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Chapter 1

Introduction

1.1 Motivations and objectives

The durability and structural integrity of materials used in tools and con-
structions has been a big concern since ancient times. Nevertheless, mankind
have generally developed the abilities for the use of any material before ha-
ving a full knowledge of its behavior.

That fact happens, for example, with composite and piezoelectric mate-
rials and, more recently, with magnetoelectroelastic solids, which have been
used for a long time and still nowadays, there exists a huge community of
scientists who are working in their characterization.

Magnetoelectroelastic solids are a kind of materials which present the
ability of converting energy among mechanic, electric and magnetic fields.
This feature makes them very interesting for their use in smart structures
applications, such as sensors or actuators. These materials do exist in a
natural form, such as Y MnO3 or BiMnOs3 but, for the use in industrial
applications, larger values of the coupling properties are needed. In this

case, composites of both piezoelectric and elastomagnetic phases are usually
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created. In the resulting solid, an electromagnetic coupling appears which is
not present in any constitutive phases (Avellaneda and Harshe, 1994; Nan,
1994; Beneviste, 1995)

Piezoelectric and elastomagnetic effects are usually obtained in non-
natural materials after a polarization process. This feature, as well as the
inherent fragility of those material are causes for defects. Moreover, when
two materials with different material properties are joint in a composite,
the tendency to develop cracks is increased.

Due to the use these materials receive, the presence of defects not only
endanger the structural integrity of the magnetoelectroelastic component,
but also their function as sensors/actuators, since flaws may distort the
energetic exchange among fields and, thus, the information transmitted in
the process.

For all the exposed above, the study of fracture mechanics in magneto-
electroelastic media is justified in order to understand the fracture mecha-
nisms. For such purpose, some fracture parameters must be calculated, in
order to modelize the effects of the presence of a discontinuity in the field
variables.

A deep analysis of bidimensional cracked magnetoelectroelastic solids
will be carried out and some numerical tools developed. In particular, based
on the Boundary Element Method (BEM) and on the Extended Finite Ele-
ment Method (X-FEM). Both techniques have been proved as powerful tools
for the study of fracture mechanics in different kinds of solids.

In this work, three different kind of problems will be studied

e Cracked solids under combined static electromagnetomechanic loads

o Wayve scattering by cracks
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e Transient analysis of cracked solids subjected to electromagnetome-

chanic impact loads

In this work, the hypersingular (also called dual) formulation of the
BEM (see e.g., Hong and Chen, 1988 and Portela et al., 1992) will be
developed and used for the analysis of all those problems. BEM is based on
an integral equation formulation, and the dual formulation implies the use of
two different integral equations depending on whether the boundary where
the integration is carried out is a crack or not. The formulation presented
herein will be obtained following the ideas developed by Garcia-Sédnchez and
co-workers in several works (2005; 2005a; 2005b; 2008a; 2008b) for the study
in anisotropic and piezoelectric solids of both static and dynamic problems.

As it will be deeply discussed in this work, the integral equations may
present singular integrands, which will be solved by a regularization pro-
cess analogous to the one developed by Garcia-Sanchez et al. (2004) for
anisotropic solids.

BEM formulations requires knowing the so-called Green’s functions (or
Fundamental Solution), which will be used to apply the reciprocity theorem.
These functions were available in the literature for the static case when this
work was carried out (Liu et al., 2001), but not the dynamic ones. They
were obtained by the author following a technique based on the application
of the Radon transform as it will be presented in the present work.

A X-FEM formulation for the study of static fracture in magnetoelec-
troelastic cracked solids will be also presented. X-FEM requires the use
of some enrichment functions depending on the behavior law of the mate-
rial studied and, for magnetoelectroelastic solids, such functions were not
available in the literature when this work started. In this thesis, those func-

tions will be obtained following a similar procedure to the one developed
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by Béchet et al. (2009) for piezoelectric cracked solids.

As it will be seen in this document, when the crack is opened, the
medium between the crack surfaces conducts the electric and magnetic fields
in a different way as the solid does. The assumption of that conductivity
is not a closed topic. Actually, three different conditions are usually consi-
dered: two ideal and a more realistic one. In most of this work, the ideal
impermeable condition has been adopted , but in the last chapter a deeper
analysis of the different crack faces boundary conditions will be carried out,

analyzing the implications of them in the fracture parameters.

1.2 State of the knowledge

The number of fracture mechanics problems studied by the use of the numer-
ical techniques used in this work is ample. Nevertheless, the hypersingular
BEM and X-FEM had never been used for solving either static or dynamic
fracture problems in magnetoelectroelastic solids, to the best of the author’s
knowledge, when this work was performed.

The number of works in which fracture in magnetoelectroelastic solids
were analyzed is relatively limited as compared for other materials such as
anisotropic or piezoelectric. In this sense, most of the works were analytical

or semianalytical and lack the generality of numerical methods.

1.2.1 Static fracture

Related to static fracture, Liu et al. (2001) derived the 2-D Green’s func-
tions for anisotropic magnetoelectroelastic solids with a crack as well as
the resulting closed-form expressions for the field intensity factors, based

on the extended Stroh’s formalism, while Gao et al. (2003a,b,c, 2004) pre-
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sented analytic solutions for some basic problems. Sih and coworkers (2003a;
2003b; 2003c; 2003) analyzed the he influence of both electromagnetic fields
and the volume fraction of the magnetoelectroelastic composite on crack ini-
tiation and growth. In works by Wang and Mai (2003; 2004), the analytical
expressions for the stresses, electric displacements and magnetic inductions
in the vicinity of the crack tip were derived, as well as path-independent
integrals. Using such integrals, fracture behavior of magnetoelectroelastic

solids was analyzed by Tian and Rajapakse (2005b).

However, all those analytic procedures are restricted to problems involv-
ing simple geometries and loading conditions. Thus, numerical methods be-
come necessary for a deeper study and characterization of fracture behavior

of magnetoelectroelastic solids.

It is well known that both BEM and X-FEM present significant advan-
tages over other numerical techniques for the analysis of fracture mechanics
problems. Actually, the dual BEM formulation was first used in anisotropic
materials by Sollero (1994) and Sollero and Aliabadi (1995). Hypersingu-
lar integrals appearing in this formulation are treated by the regularization
process presented by Portela et al. (1992), which is limited to the use of
straight elements. However, Séez et al. (1995) developed a regularization
process in which the shape of the elements is not a limitation anymore. That
process was extended for the study of anisotropic and piezoelectric cracked
solids in his PhD thesis by Garcia-Sanchez (1995). In the present work,

such formulation will be generalized to the magnetoelectroelastic case.

With respect to the X-FEM, it has been proved as a powerful tool for
the study of fracture mechanics and it has been successfully applied to solve
crack problems by Moes et al. (1999) in isotropic media, Sukumar et al.

(2004) in bimaterials, Asadpoure and Mohammadi (2007) in orthotropic ma-
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terials, and Béchet et al. (2009) in piezoelectric media. This last formulation
will be generalized in this work to the case of magnetoelectroelastic solids,
due to the similarities existing between the formulation of behavior laws in
both solids.

The analysis of crack face boundary conditions in magnetoelectroelas-
tic fracture is not a closed topic. Most researchers adopt the impermeable
conditions, which establishes that the crack is isolated of the electromag-
netic fields. In the other hand, permeable condition implies that cracks
conduct electric and magnetic fields. However, both assumptions are not
completely realistic, and it is possible to say that a consistent crack face
boundary condition will be between them.

In works by Wang and Mai (2006) and Wang and Han (2006b), ideal
crack faces boundary conditions for a single crack in an infinite domain were
analyzed analitically, while Wang and Mai (2007) studied a more realistic
boundary condition by the use of a classical finite elements approach.

In this thesis, a new algorithm to solve multiple semipermeable cracks
problem using the hypersingular BEM formulation and based in the one

developed by Denda (2008) for piezoelectric materials is presented.

1.2.2 Dynamic fracture

The analysis of dynamic fracture is even more limited than in statics. More-
over, in time-harmonic problems the majority of such analysis deals with
anti-plane fracture, using semi-analytical solution methods. Zhou and co-
workers (2005a; 2005b; 2006a; 2006b; 2008) used the Schmidt method to in-
vestigate the dynamic behavior of several configurations of interface cracks
in magnetoelectroelastic composites under harmonic elastic anti-plane shear

waves. Hu and Li (2005) derived the analytical solution for an anti-plane
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Griffith moving crack inside an infinite magnetoelectroelastic medium un-
der the assumption of permeable crack faces and later extended this study
to the case of an anti-plane Griffith crack moving at the interface between

two dissimilar magnetoelectroelastic media (Hu et al., 2006).

With respect transient analysis, most of the works have been carried
out by analytical or semi-analytical techniques for antiplane configurations
as well. Li (2005) investigated the transient response of a magnetoelec-
troelastic medium containing a crack along the poling direction subjected
to antiplane mechanical and inplane electric and magnetic impacts. Feng
and coworkers analyzed the dynamic anti-plane problem for a function-
ally graded magnetoelectroelastic strip containing an internal crack per-
pendicular to the boundary, under both magnetoelectrically impermeable
or permeable boundary conditions on the crack faces in 2006, and the dy-
namic behavior induced by a penny-shaped crack in a magnetoelectroelastic
layer subjected to prescribed stress or prescribed displacement at the layer
surfaces for both impermeable and permeable cracks, in 2007. Su et al.
(2007) studied the problem of an arbitrary number of interface cracks be-
tween dissimilar magneto-electro-elastic strips under out-of-plane mechan-
ical and in-plane magneto-electrical impacts. Yong and Zhou (2007) con-
sidered the transient anti-plane problem of a magnetoelectroelastic strip
containing a crack vertical to the boundary. Liang (2008) derived the solu-
tion for the dynamic behavior of two parallel symmetric cracks in function-
ally graded piezoelectric/piezomagnetic materials subjected to harmonic an-
tiplane shear waves. Feng and Pan (2008) investigated the anti-plane prob-
lem for an interfacial crack between two dissimilar magnetoelectroelastic
plates subjected to anti-plane mechanical and in-plane magneto-electrical

impact loadings under different combinations of magnetically and electri-
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cally permeable/impermeable surface condictions on the crack. More re-
cently, Sladek et al. (2008) presented a meshless method based on the lo-
cal Petrov-Galerkin approach for stationary and transient dynamic crack
analysis in two-dimensional and three-dimensional axisymmetric magne-
toelectroelastic solids with continuously varying material properties. Fi-
nally, Zhong et al. (2009) analyzed analytically the transient response of
a cracked magnetoelectroelastic material subjected to in-plane sudden im-

pacts.

In this work, the numerical study of dynamic problems will be performed
by the use of the BEM. The fundamental solutions or Green’s functions
play a key role in the formulation and resulting accuracy of the method.
Although the 2-D and 3-D dynamic fundamental solutions for anisotropic
elastic and piezoelectric media have been studied in detail, dynamic Green'’s
functions for 2-D and 3-D fully anisotropic magnetoelectroelastic materials
were still unavailable in the literature to the author’s knowledge when this
work was done. Thus, the procedure to obtain the time-harmonic funda-
mental solution will be presented in this work for 2-D and 3-D magneto-
electroelastic solids and implemented in a dual BEM code for bidimensional
solids. The importance of these Green’s functions is not limited to their use
in BEM, but they are also a key ingredient in other analytical and numerical

techniques such as eigenstrain approaches or dislocation methods.

To obtain these functions, an extension of the Radon transform tech-
nique developed by Wang and Achenbach (1994, 1995) for anisotropic elastic
solids will be carried out in order to derive the dynamic Green’s functions
for 2-D and 3-D anisotropic magnetoelectroelastic media subjected to time-
harmonic loading conditions. This procedure had been successfully applied

by Denda et al. (2004) and Wang and Zhang (2005) to derive the funda-
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mental solutions for dynamic piezoelectricity.

For the transient (time-domain) analysis carried out in this work, the
time discretization will be performed by approximating the convolution
product by the use of Lubich’s quadratures, which require the fundamen-
tal solution in terms of the Laplace paramater. This fundamental solu-
tion may be obtained following a similar procedure to the one developed
for the obtaining of the time-harmonic one, as it will be analyzed in this
work. Representative examples of the use of Lubich’s quadratures for solv-
ing time-domain problems are the viscoelastic and the dynamic poroelastic
problems, which have been investigated by Schanz (1999), Gaul and Schanz
(1999) and Schanz (2001), or the transient elastodynamic crack analysis of
anisotropic solids presented by Zhang (2002b) and Garcia-Sanchez et al.
(2008Db).

Both time-harmonic and time-domain formulations will be obtained fol-
lowing the ideas presented by Garcia-Sanchez et al. (2005b; 2008a; 2008b)

and Saez et al. (2006) for anisotropic and piezoelectric materials.

1.3 Organization of the document

This document is organized in seven chapters. After this introduction, in
the second chapter the fundamentals of magnetoelectroelasticity as well
as of the implications of the couplings in the static and dynamic fracture
mechanics will be analyzed.

In chapter 3, one of the numerical techniques used in this work will
be introduced: the hypersingular formulation of the Boundary Element
Method. The method will be briefly described as well as all the funda-

mental solutions needed for the study of static and dynamic problems. In
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chapter 4, the proposed formulation will be validated and several problems
will be solved in order to extract some conclusions about the behavior of
magnetoelectroelastic solids.

In chapter 5, a second technique, the Extended Finite Element Method
will be introduced for the study of static fracture mechanics, and the new
crack tip enrichment functions needed for its formulation, derived. Some
problems will be solved and the results will be compared with those ob-
tained by the use of the hypersingular formulation of the Boundary Element
Method previously described.

In chapters 3 to 5, the ideal impermeable crack face boundary condition
is assumed. In chapter 6, however, different crack face boundary conditions
such as the permeable and the more realistic semipermeable one will be
analyzed for static problems.

Finally, in the seventh and last chapter, the conclusions extracted during
the realization of the present work will be summarized and possible future

developments proposed.



Chapter 2

Analysis of cracked

magnetoelectroelastic solids

2.1 Introduction

In this chapter, a review of the linear elastic fracture mechanics in bidi-
mensional magnetoelectroelastic media will be presented, considering both

static and dynamic loading.

First, the behavior of these solids will be described paying special atten-
tion to the generalized plane problem and showing the procedure to solve it
based in the Stroh’s formalism. Some extended variables (also called gene-
ralized variables) which allow the treatment of the problem in an elastic-like
fashion, will be defined, and both static and dynamic problems will be con-
sidered. New fracture parameters involving the electric and magnetic effects
will be also defined, and the implications of those effects in both external

and crack faces boundary conditions, described
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2.2 Governing equations for statics in in magneto-

electroelastic media

2.2.1 Governing equations

The magnetoelectroelastic effect consists in the coupling between the elas-
tic, the electric and the magnetic fields. This statement means that, under
the action of mechanical loads, both electric and magnetic fields are in-
duced. In the opposite way, if either an electric or a magnetic field are
applied, a mechanical deformation is produced, as well as a magnetic or an
electric field, respectively. Thus, new variables appear in the behavior law
of magnetoelectroelastic solids.

These variables are the electric and magnetic potentials, ¢(x) and p(x),
the electric and magnetic fields, E(x) and H(x), the electric displacement
and magnetic induction, D(x) and B(x) and the electric charge density and
the electric current density, f¢(x) and f™(x).

The constitutive equations relating the mechanical stresses and elastic
strains with those new variables are given by (see, e.g., Jiang and Pan, 2004;

Liu et al., 2001; Soh and Liu, 2005)

Oij = Cijki€kl — elijl — hyg Hy (2.1a)
D; = ejmem + ealy + BuH, (2.1b)
Bi = hikew + BaEy + va (2.1c)

where all the indices vary from 1 to 3 and o;; denote the components of the
Cauchy stress tensor, D; the electric displacements and B; the magnetic
inductions; €;; are the components of the small-strain elastic tensor and F;

and H; are the electric and magnetic fields, respectively. c;jx, €5 and vy
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are the elastic stiffness tensor, the dielectric permittivities and the magnetic
permeabilities, respectively, whereas ej;;, hy;; and 3; are the piezoelectric,
piezomagnetic and electromagnetic coupling coefficients, respectively.
Small displacement gradients are assumed, so that the linearized strain-
displacement relations hold. The mechanical stresses and the electric and
magnetic fields are related with the elastic displacements and the electric

and magnetic potentials as follows

1
gij = 5 (i +ujq) (2.2a)
Ei=—6; (2.2b)
Hi = —Lp’i (22C)

The summation rule on repeated indices is implied and a comma stands
for spatial partial differentiation. The governing equations are given by the
equilibrium equations

Oij,5 = —fime(:h (2.3&)

and by the Maxwell equations

I
—
o

D;; (2.3b)
In which it has been considered the quasi-static assumption of the electric
and magnetic fields. Such assumption can be adopted because characteris-
tic frequencies in pure mechanical and pure electromagnetic problems are

very different (say by 3 orders of magnitude). Therefore, the changes of
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the electromagnetic fields can be assumed to be immediate (Parton and
Kudryatsev, 1988).

