψ′ ((s/cq)|x− ξ|| cos θ|) sign(cos θ) dθ (3.136)

s∗RKM (ξ,x, s) =

= − 1

8π2

π∫

−π

ΓKJγ
q
JSΓMS

(
s

cq

)2

Ψ((s/cq)|x− ξ|| cos θ|) dθ (3.137)where s is the Lapla
e parameter and
• γqKM , ΓJK and ΓJK were de�ned in se
tion 3.5.3.
• Ψ(z) = − [e−zEi(z) + ezEi(−z)], being z a 
omplex variable and
Ei(z) the exponential integral de�ned as

Ei(z) = −−
∞∫

−1

e−zt

t
dt ; Ei(−z) = −

∞∫

1

e−zt

t
dt , (3.138)Introdu
ing now the expressions of the regular part of the fundamentalsolution into both boundary integral equations, the integrals to be solvedare the following

I1 =

∫

Γe




π∫

−π

γqKMΨR (s/cq, |x− ξ|| cos θ|) dθ


 dΓ (3.139)

I2 =

∫

Γe




π∫

−π

γqKJΓMJ
s

cq
Ψ′ ((s/cq)|x− ξ|| cos θ|) sign(cos θ)dθ


 dΓ (3.140)

I3 =

∫

Γe




π∫

−π

ΓKJγ
q
MJ

s

cq
Ψ′ ((s/cq)|x− ξ|| cos θ|) sign(cos θ)dθ


 dΓ (3.141)

I4 =

∫

Γe




π∫

−π

ΓKJγ
q
JSΓMS

(
s

cq

)2

Ψ((s/cq)|x− ξ|| cos θ|) dθ


 dΓ (3.142)



78 Chapter 3. Hypersingular formulation of the BEMThe way to evaluate those integrals is analogous to the time-harmoni

ase and their numeri
al 
omputation has been analyzed in se
tion 3.5.3.3.7 Computation of fra
ture parameters3.7.1 Computation of the Extended Stress Intensity Fa
torsFor the 
omputation of the ESIF, in this work the displa
ement method hasbeen used, using the extrapolation monopoint formulation proposed by Sáezet al. (1995). For this purpose, the extended displa
ement on the nearestnode to the 
ra
k tip must be 
omputed and then substituted, as well asits 
oordinates, in the analyti
al expressions of the asymptoti
 �elds (2.36).An algebrai
 system of equations shall be obtained, whi
h solution providesthe stress, ele
tri
 displa
ement and magneti
 indu
tion intensity fa
tors.Due to the generality of the regularization pro
ess followed in this work,it is possible the use of a dis
ontinuous quarter point element whi
h 
ontainsthe 
ra
k tip. This element, as it 
an be seen in �gure 3.7, is divided by the
entral node in two segments, whi
h length are L/4 and 3L/4 respe
tively,being l the whole length of the element. In this quarter point dis
ontinuouselement, whi
h must be a straight element (Martínez and Domínguez, 1984)in order to 
apture properly the dis
ontinuity in θ = ±π, the relation be-tween the natural and the radial 
oordinate of the polar system with originon the 
ra
k tip is
ζ = 2

√
r

L
− 1 (3.143)That relation allows to reprodu
e the √
r behavior around the 
ra
k tipof the extended displa
ements. This fa
t, together with the existen
e ofa 
ollo
ation point very 
lose to the 
ra
k tip allows the dire
t evaluation



3.7 Computation of fra
ture parameters 79
z= -1 z= -3/4  z= 0                                      z= 3/4             z= 1  Figure 3.7: Quarter point dis
ontinuous elementof the ESIF with a minimal postpro
ess of the displa
ement and with anex
ellent a

ura
y in the results.The expressions of the ESIF for magnetoele
troelasti
 were obtained�rst by Gao et al. (2003a) as an extension of those obtained by Suo et al.(1992) for piezoele
tri
 solids. Parti
ularizing these expressions for the 
ol-lo
ation point NC1 (see �gure 3.7), the ESIF may be dire
tly 
omputedfrom



KII

KI

KIV

KV


 =

√
8π

l
Y −1




∆u1|r=L/64

∆u2|r=L/64

∆φ|r=L/64

∆ϕ|r=L/64


 (3.144)where Y = Re(iAB−1) (3.145)is the Irwin matrix and A and B are the matri
es obtained by solving theproblem de�ned in (2.23).In dynami
 problems, the ESIF shall be de�ned in the 
orrespondingdomain (frequen
y or time domain), but the way to 
ompute them is thesame as for the stati
 
ase, with the only di�eren
e that the displa
ementsare also a fun
tion of either the frequen
y or time.



80 Chapter 3. Hypersingular formulation of the BEM3.7.2 Computation of the Energy Release RatesTian and Rajapakse (2005b) de�ned a total energy release rate (ERR) formagnetoele
troelasti
 solids. It 
an be obtained from the ESIF as
G =

1

2
KTYK (3.146)where K =




KII

KI

KIV

KV


 (3.147)In equation (3.146), the me
hani
al energy release rates (modes I andII) as well as the ele
tri
 and magneti
 ones are involved. Ea
h term of thetotal ERR may be 
al
ulated as

GMI =
1

2
(Y21KIKII + Y22K

2
I + Y23KIKIV + Y24KIKV ) (3.148a)

GMII =
1

2
(Y11K

2
II + Y22KIIKI + Y13KIIKIV + Y24KIIKV ) (3.148b)

GELEC =
1

2
(Y31KIVKII + Y32KIVKI + Y33K

2
IV + Y34KIVKV ) (3.148
)

GMAGN =
1

2
(Y41KVKII + Y42KVKI + Y43KVKIV + Y44K

2
V ) (3.148d)Let us remark that a positive value denotes released energy, whilst anegative value represents absorbed energy.



Chapter 4Results4.1 Introdu
tionIn this 
hapter, a wide number of stati
, frequen
y domain and transientfra
ture me
hani
s problems will be solved via the hypersingular formula-tion of the BEM previously introdu
ed, under the assumption of imperme-able 
ra
ks. In all 
ases, in order to validate the formulation, the proposedmethod will be �rst used to solve problems already studied with di�erentte
hniques.In all 
ases impermeable and self-equilibrated 
ra
ks in BaTiO3−CoFe2O4with a phase volume Vf=0.5 
omposite will be 
onsidered and its e�e
tivematerial properties are shown in table 4.1. The elasti
 sti�ness tensor,the diele
tri
 permittivities and the magneti
 permeabilities, as well as thepiezoele
tri
 and piezomagneti
 
oe�
ientes, are obtained by the use of thephase rule, whi
h is given by
κcij = κiij · Vf + κmij · (1 − Vf ) (4.1)



82 Chapter 4. Resultswhere κij is one of the properties mentioned above, the supers
ripts i and mdenote ea
h phase and Vf is the phase volume. This rule 
an not be appliedfor the determination of the ele
tromagneti
 
onstants, sin
e no ele
tro-magneti
 
oupling is present in any of the single phases. Su
h 
oupling 
annot been derived in a general way, sin
e it is ne
essary a mi
rostru
turalanalysis whi
h 
onsiders the in
lusions shape.Table 4.1: Material properties of BaTiO3�CoFe2O4 (with Vf=0.5)Properties BaTiO3 CoFe2O4 Vf=0.5
c11(GPa) 166 286 226
c12(GPa) 78 170 125
c22(GPa) 162 269.5 216
c66(GPa) 43 45.3 44
e16(C/m

2) 11.6 0 5.8
e21(C/m

2) -4.4 0 -2.2
e22(C/m

2) 18.6 0 9.3
ǫ11(×10−10C2/Nm2) 112 0.8 56.4
ǫ12(×10−10C2/Nm2) 126 0.93 63.5

h16(N/Am) 0 550 275
h21(N/Am) 0 580.3 290.2
h22(N/Am) 0 699.7 350

γ11(×10−6Ns2/C2) 5 590 297
γ12(×10−6Ns2/C2) 10 157 350
β11(×10−12Ns/V C) - - 5.367
β12(×10−12Ns/V C) - - 2737.5In this work, the values of the properties 
orresponding to �brous 
om-
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 results 83posites have been 
onsidered. Some authors, like Li and Dunn (1998) (wherethe values adopted here were obtained) published graphi
s whi
h provideele
tromagneti
 
ouplings, while others, su
h as Nan (1994) derived analyt-i
al expressions for them.4.2 Stati
 resultsIn this se
tion, some stati
 problems will be solved, as it has been said,
onsidering in all 
ases a BaTiO3 − CoFe2O4 
omposite with a Vf = 0.5.First, the proposed formulation will be validated by the 
omparison withanalyti
al and semianalyti
al results available in the literature. In thisepigraph, only 
ra
ks in unbounded domains will be analyzed, sin
e stati
results for �nite 
ra
ked domains will be presented later on, in 
hapters 5and 6.4.2.1 Straight 
ra
k in an unbounded domainThe analyti
al solution of straight 
ra
k in an in�nite domain subje
ted tofar �eld uniform ele
tromagnetome
hani
 loads was �rst derived anallyti-
ally by Gao et al. (2003a), who established that the value of the extendedstress intensity fa
tors for su
h a 
ase are independent of the material prop-erties and of the (extended) loads in other dire
tions. For impermeable
ra
ks, those ESIF take the following values
KI = σ∞22

√
πa, KII = σ∞21

√
πa, KIV = D∞

2

√
πa, KV = B∞

2

√
πa.(4.2)The problem is illustrated in �gure 4.1, while in table 4.2, the valuesof the ESIF are listed for two di�erent meshes. In the �rst one �ve equal



84 Chapter 4. Resultsquadrati
 elements are used, while in the se
ond one the mesh is 
arried outwith ten equal elements. An ex
ellent agreement is obtained in both 
ases.
X1

X2

2a

P
o

lin
g

d
ir
e

c
ti
o

n

D2
B2

s22

Figure 4.1: Straight 
ra
k under remote ele
tromagnetome
hani
 loadingTable 4.2: Extended SIFs for a Gri�th 
ra
k in a magnetoele
troelas-ti
 solid. ESIF 5 Elements 10 Elements
KI/K

Analytic
I 0.9981 0.9989

KII/K
Analytic
II 0.9981 0.9989

KIV /K
Analytic
IV 0.9981 0.9989

KV /K
Analytic
V 0.9981 0.9989Let us now 
onsider a Gri�th 
ra
k subje
ted to three di�erent ele
-tromagnetome
hani
al loading 
ombinations, whose values are shown intable 4.3.In �gure 4.2, normalized ∆u2 is plotted for the three 
ombinations 
onsi-dered. It 
an be easily noti
ed that the presen
e of positive ele
tromagneti
loading make the 
ra
k tends to open what, 
onsequently, in
rease the ten-
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 results 85Table 4.3: Loading 
ombinations 
onsidered for the analysis of a Gri�th
ra
k in a magnetoele
troelasti
 mediaCombination (a) Combination (b) Combination (
)
σ∞22(N/m

2) 6= 0 6= 0 6= 0

D∞
2 (C/N) 0 10−9σ∞22 −10−9σ∞22

B∞
2 (A−1 ·m) 0 10−6σ∞22 −10−6σ∞22den
y to the fra
ture.
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Figure 4.2: ∆u2 in a Gri�th 
ra
k subje
ted to three di�erent 
ombinationsof remote loadingIn table 4.4 the values for total energy release rate as well as total me-
hani
al energy release rate are in
luded, where all the values have beennormalized with the total energy release rate for pure me
hani
al load. It
an be noti
ed that total energy release rate de
reases as soon as either pos-itive or negative ele
tromagneti
 loadings are applied, even when the 
om-bination in
reases the 
ra
k opening displa
ement (
ombination b). Thisfa
t implies that the maximum of the total energy release rate 
an not bea suitable fra
ture 
riteria for magnetoele
troelasti
 solids.



86 Chapter 4. ResultsTable 4.4: Energy Release Rates for Gri�th 
ra
k in a magnetoele
troelas-ti
 solid.ERR Combination (a) Combination (b) Combination (
)
G∗
TOT 1.0000 -8.8029 -12.2940

G∗
I+II 1.0000 1.8728 0.12724.2.2 Two parallel 
ra
ksThe 
ase in whi
h two parallel 
ra
ks with variable relative position in anunbounded magnetoele
troelasti
 domain and subje
ted to a 
ombinationof me
hani
, ele
tri
 and magneti
 loading is now 
onsidered, as shown in�gure 4.3. This problem was �rst solved by Tian and Gabbert (2004) forthe material 
onsidered in this se
tion.