Following the notation first introduced by Barnett and Lothe (1975) for
piezoelectricity, some generalized (also called extended) vectors and tensors
are defined so that the problem can be formulated in an elastic-like way. In
this way, the displacement vector is extended with the electric and magnetic

potentials as

w;, =123
ur=14 ¢, I=4 (2.4)
», I=5,

where the lowercase subscripts (elastic) vary from 1 to 3, whereas the up-
percase ones (extended) vary from 1 to 5. The external volume forces vector

is extended with the electric charge density and the electric current density

as follows
frech, 1=1,2,3
fr= —fe,  I=4 (2.5)
_fm» 1:5»

The stresses tensor is now extended with the electric displacement and

the magnetic induction as

Tijy I:1,2,3
15 = Dj, 1=4 (26)
B, I=5,

with an associated generalized traction vector corresponding to a unit nor-

mal n = (n1,n2) given by

pl - o-ijnja 1:17273
pr=orin; = Dn = Djnj, =4 (27)
B, = Bjnj, 1=5,

The strains tensor is generalized with the electromagnetic fields
Eijs I:1,2,3
€15 = —E]‘, 1=4 (28)
—H;, I=5,
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Thus, equilibrium equations can be expressed as

orj; = f1 (2.9)

The constitutive equations (2.1) may be then recast is a more compact

form to yield

orj = CjIKIUK (2.10)

where the material properties have been grouped together into a generalized

elasticity tensor defined as

Cijlcl J,K = 1,2,3

€lij J=1,23 K=4

hlij J:1,2,3;K:5

Cinl J—4 K—=12,3

Cigk1 = —€il J, K = (2.11)

—Bu J=4,K=5

Rkl J=5 K=1,2,3

—Bil J=5 K=4

il J K =5

where the following symmetries hold
Cijkl = Cjkil = Cijlk = Cklij 3 €lij = Clji (2.12)
higj = hji 5 €5 =¢€5i 5 Big =B 5 Yij = Vji
and, using the extended notation, that symmetry takes the form

Cisrki = Cik i (2.13)

For stable materials, ¢;;i, €;; and 7;; are positive definite for any real

non-zero tensor € and vectors E and H. i.e.,
Cijki€ij€rl >0 5 € EE; >0 5 v HiH; >0 (2.14)
which can be expressed in the extended notation as

Cirkierjexi > 0 (2.15)
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Most common magnetoelectroelastic solids in industrial applications are
composites of piezoelectric and elastomagnetic ceramics, in which electrome-
chanical and magnetomechanical couplings have been induced by a polariza-
tion process which rearrange the originally isotropic crystalline structures.
Thus, anisotropy is an important feature in magnetoelectroelastic materials.

Ting (1996), established for anisotropic materials that, when some terms
of the behavior matrix vanish, plane and antiplane problems can be stud-
ied separately. This statement can be generalized to magnetoelectroelas-
tic solids and, for such purpose, it is convenient to use the contracted Voigt
notation that reduces the fourth-order elastic and third-order piezoelectric
and piezomagnetic tensors to second-order matrices. In this way, using the
relation between the indices 11 — 1, 22 — 2, 33 — 3, 23 — 4, 31 — 5,
12 — 6, the behavior law given by equation (2.1) may be rewritten in a
matrix form. Let us assume now, that some terms of the behavior matrix

vanish, being the resulting matrix like the following
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€11
€12
€13

0
0
€16
—€11
—€12
0
=11

—B12
0

o11
022
033
023
013
g12

D,
D3

Bs

Bs

€21
€22
€23

0
0
€2
—€12
—€2
0
—B12

—Ba2
0

0
0
0
€34
€35
€36
0
0
—€33
0
0
—[33

h11
hia
his
0
0
hig
—Bu
D)
0
—71

—712
0

€13
€23
€33

€36
€13
€23

his
has
0

ho1
haa
ha3
0
0
hag
—bia
— B2
—Bs2
—V12
—722
0

o O O

o

N
U
o0
N
St

S O OoOu

ot

h34

hss

hss
0
0

—f333
0

0
—733

(2.16)

In that case, 1 — x5 would be a symmetry plane and the plane and

the antiplane problems may be separated yielding to the following behavior

laws. For plane problems

C12 Ci6
c22  Cog
c26 o6
e12 €16
€22 €26
hi2  hig
haa  hog

€11

€12

€16
—€11
—€12
=11
—f12

ea1

e22

€26
—€12
—€22
—f12
—[22
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being €33 = 0 and 033 = c13€11 + co3€22 + 2c36€12 — €13E1 — ea3 B — h13 By —
hos Bs for plane strain and e33 = (—1/633)((213611 +coge00+2c36612 — €131 —
ea3Fy — h13B1 — ho3Bs) and o33 = 0 for plain stress.

The antiplane problem law is now given by

023 cia c15  e€3q haa 2e23

o | _| cas cs5  ess hss 2e13 (2.18)
Ds e3q e3s —e3z —fs3 —E3 ’

B3 h3s hss —fB33 —733 —Hj3

Let us now remark that the plane stress state, defined as that in which
the stress tensor components are contained in a plane is mathematically
equivalent to the plane strain state, but modifying the elastic constants as
proposed by Lekhnitskii (1963). And, in the same way, an antiplane stress
state may be defined as that in which only o3 and o953 are different to zero
and independent of x3.

Most extended magnetoelectroelastic materials present a transversely
isotropic behavior. If we assume that z; — x3 is the isotropy plane, the

behavior law for the plane problem may be rewritten as follows

o11 ci ciz2 O 0 el 0 hat Uil

022 ciz2 ¢ 0 0 €22 0 hao U2

012 0 0 o6 e16 0 hie 0 Uy + U1

Dy | = 0 0 e —en 0 —PBu O ¢

Dy es1 ez 0 0 —e2n 0 —f b2

By 0 0 hg B 0 -1 O ®1

By hot hoa O 0 B2 0  —7 2
(2.19)

Boundary conditions

Expressions (2.1), (2.2) and (2.3) constitute a differential equations sys-

tem which needs the application of some boundary conditions to be solved.
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These conditions may be

e Natural boundary conditions, when the generalized tractions are known

in some points of the boundary.
PI(XO) =0q; - nj‘x:xo =Dpr , Zf X0 € Fp

o FEssential boundary conditions, when the generalized displacements are

known in some points of the boundary.

ur(xo) =ur , if xo €Ty

where I' is the external boundary of the magnetoelectroelastic domain, being
I'= PtUFu and Ftﬂfu = @
The boundary conditions on the crack surfaces need special considera-

tions and will be analyzed in section 2.4.1.

2.2.2 Solution of the static plane problem in magnetoelec-

troelastic materials

Liu et al. (2001), by the use of the extended notation introduced above,
established the generalized displacements and stresses fields in terms of
complex potentials, in an analogous way to the procedure carried out by
Suo, Kuo, Barnett and Willis (1992) for piezoelectric materials.

Thus, in a magnetoelectroelastic solid, under generalized plane condi-
tions, extended displacements and stresses, are given by the following ex-

pressions

5
ur = {ui, ¢, 0} = 2Re (Z AIJfJ(ZJ)> (2.20)

J=1
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s}

o11 = {01, D1, B1} = —2Re (Z BIJMJf"](&I)) (2.21)

J=1
5
091 = {09i, Do, Bo} = 2Re (Z BUff,(zJ)> (2.22)
J=1
where Re stands for the real part, whilst I,J=1,2,4,5 for plane problems and
1,J=3,4,5 for antiplane problems.

g, Ary and Byy are complex values which can be obtained from the
material properties, z; is the transformation of the real domain into the
complex plane (z;5 = 1 + pyza) to define a point locationand f is an
arbitrary analytic function which must be obtained for each problem.

To determine all those complex values, a procedure based in the ex-
tension of the Stroh’s formalism to magnetoelectroelastic solid will be pre-
sented. That extension is analogous to the one developed by Barnett and
Lothe (1975) for the piezoelectric case, based on the formulation by Eshelby,
Read and Shockley (1953) for anisotropic materials. The tensors A and B,
depending on the materials properties, can be computed from the following

eigenvalues problem:

-L'M | -L7! Av |\ Ay (2.23)
Z-M'L ™M | —-M"L! By ) "\ Bu '

with no sum on index M, and being L, M and Z the tensors defined as

follows

Z:=Ciyy1 5 M:=Cory1 ; L:=Cyop (2.24)

and g7, the roots of the characteristic equation of the material, are four
complex conjugated pairs, but only the four of them with positive imaginary

part are considered in equations (2.20-?7).
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Let us remark that the existence of the inverse of Coyjo is guaranteed
because of the positive definite character of the behavior matrix as defined

in (2.15).

2.3 Governing equations for dynamics in in mag-

netoelectroelastic media

In those cases where boundary conditions of the problem have a strong
dependency on the time variable, inertial effects must be considered in the
equations.

In the present work two different dynamic problems have been conside-

red: time-harmonic and general transient problems.

2.3.1 Dynamic governing equations

Considering the time as an independent variable as well as the inertial

effects, the extended dynamic behavior law and the kinematic relations are

o1j(Tm,t) = Cjrxierj(Tm, t) (2.25)
Eij(wmat) = %[ui,j (CEm,t) + uj,i(mvmt)] (2.26&)
Ej(@m,t) = —¢j(xm, ) (2.26h)
Bj(m,t) = —¢,j(¥m,1) (2.26¢)

while the dynamic equilibrium equation is
01, (Tm, 1) + fr(Tm, t) = pO]glik (T, T) (2.27)

where p is the density of the material, the superscript - stands for temporal

derivative and &% is the generalized Kronecker delta, defined by

OJK I,K=1,2
* 3 )
01k = { 0 otherwise (2.28)
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Let us remark that, due to the quasi-static assumption for the electric

and magnetic fields, no electric nor magnetic inertial effects are considered.

2.3.2 Time-harmonic problem

Time-harmonic problems are those in which all the time dependent variables
vary as sin (wt) or cos (wt). Thus, time dependency may be expressed in the

*iwl where w is the angular frequency and i is the unit imaginary

form e
number. In this case, only the real or the imaginary part would have a
physical meaning. Time-harmonic problems are relevant in elastodynamics
since dynamic excitations may be decomposed in a Fourier series expansion,
the so-called harmonic expansion. With it, the linear system response may
be obtained by the superposition of the response to each of the harmonic
terms.

In these problems all the variables, in every point of the space, will be

a function of an amplitude and a frequency. Thus, if v is a generic field

variable, its value for an instant of time ¢ may be expressed as
_ +iwt
V(Zm, t) = V(zm,w)e (2.29)

where v(z,,w) is the amplitude. With this notation, the extended equilib-

rium equation can be rewritten as
1), (Tms @) + [1(2m, @) = —pdiw?ur (Tm, w) (2.30)

while the extended behavior law and compatibility equations are

01j(@m,w) = Cjrxierj(Tm,w) (2.31)
€ij(Tm, w) = §[ui,j(1'm»w) + uj i (T, w)] (2.32a)
Ej(zm,w) = =0,j(zm,w) (2.32b)

Bj(zm,w) = —¢,j(Tm,w) (2.32¢)
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2.4 Linear elastic fracture mechanics in magneto-

electroelastic media

In this section, the different crack face boundary conditions which may be
considered in magnetoelectroelastic cracked solids will be first presented.
After that, the near-tip generalized displacements and stresses fields in a
cracked magnetoelectroelastic solid, will be introduced. In those expres-
sions, it will be noticed that the electric and magnetic potentials have, as
the mechanical displacement do, a /7 behavior, while the electric displace-
ment and magnetic induction present an asymptotic 1/1/7 behavior, as the
traditional mechanical stresses in isotropic and anisotropic materials have,
being r the distance from the crack tip to the point where the extended
displacements and/or extended stresses are being evaluated.

After studying those expressions, the implications of the presence of
cracks in dynamic problems will be presented, paying special attention to
the diffraction of time-harmonic waves when they impinge on defects.

It will be seen that the variable fields in cracked solids are characterized
by certain fracture parameters, the so-called field intensity factors: stress
intensity factors (SIF), electric displacement intensity factor (EDIF) and
magnetic induction intensity factor (MIIF). In this section, thus, some pro-

cedure to calculate them, will be also presented.

2.4.1 Crack face boundary conditions

An important issue that must be considered are the boundary conditions
on the crack surfaces. This is not a closed topic and, as in crack problems
in other multifield solids such as piezoelectric materials, three different con-

ditions may be considered. Those boundary conditions will be described
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briefly in this section, and in deep detail in a chapter 6.

While the mechanical boundary conditions on the crack surfaces for an
opening crack is always traction free, the electromagnetic boundary condi-
tions comes in different degrees of shielding the electric displacement and
magnetic induction, defined, respectively, by the electric permittivity and
by the magnetic permeability of the medium in between the crack faces.
Then, noting with ” +” and ” —” the upper and the lower crack surfaces,

a crack along the xj-axis can be considered as

(1) Fully impermeable crack. The normal electric displacement and mag-

netic induction on the crack surfaces are zero, so

Dy =D; =0 (2.33a)

By =B; =0 (2.33b)
which means that the crack is extended tractions free on its surface.

(i) Fully permeable crack. In this case, the crack does not obstruct any

electric or magnetic field, what implies that

Df =Dy ; ¢ —¢ =0 (2.34a)

Bf =By ; ot —p =0 (2.34b)

(iii) Semipermeable crack. This condition, which gives a more realistic
boundary condition for opened cracks, was proposed by Wang and
Mai (2006) as a generalization of the one proposed by Hao and Shen
(1994) and Parton and Kudryatsev (1988) for piezoelectric solids.

Df =Dy ; DS(ug —uy)=—e(¢t —¢7) (2.35a)

By =By ; Bi(ug —uy) =—0(¢" —¢7) (2.35D)
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where, since D;‘ =D, and B;‘ = B, , the upperindex ¢ has been used
to denote either of the crack surfaces. Moreover ¢ is the permittivity
of the medium between the crack faces and 7y its permeability. Let
us remark that the semipermeable boundary condition is reduced to
the impermeable one when g = 0 and v9 = 0, and to the permeable

one when the jump in the electric and magnetic potential vanish.

However, the impermeable boundary condition is the most used in the

scientific literature and will be the one considered in most of this work.

2.4.2 Crack-tip asymptotic fields

As it has been already said, in magnetoelectroelastic solids some variables
appear in the behavior law, different to the only mechanical ones. These
variables will present a discontinuity due to the presence of the crack. More-
over, as it has been pointed out above, the generalized displacements and
stresses present, respectively, a /r and 1/y/r behavior, being r the dis-
tance to the crack tip. Consequently, some new fracture parameters must
be defined. Thus, in a magnetoelectroelastic material, as well as the tradi-
tional stress intensity factors (SIF), an electric displacement intensity fac-
tor (EDIF) and a magnetic induction intensity factor (MIIF) are needed to
model the near tip behavior. All those parameters will receive the generic
name of Extended Stress Intensity Factors (ESIF).