X1

X2

2a

P
o

lin
g

d
ir
e

c
ti
o

n

D2

B2

s22

q

2a

A B

DC

Figure 4.3: Two parallel 
ra
ks under remote ele
tromagnetome
hani
 load-ing Both 
ra
ks were meshed with ten equal quadrati
 elements. In �-gure 4.4, the normalized mode I stress intensity fa
tor as well as the nor-malized magneti
 indu
tion intensity fa
tor (both evaluated at 
ra
k tip
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 results 87A) are plotted for di�erent values of the angle θ and for a set of loadingsde�ned by 
ombination (a) in table 4.5. In �gure 4.5, the normalized modeI energy release rate at 
ra
k tip A is plotted for two loading 
ombinationsde�ned as 
ombination (b) in table 4.5. In all 
ases an ex
ellent agreementis obtained.Table 4.5: Loading 
ombinations 
onsidered for the analysis of a two parallel
ra
ks Combination (a) Combination (b)
σ∞22(N/m

2) 6= 0 6= 0

D∞
2 (C/N) 0 10−8σ∞22

B∞
2 (A−1 ·m) ±10−6σ∞22 ±10−6σ∞22
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k tip A versusangle θ for two parallel 
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ks
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D
2
∞=10−8σ

22
∞  CN−1Figure 4.5: Normalized mode I ERR at 
ra
k tip A versus angle θ for twoparallel 
ra
ks4.2.3 Bran
hed 
ra
k in an in�nite domainA bran
hed 
ra
k in a magnetoele
troelasti
 in�nite plane subje
ted to a re-mote 
ombination of ele
tromagnetome
hani
 loading is next studied. Thegeometry is illustrated in �gure 4.6 and two di�erent sets of far �eld ele
tro-magneti
 loadings are �rst 
onsidered (sets (a) and (b) in table 4.6). Themesh 
onsists in ten quadrati
 elements for the main 
ra
k and four for thebran
h.Table 4.6: Loading 
ombinations 
onsidered for the analysis of a bran
hed
ra
k Comb. (a) Comb. (b) Comb. (
) Comb. (d)

σ∞22(N/m
2) 6= 0 6= 0 6= 0 6= 0

D∞
2 (C/N) 0 10−8σ∞22 ±10−8σ∞22 ±10−8σ∞22

B∞
2 (A−1 ·m) ±10−6σ∞22 ±10−6σ∞22 0 ±10−6σ∞22In �gure 4.7, the normalized me
hani
al stress intensity fa
tors at 
ra
ktip C versus the bran
h angle are shown for both 
ombinations of loads. It
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Figure 4.6: Bran
hed 
ra
k: geometry and loads
an be noti
ed that positive and negative magneti
 loads indu
e oppositee�e
ts on both modes I and II SIF and that there exist 
ertain angles forwhi
h the magneti
 loading has no e�e
t on them. These angles are nota�e
ted by the presen
e of ele
tri
 loadings, as 
an be seen by 
omparisonbetween �gures 4.7 (left) and 4.7 (right). In parti
ular, the so-
alled neutralmagneti
 loading angles are θNML
I = 44.3o and θNML

II = 38.1o.In �gure 4.8, the normalized EDIF and MIIF are plotted for both 
om-bination of loads. As expe
ted, and a

ording to the results by Gao et al.(2003a), almost no in�uen
e of the ele
tri
 and magneti
 loading in theMIIF and EDIF, respe
tively, is found.In �gure 4.9, the normalized me
hani
al energy release rates at 
ra
k tipC versus the bran
h angle are shown for both 
ombinations of loads. Themagnitudes are normalized with the total ERR 
orresponding to a Gri�th
ra
k with the same length as the mother 
ra
k and subje
ted only to ame
hani
al load.
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al loading 
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hani
 loading 
ombination (right)
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Figure 4.9: Me
hani
al energy release rates for 
ombinations (a) and (b)As we know, no fra
ture 
riteria is unanimously a

epted for magneto-ele
troelasti
 materials. However, by observing �gure 4.9 a �rst approa
hto a 
riteria may be proposed. Sin
e the total energy release rate de
reasesas soon as either ele
tri
 or magneti
 loading are applied, even when theyare positive. It seems 
lear that the maximum of the total ERR 
an not beused as a fra
ture 
riteria. Moreover, under the polarization dire
tion andprin
ipal axes 
onsidered, it may be expe
ted that the bran
hed 
ra
k has abigger tenden
y to grow if the bran
h angle θ is equal to zero and, sin
e themaximum of the total me
hani
al ERR is rea
hed just for θ = 0o, the max-imum of su
h magnitude might be 
onsidered as a fra
ture 
riteria. This
onsideration is in agreement with the one proposed by Park and Sun (1995)



92 Chapter 4. Resultsfor piezoele
tri
 materials (whi
h present, as it is already known, a similarbehavior to magnetoele
troelasti
 solids). Let us remark that the 
riteriaproposed herein is only a �rst approa
h and, obviously, would require of ex-perimental analysis of 
ra
k growth in magnetoele
troelasti
 solids, as wellas a more extensive numeri
al analysis of di�erent problems.Loading sets de�ned as 
ombinations (
) and (d) in table 4.6 are now
onsidered. Me
hani
al and magneti
 loadings will be now �xed, whilstthe ele
tri
 loading will take di�erent values. Normalized me
hani
al stressintensity fa
tors for su
h 
ombinations are shown in �gure 4.10. Similar
on
lusions to the previous 
ases analyzed 
an be drawn. In parti
ular, thereexist two neutral ele
tri
 loading angles, one for ea
h me
hani
al fra
turemode, whi
h are independent of the presen
e of magneti
 loads, whi
h takethe following values: θNELI = 59.6o and θNELII = 48.1o.
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) (left) and a (d) (right)
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 results 934.2.4 Cir
ular ar
h 
ra
k in an in�nite domainA 
ir
ular ar
h 
ra
k subje
ted to far �eld ele
tromagnetome
hani
 loadslike the one in �gure 4.11 is next 
onsidered. A 10 elements mesh is used todis
retize the 
ra
k, being the ones at the tips very small (ar
h length/30)quarter-point straight elements whilst the rest are 
urved quadrati
 dis
on-tinuous boundary elements. Identi
al me
hani
al positive loading is 
onsi-dered for all the 
ases and two sets of remote ele
tromagneti
 loadings areanalyzed, listed in table 4.7.
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2qP
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g

d
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c
ti
o

n

D2 B2

r

Figure 4.11: Cir
ular ar
h 
ra
k: geometry and loadsFigure 4.12 shows the normalized modes I and II stress intensity fa
tor(K∗
I,II = KI,II/σ

∞
22

√
πr sin θ, being r the ar
h radius) versus the ar
h angle,for the two load 
ombinations 
onsidered. When D∞

2 = 0, �gure 4.12 (left)shows again that positive and negative magneti
 load indu
es an oppositee�e
t on both the mode I and mode II SIF. However, when ele
tri
 loading
omes into play (D∞
2 = 10−8σ∞22CN

−1), �gure 4.12 (right) illustrates howthe SIF are hardly a�e
ted, for the ele
tri
 and magneti
 loading magnitudes
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ombinations 
onsidered for the analysis of a 
ir
ularar
h 
ra
k Comb. (a) Comb. (b) Comb. (
) Comb. (d)
σ∞22(N/m

2) 6= 0 6= 0 6= 0 6= 0

D∞
2 (C/N) 0 10−8σ∞22 ±10−8σ∞22 ±10−8σ∞22

B∞
2 (A−1 ·m) ±10−6σ∞22 ±10−6σ∞22 0 ±10−6σ∞22
onsidered in this 
ase.
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Figure 4.12: Normalized me
hani
al stress intensity fa
tor for a 
ir
ularar
h 
ra
k under stati
 loads.Normalized total me
hani
al ERR (GM∗ = (GMI + GMII )/
πr sin θ

2 (σ∞22)
2)versus θ are plotted in �gure 4.13, where it is illustrated how a positiveele
tri
 load triggers the total me
hani
 ERR.
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Figure 4.13: Total Energy Release Rate for a 
ir
ular ar
h 
ra
k under stati
loads.4.3 Time-harmoni
 resultsIn this se
tion, some problems in whi
h plane waves are impinging on im-permeable 
ra
ks in magnetoele
troelasti
 solids will be solved, plotting, inall 
ases, the normalized ESIF against the wave frequen
y. Without la
k ofgenerality in the proposed formulation, only longitudinal (L) waves will beanalyzed.4.3.1 Plane harmoni
 waves in magnetoele
troelasti
 solidsFor solving dynami
 fra
ture me
hani
s it is ne
essary to obtain �rst theboundary 
onditions whi
h shall be applied on both 
ra
k surfa
es. Let usassume that the in
ident wave impinges along the x2-axis, so the followingextended displa
ements ve
tor 
an be de�ned





u1

u2

φ
ϕ





=






0
u0

φ0

ϕ0





e

iωx2
cL (4.3)



96 Chapter 4. Resultswhere the longitudinal wave velo
ity, cL, is given by
cL =

√
1

ρ
(c22 + κ1e22 + κ2h22) (4.4)where

κ1 =
γ22e22 − β22h22

γ22ǫ22 − β2
22

; κ2 =
ǫ22h22 − β22e22

γ22ǫ22 − β2
22

(4.5)and ρ is the mass density.The substitution of equation (4.3) in the behavior law yields to



σ11

σ22

σ12

D1

D2

B1

B2




=




c11 c12 0 0 e21 0 . . .
c12 c22 0 0 e22 0 . . .
0 0 c66 e16 0 h16 . . .
0 0 e16 −ǫ11 0 −β11 . . .
e21 e22 0 0 −ǫ22 0 . . .
0 0 h16 −β11 0 −γ11 . . .
h21 h22 0 0 −β22 0 . . .

(4.6)
. . . h11

. . . h22

. . . 0

. . . 0

. . . −β22

. . . 0

. . . −γ22







u1,1

u2,2

u1,2 + u2,1

φ,1
φ,2
ϕ,1
ϕ,2




=




c12u0 + e21φ0 + h21ϕ0

c22u0 + e22φ0 + h22ϕ0

0
0

e22u0 − ǫ22φ0 − β22ϕ0

0
h22u0 − β22φ0 − γ22ϕ0




iω
cL
e

iωx2
cLBy the imposition now of the impermeable 
ra
k fa
e boundary 
ondi-tion, a relation between the di�erent amplitudes of the generalized displa
e-ment ve
tor 
an be obtained

φ0 = κ1u0 ; ϕ0 = κ2u0 (4.7)And �nally, the extended tra
tions whi
h shall be applied at the 
ra
ksurfa
e with outward unit normal n = (n1, n2) are given by
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pI =






p1 =
2∑
j=1

σ1j nj =
C12 + e21κ1 + h21κ2

C22 + e22κ1 + h22κ2
n1σ0e

iωx2
cL I = 1

p2 =
2∑
j=1

σ2j nj = n2σ0e
iωx2
cL I = 2

Dn =
2∑
j=1

Dj nj = 0 I = 4

Bn =
2∑
j=1

Bj nj = 0 I = 5(4.8)where
σ0 = (C22 + e22κ1 + h22κ2)

iω

cL
u0 (4.9)Let us now introdu
e some quantities whi
h will be used in this se
tionfor normalization purposes

cS =

√
c66

ρ
; ν =

ǫ22

e22
; µ =

γ22

h22
(4.10)4.3.2 Straight 
ra
k in an in�nite domainTo the author's knowledge, no results for plane time-harmoni
 problemsin magnetoele
troelasti
 solids were available when this work was 
arriedout. Thus, to 
he
k the presented formulation and taking into a

ount thatpiezoele
tri
 behavior 
an be understood, from a mathemati
al point ofview, as a degenerated 
ase of the magnetoele
troelasti
 behavior, the prob-lem of L-waves impinging on a Gri�th 
ra
k in a PZT-6B material is solvedand results 
ompared with those obtained semianallyti
ally by Shindo andOzawa (1990). Material properties are shown in table 4.3.2, while the in
i-dent wave motion for su
h a 
ase is de�ned by
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


σ11

σ22

σ12

D1

D2




=




c11 c12 0 0 e21

c12 c22 0 0 e22

0 0 c66 e16 0
0 0 e16 −ǫ11 0
e21 e22 0 0 −ǫ22







u1,1

u2,2

u1,2 + u2,1

φ,1
φ,2




=

=




c12u0 + e21φ0

c22u0 + e22φ0

0
0

e22u0 − ǫ22φ0



iω

cL
e

iωx2
cL (4.11)Table 4.8: Material properties of PZT-6BProperties PZT − 6B

c11(GPa) 168
c12(GPa) 60
c22(GPa) 163
c66(GPa) 27.1
e16(C/m

2) 4.6
e21(C/m

2) -0.9
e22(C/m

2) 7.1
ǫ11(×10−10C2/Nm2) 3.6
ǫ12(×10−10C2/Nm2) 3.4The 
ra
k is meshed with 10 dis
ontinuous quadrati
 elements, being theones at the tip quarter-point ones. Figure 4.14 shows, for the normalizedmode I SIF, the good agreement between the obtained results for a quasi-piezoele
tri
 material and Shindo and Ozawa's solution.The ESIF for a L-wave impinging a straight 
ra
k in a BaTiO3 −