In elastic problems, the three crack opening modes I, IT and IIT are iden-
tified with a discontinuity in mechanical displacements in the local crack
coordinate system. Now, in magnetoelectroelastic problems, the new ex-
tended stress intensity factors, which are usually called as Ky and Ky,

are related to the jump in the electric and the magnetic potentials.
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Under those conditions and if a polar coordinates system (r,6) with
the origin at the crack tip is used (see figure 2.1), the near tip extended
displacements fields can be expressed in the following way (see e.g. Wang

and Mai, 2003 and, more recently, Rao and Kuna, 2008)

2
ur(r,0) = \/;Re (KNAIMB];;N /7 (cos O + ppr sin 9)) (2.36)

whereas the stresses fields can be expressed as
) 1 _ di1pinr + 642
orj(r,0) = (—1)\/ =—Re | KyBiuB;} J J 2.37
ri(r,6) = (=1) 27 ( NEIM MN\/r(cose—FuMsinH) (2:37)

where the summation over N comprises all the fracture modes: K, and Ky

denote the traditional mechanical SIF, whereas Ky and Ky characterize
the jump in the electric and magnetic fields over the crack. In (2.36) and
(2.37), the tensors A and B, depending on the materials properties, can be

computed from the eigenvalue problem defined in (2.23).

D:B:
X2 A Tsz
N
G2 o
o P
O DsBa DW B1
T
r
0
— >
>
X1

Figure 2.1: Extended stresses and reference system around the crack tip

2.4.3 Near-tip extended displacement fields based on Lau-

rent’s series expansion

As it will be studied in chapter 5, the asymptotic terms of the generalized

displacement fields in the vicinity of a crack tip must be included in the for-
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mulation of the Extended Finite Element Method (X-FEM) to describe the
discontinuity imposed by the crack. For this purpose, it is more convenient
to derive the asymptotic fields in terms of Laurent’s series expansions. The
procedure to obtain them, which is similar to the one followed by Scherzer
and Kuna (2004) for piezoelectric materials, will be now introduced.

In this work orthotropic magnetoelectroelastic media under generalized
plane strain conditions are considered for the X-FEM applications. In such
case, the constitutive relations (2.10) may be further reduced (Tian and

Rajapakse, 2005¢), to

€11 a1 a2 0 0 b 0 dyn o11
€22 a2 a2 0 0 b 0 da 0922
2612 0 0 ass b13 0 d13 0 g12
Eq = 0 0 —b1z 11 0 Ay O Dy
E —ba1 —baa 0 0 d2 0 Aa Dy
Hy 0 0 —diz Anx 0 ¢u O By
Hy —dy1 —day 0 0 A 0 (2 By
(2.38)

where the terms in the matrix are listed in appendix A.

Let us now introduce some potential functions with the following defi-

nitions:
o1 =U(x1,22) 22, 022 =U(x1,22) 11, 012 =-U(x1,22)12 (2.39a)
Dy = x(21,22),2, D2=—x(z1,22)1 (2.39b)
Bl = 19(1‘1,%’2)72, Bg = —19(1‘1,%’2)71 (2.39C)

The equilibrium equations (2.9) are satisfied automatically because of
the definitions of the potentials. Substituting (2.38) in the kinematic rela-
tions (2.2), and expressing the field variables through the potentials previ-

ously defined in equation (2.39), it is possible to obtain
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a11U 2222 + a22U 1111 + (2a12 + a33)U 1122

— (ba1 + b13)x,122 — b22x 111

— (da1 + di13)0 122 — d22¥ 111 =0

(bo1 + b13)U 122 + b22U 111 + 011X 22 + 022X 11

+ A11000 + Aga¥ 11 =0

(do1 + d13)U22 + d22U 11 + Arix,22 + Asax 11

+ C11¥ 22 + (22911 = 0

Defining now the following operators

ot ot o4
Li = aop—— Y Lo a2
4= a2 7a] + ““axg + (2a11 + ass) 9073
83 4
L3 = byy—= b bi3)——=
3 2281‘{ + (bo1 + 13)81*193%
93 o4
M3 = doo—= d. d13) ——
3 22 aﬁ + (do1 + di3) axlxg
2 2
Lo = - —_
9 = 022 922 + 511890%
9? 9%
My = Aoy2 AL
2 22 Bx% + A 89:%
o2 52

Py = Conas 4 (s
2 = (22 922 + Cuagg%

(2.40a)

(2.40b)

(2.40c)

(2.41a)
(2.41b)
(2.41c)
(2.41d)
(2.41e)

(2.41f)

the compatibility equations can be reduced to a partial differential equa-

tion of eight order for U(z1,x9) following a similar procedure to the one

developed by Sosa (1991) for piezoelectric materials
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L4U(CE1,:L‘2) — L3X(CE1, CEQ) — Mgﬁ(ml,wg) =0 (2.42&)
L3U(1‘1, z’g) + LgX(l‘l, 1‘2) + Mgﬂ(l‘l, z’g) =0 (2.42b)
M3U (21, m2) + Maox(z1,22) + Ped(z1,22) =0 (2.42¢)

And solving now in terms of the potential U (x1, z2)

[Ly(LoPy — M3) + L3(L3Py — 2M3Ms) + Lo MU = (2.43)
which solution can be given in the form
U(z1,22) = U(xy + pwa), with g = Re(p) + Im(p) (2.44)

where p is a complex number.
Substituting now (2.44) in equation (2.43), the characteristic equation

of magnetoelectroelastic media can be expressed as

[a11p* + (2a12 + ass)p® + ago][(Ar1p? + Aoa)? — (G114 + 022) (Crp® + (o2)]
— [(ba1 + b13)p® + bao]2(Crupe® + Coa) — [(do1 + diz)p® + dao)® (F1144% + Ja2)
+ 2[(b21 + b13) e + baa][(da1 + dig)p® + do2] (A1 + Agg) =0 (2.45)

The eight roots of that equation (which are actually four conjugate com-
plex pairs) are the same which can be obtained by solving the eigenvalues
problem defined by equation (2.23). The general solution for U(x1,x2) can
be built up by means of those roots u; as

8
U(zy,22) = Z Ui(x1 + pixa)

i=1
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And now, since the potentials x(z1,x2) and 9(z1,x2) can be calculated
from U (z1,xz2), every magnetoelectromechanical variable can be obtained
by means of the potential U(z1,x2) by substituting in the system of equa-
tions defined in (2.42).

The generalized displacement solution around the crack tip is now de-
rived in an unbounded domain as the one shown in the figure 2.2, where x5
is the polarization direction. The material coordinate system is rotated by
an angle a so that any polarization direction can be considered. In order to
satisfy the considered crack face boundary conditions, it becomes necessary
to expand the general solution in Laurent-like series (see Mufschelichwilli,

1971 and Savin, 1968), using general power functions for U;(z1 + u;22)

8

U(acl, 1‘2) = Z Z d1(>\k)(1'1 + Mil‘z)/\k+2 (2.46)

k =1

where the origin of the coordinate system has been taken at the crack-tip
and d;(\g) are free coefficients of the series expansion at the origin and
can be obtained only from the overall solution of the considered boundary
conditions problem. Aj are generally complex and represent the number
of roots of the solvability equation for the crack faces boundary conditions

considered.

Considering now a polar coordinates system (see figure 2.2) with origin
at the crack tip, and taking into account that the eight roots u; are actually
four complex conjugate pairs, the potential U(r, 8) in (2.46) can be rewritten

as
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4
U(r,0) = di(A\)r(cos(6 — @) + pi sin(6 — o))"
i=1
4
+ 3 di(\)r(cos(8 — a) + mmsin(0 — ) (2.47)
i=1

where p; and ; must be combined mutually for obtaining a real A, which

would be the combination of two complex A.

Figure 2.2: Definition of the material axes around the crack tip

The real representation of each term in (2.46) for each pair y; and f; can
be obtained as extension of those obtained by Scherzer and Kuna (2004)

for piezoelectric materials and gives expressions as

eip™2 cos [(A+ 2)(k + g)] + fpM2sin[(A + 2)(k + g)}, (2.482)
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with
p=rV/(lpx[?> — 1)(sin )2 + Re(p;) (sin 2¢)) (2.48h)
— arctan LT Re(ki) tan(y)
Kk = arcta T ()] tan(9) (2.48c)
di(A) = ei(A) +ifi(A) (2.48d)
Vv=0-«a (2.48¢)

If A\g is complex, then the terms of equations (2.48) must be combined
with the resulting terms of considering Ay, so that real values of U (21, 9)
are obtained and, thus, real values of the other potentials x(z1,z2) and
a1, z2).

The homogeneous boundary condition at the crack surfaces for an im-
permeable crack (ogg(r,0 = +7) = 7,9(r,0 = £7) =0, Dy(r,0 = £7) =0
and By(r,§ = +m) = 0) define a linear system of equations for the eight
unknown coefficients e; and f; and their complex conjugate pairs. Naming
X a vector containing those unknowns variables, the system of equation

would have the form

S(\)-X =0 (2.49)

and now it is necessary to point out that for the impermeable crack face
boundary condition considered in most of this work, an infinite number of

Ak can be obtained so that the previous system of equation has a solution
AM=-1/2; X=0; A3=1/2; Xg=1...

A value of Ay = —% generates four independent eigenvectors, based on
the coefficients e;(A1) and f;(A1) (and their respective conjugate complex
pairs) so that four independent singular eigenfunctions, which incorporate

the classical 1/4/r crack tip singularity, can be constructed in an analogous
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way as done by Béchet et al. (2009) for piezoelectric solids. These indepen-
dent eigenfunctions shall be used in chapter 5 for obtaining the crack tip

enrichment functions needed for the X-FEM formulation.

2.4.4 Wave scattering

Wave propagation is an important topic in solid mechanics. A description of
that phenomena was given by Graff (1975): the effect of a sharply applied,
localized disturbance in a medium soon transmits or ’spreads’ to other parts
of the medium.

Applications of wave phenomena can be found in nearly every field of
engineering. Quantitative non-destructive testing, seismology, geophysics
and, as in this work, dynamic fracture mechanics.

Wave scattering phenomenon consists in the superposition of the inci-
dent field and the diffracted one. Thus, the process to obtain the solution
for this kind of problems is carried out by means of the superposition prin-
ciple, which is illustrated in figure 2.3. The original problem consists in
a wave impinging on a (extended) tractions free crack and can be decom-
posed into two subproblems. The first one implies a wave traveling along a
non-cracked solid, whilst the second one is a crack subjected on its surfaces

to a field, equal to the incident one but with the opposite sign.

-W,

(0) (1) 2)

Figure 2.3: Superposition principle applied to wave scattering problems
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Let us remark that the scattered wave field must satisfy the radiation
condition (Eringen and Suhubi, 1975). BEM presents an important ad-
vantage respect to other numerical techniques when dealing with infinite
or semi-infinite domains, since only the internal boundaries need to be
meshed and the radiation conditions at infinity are automatically satisfied

(see, e.g., Dominguez, 1993).

2.4.5 Calculation of extended stress intensity factors

As it has been said, stress intensity factors must be understood now in an
extended way (ESIF). There are several methods to determine the ESIF
from the numerically computed field variables. The extrapolation method

and the interaction integrals approach are next sketched.
e Stresses or displacement method

This method, since requires a lower postprocess of the obtained field
variables, is the the most direct one. It consists in the substitution of the
values of the variables obtained numerically, in the expressions (2.36-2.37),
getting some expressions from which is possible to obtain the ESIF.

This method is the one that will be used in all the BEM (static and
dynamic) computations performed in this work and will be analyzed in

detail in a later section.
e Interaction integral method

This method is based on the use of path independent integrals, such as
the J-integral, which was first introduced by Rice (1968), who defined a path
independent line integral which is equal to the unit energy release rate G.

Once that integral is evaluated, the computation of the ESIF can be carried
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out inmediately. In works by Suo et al. (1992) and Pak (1992) the J-integral
was extended to piezoelectric materials, while Tian and Rajapakse (2005b)
did it for magnetoelectroelastic solids.

Such integrals may be defined for each mechanical fracture modes con-

sidered in plane problems as

1
Jl = j{ [5(0'17‘&;]' - DZ‘Ei - BiHi)dz’g - niO'ipudeS
C

—n;D;p1ds —n; B¢ 1ds] (2.50)

2
- niDi(p’QdS - niBi¢)72d8} (2.51)

1
J2 = ]{ [——(CTZ']'EZ']' — D,EZ — BZH,)dxl — nicr,-pup’zds
C

where C' is any closed line around the crack tip.

The interaction integral method will require the additional use of an
auxiliary state which satisfies the boundary conditions of the problem, as
well as the actual state under study. The contour J-integral for the sum of

the two states can be defined as

J(S) _ J(aCt) + J(aur) + M (2.52)

where J(@) and J(@u2) are associated, respectively, with the actual and aux-
iliary states, while M is the interaction integral. By choosing appropriate
auxiliary states, and using the expressions of the J-integral in terms of the
ESIF, these may be obtained by solving a linear system of equations. This
procedure will be exposed in detail in chapter 5, devoted to the X-FEM. In

this work, this method will be used in an equivalent domain form.
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Chapter 3

Hypersingular formulation of
the BEM. Fundamental
solutions and numerical

implementation

3.1 Introduction

The main objective of this work is to develop BEM models for the study
of static and dynamic fracture mechanics problems in magnetoelectroelas-
tic solids. In this chapter, in order to make the document self-contained,
the hypersingular formulation of the BEM will be briefly introduced.

It is known as fundamental solution (or Green’s function) the displace-
ment solution to the problem of a point load (in an extended sense for
magnetoelectroelastic solids) in an infinite domain. The BEM is based in

the application of the reciprocity theorem (Betti’s theorem for static prob-
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lems; Graffi’s theorem for dynamic ones), between this problem and the one
under consideration. The application of that theorem shall lead to the in-
tegral equation that, once it is solved, will provide the sought solution (see
for further details works by Brebbia and Dominguez, 1992 and Dominguez,
1993; both for the simply elastic case).

In this chapter the fundamental solution for static problems already
available in the literature will be described. Nevertheless, the dynamic
Green’s functions were not available when this work was carried out, so the
obtaining process for it, based on the use of the Radon’s transform, will be

also described in this chapter.

3.2 The Boundary Element Method (BEM)

Let 2 be a domain with a boundary I', as the one showed in figure 3.1. Let us
define a reference coordinates system z; and two compatible loading states,
each one defined by a displacement field (u and u*), boundary tractions
(p and p*) and volume forces (f and f*). The static reciprocity theorem

between both states is

/Wﬂww@w9+/mmwwwmr:

Q r

— [ phiGouiGod2 + [ gy ar (3.1)

Q r
where p is the material density. Let us consider now as the state ”*” the
corresponding to an infinite domain with an unit point load located in &.

That load, for the static case, takes the form

pfi =0(x—§€)drs (3.2)
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where x is a generic point in the domain, 4(-) is the Dirac’s delta function,
while d;; is the Kronecker’s delta functions. The displacement and traction

solution of that problem can be expressed as

up (&%) 5 pry(€x) (3-3)

In equation (3.3), the first index indicates the component of the solution
vector while the second one denotes the direction in which the loading is
applied; & is the point where the load is applied (from now on, collocation
point) while x is the point where the solution is evaluated (from now on,
observation point). That solution is known in the whole domain, including
the points where the external boundary I is located. The equation (3.1)

can now be rewritten, when no volumetric forces are involved, as

us(€) + / P& X)ur(x) dT' = / wiy(EXp(x) 0 (34)

r T

This last equation indicates that, once uy(x) and py(x) are known in
the boundary, the values of those field variables may be known in any point
of the domain &. Thus, it is first necessary to know the solution in the
boundary.

For such purpose, some transformations must be done in (3.4). A point
& on the boundary will be taken but, since that point must belong to the
domain, the external boundary will be modified with a semicircumference
of radius r, whose center is the point &, as shown in figure 3.1. Once the
equation (3.4) is applied, the radius will be taken to zero.

Due to the modification in the external boundary introduced, integrals

in equation (3.4) may be decomposed as follows
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X,

X,

Figure 3.1: Domain modification for the obtaining of the BIE

/ Py (& X)ur(x) dT' = / P (€ X)us(x) T+
T

ry

4 / P35 (€ %)ur(x) dT (3.5)

I,

uis € x)p(x) a0 = [ uiy (€ x)pi(x) T +
T,

+ / why (&, x)pr(x) dT (3.6)

r-r,

—

Taking now limits in (3.5), the first term becomes

timy [ (€, x)urx) a8 = s o) lmy [ 975 (6:3) 0 = cayunle) (37
T, Ty

where it has been considered that tractions have a 1/r behavior when r
tends to zero. Since dI' ~ Ofr], the integral in that equation does not

vanish, so

cry = liny [ iy (&%) 1 (38)
T,
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which is the so-called free term, which is related with the domain geometry.