CoFe2O4 
omposite with a Vf=0.5 domain are shown in �gures 4.15 and 4.16,
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Figure 4.14: Comparison with Shindo's resultswhere it 
an be noti
ed that the evolution of KI and KIV with the frequen
yhas a similar behavior to the one observed in piezoele
tri
 materials (Sáezet al., 2006). Note that KII has not been in
luded be
ause it is null for allfrequen
ies.
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sFigure 4.16: Normalized KIV (left) and KV (right) for a Gri�th 
ra
k whena L-wave is impinging.4.3.3 Bran
hed 
ra
k in an in�nite domainS
attering of L-waves by a bran
hed 
ra
k is now 
onsidered. In �gure 4.17,it is depi
ted the geometry and loads of the problem whi
h will be solvedfor several bran
h angles θ. Note that the wave impinges �rst on the main
ra
k, whi
h is meshed with 10 dis
ontinuous quadrati
 elements, whilst 5elements are used to mesh the 
ra
k bran
h. Elements at both 
ra
k tips arequarter-point elements. In �gure 4.18, the normalized ESIF at the bran
htip are plotted against the dimensionless frequen
y.
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Figure 4.17: L-wave impinging on a bran
hed 
ra
k
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Figure 4.18: L-wave s
attering by a bran
hed 
ra
k: ESIF at bran
h tip vs.frequen
y for di�erent bran
h anglesThe in�uen
e of the frequen
y of the in
ident wave motion is 
lear fromthe �gures, with peak values of the mode I SIF around ωa/cS = 0.8, around
1.0 for the EDIF and 1.1 for the MIIF. Again, �u
tuations in the dynami
SIF and the EDIF of the magnetoele
troelasti
 
omposite exhibit a similarbehavior to the previously observed for piezoele
tri
 materials by Sáez et al.(2006). As expe
ted, larger peak values of KI are obtained with de
reasingvalues of the angle bran
h β, while the opposite 
an be stated about KII .For low frequen
ies, both KIV and KV de
rease when the bran
h angleis in
reased, but that tenden
y 
hanges more qui
kly in KV . Moreover,peak values of the EDIF are similar for the di�erent bran
h angles, while,
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reasing bran
h angles produ
e larger peak values of the MIIF.4.3.4 Cir
ular ar
h 
ra
k in an in�nite domainS
attering of L-waves by a 
ir
ular ar
h 
ra
k is next 
onsidered. Thegeometry of the problem is shown in �gure 4.19. Results are obtainedfor di�erent values of the ar
h semi-angle α. The 
ra
k is meshed with 8dis
ontinuous quadrati
 
urved elements with de
reasing size towards thetip, plus 2 very small straight quarter-point elements at the tips with asmall length of ar
h-length/30. The normalized �eld intensity fa
tors atthe 
ra
k tip are plotted against the dimensionless frequen
y in �gure 4.20.
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2q
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Figure 4.19: L-wave impinging on a 
ir
ular ar
h 
ra
kDue to the modi�
ation of the relative angle between the tangent at the
ra
k tip and the in
ident motion, as it 
ould be expe
ted, normalized KIde
reases as the ar
h-angle α is in
reased, whilst mode-II SIF presents theopposite tenden
y.To better illustrate the dynami
 
oupling e�e
ts, maps of the ampli-
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Figure 4.20: L-wave s
attering by 
ir
ular ar
h 
ra
k: ESIF at tip vs. fre-quen
y for di�erent ar
h anglestudes of the verti
al displa
ement (u2/u0), the ele
tri
 potential (φ/φ0)and the magneti
 potential (ϕ/ϕ0) are presented (�gures 4.21-4.22) for anar
h semi-angle α = 45. Three di�erent frequen
ies (ωa/cS = 0.3, 0.8, 1.5)are 
onsidered, being them, respe
tively, smaller than the resonan
e fre-quen
y, around that value, and larger than it. Those plots show amplitudesfor total �elds, i.e., in
ident plus s
attered �elds due to the presen
e of the
ra
k.
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Figure 4.21: L-wave s
attering by 
ir
ular ar
h 
ra
k: verti
al displa
ementsat frequen
ies ωa/cS 0.3 (top left), 0.8 (top right), 1.5 (bottom)
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attering by 
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 (right) potentials at frequen
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ra
ks intera
tion in an in�nite domainIn this se
tion, intera
tion between two 
ra
ks in an in�nite domain when aL-wave impinges on them is studied. The geometry of the problem is illus-trated in �gure 4.23, and several di�erent 
ases will be analyzed dependingon the relative position of the 
ra
ks.
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Figure 4.23: L-wave impinging on two intera
ting 
ra
ksParallel 
ra
ks in an in�nite domainThe 
ase of two parallel 
ra
ks is now analyzed. Three di�erent distan
esbetween the 
ra
ks have been 
onsidered, namely a/2, a and 2a, a being thehalf 
ra
k-length. The geometry of the problem is illustrated in �gure 4.23with θ = 0, x0 = 0 and y0 = a/2, a, 2a.Figure 4.24 shows the normalized ESIF, versus the dimensionless fre-quen
y ωa/cS. Results are given for the 
ra
k �rst hit by the in
identL-wave (at tip A). In order to illustrate the e�e
ts of 
ra
k intera
tions,in the �gures are in
luded the results for a single 
ra
k. Su
h intera
tionsin
rease as the distan
e between the 
ra
ks de
reases. The in�uen
e of thefrequen
y of the in
ident wave motion is 
lear from the �gures, with peak
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tors around ωa/cS = 1.
0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

ω a/c
s

|K
I|/σ

0√(
π 

a)

 

 

0.5a
a
2a

One crack

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

ω a/c
s

|K
II|/σ

0√(
π 

a)

 

 

0.5a
a
2a

One crack

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

ω a/c
s

|K
IV

|/σ
0ν√

(π
 a

)

 

 

0.5a
a
2a

One crack

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

ω a/c
s

|K
V
|/σ

0µ√
(π

 a
)

 

 

0.5a
a
2a

One crack

Figure 4.24: L-wave s
attering by two parallel 
ra
ks: ESIF at 
ra
k tip A(�gure 4.23) vs. frequen
yResults for the upper 
ra
k (tip C) are in
luded in �gure 4.25. In this
ase the intera
tion e�e
ts are more signi�
ant due to the intera
tion amongthe in
ident �eld and the one s
attered by the �rst 
ra
k. In fa
t, thoseintera
tion e�e
ts remain substantial at separations between 
ra
ks as largeas two 
ra
k-lengths.Figures 4.26-4.28 show images of the amplitudes of the total �elds, i.e.,in
ident plus s
attered �elds, due to the presen
e of the two 
ra
ks. Re-sults are plotted for frequen
ies equal to ωa/cS = 0.75, 1, 1.25, where itis illustrated 
learly the dynami
 intera
tion e�e
ts on the distribution of
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Figure 4.25: L-wave s
attering by two parallel 
ra
ks: ESIF at 
ra
k tip C(�gure 4.23) vs. frequen
ythe displa
ements (�gure 4.26), the ele
tri
 (�gure 4.27) and the magneti
(�gure 4.28) potentials in the analyzed magnetoele
troelasti
 solid.
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Figure 4.26: Parallel 
ra
ks (y0 = a, �gure 4.23): Amplitude of the totaldispla
ement �eld in x2 dire
tion at frequen
y values ωa/cS equal to 0.75(top left), 1 (to right), 1.25 (bottom)
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Figure 4.27: Parallel 
ra
ks (y0 = a, �gure 4.23): Amplitude of the totalele
tri
 potential �eld at frequen
y values ωa/cS equal to 0.75 (top left), 1(to right), 1.25 (bottom)
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Figure 4.28: Parallel 
ra
ks (y0 = a, �gure 4.23): Amplitude of the totalmagneti
 potential �eld at frequen
y values ωa/cS equal to 0.75 (top left),1 (to right), 1.25 (bottom)Two 
ollinear 
ra
ksWave s
attering 
aused by to 
ollinear 
ra
ks is next 
onsidered. The ge-ometry of the problem is shown in �gure 4.23 with θ = 0, y0 = 0 and
x0 = 2a+ a/2, a, 2a; a being the half 
ra
k-length, i.e., three di�erent dis-tan
es between the inner 
ra
k tips (tips B and C) have been studied: a/2,
a and 2a.The mode-I SIF is given in �gure 4.29 (top left) versus the frequen
y forthe inner 
ra
k tip (tip B). In this 
ase, the intera
tion e�e
ts are small and
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e a shift in the frequen
y of the peak value for 
ra
k separationsbelow the 
ra
k-length. However, due to the magnetoele
troelasti
 
ou-pling, su
h intera
tion e�e
ts are more signi�
ant in the 
ase of the EDIF(�gure 4.29 -top right) and the MIIF (�gure 4.29 -bottom).
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Figure 4.29: L-wave s
attering by two 
ollinear 
ra
ks: ESIF at 
ra
k tip B(�gure 4.23) vs. frequen
yTwo 
ra
ks with an in
lination angleThe 
ase of two 
ra
ks at an angle will be the last frequen
y-domain problemsolved and presented in this work. The geometry of the problem is shownin �gure 4.23 with θ = π/4, x0 = a/
√

2 and y0 = a/
√

2+ a/2, a, 2a.The mode-I SIF is plotted against the frequen
y in �gure 4.30 (top left)
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 results 113for the lower 
ra
k tip B and in �gure 4.30 (top right) for the upper 
ra
ktip C. At tip B the intera
tion e�e
ts are small in the low frequen
y range.However, at tip C 
ra
k-shielding is observed due to the presen
e of thelower 
ra
k. Mode-II SIF appears as a 
onsequen
e of 
ra
k intera
tion, asshown in �gures 4.30 (bottom left) and 4.30 (bottom right) for 
ra
k tips Band C, respe
tively.
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Figure 4.30: L-wave s
attering by two 
ra
ks at an angle: KI and KII attip B (top line) and tip C (bottom line) vs. frequen
y (�gure 4.23)In �gure 4.31 the EDIF and MIIF behaviors versus the frequen
y at
ra
k tips B and C are illustrated. Larger and shifted values of both theEDIF and the MIIF are observed for the upper 
ra
k, as 
ompared with theone 
ra
k 
ase. This phenomenon may be 
aused by the magnetoele
troe-
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oupling.
0 1 2 3 4 5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ω a/c
s

|K
IV

|/σ
0ν√

(π
 a

)

 

 

0.5a
a
2a

One crack

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

ω a/c
s

|K
IV

|/σ
0ν√

(π
 a

)

 

 

0.5a
a
2a

One crack

0 1 2 3 4 5
0

1

2

3

4

5

6
x 10

−3

ω a/c
s

|K
V
|/σ

0µ√
(π

 a
)

 

 

0.5a
a
2aOne crack

0 1 2 3 4 5
0

1

2

3

4

5

6

7
x 10

−3

ω a/c
s

|K
V
|/σ

0µ√
(π

 a
)

 

 

0.5a
a
2a

One crack

Figure 4.31: L-wave s
attering by two 
ra
ks at an angle: KIV and KV attip B (top line) and tip C (bottom line) vs. frequen
y (�gure 4.23)
4.4 Time-domain resultsIn this se
tion, transient dynami
 analysis of two-dimensional homogeneousand linear magnetoele
troelasti
 
ra
ked solids will be 
arried out by solvingseveral problems in either �nite or in�nite domain under impa
t loading.In all the problems solved a BaTiO3 − CoFe2O4 
omposite with a
Vf=0.5 is 
onsidered and, for the 
onvenien
e of the presentation, the fol-lowing normalized dynami
 EDIF and MIIF are introdu
ed
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K∗
IV = e22

ε22
KIV

Kst
I

; K∗
V = h22

γ22
KV

Kst
I

(4.12)where Kst
I = σ0

√
(πa).Moreover, to measure the intensity of the ele
tromagneti
 impa
ts, thefollowing loading parameters are de�ned

λ = e22
ε22

D2

σ22
; Λ = h22

γ22
B2

σ22
(4.13)Previous works for other materials, su
h as Dominguez (1993) for ho-mogeneous isotropi
 solids, establish that, to ensure the stability of thetime-stepping s
heme of a time domain formulation, the spatial size of theelements and the time step 
an not be 
hosen independently, but they shouldsatisfy the following relation

η =
cmax∆t

le
≈ 1 (4.14)where cmax is the maximum of the plane wave phase velo
ities, ∆t is thetime step and le is the element length.Choosing too small time steps will in
rease the 
omputational 
ost, while
hoosing too large ones will not permit a proper representation of qui
k
hanges in the exa
t solution (Dominguez, 1993).It should be remarked that formulations based on Lubi
h's quadraturesto 
ompute the 
onvolution integrals in the time domain BEM are extremelystable and the spatial and temporal dis
retizations are rather independent,as 
ompared to formulations based on dire
t integration in the time domain.4.4.1 Straight 
ra
k in an in�nite domainIn order to validate the proposed time-domain formulation, a straight 
ra
kin an in�nite domain subje
ted to an impa
t tensile me
hani
al loading



116 Chapter 4. Resultsof the form σ22(t) = σ0 · H(t), where H(t) is the Heaviside step fun
tion,is analyzed. Three di�erent time steps have been 
onsidered: a/(15 · cS),
a/(30 · cS) and a/(60 · cS) and ten equal quadrati
 elements have been used.The obtained results are 
ompared with those presented by Zhong et al.(2009) by the appli
ation of the Stehfest's method (see e.g. Stehfest, 1996)to derive the Lapla
e transform, and shown in �gure 4.32, where it 
an benoti
ed that both results rea
h the stationary value at a similar instant oftime, but they are very di�erent in the transient period sin
e the resultspresented herein show a higher peak.Stehfest's inversion algorithm establishes that a time-dependent fun
-tion f(t) 
an be approximated by

f(t) =
ln 2

t

N∑

n=1

νnf̂(n ln 2/t) (4.15)where f̂(s) is the lapla
e transform of f(t) and
νn = (−1)n+N/2 ·

min{n,N/2}∑

k=(n+1)/2

(2k)!kN/2

(N/2 − k)!k!(k − 1)!(n− k)!(2k − n)!
(4.16)
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k with the results obtained by Zhong et al.



4.4 Time-domain results 117Stehfest suggested in his works to use, at least, N=10 while Zhong usesonly N=3. This is the 
ause of an ex
essively high softening of the 
urve inthe transient period. As a matter of fa
t, a higher value of the peak shouldbe expe
ted, as works by Gar
ía-Sán
hez and 
o-workers for anisotropi
and piezoele
tri
 solids reveal (see, e.g., Gar
ía-Sán
hez and Zhang, 2007b;Gar
ía-Sán
hez et al., 2008a). Thus, it 
an be 
on
luded that the modelpresented herein provides 
orre
t results.As it has been said above, three di�erent time steps have been 
onside-red, obtaining in all 
ases good and stable results, even for the minimum η
onsidered here whi
h value is η ≈ 0.167.Let us now 
onsider di�erent 
ombinations of loadings de�ned by theintera
tion of an impa
t tensile me
hani
al loading (σ22(t) = σ0 ·H(t)), animpa
t ele
tri
al loading (D2(t) = D0 · H(t)) and/or an impa
t me
hani-
al loading (B2(t) = B0 ·H(t)). In �gure 4.33 the normalized mode-I SIFis shown. As expe
ted for all 
ombinations of loadings, de�ned by equa-tions (4.13), the value of that parameter tends to one, due to the fa
t thatme
hani
al SIF for Gri�th 
ra
ks are independent of the presen
e of ele
tri
and magneti
 loadings. Moreover, as it has been said in this work, posi-tive ele
tri
 and magneti
 loads make the 
ra
k open wider and this e�e
t,although is not noti
ed in the permanent value, is shown in the transientperiod as a higher peak.In �gure 4.34, the mode-I me
hani
al energy release rate is plotted.The values have been normalized with the 
orresponding one to a 
ra
ksubje
ted to a stati
 me
hani
al loading. Positive ele
tromagneti
 loadingsmake higher both the peaks and the permanent values.
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Figure 4.33: Normalized dynami
 KI versus the dimensionless time for aGri�th 
ra
k in a magnetoele
troelasti
 solid subje
ted to di�erent impa
tloading 
ombinations
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Λ=−1Figure 4.34: Normalized dynami
 mode-I energy release rate versus thedimensionless time for a Gri�th 
ra
k in a magnetoele
troelasti
 solid sub-je
ted to di�erent impa
t loading 
ombinations4.4.2 Central 
ra
k in a magnetoele
troelasti
 plateA 
enter 
ra
k of length 2a in an homogeneous linear magnetoele
troelas-ti
 plate as the one shown in �gure 4.35 is now 
onsidered. The geometryof the 
ra
ked plate is des
ribed by h=20mm, w=20mm and a=2.4mm, and
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Figure 4.35: Straight 
ra
k in a magnetoele
troelasti
 plate.it is subje
ted to di�erent loading 
ombinations de�ned by the intera
tionof an impa
t tensile me
hani
al loading (σ22(t) = σ0 · H(t)), an impa
tele
tri
al loading (D2(t) = D0 · H(t)) and/or an impa
t magneti
 loading(B2(t) = B0 · H(t)). The external boundary is meshed with 24 quadrati
elements, while ten equal quadrati
 dis
ontinuous elements are used in the
ra
k meshing.Normalized ESIF and loading parameters as the ones de�ned in (4.12-4.13) are used in the representation of this problem results. In �gure 4.36the normalized mode-I SIF is plotted for several loading 
ombinations versusthe time, whi
h is normalized with the longitudinal wave velo
ity and thesemilength of the plate. This normalization implies that the me
hani
alwave impinges on the 
ra
k at the normalized time t∗ = 1. Thus before thatinstant of time, if only a me
hani
al loading is applied, KI
∼= 0. However,
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 KI versus the dimensionless time in amagnetoele
troelasti
 
ra
ked plate subje
ted to di�erent impa
t loading
ombinationsif either an ele
tri
 or a magneti
 loading is also applied, the variationon the mode-I SIF happens sin
e t∗ = 0, due to the quasi-ele
trostati
assumption for the ele
tromagneti
 �elds. In all 
ases, it 
an be noti
edthat the maximum values of the normalized mode-I dynami
 stress intensityfa
tor are redu
ed with in
reasing ele
tri
 and magneti
 loading parameters

λ and Λ, a

ording to the poling dire
tion indi
ated in �gure 4.35.In �gures 4.37 and 4.38, normalized KIV and KV are plotted versusdimensionless time. Due to the quasi ele
trostati
 assumption of the ele
-tromagneti
 �elds , almost 
onstants values for those fra
ture parameters
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tri
 or magneti
 loadings, respe
tively, are applied.Moreover, an almost negligible in�uen
e of the ele
tri
 and magneti
 load-ings is found in MIIF and EDIF, respe
tively, as seen in �gures 4.37 (topleft) and 4.37 (top right).
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Figure 4.37: Normalized dynami
 KIV versus the dimensionless time in amagnetoele
troelasti
 
ra
ked plate subje
ted to di�erent impa
t loading
ombinationsTo better illustrate the transient e�e
ts, maps of the verti
al displa
e-ment (u2), and the ele
tri
 and magneti
 potentials (φ and ϕ) are alsoin
luded in this work for three di�erent 
ombinations of loads (de�ned, re-spe
tively, by the pairs λ = Λ = 0, λ = 1; Λ = 0 and λ = 0; Λ = 1) and twoinstants of time, smaller and bigger than one,respe
tively: t∗ = 0.4275 and
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t∗ = 1.52. When t∗ ≤ 1 and only me
hani
al loading is applied, verti
aldispla
ements are negligible in almost all the plate.
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Figure 4.38: Normalized dynami
 KV versus the dimensionless time in amagnetoele
troelasti
 
ra
ked plate subje
ted to di�erent impa
t loading
ombinations
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Figure 4.39: Absolute value of the normalized verti
al displa
ement for
t∗ = 0.4275 when λ = 0; Λ = 0 (top left), λ = 1; Λ = 0 (top right) and
λ = 0; Λ = 1 (bottom)
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Figure 4.40: Absolute value of the normalized verti
al displa
ement for
t∗ = 1.52 when λ = 0; Λ = 0 (top left), λ = 1; Λ = 0 (top right) and
λ = 0; Λ = 1 (bottom)4.4.3 Slanted edge 
ra
k in a magnetoele
troelasti
 plateLet us 
onsider now a slanted edge 
ra
k of length a in a homogeneousand linear magnetoele
troelasti
 plate as the one shown in �gure 4.41. The
ra
k is in
lined 45o respe
t to the horizontal, and the geometry of the plateis given by h=22mm, w=32mm, 
=6mm and a=22.63mm.The mesh is performed with 24 quadrati
 elements for the externalboundary, and 4 dis
ontinuous quadrati
 elements for the 
ra
k; the timestep adopted in the simulations is given by 0.15 · a/cL. In �gures 4.42
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Figure 4.41: Slanted edge 
ra
k in a magnetoele
troelasti
 plate subje
tedto impa
t ele
tromagnetome
hani
 loadingsand 4.43, mode-I and mode-II stress intensity fa
tors are plotted for di�er-ent 
ombinations of loads. It 
an be noti
ed that, when no 
ombination ofele
tromagneti
 loadings are applied (top left and top right �gures), thereexist two di�erent time ranges in whi
h those parameters are independentof the ele
tri
 and magneti
 impa
ts (when applied). This e�e
t disappearswhen both ele
tri
 and magneti
 loadings a
t at the same time.
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Figure 4.42: Normalized dynami
 KI versus the dimensionless time in amagnetoele
troelasti
 
ra
ked plate 
ontaining an slanted edge 
ra
k sub-je
ted to di�erent impa
t loading 
ombinations
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Figure 4.43: Normalized dynami
 KII versus the dimensionless time in amagnetoele
troelasti
 
ra
ked plate 
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t loading 
ombinations
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Chapter 5Extended Finite Elementformulation for the analysis of
ra
ked magnetoele
troelasti
solids5.1 Introdu
tionIn this 
hapter, a di�erent numeri
al te
hnique for the study of stati
 fra
-ture me
hani
s in magnetoele
troelasti
 materials is presented.The analysis of 
ra
ked media with the Finite Element Method (FEM)present a big in
onvenient, sin
e the 
ra
k must merge with the mesh. Thisfa
t provokes the ne
essity of remeshing when 
ra
k growth problems arestudied. Additionally, mesh re�nement and/or singular elements su
h asquarter-point elements are also ne
essary near the 
ra
k-tip to 
apture thestress singularity.
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ra
ked magnetoele
troelasti
 solidsTo 
ir
umvent these di�
ulties, the eXtended Finite Element Method(X-FEM), �rst presented by Belyts
hko and Bla
k (1999) and Möes et al.(1999), is a powerful alternative in 
omputational fra
ture, whi
h have beensu

essfully applied to solve 
ra
k problems in materials with di�erent be-havior laws (see, e.g., works by Möes et al., 1999 in isotropi
 media, Sukumaret al., 2004 in bimaterials, Asadpoure and Mohammadi, 2007 in orthotropi
materials and Bé
het et al., 2009 in piezoele
tri
 solids). To this end, ad-ditional (enri
hment) fun
tions are added to the 
lassi
al �nite elementapproximation through the framework of partition of unity (Babuska andMelenk, 1997). In other words, in 
ertain nodes of the mesh, new degreesof freedom are added in order to modelize the dis
ontinuity existing due tothe presen
e of the 
ra
k. The 
ra
k interior is represented by a dis
onti-nuous (Heaviside) fun
tion and the 
ra
k-tip is modeled by the asymptoti

ra
k-tip fun
tions.In this work, we present a X-FEM approa
h for fra
ture analysis inplane anisotropi
 magnetoele
troelasti
 materials. For this purpose, new
ra
k-tip enri
hment fun
tions will be derived and, in order to validate theproposed method, some problems solved 
omparing the results with thoseobtained by the BEM formulation previously introdu
ed.5.2 X-FEM formulation5.2.1 Cra
k modelling and sele
tion of enri
hed nodesLet us 
onsider an arbitrary 
ra
ked domain, dis
retized in elements so thatthe nodal set is N . Then, the displa
ement of a point x belonging to thedomain 
onsidered 
an be determined by (Möes et al., 1999)
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u(x) =