The second term in (3.5) becomes, after taking limits,

iy [ b€ 0w = fris€xiuta (39
T, r
Where f indicates Cauchy’s principal value integration.

If the limit » — 0 is now considered in (3.6), the first term becomes
tiy [ iy (€201 c) U = pi(€) tiy [ uy(€x)ar =0 (3.0
L, P,

That integral vanishes when the distance between the observation and col-
location points tends to zero, because the displacement fields present a
O[ln(r)] asymptotic behavior, while dI" has a O[r] behavior.

The second term in (3.6) becomes

lim / W (€, X)pr(x) T = ][u;](g,x)pf(x) dr (3.11)

r—

T, r
Thus, equation (3.4) may be rewritten for every point in the boundary

as

erus(€) + ][pms,x)uz(x) ar = ][ums,x)pxx) T (12

r r
The equation (3.12) is the so-called displacement boundary integral
equation which, for magnetoelectroelastic solids, is defined in an extended
way.

If the boundary T is discretized in F elements

=) T. (3.13)
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and in those elements, the continuous functions uj(x) and py(z) are defined
by interpolation of the values in a certain number n of nodes, by the use of

known interpolation functions ¢q(x). Then

ur(@) = 3 dgur(at) = 3 dg(w)ul (3.14)
q=1 q=1

i) = 3 oo = 3 by} (3.15)
q=1 q=1

and equation (3.12) can be rewritten as follows

e=F qg=n

crur©+ 3 Y [ pis(€ 00, dr -

e=1 q:lFE

e=F qg=n

= Z/U?J(E,X)Qﬁq(w)p? dr (3.16)

e=1 q:lr
e

So a problem in which the unknown variables are continuous functions
has been transformed into one in which they are the values of those functions
in N =n - F nodal points.

If that equation is obtained for all the points established in the boundary,

an algebraic equation as the following is obtained

cryug + Hryuy = Grypy = Hryuy = Grips (3.17)

If tractions and displacements boundary conditions are now applied
and (3.17) is rearranged in a proper way, a system of equations in which

the known and unknown variables are separated is obtained

Ax=b (3.18)
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Finally, from the field variables in the boundary, the displacement values
in any point of the domain can be obtained by the equation (3.4) and the
tractions, in general, by the use of the kinematic relations. However, as it
will be exposed in section 3.3, in the hypersingular formulation of the BEM,
tractions are obtained directly by the application of a different boundary
integral equation.

The extension of the previous formulation to the time-harmonic case
can be done inmediately by means of the elastodynamic reciprocity theo-
rem by Graffi (1946). The expression of this theorem is analogous to (3.1)
but including the dependency of the variables with the frequency. The re-
sulting time-harmonic boundary integral equation, obtained after a similar

procedure as the one followed in the static case, is then

cryug(€,w) —l—fpb(é,x,w)ul(x,w)dl—‘ = ][u}J(é,x,w)pI(x,w)dF (3.19)
r r
where w denotes the considered frequency, while the expression for a time-
harmonic point load is pff = §(x — &)drje L.
In relation to the transient analysis, the boundary integral equation

takes the form (for further details, see Dominguez, 1993)

CIJuJ(fa t) + ][p}J(gv X, t) * ’LL[(X, t) dl' = ][U;J(gv X, t) *p[(X, t) dl’ (320)
T T

in which the time integration is carried out by the Riemann convolution

product (denoted by x), which can be defined as

F(#) = g(t) # h(t) = / ot — T)h(t) dr (3.21)
0
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Unlike the conventional time-domain BEM (see for details works by Tan
et al., 2005a,b; Zhang, 2002b), the time-domain BEM formulation presented
in this work applies the Laplace-domain instead of the time-domain elas-
todynamic fundamental solutions. This is specially advantageous in cases
where time-domain dynamic fundamental solutions are not available but
their Laplace-transforms can be obtained.

The time integration has been carried out by means of Lubich’s quadra-
ture formula (1988a; 1988b), which establishes that, if a time interval is
divided in K subintervals of the same length At, convolution product of

two functions can be approximated by the following quadrature

>
>

t

k
gt = )h(t)dr = wp_j(At)A() - At) (3.22)
j=0

Flk- At =

o\.

where the weights are related with the Laplace transform of the g(t) func-

tion, g(-), as

—k K-1
_T _ — 5(Cm) —2minm/K o
wi(At) = = g ( At ) e , k=0,1,2,....,K (3.23)

m=0

being i the imaginary unit number and

2
Z (1=Cn)/2 3 Cu=r-e 2mkm/K = QK (3.94)
j=1

where € is the numerical error in computing the Laplace transform g(-),
which is of the order O (1/€). Previous works (see, e.g. Garcia-Sanchez and
Zhang, 2007b) reveal that when e is between 107% and 107!2, changes in

the results are negligible.
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3.3 Hypersingular BEM formulation for fracture

mechanics problem in magnetoelectroelastic solids

3.3.1 Introduction

Geometrical modelization of a crack is carried out by two coincident sur-
faces. This fact implies numerical troubles when trying to solve fracture
mechanics problems with the BEM: since two equal equations are obtained
for both crack surfaces, a degeneration of the system of equations is pro-
voked. To solve that issue, there exist three possibilities.

The first one is the use of specific fundamental solutions over domains
which include the crack, as proposed by Snyder and Cruse (1975) for aniso-
tropic plates. This method present a big inconvenient since it needs tailored
Green’s functions for each problem crack geometry.

Another solution is the so-called subregions method, which consists in the
introduction of a fictitious surface which separate the original domain in two
subdomains so that each crack face belongs to one of them. Thus, different
equations for each crack surface are obtained, although now is necessary
to apply equilibrium and compatibility equations on the interface which
separates both domains. There exist many works in which this technique
has been applied for anisotropic and piezoelectric materials, such as those
by Ishikawa (1990) and Davi and Milazzo (2001).

Another possibility, the one adopted in this work, is the use of the hyper-
singular (dual) formulation of the BEM. It consists in the application of the
(extended) displacement boundary integral equation (EDBIE), presented in
the previous section, to the external boundary and one of the crack faces,
and another boundary integral equation to the other crack face. This new

integral equation is obtained by derivation of the EDBIE respect to the
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collocation point, as done by Iokamidis (1983) and Hong and Chen (1988),
being the main problem of this method the numerical evaluation of the sin-
gular and hypersingular integrals which appear when the collocation point
belongs to the element where the integration is carried out.

Portela et al. (1992) and Sollero and Aliabadi (1995) applied this method
to bidimensional isotropic and anisotropic fracture mechanics problem, but
the way they solve the integrals requires the use of straight elements. This
restriction can be avoided by the use of the more general treatment of
the hypersingular integrals introduced for isotropic behavior by Séaez et al.
(1995), and later generalized by Garcia-Sanchez et al. for anisotropic and

piezoelectric solids (2004; 2005a).

3.3.2 Dual BEM for fracture mechanics problems

In this section the hypersingular BEM formulation will be first introduced
for static fracture mechanics problems, being this formulation extended later
on to the frequency and time domains, in sections 3.3.3 and 3.3.4, respec-

tively.

Degeneration of the system of equations. Traction boundary in-

tegral equation

Let © be a 2-D magnetoelectroelastic cracked domain with boundary I' as
the one shown in figure 3.2, so that I' = I'gUTqck, where I' g is the external
non-cracked boundary and I'pqer = 'y UT'_ are the two geometrically
coincident crack surfaces.

As it has been said, if the EDBIE is applied to all the boundaries,
then a degenerated system of equation will be obtained, since both crack

faces are geometrically coincident. The dual or hypersingular formulation of



3.3 Hypersingular BEM for magnetoelectroelastic solids 47

Figure 3.2: Boundaries in a cracked domain

the BEM considers two boundary integral representations to overcome that
problem: the extended displacement (EDBIE) and the so-called extended
traction (ETBIE) boundary integral equation. To obtain this new equation,
we start whith the EDBIE for an internal point (3.4) which will be derivated
with respect to the collocation point. After applying the relations given by
equations (2.2) and the constitutive equations, equations (2.1), the following

equation is obtained:

CsJKr GUK(g) + CsJKr / MUI(X) ar' =

2%, 7
r
= Cusner [ 2D ) ar (3.29)
r

Now, since the extended stress tensor in the collocation point is o4 (§) =
Csrkrur,, by multiplying the previous equation by the unit normal on that

point (N(&)), the extended tractions on that point are obtained

pa(€) + / 575(6 X)ur(x) dT' = / a5 (€,%)pr(x) dT (3.26)

r r

where

dir (&,%) = Ns(&)Csrarui g, (€, %) (3.27)
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st (&%) = Ns(&)CsrrPk (€, %) (3.28)

Now, following for equation (3.26) a similar procedure to the one car-
ried out for the EDBIE, the extended traction boundary integral equation
(ETBIE) is obtained as

cpi(©) + F 51, (€x)urx) & = fais€xpdr  (329)
r r
where  indicates Hadamard finite part integral.
The hypersingular formulation of the BEM consist on the application
of the EDBIE to the external boundary and one of the crack faces and the

application of the ETBIE on the other crack surface.

Boundary integral equations in terms of the extended crack open-

ing displacements

In this section it will be demonstrated that is possible to reduce de dual
BEM formulation in fracture mechanic problems to the application of the
EDBIE to the external boundaries and the ETBIE to only one of the crack
faces.

Let us rewrite equations (3.12) and (3.29) to keep the order in the ex-
position, considering that T =T + ' + T,

EDBIEif £ € T'p, I,

crrus(€) + ][p7J<e,x>uz<x> ar = ][uiJ(e,x)pz(x) T (330)
I I
ETBIE if € € T

P&+ F siyE X dr = i€ xpxar (330

r T
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Considering now that

][pfu(ﬁax)ul(x_)dr =- ][P;J(&X)UI(XJF) dr (3.32a)
e rs
fu7J(€»X)p1(X7)dr = ][U7J(E,X)p1(x+)d1“ (3.32b)
re rT

s77(&x)ur(x)dl' = —][S}J(s,x)uf(x+)dr (3.32c)
e rs

dy (&, x)pr(x7)dl = ][ di; (& x)pr(xT)dl (3.32d)
re rt

Calling now Awuj(z) and Apj(x), respectively, to the jump in the ge-
neralized displacement and the sum of the extended tractions on the crack

surfaces (according to definition in equation 2.7)

Aur(x) = (ur(xT) — ur(x7), ug(x™) —ug(x7),. ..

~H0(xT) = o(x7), p(xT) = p(x7)) (3.33)

Apr(x) = (p1(x¥) +p1(x7), pa(x™) + pa(x7), ...
. Dp(x™) + Dy (x7), Ba(x™) + Bp(x7)) (3.34)

then the boundary integral equations can be rewritten, respectively, as

errus(€) + ][pme,x)uz(x) dr + / Py (&, %) Aug(x) dT’ =

I'p rf

_ f (&, x)pr(x) dT + / (&%) Apy(x) T (3.35)

I'p rd
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pa(&) + / 575(6x)ur(x) dT° + f 57(6, %) Auy (x) dT =

I'p r$

— [ distexp0)dr + iy (€% Api(x) ar (3.36)
I'p rf
In this work all the cases studied present impermeable and self-equilibrated
cracks, what implies that, on the crack, Apj(x) = 0. In this case, the dual
BEM formulation can be expressed as

Ifgelp

eryus(€) + ][piJ(s,x)uI(x) ar + / Py (€, %) A (x) dT =

I'p rf
- ][ i} (€ %)y (x) T (3.37)
T's
IfEelt

pa(€) + / 575(& X)ur(x) dT" + 7[ 515(6, x)Aur(x) dT' =

I'p rf

= i it ar (3.39)

I's

3.3.3 Extension to the time-harmonic domain

The extension of the static extended boundary integral equations (3.37-3.38)
to the frequency domain is inmediate by means of the elastodynamic reci-
procity theorem by Graffi (1946), including the dependency of the variables
with the frequency. Thus, if impermeable cracks are considered, extended

BIE can be expressed as



3.3 Hypersingular BEM for magnetoelectroelastic solids 51

Ifgelp

crrus (€ w) + ][pma,x,w)uz(x,w)dr + / Py (€, %,w) Auy(x,w) T’ =

I'p rF
= ][ ur (& x,w)pr(x,w) dl' (3.39)
I'e
Ifeel)

pi(€w) + / 515(6 % w)ur(x,w) dT + f 515(€, %, ) Aug(x,w) T =
I'p r

— fais (& x pixw) v (3.40)
I'e

3.3.4 [Extension to the time domain. Time-stepping scheme

Boundary integral equations in the time domain take the form

Ifgelp

crrug(€.t) + ][pma,x,t) wur(x,t) dT + / Piy(€.%.1) * Aug(x, ) dT =
I'p rs

= ][U?I(&,x, t) * pr(x,t) dl’ (3.41)
'

Ifeelt

(&) +/5;J(g,x,t) ¥ ur(x,t) dT +j[s}J(5,x, £) + Aug(x,£) ' =
T'p r

- 7[ &5y (€,%.1) * pr(x. £) dT (3.42)
'

The Riemann convolution product (denoted by ), is carried out by means

of Lubich’s quadratures as defined by equations (3.22-3.24), leading, after
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spatial discretization to the Laplace-domain system matrices, G(s,,) and

H (s,,), which can be computed by

1)
> [ wjy (€ @, 5m) dg(x)dl, for EDBIE,
e=1
G(Sm) = E Fe (343)
Z /d?](é? T, Sm) ¢q(m) dr, for ETBIE,
6:1F5
1)
> [ pis(& 2, 5m) ¢y(x)dl, for EDBIE,
e=1
H(sm) = (3.44)

s57(& T, 8m) dy(x)dl, for ETBIE.

e=1

M=
— T —,

where s, = 0((m)/At is the Laplace parameter, and uj, pj;, dj; and s

are the terms of the fundamental solution, as described in section 3.6.
Taking into account the approximation of the Riemann convolution in-

tegral redefined in equations (3.22-3.24), the system matrix at the (k — ;)%

time-step can be obtained by

k rm k- ])K ~ ami(k—j)m/K
GFi = Z G(sy,) e 2milk=i)m/ (3.45)
k P 3 2mi(k—f)m/ K
H" I > Hi(sy,) e 2 hmm/K (3.46)
m=0

And now, once that both spatial and time discretizations have been

performed, the following time scheme is obtained

k k

ZHk_j 'U/‘] == ZGk_j 'pj, k:0»1»2»"'7K (347)

J=0 J=0

where G*~7 and H*J are the time-domain system matrices at the (k— ;)"

time-step, being k the total number of time-steps considered, u’ is the
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vector containing the discrete boundary displacements and the extended
crack opening displacements (ECOD), and p’ is the vector containing the
discrete boundary tractions.

By considering now the boundary conditions, equation (3.47) can be

rearranged as
ZA’“] sz =9y, (3.48)
§=0

where AFJ is the rearranged system matrix, =’ is the vector contain-
ing the unknown boundary quantities, and 1’ is the vector containing
the prescribed or known boundary quantities. If zero initial conditions
(ur(x,t) = 4r(x,t) = 0 for t < 0) are considered, equation (3.48) leads to
the following explicit time-stepping scheme, as proposed by Zhang (2000,
2002a, 2005)

k—1
xb = (AO)71 N ETa— ZA}“]' -t (3.49)
j=1
for computing the unknown ECOD at the n*? time-step. In equation (3.49),

(AO)_1 is the inverse of the system matrix A° at the time-step n = 0.

3.3.5 Meshing strategy

For the discretization of the geometry and field variables, quadratic elements
have been used.

Numerical evaluation of the ETBIE requires C' continuity of the dis-
placement to ensure the continuity of its derivatives and, thus, the continu-
ity of tractions after the derivation on the node. To fulfill this requirement,

discontinuous quadratic elements with the two extreme collocation nodes
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shifted towards the center of the element are used to mesh the crack, as it
has been done in previous works (Garcia-Sanchez et al., 2004), following the
formulation developed by Saez et al. (1995). According to this, two different
elements have been considered in this work: continuous and discontinuous
elements.