∑

i∈N

Ni(x)ui+ ∑

j∈NH

Nj(x)H(x)aj+ ∑

k∈N CT

Nk(x)
∑

α

Fα(x)bαk (5.1)where Ni is the shape fun
tion asso
iated to the node i, ui is the ve
-tor of the traditional nodal degrees of freedom de�ned in a �nite elementsdis
retization while aj and blk are the added set of degrees of freedom inthose elements whi
h 
ontain the 
ra
k. H(x) is the generalized Heavisidefun
tion, that simulates the displa
ement dis
ontinuity on both sides of the
ra
k fa
es, and Fα are the 
ra
k tip enri
hment fun
tions. In a �nite ele-ment mesh, as seen in �gure 5.1, the set of nodes whi
h have to be enri
hedwith Heaviside fun
tions (NH) are marked with a solid 
ir
le, while theset of nodes whi
h must be enri
hed with 
ra
k tip enri
hment fun
tions(NCT ) are marked with a square.
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Figure 5.1: Node sele
tion for enri
hmentIn a magnetoele
troelati
 solid, the variables whi
h appear in equa-tion (5.1) are de�ned in an extended way, so ui and ai are four 
omponentsve
tors and bi is a 32 
omponents ve
tor, as it will be exposed in a laterse
tion.
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ra
ked magnetoele
troelasti
 solids5.2.2 Weak formulation and dis
rete equationsLet us 
onsider an arbitrary 
ra
ked domain Ω whi
h 
ontains a boundary Γtwhere the extended tra
tions are pres
ribed and in whi
h impermeable 
ra
kfa
es 
ondition is 
onsidered (extended tra
tion-free 
ra
k fa
es). Let ũ bethe me
hani
al displa
ement and σ̃ the me
hani
al stress tensor, while uand σ are, respe
tively, the extended displa
ement ve
tor and the extendedstress tensor. The weak form (prin
iple of virtual work) for a 
ontinuousproblem in a magnetoele
troelasti
 solid is given by
∫

Ω

σ̃ : δε̃ dΩ −
∫

Ω

D : δE dΩ −
∫

Ω

B : δH dΩ =

∫

Γt

pmech · δũdΓ

−
∫

Γt

pe · δφ dΓ −
∫

Γt

pm · δϕdΓ +

∫

Ω

fmech · δũ dΩ

−
∫

Ω

f e · δφ dΩ −
∫

Ω

fm · δϕdΩ. (5.2)where the supers
ripts me
h, e, and m denote, respe
tively me
hani
al,ele
tri
al and magneti
 tra
tions or volume for
es.The use of the generalized notation introdu
ed in 
hapter 2 allows ex-pressing the weak form in an elasti
-like way
∫

Ω

σ : δε dΩ =

∫

Γt

p · δu + dΓ +

∫

Ω

f · δu dΩ (5.3)where : and · denotes, respe
tively, tensorial and s
alar produ
ts, f is theextended for
e ve
tor per unit volume and p are the pres
ribed extendedtra
tions. In parti
ular, pmech are the me
hani
al tra
tions and pe and pmare, respe
tively, their ele
tri
 and magneti
 
ounterpartsAfter the appropriate dis
retizations of the governing equations, the
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troelasti
 �nite element equations 
an be derivedkeueuũ+ keuφφ + keuϕϕ = fmech (5.4a)kφeuũ− kφφφ − kφϕϕ = fe (5.4b)kϕeuũ− kϕφφ − kϕϕϕ = fm (5.4
)whi
h 
an be also expressed like a simply elasti
 problem by means of thegeneralized notation kelemuelem = felem (5.5)wherekelem =

∫

Ωelem

GTCGdΩ =

+1∫

−1

+1∫

−1

GT (ξ, η)CG(ξ, η)|J |dξ dη (5.6)where G is the matrix of shape fun
tion derivative.The global sti�ness matrix K is obtained by the assembly of all theelementary sti�ness matri
es, and 
an be obtained as followskelemij =



kuuij kuaij kubijkauij kaaij kabijkbuij kbaij kbbij  (5.7)while the element 
ontribution to the global element for
e ve
tor, f isfelemi = {fui fai fb1i . . . fbαi }T (5.8)where, in equations (5.7-5.8), α is the number of 
ra
k tip enri
hment fun
-tions (eight in magnetoele
troelasti
 solids), and the indexes u, a and brefer, respe
tively, to the extended displa
ement ve
tors and the extendednew degrees of freedom ve
tors. The submatri
es and ve
tors that appearin it 
an be 
al
ulated as
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ra
ked magnetoele
troelasti
 solids
krsij =

∫

Ωe

(Br
i )
TC(Bs

i ) dΩ (r, s = u, a, b) (5.9a)fui =

∫

∂Ωe

NitdΓ +

∫

Ωe

Nif dΩ (5.9b)fai =

∫

∂Ωe

NiHtdΓ +

∫

Ωe

NiHf dΩ (5.9
)fbαi =

∫

∂Ωe

NiFαtdΓ +

∫

Ωe

NiFαf dΩ (α = 1, 8) (5.9d)In equation (5.9) Ni is the standard �nite element shape fun
tion de�nedat node i, and Gu
i , Ga

i and Gb
i are the nodal matri
es of shape fun
tionderivatives, whi
h, for a magnetoele
troelasti
 material, are given by

Gu
i =




Ni,x1
0 0 0

0 Ni,x2
0 0

Ni,x2
Ni,x1

0 0
0 0 Ni,x1

0
0 0 Ni,x2

0
0 0 0 Ni,x1

0 0 0 Ni,x2




(5.10)
Ga
i =




(NiH),x1
0 0 0

0 (NiH),x2
0 0

(NiH),x2
(NiH),x1

0 0
0 0 (NiH),x1

0
0 0 (NiH),x2

0
0 0 0 (NiH),x1

0 0 0 (NiH),x2




(5.11)
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Gb
i =

[ Gb1
i Gb2

i Gb3
i Gb4

i Gb5
i Gb6

i Gb7
i Gb8

i

] (5.12a)Gbα
i =




(NiFα),x1
0 0 0

0 (NiFα),x2
0 0

(NiFα),x2
(NiFα),x1

0 0
0 0 (NiFα),x1

0
0 0 (NiFα),x2

0
0 0 0 (NiFα),x1

0 0 0 (NiFα),x2




(5.12b)
where the 
omma denotes spatial derivation.5.2.3 Enri
hment fun
tionsThe asymptoti
 displa
ement �elds around the 
ra
k tip in an unboundedmagnetoele
troelasti
 domain were presented in 
hapter 2. From them, aset of elementary fun
tions that span the asymptoti
 �elds 
an be obtained,for any orientation of the 
ra
k and loading 
ombination.While for isotropi
 and piezoele
tri
 materials, only four or six fun
tions,respe
tively, are ne
essary to des
ribe all the possible generalized displa
e-ment states around the 
ra
k tip, for magnetoele
troelasti
 materials eightfun
tions are needed. These fun
tions, named as Fα in equation (5.1), areobtained from the asymptoti
 singular solution presented in se
tion 2.4.2,and present a similar mathemati
al stru
ture to those obtained by Bé
hetet al. (2009) for piezoele
tri
 materials.

Fα(r, θ) =
√
r
{
ρ1 cos(θ1/2) ρ2 cos(θ2/2) ρ3 cos(θ3/2) ρ4 cos(θ4/2)

ρ1 sin(θ1/2) ρ2 sin(θ2/2) ρ3 sin(θ3/2) ρ4 sin(θ4/2)
} (5.13a)
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ra
ked magnetoele
troelasti
 solidswhere
ρK(ψ, µK) =

1√
2

4
√

2(|µK |2 − 1)(sinψ)2 + Re(µK) sin (2ψ) − 1 (5.13b)and
θK = πInt(ψ

π

)
+ arctan

|Im(µK)| tan (ψ − πInt(ψπ ))

1 + Re(µK) tan (ψ − πInt(ψπ ))
. (5.13
)where Int denotes the integer part of a real number, µI are the four rootsof the 
hara
teristi
 equation (2.45) whi
h imaginary part are positive (orequivalently, roots of the eigenvalues problem de�ned by 2.23) and ψ = θ−α,being ψ the orientation angle of the material axes with respe
t to the 
ra
k(Figure 5.2). Thus, the enri
hment fun
tions may be 
al
ulated for everypoling dire
tion with respe
t to the 
ra
k path.

x1

x2

r

y

Figure 5.2: De�nition of the material axes around the 
ra
k tip
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al integration 1375.3 Element partitioning and numeri
al integra-tionAs it has been said, one of the main advan
es of the X-FEM respe
t tothe 
lassi
al FEM approa
hes in fra
ture me
hani
s problems, is the la
k ofne
essity in mat
hing the 
ra
k with the mesh.However, if an element is interse
ted by a 
ra
k, displa
ement �elds tobe integrated (see equation 5.3) over the element be
ome dis
ontinuous, dueto the dis
ontinuous behavior of both Heaviside and 
ra
k tip enri
hmentfun
tions. As a result of this, the use of ordinary Gauss rules do not providea

urate results of the integration.In this sense, Dolbow (1999) proposed two methods to over
ome thisnumeri
al di�
ulty, 
onsisting in subdividing the interse
ted element intoeither triangles or squares.In this work, triangulation of the partitioned elements have been adopted.This method implies that the sub-triangles edges must be adapted to 
ra
kfa
es (see �gure 5.3), sin
e the domain Ω must be divided into non overlap-ping subdomains, in whi
h 
ontinuous fun
tions shall be integrated.
Figure 5.3: Partitioning of a square �nite element in 2-D totally (left) orpartially (right) interse
ted by the 
ra
k (dark line).
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ra
ked magnetoele
troelasti
 solidsMoreover, ordinary Gauss quadratures have been used for the integra-tion over non enri
hed elements and for non partitioned enri
hed elements(in this last 
ase, a higher number of gauss points are 
onsidered). Nonpartitioned enri
hed elements o

ur when not all the nodes are enri
hed.In other words, either those elements whi
h are "the transition" betweenpartitioned elements and the non enri
hed elements, or, in 
ases where the
ra
k merges with the mesh, those elements whi
h are separated by the
ra
k.It should be remarked that when an element is subdivided in triangles, aremeshing is not 
arried out. As it has been said, the element belonging tothe FEM mesh (parent element), must be partitioned into non overlappingtriangular elements Ω△
e (
hildren elements) so that Ω =

m⋃
e=1

Ω△
e , being mthe number of subtriangles in the partition. This partition pro
edure di�ersfrom remeshing in two key features. First, element partitioning is performedonly to 
arry out the numeri
al integration (no additional degrees of freedomare added); se
ond, the basis fun
tions are tied to the parent element andnot to the subtriangles.

5.4 Computation of generalized stress intensity fa
-torsIn this part of the work, the 
omputation of ESIF has been 
arried outby means of an energy integral method, following the te
hnique developedby Rao and Kuna (2008, 2010). A brief des
ription of this approa
h follows.



5.4 Computation of generalized stress intensity fa
tors 1395.4.1 Intera
tion integral method for magnetoele
troelasti
materialsWorks by Wang and Mai (2003, 2004) provide the expression for the pathindependent J -integral in a magnetoele
troelasti
 
ra
ked solid:
J =

∫

ΓA

(Wδ1j − σijui,1 −Djφ,1 −Bjϕ,1)nj dΓ (5.14)where the index i and j vary from 1 to 2 in two-dimensional solids, ΓAis an arbitrary en
losing 
ontour around the 
ra
k tip and nj is the j−th
omponent of the outward unit ve
tor normal to it. W is the ele
tromag-neti
 enthalpy density whi
h, for a linear magnetoele
troelasti
 solid, 
anbe expressed as
W =

1

2
(σijεij −DjEj −BjHj) (5.15)If the divergen
e theorem is now applied to equation (5.14), J-integral
an be transformed into an equivalent domain form as

J =

∫

A

(σijui,1 +Djφ,1 +Bjϕ,1 −Wδ1j)q,j dA

+

∫

A

(σijui,1 +Djφ,1 +Bjϕ,1 −Wδ1j),jq dA (5.16)where A is the area inside the 
ontour ΓA and q is an arbitrary smoothingfun
tion su
h that it is unity at the 
ra
k tip and zero on the boundarydomain ΓA. In equation 5.16, the se
ond term vanishes in homogeneousmagnetoele
troelasti
 materials, sin
e the material properties are 
onstantin su
h solids. Thus, the expression for the J-integral results as follows
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ked magnetoele
troelasti
 solids
J =

∫

A

(σijui,1 +Djφ,1 +Bjϕ,1 −Wδ1j)q,j dA. (5.17)Equations (5.15) and (5.17) 
an be rewritten in terms of the extendedvariables de�ned in 
hapter 2 as
J =

∫

A

(σIjuI,1 −Wδ1j)q,j dA, W =
1

2
σIjεIj . (5.18)Let us now 
onsider two independent equilibrium states for the 
ra
kedbody. The �rst one 
orresponds to the state that must be solved, and these
ond one 
orresponds to an auxiliary state, whi
h 
an be the near-tipdispla
ement �eld for any of the extended opening fra
ture modes. In thiswork, for the sake of 
onvenien
e, the asymptoti
 �elds expressed in termsof the generalized Stroh's formalism introdu
ed in se
tion 2.2.2 have beenused.The superposition of those two states 
onsidered produ
es another equi-librium state for whi
h the J -integral is

J (S) =

∫

A

((σ1
Ij + σ2

Ij)(u
1
I,1 + u2

I,1) −WSδ1j)q,jdA

W (S) =
1

2
[(σ

(1)
Ij + σ

(2)
Ij )(ε

(1)
Ij + ε

(2)
Ij )] (5.19)

J -integral given in equation (5.19) 
an be de
omposed into
J (S) = J (1) + J (2) +M (1,2) (5.20)The intera
tion integral M is then given by

M (1,2) =

∫

A

(σ
(1)
Ij u

(2)
I,1 + σ

(2)
Ij u

(1)
I,1 −W (1,2)δ1j)q,jdA (5.21)with

W (1,2) =
1

2
(σ

(1)
Ij ε

(2)
Ij + σ

(2)
Ij ε

(1)
Ij ) (5.22)
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tors 141Sin
e the ele
romagnetome
hani
al J -integral is equal to the total en-ergy release rate and this 
an be expressed in terms of the extended stressintensity fa
tors (Tian and Rajapakse, 2005b) as seen in equation (3.146),for two dimensional problems, one 
an write, for any equilibrium state
J =

1

2
K2
IIY11 +

1

2
K2
IY22 +

1

2
K2
IV Y44 +

1

2
K2
V Y55 +KIKIIY12 (5.23)

+KIKIV Y24 +KIKV Y25 +KIIKIV Y14 +KIIKV Y15 +KIVKV Y45whi
h, substituted in (5.20), leads to the following expression of the inter-a
tion integral
M (1,2) = K

(1)
II K

(2)
II Y11 +K

(1)
I K

(2)
I Y22 +K

(1)
IV K

(2)
IV Y44 +K

(1)
V K

(2)
V Y55

+ (K
(1)
I K

(2)
II +K

(1)
II K

(2)
I )Y12 + (K

(1)
I K

(2)
IV +K

(1)
IV K

(2)
I )Y24 (5.24)

+ (K
(1)
I K

(2)
V +K

(1)
V K

(2)
I )Y25 + (K

(1)
II K

(2)
IV +K

(II)
IV K

(2)
I )Y14

+ (K
(1)
II K

(2)
V +K

(1)
V K

(2)
II )Y15 + (K

(1)
IV K

(2)
V +K

(II)
V K

(2)
IV )Y45The individual extended stress intensity fa
tors are evaluated by solvingthe system of linear algebrai
 equations obtained from (5.24) by 
hoosingappropriate auxiliary states. For instan
e, if auxiliary state is taken so that

K
(2)
I = 1 and K(2)

II = 0, K(2)
IV = 0, K(2)

V = 0, equation (5.24) 
an be redu
edto
M (1,I) = K

(1)
I Y22 +K

(1)
II Y12 +K

(1)
IV Y24 +K

(1)
V Y25 (5.25)Similarly, other three equations 
an be obtained

M (1,II) = K
(1)
I Y12 +K

(1)
II Y11 +K

(1)
IV Y14 +K

(1)
V Y15 (5.26)

M (1,D) = K
(1)
I Y24 +K

(1)
II Y14 +K

(1)
IV Y44 +K

(1)
V Y45 (5.27)

M (1,B) = K
(1)
I Y25 +K

(1)
II Y15 +K

(1)
IV Y45 +K

(1)
V Y55 (5.28)
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ra
ked magnetoele
troelasti
 solidsSo, �nally, the determination of the extended stress intensity fa
tors isredu
ed to solving the following system of linear equations:



M (1,II)

M (1,I)

M (1,IV )

M (1,V )


 = Y




K
(1)
II

K
(1)
I

K
(1)
IV

K
(1)
V


5.5 ValidationSome stati
 
ra
k problems in magnetoele
troelasti
 media are solved tovalidate the formulation. The numeri
al results obtained by the X-FEMare 
ompared with those obtained by the boundary element formulationpresented previously. As in the previous 
haper, a BaTiO3 − CoFe2O4
omposite with a Vf=0.5 is 
onsidered. The properties of su
h material areshown in table 4.1.In all 
omputations linear quadrilateral elements are used. A 2 × 2Gauss quadrature rule is used in every non-enri
hed element, whereas fornon-partitioned enri
hed elements a 5 × 5 Gauss rule is used. For enri
hedelements that are partitioned into subtriangles, a seven point Gauss rule isused in ea
h one.5.5.1 Slanted 
entral 
ra
k in a magnetoele
troelasti
 plateA �nite magnetoele
troelasti
 plate with a 
entral in
lined 
ra
k under 
om-bined ele
tro-magneto-me
hani
al loads is analyzed. In Figure 5.4 the ge-ometry and loading are des
ribed. The ratio between the 
ra
k lengthand plate width is a/w = 0.2. The plate is under uniform tension in the

x2 dire
tion, σ22, and subje
ted to both ele
tri
 and magneti
 loadings:
D2 = 0.1 · 10−9σ22(C · N−1) and B2 = 1 · 10−9σ22(A

−1 · m). The prob-
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hmark results for a 
ra
k in a �nite plate.
θ KI/(σ22

√
πa) KII/(σ22

√
πa) KIV /(D2

√
πa) KV /(B2

√
πa)

0o 1.0241 ∼ 0 1.0226 1.0395
15o 0.9562 0.2506 0.9869 1.0103
30o 0.7720 0.4361 0.8845 0.9206lem has been solved for three di�erent uniform meshes (25 × 50, 50 × 100,

75× 150), and for three di�erent angles of the 
ra
k with respe
t to the x1axis (θ = 0◦, 15◦, 30◦). The polarization dire
tion 
oin
ides with the x2-axis, and the ben
hmark results, obtained by means of the BEM formulationproposed in this thesis are presented in table 5.1.
X1

X2

2a

4w

2w

P
o

lin
g

d
ir
e

c
ti
o

n

D2
B2

q

s22

Figure 5.4: Geometry and loads for a magnetoele
troelasti
 plate with aslanted 
ra
kIn table 5.2, the extended �nite element results, normalized with theBEM ones, are presented for three meshes. A good agreement between
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ra
ked magnetoele
troelasti
 solidsboth formulations is found.Table 5.2: ESIF for a 
ra
k in a �nite plate.
θ ESIF (25 × 50) (50 × 100) (75 × 150)
0o KI

∗ 0.9822 0.9911 0.9916
K∗
II ∼ 1 ∼ 1 ∼ 1

K∗
IV 0.9901 0.9940 0.9952
K∗
V 0.9561 0.9827 0.9846

15o K∗
I 1.0256 0.9918 0.9951

K∗
II 1.0311 0.9885 0.9876

K∗
IV 1.0359 1.0181 1.0186
K∗
V 0.9718 0.9575 0.9723

30o K∗
I 0.9803 1.0062 1.0116

K∗
II 1.0541 1.0071 0.9998

K∗
IV 1.0372 1.0178 1.0137
K∗
V 0.9472 0.9995 0.99875.5.2 Double-edge 
ra
k in magnetoele
troelasti
 plateA double-edge 
ra
k in a �nite magnetoele
troelasti
 plate under 
ombinedele
tro-magneto-me
hani
al loads is next analyzed. The geometry and load-ing are illustrated in Figure 5.5. The ratio between the 
ra
k length and theplate width is given by a/w = 0.25, being the load values and polarizationangle the same as in the previous example. In table 5.3 the ben
hmarkresults for the normalized ESIF are shown.In table 5.4, the extended �nite element results, normalized with theBEM ones, are presented for three meshes. A good agreement between
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X1
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P
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Figure 5.5: Geometry and loads for a magnetoele
troelasti
 plate with adouble-edge 
ra
kTable 5.3: Ben
hmark results for a double edge 
ra
k in a �nite plate.
KI/(σ22

√
πa) KII/(σ22

√
πa) KIV /(D2

√
πa) KV /(B2

√
πa)1.1197 ∼ 0 1.1062 1.3636both formulations is found. It should be remarked that identi
al results forboth 
ra
k tips are obtained.Table 5.4: ESIF for a double edge 
ra
k in a �nite plate.

ESIF (25 × 50) (50 × 100) (75 × 150)
K∗
I 0.9732 0.9844 0.9845

K∗
II ∼ 1 ∼ 1 ∼ 1

K∗
IV 0.9778 0.9855 0.9848
K∗
V 0.9408 0.9825 0.9840
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Chapter 6Cra
k fa
e boundary
onditions6.1 Introdu
tionIn fra
ture me
hani
s analysis of multi�eld materials in general, and of mag-netoele
troelasti
 media in parti
ular, three di�erent boundary 
onditionson open 
ra
k surfa
es 
an be 
onsidered, depending on the ele
tromag-neti
 
ondu
tivity 
onsidered between both 
ra
k fa
es. These 
onditionswere summarized in 
hapter 2 and, in this 
hapter, the pro
edure to solve afra
ture me
hani
s problems 
onsidering any of those 
ra
k fa
e boundary
onditions will be introdu
ed, and the impli
ations of them on the fra
tureparameters, studied by solving simple and multiple 
ra
ks problem.For solving impermeable and permeable 
ra
k problems (ideal 
ra
k fa
eboundary 
onditions), it will be enough to apply the 
orresponding bound-ary 
onditions to the system of equations obtained by the evaluation ofthe boundary integral equations (3.37-3.38). However, the more realisti




148 Chapter 6. Cra
k fa
e boundary 
onditionssemipermeable 
ondition is given by a non-linear equation. Then, for solv-ing that problem, an iterative algorithm will be proposed and implemented.That algorithm is a generalization of the one proposed by Denda (2008) forpiezoele
tri
 
ra
ked solids.6.2 Numeri
al solution algorithm for semiperme-able 
ra
ksLet us 
all the jumps of the ele
tri
 and magneti
 potentials in the 
ra
k as
δ4 = (φ+ − φ−) and δ5 = (ϕ+ − ϕ−). The semipermeable solution impliesthat the ele
tri
 and magneti
 potentials, the ele
tri
 displa
ement andthe magneti
 indu
tion on the 
ra
k fa
es are generally di�erent to zero.Thus, the semipermeable 
ra
k solution is somewhere in between the twoideal 
ra
k surfa
e boundary 
ondition, so the semipermeable values of thejump in the ele
tri
 and magneti
 potentials, δ4 and δ5, will be equal to theimpermeable values multiplied by a proportionality fa
tor, he and hm, lowerthan one. An iteration pro
edure to determine these fa
tors is proposedherein. This pro
edure is based on the sear
h of adequate values of δ4 and
δ5. The use of them as boundary 
onditions of the problem, shall lead to thevalues of the permittivity and permeability in the 
ra
k, equation (2.35).The iteration will be 
arried out until those values are equal to the referen
evalues of the permittivity and the permeability in the medium between the
ra
k surfa
es, ǫ0 and γ0. The following iteration pro
edure for multiple
ra
ks problem is proposed.1. Get the impermeable solution δ[0]

4 , δ[0]
5 , whi
h will be used as the start-ing point of the iteration pro
edure. The number between bra
ketsdenotes number of iteration step.



6.2 Numeri
al solution algorithm for semipermeable 
ra
ks 1492. De�ne, for ea
h 
ra
k k, two pairs of proportionality parameters hkieand hkim (i=1,2), whi
h vary in the interval (0,1). In �gure 6.1 itis shown the behaviors of the permittivity and the permeability ina 
ra
k with respe
t to parameters he and hm. In su
h �gure, the�at grey surfa
es denotes the values of ǫ0 (left) and γ0 (right). Letus remark that the sought point will be the interse
tion between theinterse
tion lines appearing in ea
h �gure.3. (a) Take, for ea
h 
ra
k, hk1e and hk1m slightly bigger than zero (whatwould 
orrespond to the quasi-permeable solution) and hk2e and
hk2m slightly lower than one (what would 
orrespond to the quasi-impermeable solution). Then, set

δ
[k1]
4 = hk1e δ

[0]
4 ; δ

[k2]
4 = hk2e δ

[0]
4

δ
[k1]
5 = hk1m δ

[0]
5 ; δ

[k2]
5 = hk2m δ

[0]
5(b) Cal
ulate the me
hani
al 
ra
k opening displa
ement, the ele
tri
displa
ement and the magneti
 indu
tion based on the set valuesintrodu
ed in the previous item.(
) Cal
ulate for ea
h 
ra
k k and ea
h parameter hk1e , hk2e , hk1m , hk2mat M points (nodal points) ξj

ǫkij = Dki
n (ξj)

δki2 (ξj)

δki4 (ξj)
(6.2)

γkij = Bki
n (ξj)

δki2 (ξj)

δki5 (ξj)
(6.3)whi
h are obtained by the substitution in equation (2.35) of the
orresponding ECOD and the ele
tri
 (Dn) and magneti
 (Bn)tra
tions previously obtained in step (3b).