In continuous elements the same points (the extremes and the middle
point of the element) are used to define the geometry and field variables.
Shape functions for these elements (geometric shape functions) are the fol-

lowing ones

B16(0) = 5C(C—1) 5 daa(@) = (1) 5 daal0) = 3¢(C+1) (350)

where ( is the natural coordinate, which vary between -1 and +1.

In discontinuous elements, for the geometric discretization, the shape
functions already seen (equation 3.50) are used, while for the field variables
new shape functions will be used. In them, as it has been said, the extreme
collocation points are moved towards the center. These functions, the so-

called calculus shape functions will be equal to one in the points ¢ = (1,0, (o

instead of in ( = —1,0,1. The expressions for them are
C(C=G) C2) . (=) —¢) .
¢1(<) < ( ) ) ¢2(C) = <1<2 )
4a(¢) = ) % (351)

GG —G)

Both geometric and calculus shape functions are represented in figure 3.3.
In this work values of (; = —3/4 and (s = 3/4 have been taken, as it was
done by Séez et al. (1995).

Finally, in boundaries which are intersected by a crack, a discontinuous

element will also be used, but only the node on the extreme intersected is
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Figure 3.3: Geometric (left) and calculus (right) shape functions
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Figure 3.4: Elements used in the domain discretization

shifted towards the center. In figure 3.4 the disposition of the elements used
in the work, depending on the boundary which they belong is summarized.
Note that another element, the so-called discontinuous quarter point ele-
ment appears in it. This element, which is used to modelize properly the
asymptotic behavior of the field variables around the crack tip, is studied

in detail in section 3.7.
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3.4 Green’s functions and numerical evaluation of

the integrals. Static case

3.4.1 Fundamental solutions

Fundamental solution corresponding to the response of a homogeneous bidi-
mensional magnetoelectroelastic solid, due to the application of an unit
static extended point force is available in the literature (see e.g. works
by Liu et al., 2001 and Jiang and Pan, 2004). That solution is obtained by
means of the generalized Stroh’s formalism (1958), following a similar pro-
cedure to the one developed by Barnett and Lothe (1975) for piezoelectric
materials. Consequently, the expressions of the Green’s functions present
big similarities with those previously developed for anisotropic and piezo-
electric materials and used in works by Garcia-Sanchez et al. (2004; 2005;
2005a).

Thus, extended displacement in the observation point x = (1, 2), in
the J-direction when a (extended) point load in the collocation point & =

(&1, &2) is applied in the I-direction, can be expressed as
1
uis (25 25,) = ——Re(AsnQurIn(zy, — Zi1) (3.52)

By the application of the kinematic relations and the behavior law, one

can obtain the expressions for the extended tractions Green’s functions

% 1 ny—n
P (2, 25) = —Re | BrarQue M2 z 2 (3.53)
T 2R~ 2

where n is the unit external normal at the observation point. In both
equations (3.52-3.53), Re stands for the real part, the summation rule over
repeated indices applies, and zx and z(}( are the transformation into the

complex plane of the physical coordinates of the observation and collocation
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points, by the use of the following transformation:
Zf = T1 + pKx2 (3.54)

S =&+ ke (3.55)

being px the roots of the characteristic equation of the material, defined
by (2.45), with positive imaginary part. Let us remark that those roots can
also be obtained as well as the columns of the matrices A and B, by solving
the eigenvalues problem defined in (2.23).

Moreover, the matrix Q can be calculated as

- —1
Q=A" (M—l M 1) . M=iAB! (3.56)

The derivatives of the fundamental solution displacements and tractions
needed to compute the kernels s7; and dj; in the ETBIE (3.38) are then

obtained as

Oup;(x,6) 1

uryr(x,€) = 95 Re | A Qumr— 3

M T AM

01 + NM6k2:| (3.57)

X Op1s(x,€
Prye(x%€) = % =
1 —
= —Re B]MQ]\/[J%((Skl + HM5k2)} (3.58)
Q (%7 — #3r)

3.4.2 Numerical evaluation of singular and hypersingular

integrals

As it could be seen in section 3.4.1, all the terms of the fundamental solu-

tion present functional dependencies to the distances in the complex plane
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between the collocation and the observation point, (zf/[ — 25 ) That de-
pendency in uj; has the form In (zf/[ — sz), while in the terms p7; and
dj;, the dependency present a 1/ (zf/[ - z%) form and, finally, the kernels
s}y show a 1/ (zf/[ — z]'fw)2 dependency.

In all those cases, when the observation point approaches the colloca-
tion one, some numerical issues arise. In particular, logarithmically singular,
strongly singular and hypersingular integrals, respectively, must be evalu-
ated, while if the integration is carried out in elements which do not contain

the collocation point, standard Gauss quadratures are used.

Weakly singular integrals

These are the integrals which contain the displacement Green’s function:

][UFJ(i ,X)pr(x) dl (3.59)

I'sp

Introducing now in that equation the expression of the Green’s function,
and approximating the tractions by the nodal values and shape functions,

equation (3.59) leads to integrals of the form

I, = ][ In(2§ — 25)¢ dl (3.60)

L.
where, for the sake of clarity, the terms that only depend on the material
properties have been removed from equation (3.60). The kernels present a
0 [ln(zf/[ - zﬁl)} singularity when the the observation and collocation point
approach, i.e. x — &. These kind of integrals are solved by the use of

specific logarithmic quadratures when & € T..
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Strongly singular integrals

Strongly singular kernels present a 0 [1 /(2% — zﬁ/[)} singularity when the
integration is performed in the element where the collocation point belong

to and are the following

][pm,x)u[(x)dr ; ][db(ﬁ,x)Apz(x)dF (3.61)

T'p T.

Let us remark that when impermeable crack boundary condition or self-
equilibrated cracks are considered (Ap; = 0), d; kernels will never present
a singular behavior. However, in order to complete the exposition of this
work, the integration of these singular integrals is presented.

If the expressions of the Green’s functions are introduced in (3.61), af-
ter the geometric discretizations and nodal approximations of the nodal

variables, the integrals to be evaluated present the following form

I = ][7“’1”1 — 2 pdr (3.62)
‘K T K
Te
Ny — N.
Ip = ][‘“{175% dr (3.63)
Zi — 2k

e

where n = (n1,ng) and N = (N, Ny) are, respectively, the unit normal
at the observation point and at the collocation point and, again, the terms
which only depend on the material properties have been removed from those
equations.

For solving numerically these integrals a change of variable is carried
out, which transform every element in the boundary, T'c, to the complex
plane. Thus, the new variable is the distance in the complex plane between

both collocation and observation points:
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XK = 25 — 25 = (21— &) + pxc (22 — &) (3.64)

The jacobian of the transformation is

dxx _ dxxdr1  dxg dxo
dl'  dxy dU'  dxy dT (3.65)
where

dx K dXK

Ky, DK .

dxl ’ dCEQ 1K (3 66)
dry o ) dry B
T cos(f) = —ny ; T = sin(f) = ny (3.67)

As figure 3.5 illustrates, the substitution of (3.66) and (3.67) in the

jacobian, leads to the following expression for it

dxK

qp = HEn = (3.68)

n
dx,

VAR

Figure 3.5: Differential element in the boundary

Numerical evaluation of I
If the expression for the jacobian, equation (3.66) is introduced in (3.62),

the strongly singular integral, I5; may be rewritten as

ny—mn 1
Lo = PR 2ar —  Zpave (3.69)
25 — 2 XK

e e
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which could be easily decomposed into

Iy = ][iwx;{ :][XLK(M 1) dxx :/XLKW— 1) dxxc+
Te

e

][—dx =104 1 (3.70)

1 S(f) is a regular integral which can be determined by an ordinary Gauss
quadratures scheme, while I if) is still singular, but with the following ana-

lytical solution

1% = (x)lp, (3.71)

Numerical evaluation of I

When y is introduced in (3.63), it yields to

Ny — N,
I = ][Mgbdl" (3.72)

XK
Te

To regularize that integral, dyx /dl is added and subtracted, leading to

the following integral

Ny — Ng—(d dar 1
XK XK

Te e

where the first term is a regular integral and the second one is the already
seen I integral.
Hypersingular integrals

Hypersingular kernels present a O [m} singularity when x — &.
K~ °K

These integrals are those which contain the term s7; in the TBIE
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7[ s17(& x)ur(x) dl (3.74)

1—‘c
After the discretization procedure, hypersingular integrals to be evalu-

ated may be rewritten as

Iy = fwlr‘ngdr (3.75)
= (& — 2k)

And now, considering the change of variable proposed in the previous
section, hypersingular integral can be expressed as a function of yx as

follows

ng—n 1
Ih:jéL L 2¢dr:7[X—2¢de (3.76)
K

(Z%{ - ZK)2

e e

Let us now consider the Taylor series expansion of ¢ = f(xx) around

xk =0

, 49

7 Xk + OXk] = do + doxk + O[Xk]
XK XK =0

(3.77)
Adding and subtracting the two first terms of that expansion to ¢ in
equation (3.76), the hypersingular integral can now be decomposed in the

addition of three different integrals

1 1
I, — 7[ Eqﬁdxx - j[g(qﬁi (d0 + Poxk)) dxx =

¢ — (do + doxk) 1 [ 1
/ £t ) ¢>07[ o+ b ][ —oduc (3.9

e e e
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The first of those integrals is a regular one, the third one has been
analyzed in the strongly singular integrals section while the second integral

is still hypersingular but with an analytical solution

b0 7[ é¢> dxx = —do —— (3.79)

XK |r

e
e

This regularization procedure is simple and generic since it is not re-
stricted to the use of straight elements on the crack. It presents another
advantage against other methods which use specific quadratures for the nu-
merical evaluation of hypersingular integrals (see e.g. Pan, 1997, 1999): a
higher precision is obtained since the numerical integration is performed

only over regular integrals.

3.5 Green’s functions and numerical evaluation of

the integrals. Time-harmonic case

3.5.1 Introduction

In this section, the Radon transform (Ludwig, 1966; Deans, 1983) is used
to derive 3D and 2D time-harmonic dynamic fundamental solution for mag-
netoelectroelastic problems. This transform has been successfully applied
by Wang and Achenbach (1994; 1995) to derive dynamic Green’s functions
for anisotropic and linear elastic solids, and byDenda et al. (2004) and Wang
and Zhang (2005) to derive them for piezoelectric solids. The most inter-
esting feature of Radon transform is that reduces 3D or 2D wave equations
to 1D equations of the same kind, but easier to deal with. Once the 1D
wave equations are solved, the solutions of the 3D and the 2D equations of

motion will follow by a simple application of the inverse Radon transform
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to yield the Green’s functions in the form of surface integrals over a unit
sphere.

Thus, as for anisotropic elastic and piezoelectric solids, the dynamic
Green’s functions are expressed as surface integrals over a unit sphere in
the 3-D case and as line integrals over a unit circumference in the 2-D case.
The dynamic Green’s functions derived in this way can be further decom-
posed into a singular and a regular part. The singular part corresponds to
the static magnetoelectroelastic Green’s functions, whilst the regular part
represents the contribution of the inertial terms in the equations of motion.

In this work, although Green’s functions will be implemented only for 2-
D problems, they will also be presented for the 3-D case, since the procedure
to obtain them is analogous to the bidimensional one, except for the different
expressions for the Radon transform (and their corresponding inverse Radon
transform). After presenting them, the numerical solution of the integrals

will be analyzed.

3.5.2 Fundamental solutions
3-D time-harmonic Green’s functions

Time-harmonic Green’s functions are defined as the response of an infinite
homogeneous linear magnetoelectroelastic solid when a generalized time-

harmonic point force is applied at the origin in the x j-direction
Fy(x,t) = 6700(x)de" (3.80)

where w is the angular frequency of excitation, d(x) is the Dirac’s delta
function while 07,7 is the generalized Kronecker’s delta function. The re-

sulting generalized displacement field in the K-direction can be expressed,
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in the steady state of harmonic motion, as
u (X, 1) = Wy (x,w)e ! (3.81)

Substituting (3.81) into the generalized equations of motion (2.27) leads

to
CiariWicara(%,w) + pw?S ki (%, w) = =6 7000(x) (3.82)
The application of the Radon transform (see Appendix B) to that equa-

tion yields
02w gar(s,w) + pw?d 1t gar(s,w) = —07ar8(s) (3.83)

where s is the parameter of the Radon-transform, defined by s = n-x with
7 being a unit normal vector which defines the position on a unit radius
sphere whose center is the observation point, andljx is the generalized

Christoffel tensor defined as by
Lk = Cigkininy (3.84)

The solution to equations (3.83) may be obtained as the superposition
of the following three cases:
A. Generalized displacements due to the application of a mechanical point
load

When a mechanical point load is applied at the origin x = 0 in the
x,-direction, the elastic displacements uyg,, in the x; direction, the electric
potential g, and the magnetic potential us,,, all of them evaluated at a

point x, are obtained from the following set of equations

302 0¥ g, + Tja0%U% 4, + D502 U 5, + pw2850% i = —0md(s) (3.85a)
F4}€882 ?km + 1“4483&:47,1 + 1“45852 &:57,1 =0 (3.85b)

U502 U o + D54020 am + U502 w5 = 0 (3.85¢)
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B. Generalized displacements due to the application of a point charge

The elastic displacements in the z, direction (ug4), the electric potential
(ugq) and the magnetic potential (us4),all of them evaluated at a generic
point x, due to the application of an electrical point charge at the origin

x = 0, are obtained from the following set of equations

ijaf ﬁk:& + F]'4(9§E;44 + ij,az ?54 + pw25jka;k4 =0 (3863)
402 0% g + T44020% 44 + T4502 w54 = —0(s) (3.86b)
F5}€8§ &:kz; + F548§&:44 + F558§ ?54 =0 (3.86C)

C. Generalized displacements due to the application of a magnetic monopole

The elastic displacements at a point x in the xj direction (ug4), the
electric potential at x (u44) and the magnetic potential at x (us4) due to
the application of magnetic monopole at the origin x = 0, are obtained from

the following set of equations

D02 w5 + Tj40%0 45 + 1502 u¥ss + pw?djpurps = 0 (3.87a)
T 4x0? w ks + D4402u 45 + Tu502 w55 = 0 (3.87h)
5,02 w5 + D5a02u* a5 + D502 ™55 = —0(s) (3.87¢)

Let us first consider the case in which a mechanical point load is applied.
From equations (3.85b) and (3.85¢), the expressions of u* 4, and u*s,, as a

function of {F;Cm may be obtained

—~ Lyls55 — Tasls 0~ 2%
D2 gy = 50 T AT Sk gaus, g2 .
S T Ty — Daallgg o0 M = A% i (388)
 TuTsp — TupTss o _
(952 u*5m = 4”5k 4k” 51 afu*km = akg,ag u*km (3.89)

4554 — Taals5
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The substitution of these relations in equation (3.85a) yields

{202 + w81 }u km = —0jm0(s) (3.90)
where
Zi =T + agal'ja + oapslys (3.91)

is the so-called reduced Christoffel tensor, which is symmetric and positive
definite since (2.15) applies, and g4 and oy are defined in equations (3.88)
and (3.89). Thus, its eigenvalues are real-valued and positive. Recalling
them as A\, = pcg, being c, the phase velocities, they are obtained as the

roots of the following characteristic equations
det(Zx — pc2dn) =0 (3.92)
Calling Vj, to the g-th eigenvector of Zj;
ZjkVig = AVjq (no sum on q) (3.93)

it holds that
VisVig=0pq 5 VigVjq = 0ij (3.94)

so that these eigenvectors may be taken as orthonormal bases. {L:km can be

then expressed in the new bases by applying the following transformation

/\/ — /

W = Vit km = Wem = Vet p, (3.95)

The substitution of this bases transformation into equation (3.90) and

the premultiplication of the resulting equation by Vj, lead to

{(ViaZitVindZ + po® Vigb Vi i = —8jmVig (s) (3.96)
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That equation may be further reduced to a 1-D wave equation (for
each fixed ¢ and m) by considering the relations given by equations (3.93)
and (3.94)

(A2 + pw Y 4y, = —Vingd(s) (3.97)

whose solution is given by the wave equation

— Vg ikl
UWgm = 2pc§kqe (3.98)

where k, is the wave number

kg = (3.99)

w
Cq
The consideration of the inverse bases transformation (3.95) leads to

“3 VigVimg oikals|

= 1
Wk = e (3.100)

Following now an analogous procedure to the one proposed Wang and
Achenbach (1995) for anisotropic solids the resolution of the complete eigen-
value problem defined by (3.92) will be avoided. This procedure is based in
the idea that Vi, Vi,g in equation (3.100) may be computed as

ViegVing = —km (3.101)
TR,
where
E} = adj{ Zum — pc2bim} (3.102)

Considering now the most general case in which the three phase veloci-
ties ¢4 are distinct, the equation (3.100) can be expressed as

.l
— ZEkm

o = =i gikals] 3.103
W km 2pcgqugpe ( )
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Finally, the application of the inverse Radon transform leads to the uj,

terms of the Green’s functions

* -1 _—y

In|=1
S / Blon_ (o5(m5) + ik} el () (3.104)
167r2| / pcEp, ?
’r’:

where the domain of integration is defined by the surface of a unit sphere
| =1.
In the same way, the substitution of equation (3.103) into (3.88) and (3.89),

and the application of the inverse Radon transform yields

1 B} . ik -
vin = g5 | s (200n) ik s (3.105)
In|=1
N 1 0415EZ . ik |-
o= e [ S A0 kT asn) 100
In|=1

An analogous procedure for Problem B and Problem C will let us to
obtain the other terms of the fundamental solution. For Problem B, 531/1?44
and 92u*54 may be expressed as functions of 92u*y, from equations (3.86b)

and (3.86¢) yielding to

— — r
U 44 = g 02U g + % 5(s) (3.107)

E

F(:“ 5(s) (3.108)

o o~
O5u*s4 = o505 u*pg —

where

a =T45'54 — Taal's5 (3.109)
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and the application of the inverse Radon transform will lead to

ULL = 87T2 /82u 44dS

[nl=1
- = / sl (5(x) + ik} P ()
1672 I chEgp K
Inl=1
1 r
= 555( x)dS(n) (3.110)
[nl=1
ugy = —/82u 54dS(n
[nl=1
1 Eij kgl
= R 2 (250 + ik} S )
In|=1
1 I
+ W/ a45(n-x)dS(n) (3.111)
[nl=1

Similarly, solution of Problem C will lead to
q

L1 B kgl
Uss = a2 | MBS apT 2E§p {26(nx) +ikq} e dS(n)
[n|=1
1 r
~ 5 445( x)dS(n) (3.112)
s
[n|=1

So, finally, the dynamic time-harmonic magnetoelectroelastic displace-
ment Green’s functions just obtained, which present a symmetry property

* _ * .
such as uj; (%, w) = v}, (X, w), may be recast into a compact form as

! Ekm : ikq|n)
Wiy = o2 ngEgp {20(n-x) +ikq} €’ ql"xldS(n)

+83r2 /AKM5(nX)dS( ) (3.113)

[n|=1
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where
B, K,M=1,2,3
k=3 o'E, K=45; M=123 (3.114)
alKaé\/[Elqj K, M =4,5
and

1 Tl
Agm = — {FKM(54K55M + G5 banr) — ——22
o rm

(0arcdans + 55K55M)}
The obtained time-harmonic Green’s functions may be split into a sin-

gular part plus a regular frequency dependent part. This decomposition

is very useful for BEM implementation purposes, since the singular part

coincides with the static solution except for a constant

g p (X, w) = UF{SM(X) + U}RM(X,UJ) (3.115)
where
q
wify = — / KM (95(nx) + iky} eem>| dS(n) (3.116)
1672 chEgp q
[nl=1
" 1
with = 3.2 / Arard(n-x)dS(n) (3.117)
Inl=1

As the static singular part, fundamental solution recently derived by
Buroni and Séez (2010) can be used. Finally, the extended traction Green’s
functions as well as the kernels d} ; and s7; needed for the implementation of
the ETBIE may be obtained via the frequency-domain equivalent equations

to (77-3.28)

ik (& %,w) = Ns(§)Csryruk 5, (€%, 0) (3.118)
dig (&, %,w) = Ns(§)Csrirui g, (€, %, w) (3.119)

S?K(gv wi) = Ns(f)CsIer*KJ,r(ﬁa XMA}) (3.120)
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2-D time-harmonic Green’s functions

The 2-D Green’s functions may be obtained following the same procedure
as for the 3-D case. In 2-D the lowercase (elastic) subscripts take values 1
and 2 only, whilst the uppercase (extended) subscripts take values 1, 2, 4
(electric) and 5 (magnetic). In this way, Green’s functions are obtained in
the form of line integrals along a unit circumference |n| = 1 as (see works

by Wang and Achenbach, 1994 or Wang and Zhang, 2005 for further details)

Wiear (€,%,0) = ujy(€,%) + uilh (€, %, w) (3.121)
where
Sule) = = [ KM oy i)
ukym (&%) =~ p2ED og|n-x|dL(n)—
=1
1
T2 Agmlog x| dL(n) (3.122)
Inl=1
uify(€w) = — [ KM @R 1)) dL(n)
KM& X, 167r2‘ /, piEy, "
i

where, as it has already been said, the singular part coincides with the static

fundamental solution except for a constant, €%, is given by (3.114) and
©F(ky, 1 - 1) = ®(kqln - x|) + 2log (|n - x]) (3.123)

with
®(¢) = ime's — 2[cos (¢)ci(¢) + sin (¢)si(C)] (3.124)

and ci and si are the integral cosine and the integral sine functions, which

are defined as

ci(¢) = —/Coszdz ;osi(Q) = —/Sinzdz (3.125)
¢ ¢

z z
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The extended traction Green’s functions may be obtained by the sub-
stitution of u%,, into the frquency domain equivalent generalized Hooke’s
law (3.118), while the kernels needed for the implementation of the ETBIE
may be determined as in equations (3.119) and (3.120).

X, n(®)

Figure 3.6: Integration circumference for frequency domain fundamental

solution

The implementation of the fundamental solution will imply a double
integration. One over the element and another one over a unit circle centered
at the observation point, as shown in figure 3.6, where it can be noticed that

the term |n - x| is equal to |x — €| cos (6)

3.5.3 Numerical evaluation of the integrals

As it has been said, time-harmonic Green’s functions may be split into a
regular and a singular part, and so has been done in this work with the
kernels needed for the implementation of the fundamental solution, in both
EDBIE and ETBIE.

As we already know the singular part coincides with the static funda-

mental solution, except for a constant. Thus, the integration of it, will be
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carried out as it has been analyzed in a previous section 3.4.2.
All the regular parts of the time-harmonic fundamental solution can be

expressed as follows

™

[ sl x gl coseds (3.120)

—T

u*KRM(€7 X, w) = W

™

/ 7 Tarsky Y (ky|x — ]| cos O])sign(cos 8) do (3.127)

—T

*R _
pKM(é»wi) - 87'('2

d}(RI\/l (é» X, w) =

- —$ T kg X (kg% — €|| cos B])sign(cos8) d6  (3.128)

—T

™

* 1 = i
siar(€.x,w) = ) /Fanerskngkﬂx— €l|cos0])do  (3.129)

—T

where

¢ _ 2 ppa 2 q
® Vien = €xn/(pcgEyy) and peg, By, and €%, were defined, respec-

tively, in equations (3.92), (3.102) and (3.114).

e I'yx = Cryrinemy and Tyg = CryxNemy, being n,, N, and 7 the
unit outward normals in the observation and collocation point and to

the integration circumference, respectively.

o Y(s) = —mwel®®) —2[cos (s)si(s) —sin (s)ci(s)], where i is the imaginary
unit number and si and c¢i are, respectively, the integral sine and

cosine, as defined in equation(3.125).
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Introducing now the expressions of the regular part of the fundamental
solution into both boundary integral equations, the integrals to be solved

are the following

Vierr®" kg, [x — €] cos 0])df | dT (3.130)

=
I
F\

Vi T argkg Y (kg|x — €| cos 6])sign(cos8)d | dT'  (3.131)

e
Il
P\

T KkIVh kg Y (kqlx — &|| cos 0])sign(cos 0)d# | dT'  (3.132)

&
I
F\

]
/ |
]
I

T i Tarshk2® (kylx — &]| cos6)dd| dr (3.133)

=
Il
P\

The first three integrals can be evaluated with ordinary Gauss quadra-
tures. Nevertheless, in the integrand in I it appears again the function
®, which have two main features. The first one is that it presents a
O [In (|x — €]|| cos (0)])] singularity when the collocation point tends to the
observation one, and when § — +m/2. The other characteristic is that it
present and oscillatory behavior proportional to the product between the
wave number, k, and the distance between both the collocation and obser-

vation points.

The logarithmic singularity has been treated with logarithmic quadra-
tures, while the oscillatory behavior would require the implementation of
asymptotic approximations (Sdez and Dominguez, 2000), when high fre-

quencies are involved or far field problems are analyzed.
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3.6 Green’s functions and numerical evaluation of

the integrals. Time-domain case

In this work, the resolution of time-domain (transient) problems has been
carried out by means of Lubich’s convolution quadratures. The use of them
allows the use of a Laplace domain fundamental solution instead of a time
domain one. An important feature of these quadratures is that, although
Laplace-domain Green’s functions are used, not numerical inverse Laplace
transformation is needed. This fact provides numerical stability to the
method and makes the spatial and temporal discretizations rather indepen-
dent.

The procedure to obtain Laplace domain fundamental solution is analo-
gous to the one presented by Wang and Zhang (2005) for piezoelectric solids,
based in the application of the Radon transform to the magnetoelectroe-
lastic problem, as done in section 3.5.2. Consequently, Green’s functions
will present similar mathematical structure and the resulting fundamental
solution can be split in a singular and a regular part, being the singular
part equal to the static fundamental solution except for a constant. The

expressions for the regular part of the Green’s functions are

U (€%, 5) = / i UR (5/cq, [x — €][cos]) d (3.134)

—T

82

pitis(€.x,5) =

1 [ - s .
= ﬁ/fy‘II(JFMJC—\I/((s/cq)|x—£||cos€|)51gn(cost9) do (3.135)
q

—T
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ity (&%) =
= _é/fKJ'y?VU;\I/’((s/cq)\x—é||cos€\)sign(cos€) do  (3.136)
“q

-7
S*KRM(€7 X, S) =

L = .= (s
:_W/FKJ'Ygers (c_) U ((s/cq)|x — &|| cosb]) df  (3.137)
q

where s is the Laplace parameter and

e v¥r Tk and T ) were defined in section 3.5.3.

o U(z) = —[e?Ei(z)+e*Ei(—z)], being z a complex variable and

Ei(z) the exponential integral defined as

t
-1 1

Ooefzt Ooefzt
Fi(z) = —]/—dt; Fi(—z) = —/ — i, (3.138)

Introducing now the expressions of the regular part of the fundamental
solution into both boundary integral equations, the integrals to be solved

are the following

™

11:/ /’y‘}(MlllR(s/chx—éHCOSHD do | ar (3.139)

Te L7

s

12:/ /vﬂijJci\IJ’((s/cq)\x—£||cosl9\)sign(cos€)d9 dl’ (3.140)
q

FE L7 A

™

I3 :/ /fKJﬁVH;\I/'((s/cq)\x—é||cos€\)sign(cos@)d9 dl (3.141)
q

Te L7 i

]4:/ /Fijgsl“Ms (c_q) U ((s/cq)|x — &||cos])do| dT'  (3.142)

FE L7
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The way to evaluate those integrals is analogous to the time-harmonic

case and their numerical computation has been analyzed in section 3.5.3.

3.7 Computation of fracture parameters

3.7.1 Computation of the Extended Stress Intensity Factors

For the computation of the ESIF, in this work the displacement method has
been used, using the extrapolation monopoint formulation proposed by Saez
et al. (1995). For this purpose, the extended displacement on the nearest
node to the crack tip must be computed and then substituted, as well as
its coordinates, in the analytical expressions of the asymptotic fields (2.36).
An algebraic system of equations shall be obtained, which solution provides
the stress, electric displacement and magnetic induction intensity factors.
Due to the generality of the regularization process followed in this work,
it is possible the use of a discontinuous quarter point element which contains
the crack tip. This element, as it can be seen in figure 3.7, is divided by the
central node in two segments, which length are L/4 and 3L/4 respectively,
being [ the whole length of the element. In this quarter point discontinuous
element, which must be a straight element (Martinez and Dominguez, 1984)
in order to capture properly the discontinuity in § = £, the relation be-
tween the natural and the radial coordinate of the polar system with origin

on the crack tip is

C=2 %—1 (3.143)

That relation allows to reproduce the /7 behavior around the crack tip
of the extended displacements. This fact, together with the existence of

a collocation point very close to the crack tip allows the direct evaluation
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Figure 3.7: Quarter point discontinuous element

of the ESIF with a minimal postprocess of the displacement and with an
excellent accuracy in the results.

The expressions of the ESIF for magnetoelectroelastic were obtained
first by Gao et al. (2003a) as an extension of those obtained by Suo et al.
(1992) for piezoelectric solids. Particularizing these expressions for the col-

location point NC1 (see figure 3.7), the ESIF may be directly computed

from
Kir Auily—r/64
Kr 8w, 1| Aual,—r/64
=1/—=Y 3.144
Krv ! A¢l,—1 /64 ( )
Ky Aplr—r/64
where
Y = Re(iAB™!) (3.145)

is the Irwin matrix and A and B are the matrices obtained by solving the
problem defined in (2.23).

In dynamic problems, the ESIF shall be defined in the corresponding
domain (frequency or time domain), but the way to compute them is the
same as for the static case, with the only difference that the displacements

are also a function of either the frequency or time.
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3.7.2 Computation of the Energy Release Rates

Tian and Rajapakse (2005b) defined a total energy release rate (ERR) for

magnetoelectroelastic solids. It can be obtained from the ESIF as

1
G= 5KTYK (3.146)
where
Kir
Kr
K= 3.147
Koy ( )
Ky

In equation (3.146), the mechanical energy release rates (modes I and
IT) as well as the electric and magnetic ones are involved. Each term of the

total ERR may be calculated as

GY = %(Y21KIKII + Yoo K7 + Yos K1 Ky + You K1 Ky) (3.148a)
GM = %(Yn K2 + Yoo K11 Ky + YisK 1 Ky + You K1 Ky) (3.148b)
GELEC _ %(YglKijH + YooKy Kr + Yas Ky + YauK v Ky) (3.148¢)
GMAGN _ %(YMKVKU + Yo Ky Ky + YigKy Kpy + YiuKg)  (3.148d)

Let us remark that a positive value denotes released energy, whilst a

negative value represents absorbed energy.



Chapter 4

Results

4.1 Introduction

In this chapter, a wide number of static, frequency domain and transient
fracture mechanics problems will be solved via the hypersingular formula-
tion of the BEM previously introduced, under the assumption of imperme-
able cracks. In all cases, in order to validate the formulation, the proposed
method will be first used to solve problems already studied with different
techniques.

In all cases impermeable and self-equilibrated cracks in BaT'iO3—CoFesO4
with a phase volume V;=0.5 composite will be considered and its effective
material properties are shown in table 4.1. The elastic stiffness tensor,
the dielectric permittivities and the magnetic permeabilities, as well as the
piezoelectric and piezomagnetic coefficientes, are obtained by the use of the

phase rule, which is given by

fifj :Hz:j'Vf-i-li?;-(l—Vf) (4.1)
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where r;; is one of the properties mentioned above, the superscripts ¢ and m
denote each phase and V7 is the phase volume. This rule can not be applied
for the determination of the electromagnetic constants, since no electro-
magnetic coupling is present in any of the single phases. Such coupling can
not been derived in a general way, since it is necessary a microstructural

analysis which considers the inclusions shape.