150 Chapter 6. Cra
k fa
e boundary 
onditions(d) Cal
ulate the averages for ea
h 
ra
k and ea
h pair of parameters
hkie and hkim of the parameteres de�ned in se
tion (3
).

ǫki =

∑M
j=1 ǫ

ki
j

M
(6.4)

γki =

∑M
j=1 γ

ki
j

M
(6.5)This parameter are the so-
alled ele
tri
 permittivity in the 
ra
kand magneti
 permeability in the 
ra
k, respe
tively.(e) While the ele
tri
 permittivity and magneti
 permeability of any
ra
k is not equal to the values for the medium between the 
ra
ksurfa
es, iterate using a pro
edure to solve non-linear equations,until a pair of values hk[n]

e and hk[n]
m for ea
h 
ra
k is obtained.Let us remark that all those values may be di�erent.4. After setting δk[n]

4 = h
ki[n]
e δ

[0]
4 and δk[n]

5 = h
ki[n]
m δ

[0]
5 , solve the problemrequired to get the semipermeable solution sear
hed.

0
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Figure 6.1: Behavior of the permittivity (left) and the permeability (right)in the 
ra
k with respe
t to parameters hkie and hkim



6.3 Validation of the algorithm 1516.3 Validation of the algorithmIn this se
tion, several fra
ture me
hani
s problems for di�erent 
ra
k fa
esboundary 
onditions will be solved. In all simulations, a BaTiO3−CoFe2O4magnetoele
troelasti
 solid with a Vf = 0.5, whi
h properties are listedin table 4.1, will be 
onsidered. In all 
ases, the medium between both
ra
k fa
es is air, what implies that the ele
tri
 permittivity and magneti
permeability are, respe
tively, ǫ0 = 8.8542 · 10−12N/V 2 and γ0 = 4π ·
10−7N/A2.6.3.1 Gri�th 
ra
k in a magnetoele
troelasti
 solidIn order to validate the proposed algorithm, numeri
al results are obtainedand 
ompared with the analyti
al solution of a single horizontal 
ra
k oflength 2a in an in�nite magnetoele
troelasti
 domain (see �gure 4.1). Thissolution, �rst obtained by Wang and Mai (2006), will be brie�y presented.The extended 
ra
k opening displa
ements δI , I = 1, ..., 5; are given by

δI = u+
I − u−I = 2YIJ (σ∞J2 − σcJ2)

√
a2 − x2

1 (6.6)where Y is the 
omplian
e (Irwin) matrix de�ned in equation (3.145), σ∞J2are the 
omponents of the extended stress tensor applied, σcJ2 are the 
om-ponents of the extended stress tensor on the 
ra
k surfa
es, and the sum-mation rule over repeated is applied. The di�erent 
ra
k fa
e boundary
onditions that may be 
onsidered for the 
ra
k are(i) Fully impermeable 
ra
k. In this 
ase, the 
ra
k is extended tra
tionfree, what implies that
Dc

2 = 0 ; Bc
2 = 0 (6.7)
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k fa
e boundary 
onditionswhere, sin
e D+
2 = D−

2 and B+
2 = B−

2 , the upperindex 
 has beenused to denote either of the 
ra
k surfa
es.(ii) Fully permeable 
ra
k. For fully permeable 
ra
ks no jump in the ele
-tromagneti
 potential appear. This 
ondition 
an be expressed as
δ4 = 0 ; δ5 = 0 (6.8)The substitution of that 
ondition in (6.6) will lead to a system ofequation whose solution provides the analyti
al expressions of the ex-tended tra
tions on the 
ra
k fa
es

Dc
2 =

(Y4JY55 − Y5JY45)

(Y44Y55 − Y54Y45)
σ∞J2 (6.9a)

Bc
2 =

(Y5JY44 − Y4JY54)

(Y44Y55 − Y54Y45)
σ∞J2 (6.9b)(iii) Semipermeable 
ra
k. The semipermeable 
ra
k 
onditions are

Dc
2δ2 = −ǫ0δ4 ; Bc

2δ2 = −γ0δ5 (6.10)where ǫ0 is the permittivity of the medium between the 
ra
k fa
es and
γ0 its permeability. Substituting now (6.10) in (6.6) and operating anon-linear system of equations whi
h de�nes the extended tra
tionsin a semipermeable 
ra
k, it will be obtained.

Dc
2 = −ǫ0

Y4Jσ
∞
J2 − Y44D

c
2 − Y45B

c
2

Y2Jσ∞J2 − Y24Dc
2 − Y25Bc

2

(6.11a)
Bc

2 = −γ0
Y5Jσ

∞
J2 − Y54D

c
2 − Y55B

c
2

Y2Jσ∞J2 − Y24Dc
2 − Y25Bc

2

(6.11b)



6.3 Validation of the algorithm 153where ǫ0 is the permittivity of the medium between the 
ra
k fa
esand γ0 its permeability.The analyti
al solution previously dedu
ed will be 
ompared with theresults obtained with the proposed formulation. In �gure 6.2 the me
hani-
al opening displa
ement are shown for the 
ase in whi
h only a me
hani
alloading is applied and in the 
ase in whi
h a 
ombination of loads de�nedby σ∞22 = 1N/m2, D∞
2 = 10−9C/N and B∞

2 = 10−8A−1 · m is applied.The analyti
al solution is plotted in lines, 
omparing them with the resultsobtained numeri
ally (points), and those magnitudes are normalized withtheir respe
tive value under permeable 
onditions in x1 = 0. Ex
ellentagreement between both sets of solutions is observed. It 
an be seen that,in both 
ases, the semipermeable solution is between the permeable andthe impermeable ones. When only me
hani
al loading is applied, the 
ra
kopening displa
ement under impermeable 
ondition, δimp2 , is the smallestvalue, while the presen
e of positive ele
tromagneti
 loads, whi
h tend toopen the 
ra
k, leads to the largest values, be
ause any degree of permeabil-ity provokes that the in�uen
e of those loads de
reases. Let us remark thatthe permeable solution is independent of the presen
e of ele
tromagneti
loading and the resulting me
hani
al stress intensity fa
tors are indepen-dent of the boundary 
ondition 
onsidered.In �gure 6.3 the analyti
ally obtained jumps in the ele
tri
 and magneti
potentials are 
ompared with the results obtained numeri
ally (points) withan ex
ellent agreement again. Those magnitudes are normalized with theirrespe
tive values under impermeable 
onditions in the 
enter of the 
ra
k(x1 = 0).In �gure 6.4, the ele
tri
 displa
ement and magneti
 indu
tion on the
ra
k surfa
es are shown in 
omparison with the analyti
al results (lines),
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 loads. In all �gures, an ex
ellent agreementbetween the numeri
al and analyti
al results 
an be observed.
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Figure 6.4: Ele
tri
 displa
ement (left) and magneti
 indu
tion (right) onthe 
ra
k surfa
es.6.3.2 Central straight 
ra
k in a �nite plateA 
entral 
ra
k in a magnetoele
troelasti
 plate like the one in Figure 4.35 isanalyzed. The ratio between the 
ra
k length and the plate width is a/ω =

0.2. Thirty two quadrati
 elements were used for meshing the externalboundary, while ten equal quadrati
 elements were taken for the 
ra
k.In table 6.1 the normalized fra
ture parameters are shown when the load-ing 
ombination is σ∞22 = 1N/m2, D∞
2 = 10−9C/N and B∞

2 = 10−8A−1 ·m.ESIF are normalized for the 
orresponding values to a Gri�th impermeable
ra
k subje
ted to the same loads, while the di�erent energy release ratesare normalized with the absolute value of the total energy release rate foran impermeable 
ra
k in an in�nite domain. Considerable di�eren
es werefound in the ele
tromagneti
 stress intensity fa
tors when di�erent 
ra
kfa
e boundary 
onditions (CFBC) were 
onsidered but not in the me
hani-
al SIF. As expe
ted, ele
tri
 and magneti
 energy release rates are negligi-ble when permeable 
ra
ks are analyzed, what implies that me
hani
al andtotal energies are the same.
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k fa
e boundary 
onditionsTable 6.1: Fra
ture parameters for straight 
ra
k in a plateERR CFBC TIP A-B ESIF CFBC TIP A-B
GTot Imp -1.0354 KI Imp 1.0255Semip -0.9162 Semip 1.0255Perm 0.1276 Perm 1.0258
G
I+II
M Imp 0.2240 KII Imp 2.4187e-009Semip 0.2188 Semip 2.4185e-009Perm 0.1276 Perm 2.4145e-009

GELEC Imp -1.2565 KIV Imp 1.0190Semip -1.1330 Semip 0.9696Perm ∼ 0 Perm 0.0777
GMAGN Imp -0.2894·10−2 KV Imp 1.0205Semip -0.1946·10−2 Semip 0.8893Perm ∼ 0 Perm 0.2212In �gure 6.5, total energy release rate is shown for σ∞22 = 1N/m2,

D∞
2 = 10−9C/N and di�erent values of magneti
 loading, for the three
ra
k fa
e boundary 
onditions 
onsidered. The results are normalized withthe value of the total energy release rate 
orresponding to a Gri�th imper-meable 
ra
k subje
ted only to a me
hani
al load. If a permeable 
ra
k is
onsidered, the normalized GTot takes a 
onstant value equal to G∗

Tot=1.124,whi
h is the same for any loading 
ombination. The presen
e of ele
tromag-neti
 �elds shall de
rease the energy release rate when the 
ra
k is not fullypermeable. This fa
t implies that the total energy release rate 
an not beadopted as a fra
ture 
riteria. Moreover, it 
an be realized that the non-linear e�e
t of loadings and that the energy release rate is always smaller
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ra
ks.
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PermeableFigure 6.5: Total energy release rate for straight 
ra
k in a plate.6.3.3 Three parallel 
ra
ks in an unbounded domainTo further 
on�rm the validity of the iteration s
heme, a 
ase involvingintera
tion among three parallel 
ra
ks in an in�nite will be next 
onsidered.In this 
ase the solutions for the upper or lower 
ra
ks are di�erent to themiddle one's. The distan
e between 
ra
ks is half the semilength of ea
h
ra
k as shown in Figure 6.6. The values of the loads are again σ∞22 =

1N/m2, D∞
2 = 10−9C/N and B∞

2 = 10−8A−1 ·m, and ten equal elementsfor ea
h 
ra
k are used for meshing purposes.In �gure 6.7, me
hani
al opening displa
ement as well as the jump inthe ele
tri
 and the magneti
 potentials are plotted. Absolute values of theECOD are always smaller in the 
entral 
ra
k, and any degree of perme-ability in the 
ra
k shall redu
e them.In table 6.2 the normalized ESIF in tips A and B (�gure 6.6) are shown.Su
h ESIF are normalized with the 
orresponding ones to an impermeableGri�th 
ra
k.
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6.3 Validation of the algorithm 159Table 6.2: ESIF in tips A and B (�gure 6.6) for three parallel 
ra
ksESIF CFBC TIP A TIP B
KI Imp 0.6865 0.4634Semip 0.6872 0.4626Perm 0.6865 0.4634
KII Imp 0.1379 ∼ 0Semip 0.1385 ∼ 0Perm 0.1467 ∼ 0

KIV Imp 0.7405 0.5992Semip 0.7068 0.5429Perm 0.0514 0.0345
KV Imp 0.7939 0.6643Semip 0.6717 0.4739Perm 0.1482 0.0993Moreover, in tables 6.3 and 6.4, the energy release rates at tips A and B,respe
tively, are shown for two di�erent 
ombination of loads; the �rst one(Comb. 1 ) is only a me
hani
al loading, while the se
ond one (Comb. 2 ) isthe 
ombination des
ribed above. The values obtained are normalized withtotal energy 
orresponding to a Gri�th impermeable 
ra
k subje
ted onlyto a me
hani
al load. Total and me
hani
al energy release rates present thesame value and are independent of the presen
e of ele
tromagneti
 load-ings when a permeable 
ra
k fa
e boundary 
ondition is 
onsidered. Thepresen
e of those loads, however, 
hange the tenden
y of the behavior ofthe me
hani
al energy release rate: when only a me
hani
al load is applied,