Table 4.1: Material properties of BaTiO3-CoFepO4 (with V=0.5)

Properties BaTiO3 | CoFey04 | Vy=0.5
c11(GPa) 166 286 226
c12(GPa) 78 170 125
ca2(GPa) 162 269.5 216
ce6(GPa) 43 45.3 44
e16(C/m?) 11.6 0 5.8
e21(C/m?) 4.4 0 2.2
e22(C/m?) 18.6 0 9.3
€11(x10710C2 /N m?) 112 0.8 56.4
€12(x10710C2 /N m?) 126 0.93 63.5
hi6(IN/Am) 0 550 275
ha1 (N/Am) 0 580.3 290.2
haa(N/Am) 0 699.7 350
711(x1070Ns2/C?) 5 590 297
712(x 107N s%/C?) 10 157 350
Br1(x10712Ns/VO) - - 5.367
Br2(x10712Ns/VO) - - 2737.5

In this work, the values of the properties corresponding to fibrous com-
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posites have been considered. Some authors, like Li and Dunn (1998) (where
the values adopted here were obtained) published graphics which provide
electromagnetic couplings, while others, such as Nan (1994) derived analyt-

ical expressions for them.

4.2 Static results

In this section, some static problems will be solved, as it has been said,
considering in all cases a BaTiO3 — Col'ea04 composite with a Vy = 0.5.
First, the proposed formulation will be validated by the comparison with
analytical and semianalytical results available in the literature. In this
epigraph, only cracks in unbounded domains will be analyzed, since static
results for finite cracked domains will be presented later on, in chapters 5

and 6.

4.2.1 Straight crack in an unbounded domain

The analytical solution of straight crack in an infinite domain subjected to
far field uniform electromagnetomechanic loads was first derived anallyti-
cally by Gao et al. (2003a), who established that the value of the extended
stress intensity factors for such a case are independent of the material prop-
erties and of the (extended) loads in other directions. For impermeable

cracks, those ESIF take the following values

K; =o5%5vVma, K =o05iVma, Ky = D5°ma, Ky = B3°/ra.
(4.2)
The problem is illustrated in figure 4.1, while in table 4.2, the values

of the ESIF are listed for two different meshes. In the first one five equal
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quadratic elements are used, while in the second one the mesh is carried out

with ten equal elements. An excellent agreement is obtained in both cases.

COO0 0.

SIS IS ISR~
D, X, B,
'\s 2a
a
® b D DD

NAVAVAIaY:

Figure 4.1: Straight crack under remote electromagnetomechanic loading

Table 4.2: Extended SIFs for a Griffith crack in a magnetoelectroelas-

tic solid.
ESIF 5 Elements | 10 Elements
K/ 1 0.9981 0.9989
Kpr/K e | 0.9981 0.9989
Ky /K vte | 0.9981 0.9989
Ky /K" | 0.9981 0.9989

Let us now consider a Griffith crack subjected to three different elec-
tromagnetomechanical loading combinations, whose values are shown in
table 4.3.

In figure 4.2, normalized Aus is plotted for the three combinations consi-
dered. It can be easily noticed that the presence of positive electromagnetic

loading make the crack tends to open what, consequently, increase the ten-
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Table 4.3: Loading combinations considered for the analysis of a Griffith

crack in a magnetoelectroelastic media

Combination (b)

Combination (c)

Combination (a)
053 (N/m?) £0
DF(C/N) 0
B(A™L - m) 0

#0
1072053

1075055

#0
—107%055

—107%053

dency to the fracture.

Comb (a)
x =0
N

A x2/A x2|

—e— Comb (a)
—+— Comb (b)
—#— Comb (c)

-1 -05

05 1

Figure 4.2: Aug in a Griffith crack subjected to three different combinations

of remote loading

In table 4.4 the values for total energy release rate as well as total me-

chanical energy release rate are included, where all the values have been

normalized with the total energy release rate for pure mechanical load. It

can be noticed that total energy release rate decreases as soon as either pos-

itive or negative electromagnetic loadings are applied, even when the com-

bination increases the crack opening displacement (combination b). This

fact implies that the maximum of the total energy release rate can not be

a suitable fracture criteria for magnetoelectroelastic solids.
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Table 4.4: Energy Release Rates for Griffith crack in a magnetoelectroelas-

tic solid.

ERR | Combination (a) | Combination (b) | Combination (c)
Ghor 1.0000 -8.8029 -12.2040
Ginr 1.0000 1.8728 0.1272

4.2.2 Two parallel cracks

The case in which two parallel cracks with variable relative position in an
unbounded magnetoelectroelastic domain and subjected to a combination
of mechanic, electric and magnetic loading is now considered, as shown in
figure 4.3. This problem was first solved by Tian and Gabbert (2004) for

the material considered in this section.

T C oot O-

5 60 666 60606 ok

2a

X

2a

Poling direction

D DDDDD DD D

VAVAVAVAVEAVEV VALY

Figure 4.3: Two parallel cracks under remote electromagnetomechanic load-

ing

Both cracks were meshed with ten equal quadratic elements. In fi-
gure 4.4, the normalized mode I stress intensity factor as well as the nor-

malized magnetic induction intensity factor (both evaluated at crack tip
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A) are plotted for different values of the angle 6 and for a set of loadings
defined by combination (a) in table 4.5. In figure 4.5, the normalized mode
I energy release rate at crack tip A is plotted for two loading combinations
defined as combination (b) in table 4.5. In all cases an excellent agreement

is obtained.

Table 4.5: Loading combinations considered for the analysis of a two parallel

cracks
Combination (a) | Combination (b)
o0 2
035(IN/m?) #0 #0
o0 —8 oo
D(C/N) 0 1078053
[ee) -1, —6 00 —6 00
BS°(A™ - m) +£107°%055 +107°%095
- o BJ=00
o B,=00 9 5 B=-10"°c5,Am
’_\14 A Bz:m’a“;zArl"‘ s ! BBLAA L AA DA BB A D D BA
T o B=10"%A"m £
= 12 2 22 g N
8 T
e ! 3 -05
<. >3 R
¢ -~
0.6 N o 1.5
o 40 20 40 60 80 100 120 140 160 o 20 40 60 80 100 120 140 160

Figure 4.4: Normalized K (left) and Ky (right) at crack tip A versus

angle 6 for two parallel cracks
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a Lines: Tian & Gabbert (2004)
A

o B2:0 0

10755 AL,
5 A' a 52,10 UZZA m

o 10765° A7,
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. 2 S

1 !
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Figure 4.5: Normalized mode I ERR at crack tip A versus angle 6 for two

parallel cracks

4.2.3 Branched crack in an infinite domain

A branched crack in a magnetoelectroelastic infinite plane subjected to a re-
mote combination of electromagnetomechanic loading is next studied. The
geometry is illustrated in figure 4.6 and two different sets of far field electro-
magnetic loadings are first considered (sets (a) and (b) in table 4.6). The
mesh consists in ten quadratic elements for the main crack and four for the

branch.

Table 4.6: Loading combinations considered for the analysis of a branched

crack
Comb. (a) | Comb. (b) | Comb. (c¢) | Comb. (d)
o35 (N/m?) #0 #0 #0 #0
D$°(C/N) 0 1078055 | £107%03%5 | £1078055
B(A™Y-m) | £107%55 | £1075055 0 +107%033

In figure 4.7, the normalized mechanical stress intensity factors at crack

tip C versus the branch angle are shown for both combinations of loads. It
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Figure 4.6: Branched crack: geometry and loads

can be noticed that positive and negative magnetic loads induce opposite
effects on both modes I and II SIF and that there exist certain angles for
which the magnetic loading has no effect on them. These angles are not
affected by the presence of electric loadings, as can be seen by comparison
between figures 4.7 (left) and 4.7 (right). In particular, the so-called neutral
magnetic loading angles are 6NVML = 44.3° and ONME = 38.1°.

In figure 4.8, the normalized EDIF and MIIF are plotted for both com-
bination of loads. As expected, and according to the results by Gao et al.
(2003a), almost no influence of the electric and magnetic loading in the
MIIF and EDIF, respectively, is found.

In figure 4.9, the normalized mechanical energy release rates at crack tip
C versus the branch angle are shown for both combinations of loads. The
magnitudes are normalized with the total ERR corresponding to a Griffith
crack with the same length as the mother crack and subjected only to a

mechanical load.
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Figure 4.7: Normalized mechanical stress intensity factors at crack tip C
versus branch angle 6 for a magnetomechanical loading combination (left)

and a full electromagnetomechanic loading combination (right)
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Figure 4.8: EDIF and MIIF at a crack tip C versus branch angle 0
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Figure 4.9: Mechanical energy release rates for combinations (a) and (b)

As we know, no fracture criteria is unanimously accepted for magneto-
electroelastic materials. However, by observing figure 4.9 a first approach
to a criteria may be proposed. Since the total energy release rate decreases
as soon as either electric or magnetic loading are applied, even when they
are positive. It seems clear that the maximum of the total ERR can not be
used as a fracture criteria. Moreover, under the polarization direction and
principal axes considered, it may be expected that the branched crack has a
bigger tendency to grow if the branch angle 6 is equal to zero and, since the
maximum of the total mechanical ERR is reached just for # = 0°, the max-
imum of such magnitude might be considered as a fracture criteria. This

consideration is in agreement with the one proposed by Park and Sun (1995)
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for piezoelectric materials (which present, as it is already known, a similar
behavior to magnetoelectroelastic solids). Let us remark that the criteria
proposed herein is only a first approach and, obviously, would require of ex-
perimental analysis of crack growth in magnetoelectroelastic solids, as well
as a more extensive numerical analysis of different problems.

Loading sets defined as combinations (¢) and (d) in table 4.6 are now
considered. Mechanical and magnetic loadings will be now fixed, whilst
the electric loading will take different values. Normalized mechanical stress
intensity factors for such combinations are shown in figure 4.10. Similar
conclusions to the previous cases analyzed can be drawn. In particular, there
exist two neutral electric loading angles, one for each mechanical fracture
mode, which are independent of the presence of magnetic loads, which take

the following values: G}VEL = 59.6° and G%EL = 48.1°.
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E ©— 1078 ¢ N1 E ©— 1078 ¢ N1
T o Dy=-10"0},CN T o Dy=-10"°0},CN
8 & 8 &
2 - 2
06 = 06
3 3
< o4 < o4
E .7 E
= 57 =
Zn 02 P TN 02 ®)
8 & 4% BN 4
S) & 2 V4
X ¢ X *
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o ©_10-65° AL,
B7=0 B;=10"0},A"'m
0.2 0.2
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Figure 4.10: Normalized mechanical stress intensity factors at crack tip C

versus branch angle 6 for combinations (c) (left) and a (d) (right)
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4.2.4 Circular arch crack in an infinite domain

A circular arch crack subjected to far field electromagnetomechanic loads
like the one in figure 4.11 is next considered. A 10 elements mesh is used to
discretize the crack, being the ones at the tips very small (arch length/30)
quarter-point straight elements whilst the rest are curved quadratic discon-
tinuous boundary elements. Identical mechanical positive loading is consi-
dered for all the cases and two sets of remote electromagnetic loadings are

analyzed, listed in table 4.7.

Coood

R R I R

X,

X
,
é

SIS ESESNS

SAVAVAN Y,

Figure 4.11: Circular arch crack: geometry and loads

Poling direction

Figure 4.12 shows the normalized modes I and II stress intensity factor
(Ki= Kr1.11/055V/7rsin 0, being r the arch radius) versus the arch angle,
for the two load combinations considered. When D$° = 0, figure 4.12 (left)
shows again that positive and negative magnetic load induces an opposite
effect on both the mode I and mode II SIF. However, when electric loading
comes into play (DS® = 107805SCN 1), figure 4.12 (right) illustrates how

the SIF are hardly affected, for the electric and magnetic loading magnitudes
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Table 4.7: Loading combinations considered for the analysis of a circular

arch crack
Comb. (a) | Comb. (b) | Comb. (c) | Comb. (d)
o35 (N/m?) #0 #0 #0 #0
D$°(C/N) 0 1078055 | £107%0%5 | £1078055
B(A™r-m) | £107%55 | £1075055 0 +107%033

considered in this case.
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Figure 4.12: Normalized mechanical stress intensity factor for a circular

arch crack under static loads.

Normalized total mechanical ERR (GM* = (GM + G%)/%M(aggﬁ)
versus 6 are plotted in figure 4.13, where it is illustrated how a positive

electric load triggers the total mechanic ERR.
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Figure 4.13: Total Energy Release Rate for a circular arch crack under static

loads.

4.3 Time-harmonic results

In this section, some problems in which plane waves are impinging on im-
permeable cracks in magnetoelectroelastic solids will be solved, plotting, in
all cases, the normalized ESIF against the wave frequency. Without lack of
generality in the proposed formulation, only longitudinal (L) waves will be

analyzed.

4.3.1 Plane harmonic waves in magnetoelectroelastic solids

For solving dynamic fracture mechanics it is necessary to obtain first the
boundary conditions which shall be applied on both crack surfaces. Let us
assume that the incident wave impinges along the xg-axis, so the following

extended displacements vector can be defined

ul 0
s ug IWTo

= e °L 43
o % (43)
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where the longitudinal wave velocity, cr, is given by

where

1
cL = \/; (c22 + s1€09 + s02h29)

and p is the mass density.
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The substitution of equation (4.3) in the behavior law yields to
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By the imposition now of the impermeable crack face boundary condi-

tion, a relation between the different amplitudes of the generalized displace-

ment vector can be obtained

Po = Uy ; Yo = U

(4.7)

And finally, the extended tractions which shall be applied at the crack

surface with outward unit normal n = (n;,ng) are given by
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p1 = 22: o1 My = Ciz + e2150 + hzl%znlaoe% -1
=7 Car+ egosn + hopsn
2 iwzy
P2 = Y 095 nj = ngoge °L I=2
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2
Bn:ZBjanO I=5
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(4.8)
where
W
og = (022 + eg91 + h22%2) EUO (4.9)

Let us now introduce some quantities which will be used in this section

for normalization purposes

C66 €22 Y22
cg =,/ . y= . _

, 22 . = 4.10
p €22 K hao (4.10)

4.3.2 Straight crack in an infinite domain

To the author’s knowledge, no results for plane time-harmonic problems
in magnetoelectroelastic solids were available when this work was carried
out. Thus, to check the presented formulation and taking into account that
piezoelectric behavior can be understood, from a mathematical point of
view, as a degenerated case of the magnetoelectroelastic behavior, the prob-
lem of L-waves impinging on a Griffith crack in a PZT-6B material is solved
and results compared with those obtained semianallytically by Shindo and
Ozawa (1990). Material properties are shown in table 4.3.2, while the inci-

dent wave motion for such a case is defined by
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o11 ci1 c2 0 0 ea1 Ui
0922 cl2 ¢ 0 0 €22 U2
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Table 4.8: Material properties of PZT-6B

Properties PZT - 6B
c11(GPa) 168
c12(GPa) 60
ca2(GPa) 163
ce6(G'Pa) 27.1
e16(C/m?) 4.6
e21(C/m?) -0.9
e22(C/m?) 7.1
€11(x1071°C% /Nm?) 3.6
€12(x10710C% /N m?) 3.4

The crack is meshed with 10 discontinuous quadratic elements, being the
ones at the tip quarter-point ones. Figure 4.14 shows, for the normalized
mode I SIF, the good agreement between the obtained results for a quasi-
piezoelectric material and Shindo and Ozawa’s solution.

The ESIF for a L-wave impinging a straight crack in a BaTiOs3 —
CoFey04 composite with a Vy—=0.5 domain are shown in figures 4.15 and 4.16,
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Figure 4.14: Comparison with Shindo’s results

where it can be noticed that the evolution of K; and Ky with the frequency
has a similar behavior to the one observed in piezoelectric materials (Séez

et al., 2006). Note that K;; has not been included because it is null for all

frequencies.
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Figure 4.15: Normalized K for a Griffith crack when a L-wave is impinging.
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Figure 4.16: Normalized Ky (left) and Ky (right) for a Griffith crack when

a L-wave is impinging.

4.3.3 Branched crack in an infinite domain

Scattering of L-waves by a branched crack is now considered. In figure 4.17,
it is depicted the geometry and loads of the problem which will be solved
for several branch angles 6. Note that the wave impinges first on the main
crack, which is meshed with 10 discontinuous quadratic elements, whilst 5
elements are used to mesh the crack branch. Elements at both crack tips are
quarter-point elements. In figure 4.18, the normalized ESIF at the branch

tip are plotted against the dimensionless frequency.