GI+IIM is in
reased with the permeability and permittivity of the medium
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k fa
e boundary 
onditionswhile, in the other hand the a
tion of ele
tromagneti
al loadings make thatmagnitude maximum when the medium is 
onsidered to be impermeable.Table 6.3: ERR in tip A for three parallel 
ra
ks (�gure 6.6)ERR CFBC TIP A - Comb1 TIP A - Comb2
GTot Imp 0.4889 -0.4975Semip 0.4949 -4.4644Perm 0.5241 0.5241
G
I+II
M Imp 0.4912 0.9254Semip 0.4941 0.9064Perm 0.5241 0.5241

GELEC Imp -2.2063·10−3 -5.9026Semip 0.6037·10−3 -5.3601Perm ∼ 0 ∼ 0

GMAGN Imp -1.0118·10−4 -1.7043·10−2Semip 0.2032·10−3 -1.0714·10−2Perm ∼ 0 ∼ 0
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Table 6.4: ERR in tip B for three parallel 
ra
ks (�gure 6.6)ERR CFBC TIP B - Comb1 TIP B - Comb2

GTot Imp 0.2017 -3.4715Semip 0.2119 -2.7697Perm 0.2257 0.2257
G
I+II
M Imp 0.2073 0.4530Semip 0.2119 0.4287Perm 0.2257 0.2257

GELEC Imp -5.3847·10−3 -3.9117Semip -0.0691·10−3 -3.1933Perm ∼ 0 ∼ 0

GMAGN Imp -0.2358·10−3 -1.2837·10−2Semip -0.9695·10−4 -0.5118·10−2Perm ∼ 0 ∼ 0
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Chapter 7Con
lusions and futuredevelopments7.1 Con
lusionsIn this work, a deep study about the behavior of 
ra
ked magnetoele
troelas-ti
 solids under stati
, time-harmoni
 and impa
t ele
tromagnetome
hani
loadings has been 
arried out. For that purpose two numeri
al tools havebeen implemented, based on the hypersingular formulation of the boundaryelement method and the extended �nite element method.The BEM model was performed following the ideas proposed by Gar
ía-Sán
hez and 
oworkers (2005; 2008a; 2008b) for anisotropi
 and piezoele
tri
material models. For its development, 
ertain fundamental solutions areneeded. In stati
 problems, that fundamental solution (already availablein literature, like in the work by Liu et al., 2001) has an expli
it form.However, for dynami
 problems, the fundamental solution needed presentsan integral form. These dynami
 Green's fun
tions have been obtained



164 Chapter 7. Con
lusions and future developmentsduring the realization of this work.When those fundamental solutions are implemented in a BEM 
ode,some singular integrals arise in those 
ases in whi
h the 
ollo
ation pointbelongs to the element where the integration is being performed. The mostdeli
ate issue in the dual formulation is the treatment of the strongly singu-lar and hypersingular integrals, whi
h are su

essfully 
arried out by meansof a 
hange of variable that de
ompose those integrals in some regular inte-grals plus singular integrals with known analyti
al solutions. In other words,numeri
al integrations are restri
ted to regular integrals, thus in
reasing thea

ura
y of the proposed approa
h.Regarding BEM for the study of dynami
 fra
ture, the implementationof the dynami
 Green's fun
tions admit a de
omposition in two parts, asingular (whi
h 
oin
ides with the stati
 solution, ex
ept for a 
onstantand, thus, is independent of the frequen
y) and a regular one. However,that regular part presents, in the terms 
orresponding to the hypersingularintegrals, a logarithmi
 singularity (whi
h 
an be solved by the use of log-arithmi
 quadratures). Moreover, it presents and os
illatory behavior forhigh frequen
ies or integration points far from the sour
e.The time domain BEM formulation involves Riemann 
onvolution prod-u
ts whi
h, in this work, has been approximated by the Lubi
h's quadratureformula. The solution of several problems reveal a high stability in the for-mulation as well as an independen
y between spatial and time dis
retization,not present in other formulations.For the 
omputation of the fra
ture parameters, a quarter point dis-
ontinuous element at the 
ra
k tip has been used. This element presenta 
ollo
ation point very 
lose to the 
ra
k tip, where displa
ements andele
tri
 and magneti
 potentials have known expressions in terms of the
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lusions 165extended stress intensity fa
tors. The substitution in them of the extendeddispla
ements in the nearest 
ollo
ation point to the 
ra
k tip allows to ob-tain the fra
ture parameters with almost no 
omputational 
ost and a greata

ura
y, as it has been demonstrated by 
omparing the results obtainednumeri
ally with the results available in the literature obtained by di�erentmethods.Most of the work has been 
arried out under the assumption of imper-meable 
ra
ks. However, an algorithm for the study of semipermeable andpermeable 
ra
ks subje
ted to stati
 loads, has been designed and imple-mented in the last se
tion of this thesis. The analysis of the results obtained
onsidering other 
ra
k fa
es boundary 
onditions reveal di�eren
es, whi
hmight be 
onsiderable, in the fra
ture parameters depending on the 
on-dition adopted. However, it suggests that the approximated impermeable
ondition is good enough to obtain a �rst approximation of the me
hani
alenergy release rate, whi
h may be involved in a fra
ture 
riteria, when airor va
uum is 
onsidered between 
ra
k surfa
es. As a matter of fa
t, thatmagnitude, as well as ele
tri
 and magneti
 energy release rates, de
reasewhen the permittivity and/or permeability of the medium is in
reased.In this work, a X-FEM model has been developed as well for the studyof stati
 fra
ture. For that purpose, new 
ra
k tip enri
hment fun
tionshave been obtained, and some problems solved, 
omparing the results withthose obtained with the BEM formulation also presented. A good a

ura
yis obtained in the fra
ture parameters, whi
h have been obtained by meansof the equivalent domain form of the Intera
tion Integral Method.Let us now remark that all the models developed in this work maybe used for the analysis of 
ra
ked anisotropi
 and piezoele
tri
 solids, byvanishing the 
orresponding 
oupling properties.



166 Chapter 7. Con
lusions and future developments7.2 Future DevelopmentsThis work presented robust and a

urate numeri
al models for the study offra
ture me
hani
s problems in 2-D magnetoele
troelasti
 media. However,some issues are still open.The most dire
t future development whi
h 
an be performed in themodel, might be 
onsidering di�erent 
ra
k fa
es boundary 
onditions indynami
 problems, adopting the more realisti
 
ondition in transient peri-ods. Re
ently, Landis (2004) suggested the so 
alled energeti
ally 
onsistentboundary 
onditions for piezoele
tri
 solids, whi
h improved the 
ra
k fa
esboundary 
onditions obtained by the 
apa
itor analogy proposed by Haoand Shen (1994). This new 
ondition leads to the presen
e of me
hani
altra
tions on the 
ra
k surfa
es. An extension of this model and a 
om-parative study with the results obtained in this work should be a futurework.As it has been already said, time-harmoni
 fundamental solution presentsan os
illatory behavior whi
h makes more di�
ult to obtain results forhigh frequen
y and/or far �eld. In this sense, it is ne
essary to obtain anasymptoti
 far �eld solution as an extension of the obtained by Sáez andDomínguez (2000) for transversely isotropi
 materials.Both BEM and X-FEM have been proved to be a

urate numeri
al toolsfor the study of 
ra
k growth in 
ra
ked solids. However, no fra
ture 
riteriais unanimously a

epted for magnetoele
troelasti
 solids. In this sense, theperforman
e of extensive experimental tests are de�nitely needed to advan
ein the fra
ture knowledge of magnetoele
troelasti
 materials.The X-FEM model may be improved in a double way. First, by ob-taining more 
ompa
t 
ra
k tip enri
hment fun
tions based on the matrixform (Stroh's formalism) of the asymptoti
 displa
ement �elds. This is an



7.2 Future Developments 167already started work by the author. Moreover, the model may be improvedby the use of blending elements, as well as by in
orporating se
ond orderterms to the asymptoti
 expressions of the �elds (T-stress), in order to de-velop a Hybrid Analyti
al and X-FEM (HAX-FEM) model in an similarway as done by Réthoré et al. (2009) for isotropi
 materials. With su
himprovements, the approximation of the ECOD may be a

urate enough toobtain the fra
ture parameters by a dire
t evaluation, what would redu
ethe 
omputational 
ost in the postpro
essing.
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Appendix ADe�nition of thetwo-dimensional 
hara
teristi
sThe two dimensional material parameters introdu
ed in se
tion 2.4.3 followfrom the three dimensional material properties de�ned in se
tion 2.2.
a11 =

1

A

(
c22(ǫ22γ22 − β2

22) + ǫ22h
2
22 + γ22e

2
22 − 2β22e22h22

)

a12 = − 1

A

(
c12(ǫ22γ22 − β2

22) + ǫ22h21h22 + γ22e21e22 − β22(e21h22 − e22h21)
)

b21 =
1

A
(γ22(c22e21 − c12e22) − β22(c22h21 − c12h22) + h22(h22e21 − h21e22))

d21 = − 1

A
(ǫ22(c12h22 − c22h21) + β22(c22e21 − c12e22) + e22(h22e21 − h21e22))

a22 =
1

A

(
γ22(c11ǫ22 + e221) + ǫ22h

2
21 − β22(c11β22 + 2e21h21)

)

b22 = − 1

A
(γ22(c12e21 − c11e22) − β22(c12h21 − c11h22) + h21(h22e21 − h21e22))

d22 =
1

A
(ǫ22(c11h22 − c12h21) + β22(c12e21 − c11e22) + e21(h22e21 − h21e22))

a33 =
1

B

(
γ11ǫ11 − β2

11

)
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hara
teristi
s
b13 =

1

B
(γ11e13 − h13β11)

d13 = − 1

B
(β11e13 − h13ǫ11)

δ11 =
1

B

(
γ11c33 + h2

13

)

∆11 = − 1

B
(β11c33 + e13h13)

δ22 =
1

A

(
γ22(c11c22 − c212) + c11h

2
22 + c22h

2
21 − 2c12h12h22

)

∆22 = − 1

A

(
β22(c11c22 − c212) + c11e22h22 + c22e21h21 − c12(e22h21 + e21h22)

)

ζ11 =
1

B

(
ǫ11c33 + e213

)

ζ22 =
1

A

(
ǫ22(c11c22 − c212) + c11e

2
22 + c22e

2
21 − 2c12e12e22

)where the Voigt notation has been used and
A =(c11c22 − c212)(ǫ22γ22 − β2

22) + e221(c22γ22 + h2
22) + e222(c11γ22 + h2

21)

+ 2β22(e21(c12h22 − c22h21) + e22(c12h21 − c11h22))

− 2e21e22(c12γ22 + h21h22) + ǫ22(c11h
2
22 + c22h

2
21 − c12h21h22)and

B = ǫ11(c33γ11 + h2
13) − β11(c33β11 + 2e13h13) + γ11e

2
13



Appendix BRadon transformThe Radon transform of an arbitrary fun
tion f(x) is de�ned by
f̂(s,n) = R {f(x)} =

∫

s

f(x)δ(s− n · x)dx , (B.1)where s = n ·x is a real transform parameter and n is a unit normal ve
tor.The Radon transform is an integration of f(x) over n · x = s, i.e., over asurfa
e for 3-D and along a line for 2-D.The inverse Radon-transform is given by
f(x) = R∗

{
f̄(s,n)

}
=

∫

|n|=1

f̄(n · x,n)dn , (B.2)wherē
f(s,n) = K{f̂(s,n)

}
=





− 1
8π2∂

2
s f̂(s,n) , for 3-D

1
4π2

∞∫
−∞

∂σf̂(σ,n)
s− σ dσ , for 2-D (B.3)The inverse Radon transform R∗ de�ned by (B.2) is a surfa
e integral overa unit sphere in 3-D 
ase and a line integral over a unit 
ir
le in 2-D 
ase.The main properties of the Radon transform de�ned in equation (B.1)are



172 Appendix B. Radon transformA Homogeneity
f̂(cs, cn) =

1

c
f̂(s,n) (B.4)B Linearity

R{c1f + c2g} = c1f̂ + c2ĝ (B.5)C Transform of derivatives
R

{
∂

∂xi
f(x)

}
= ni

∂

∂s
f̂(s,n) (B.6)

R

{
∂

∂xi

∂

∂xj
f(x)

}
= ninj

∂2

∂2s
f̂(s,n) (B.7)D Transform of Dira
's delta

R{δ(x)} = δ(s) (B.8)
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