X, 0.5

2a

Figure 4.17: L-wave impinging on a branched crack
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Figure 4.18: L-wave scattering by a branched crack: ESIF at branch tip vs.

frequency for different branch angles

The influence of the frequency of the incident wave motion is clear from
the figures, with peak values of the mode I SIF around wa/cg = 0.8, around
1.0 for the EDIF and 1.1 for the MIIF. Again, fluctuations in the dynamic
SIF and the EDIF of the magnetoelectroelastic composite exhibit a similar
behavior to the previously observed for piezoelectric materials by Saez et al.
(2006). As expected, larger peak values of K are obtained with decreasing
values of the angle branch (3, while the opposite can be stated about Kj;.
For low frequencies, both K;y and Ky decrease when the branch angle
is increased, but that tendency changes more quickly in Ky. Moreover,

peak values of the EDIF are similar for the different branch angles, while,
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decreasing branch angles produce larger peak values of the MIIF.

4.3.4 Circular arch crack in an infinite domain

Scattering of L-waves by a circular arch crack is next considered. The
geometry of the problem is shown in figure 4.19. Results are obtained
for different values of the arch semi-angle a. The crack is meshed with 8
discontinuous quadratic curved elements with decreasing size towards the
tip, plus 2 very small straight quarter-point elements at the tips with a
small length of arch-length/30. The normalized field intensity factors at

the crack tip are plotted against the dimensionless frequency in figure 4.20.

X,

Figure 4.19: L-wave impinging on a circular arch crack

Due to the modification of the relative angle between the tangent at the
crack tip and the incident motion, as it could be expected, normalized K;
decreases as the arch-angle « is increased, whilst mode-II SIF presents the
opposite tendency.

To better illustrate the dynamic coupling effects, maps of the ampli-
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Figure 4.20: L-wave scattering by circular arch crack: ESIF at tip vs. fre-

quency for different arch angles

tudes of the vertical displacement (us/ug), the electric potential (¢/¢o)
and the magnetic potential (/o) are presented (figures 4.21-4.22) for an
arch semi-angle av = 45. Three different frequencies (wa/cg = 0.3, 0.8, 1.5)
are considered, being them, respectively, smaller than the resonance fre-
quency, around that value, and larger than it. Those plots show amplitudes
for total fields, i.e., incident plus scattered fields due to the presence of the

crack.
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Figure 4.21: L-wave scattering by circular arch crack: vertical displacements

at frequencies wa/cg 0.3 (top left), 0.8 (top right), 1.5 (bottom)
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Figure 4.22: L-wave scattering by circular arch crack: electric (left) and
magnetic (right) potentials at frequencies wa/cg 0.3 (top), 0.8 (center), 1.5
(bottom)
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4.3.5 Two cracks interaction in an infinite domain

In this section, interaction between two cracks in an infinite domain when a
L-wave impinges on them is studied. The geometry of the problem is illus-
trated in figure 4.23, and several different cases will be analyzed depending

on the relative position of the cracks.

2a D

O
@
x

2a

Figure 4.23: L-wave impinging on two interacting cracks

Parallel cracks in an infinite domain

The case of two parallel cracks is now analyzed. Three different distances
between the cracks have been considered, namely a/2, a and 2a, a being the
half crack-length. The geometry of the problem is illustrated in figure 4.23
with 6 =0, 20 = 0 and yy = a/2, a, 2a.

Figure 4.24 shows the normalized ESIF, versus the dimensionless fre-
quency wa/cs. Results are given for the crack first hit by the incident
L-wave (at tip A). In order to illustrate the effects of crack interactions,
in the figures are included the results for a single crack. Such interactions
increase as the distance between the cracks decreases. The influence of the

frequency of the incident wave motion is clear from the figures, with peak
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values of the field intensity factors around wa/cg = 1.
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Figure 4.24: L-wave scattering by two parallel cracks: ESIF at crack tip A

(figure 4.23) vs. frequency

Results for the upper crack (tip C) are included in figure 4.25. In this
case the interaction effects are more significant due to the interaction among
the incident field and the one scattered by the first crack. In fact, those
interaction effects remain substantial at separations between cracks as large
as two crack-lengths.

Figures 4.26-4.28 show images of the amplitudes of the total fields, i.e.,
incident plus scattered fields, due to the presence of the two cracks. Re-
sults are plotted for frequencies equal to wa/cg = 0.75,1,1.25, where it

is illustrated clearly the dynamic interaction effects on the distribution of
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One crack
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Figure 4.25: L-wave scattering by two parallel cracks: ESIF at crack tip C

(figure 4.23) vs. frequency

the displacements (figure 4.26), the electric (figure 4.27) and the magnetic

(figure 4.28) potentials in the analyzed magnetoelectroelastic solid.
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Figure 4.26: Parallel cracks (yo = a, figure 4.23): Amplitude of the total
displacement field in x9 direction at frequency values wa/cg equal to 0.75

(top left), 1 (to right), 1.25 (bottom)
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Figure 4.27: Parallel cracks (yo = a, figure 4.23): Amplitude of the total

electric potential field at frequency values wa/cg equal to 0.75 (top left), 1

(to right), 1.25 (bottom)
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Figure 4.28: Parallel cracks (yo = a, figure 4.23): Amplitude of the total
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magnetic potential field at frequency values wa/cg equal to 0.75 (top left),

1 (to right), 1.25 (bottom)

Two collinear cracks

Wave scattering caused by to collinear cracks is next considered. The ge-
ometry of the problem is shown in figure 4.23 with § = 0, yo = 0 and
xo = 2a+ a/2, a, 2a; a being the half crack-length, i.e., three different dis-
tances between the inner crack tips (tips B and C) have been studied: a/2,
a and 2a.

The mode-I SIF is given in figure 4.29 (top left) versus the frequency for

the inner crack tip (tip B). In this case, the interaction effects are small and
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only produce a shift in the frequency of the peak value for crack separations
below the crack-length. However, due to the magnetoelectroelastic cou-
pling, such interaction effects are more significant in the case of the EDIF

(figure 4.29 -top right) and the MIIF (figure 4.29 -bottom).
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Figure 4.29: L-wave scattering by two collinear cracks: ESIF at crack tip B
(figure 4.23) vs. frequency

Two cracks with an inclination angle

The case of two cracks at an angle will be the last frequency-domain problem
solved and presented in this work. The geometry of the problem is shown
in figure 4.23 with 0 = 7/4, x9 = a/v/2 and yo = a/v/2+ a/2, a, 2a.

The mode-I SIF is plotted against the frequency in figure 4.30 (top left)
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for the lower crack tip B and in figure 4.30 (top right) for the upper crack
tip C. At tip B the interaction effects are small in the low frequency range.
However, at tip C crack-shielding is observed due to the presence of the
lower crack. Mode-II SIF appears as a consequence of crack interaction, as
shown in figures 4.30 (bottom left) and 4.30 (bottom right) for crack tips B

and C, respectively.

< One crack I One crack
E oe E o8
s >
=) =)
8 s L o
X X
04 04
02 - 02
) 1 2 3 4 5 ) 1 2 3 4 5
walc walc

IK, |l00\/(n a)

IK, |l00\/(n a)

Figure 4.30: L-wave scattering by two cracks at an angle: K; and Kjy at

tip B (top line) and tip C (bottom line) vs. frequency (figure 4.23)

In figure 4.31 the EDIF and MIIF behaviors versus the frequency at
crack tips B and C are illustrated. Larger and shifted values of both the
EDIF and the MIIF are observed for the upper crack, as compared with the

one crack case. This phenomenon may be caused by the magnetoelectroe-
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lastic coupling.
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Figure 4.31: L-wave scattering by two cracks at an angle: Ky and Ky at

tip B (top line) and tip C (bottom line) vs. frequency (figure 4.23)

4.4 Time-domain results

In this section, transient dynamic analysis of two-dimensional homogeneous
and linear magnetoelectroelastic cracked solids will be carried out by solving
several problems in either finite or infinite domain under impact loading.
In all the problems solved a BaTiO3 — CoFesO4 composite with a
Vy=0.5 is considered and, for the convenience of the presentation, the fol-

lowing normalized dynamic EDIF and MIIF are introduced
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K . _ hoa K
K;V = % Klf‘t/ ) K* 2 }s‘/t (412)

where K" = 0g4/(ma).
Moreover, to measure the intensity of the electromagnetic impacts, the

following loading parameters are defined

— e Dy . — h22 By
T e2p022 7 A= Y22 022 (4'13)

Previous works for other materials, such as Dominguez (1993) for ho-
mogeneous isotropic solids, establish that, to ensure the stability of the
time-stepping scheme of a time domain formulation, the spatial size of the
elements and the time step can not be chosen independently, but they should
satisfy the following relation

_ Cmarlt (4.14)

le
where ¢4, 1S the maximum of the plane wave phase velocities, At is the
time step and I, is the element length.

Choosing too small time steps will increase the computational cost, while
choosing too large ones will not permit a proper representation of quick
changes in the exact solution (Dominguez, 1993).

It should be remarked that formulations based on Lubich’s quadratures
to compute the convolution integrals in the time domain BEM are extremely

stable and the spatial and temporal discretizations are rather independent,

as compared to formulations based on direct integration in the time domain.

4.4.1 Straight crack in an infinite domain

In order to validate the proposed time-domain formulation, a straight crack

in an infinite domain subjected to an impact tensile mechanical loading
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of the form o9s(t) = o¢ - H(t), where H(t) is the Heaviside step function,
is analyzed. Three different time steps have been considered: a/(15 - cg),
a/(30-cg) and a/(60-cg) and ten equal quadratic elements have been used.
The obtained results are compared with those presented by Zhong et al.
(2009) by the application of the Stehfest’s method (see e.g. Stehfest, 1996)
to derive the Laplace transform, and shown in figure 4.32, where it can be
noticed that both results reach the stationary value at a similar instant of
time, but they are very different in the transient period since the results
presented herein show a higher peak.

Stehfest’s inversion algorithm establishes that a time-dependent func-
tion f(t) can be approximated by
N

=S P2y (4.15)
=1

f) ==

~

where f(s) is the laplace transform of f(t) and

min{n,N/2}

(2k) 1N/
Vo = (=)L N (4.16)
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Figure 4.32: Comparison of the normalized dynamic K factor for a Griffith

crack with the results obtained by Zhong et al.
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Stehfest suggested in his works to use, at least, N=10 while Zhong uses
only N=3. This is the cause of an excessively high softening of the curve in
the transient period. As a matter of fact, a higher value of the peak should
be expected, as works by Garcia-Sanchez and co-workers for anisotropic
and piezoelectric solids reveal (see, e.g., Garcia-Sanchez and Zhang, 2007b;
Garcia-Sanchez et al., 2008a). Thus, it can be concluded that the model
presented herein provides correct results.

As it has been said above, three different time steps have been conside-
red, obtaining in all cases good and stable results, even for the minimum 7
considered here which value is 7 ~ 0.167.

Let us now consider different combinations of loadings defined by the
interaction of an impact tensile mechanical loading (o22(t) = 0o - H(t)), an
impact electrical loading (D2(t) = Dy - H(t)) and/or an impact mechani-
cal loading (Ba(t) = By - H(t)). In figure 4.33 the normalized mode-I SIF
is shown. As expected for all combinations of loadings, defined by equa-
tions (4.13), the value of that parameter tends to one, due to the fact that
mechanical SIF for Griffith cracks are independent of the presence of electric
and magnetic loadings. Moreover, as it has been said in this work, posi-
tive electric and magnetic loads make the crack open wider and this effect,
although is not noticed in the permanent value, is shown in the transient
period as a higher peak.

In figure 4.34, the mode-I mechanical energy release rate is plotted.
The values have been normalized with the corresponding one to a crack
subjected to a static mechanical loading. Positive electromagnetic loadings

make higher both the peaks and the permanent values.
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Figure 4.33: Normalized dynamic K versus the dimensionless time for a
Griffith crack in a magnetoelectroelastic solid subjected to different impact

loading combinations
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Figure 4.34: Normalized dynamic mode-I energy release rate versus the
dimensionless time for a Griffith crack in a magnetoelectroelastic solid sub-

jected to different impact loading combinations

4.4.2 Central crack in a magnetoelectroelastic plate

A center crack of length 2a¢ in an homogeneous linear magnetoelectroelas-
tic plate as the one shown in figure 4.35 is now considered. The geometry

of the cracked plate is described by h=20mm, w=20mm and a=2.4mm, and
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Figure 4.35: Straight crack in a magnetoelectroelastic plate.

it is subjected to different loading combinations defined by the interaction
of an impact tensile mechanical loading (o22(t) = oo - H(t)), an impact
electrical loading (D2(t) = Do - H(t)) and/or an impact magnetic loading
(Ba2(t) = Bp - H(t)). The external boundary is meshed with 24 quadratic
elements, while ten equal quadratic discontinuous elements are used in the

crack meshing.

Normalized ESIF and loading parameters as the ones defined in (4.12-
4.13) are used in the representation of this problem results. In figure 4.36
the normalized mode-I SIF is plotted for several loading combinations versus
the time, which is normalized with the longitudinal wave velocity and the
semilength of the plate. This normalization implies that the mechanical
wave impinges on the crack at the normalized time t* = 1. Thus before that

instant of time, if only a mechanical loading is applied, K; = 0. However,



120 Chapter 4. Results

st
I

K|/ K

st
1

K/K

Figure 4.36: Normalized dynamic K7 versus the dimensionless time in a
magnetoelectroelastic cracked plate subjected to different impact loading

combinations

if either an electric or a magnetic loading is also applied, the variation
on the mode-I SIF happens since t* = 0, due to the quasi-electrostatic
assumption for the electromagnetic fields. In all cases, it can be noticed
that the maximum values of the normalized mode-I dynamic stress intensity
factor are reduced with increasing electric and magnetic loading parameters

A and A, according to the poling direction indicated in figure 4.35.
In figures 4.37 and 4.38, normalized Ky and Ky are plotted versus
dimensionless time. Due to the quasi electrostatic assumption of the elec-

tromagnetic fields , almost constants values for those fracture parameters
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are obtained when electric or magnetic loadings, respectively, are applied.

Moreover, an almost negligible influence of the electric and magnetic load-

ings is found in MIIF and EDIF, respectively, as seen in figures 4.37 (top

left) and 4.37 (top right).

Sty
(€ K\I(ER, KD

o 1 2 3 4 5
tEbLlh
05K _ . ANl RS
04 —— \=0:A=0
- - - A=-LiA=-1
A=-1A=1

Sty
(B3 K\, K}

st
(8 K\I(E,, KD

Sty
(&5 K2, KD

—— \=0;A=0
- = = A=-1;A=0
o A=LA=0

Figure 4.37: Normalized dynamic Ky versus the dimensionless time in a

magnetoelectroelastic cracked plate subjected to different impact loading

combinations

To better illustrate the transient effects, maps of the vertical displace-

ment (ug), and the electric and magnetic potentials (¢ and @) are also

included in this work for three different combinations of loads (defined, re-

spectively, by the pairs A=A =0, A\=1;A=0and A =0; A = 1) and two

instants of time, smaller and bigger than one,respectively: t* = 0.4275 and
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t* = 1.52. When t* < 1 and only mechanical loading is applied, vertical

displacements are negligible in almost all the plate.
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Figure 4.38: Normalized dynamic Ky versus the dimensionless time in a
magnetoelectroelastic cracked plate subjected to different impact loading

combinations
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Figure 4.39: Absolute value of the normalized vertical displacement for
= 0.4275 when A = 0; A = 0 (top left), A = 1;A = 0 (top right) and
A=0;A =1 (bottom)
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Figure 4.40: Absolute value of the normalized vertical displacement for
= 1.52 when A = 0;A = 0 (top left), A = 1;A = 0 (top right) and
A=0;A =1 (bottom)

4.4.3 Slanted edge crack in a magnetoelectroelastic plate

Let us consider now a slanted edge crack of length ¢ in a homogeneous
and linear magnetoelectroelastic plate as the one shown in figure 4.41. The
crack is inclined 45° respect to the horizontal, and the geometry of the plate

is given by h=22mm, w=32mm, c=6mm and a=22.63mm.

The mesh is performed with 24 quadratic elements for the external
boundary, and 4 discontinuous quadratic elements for the crack; the time

step adopted in the simulations is given by 0.15 - a/cr. In figures 4.42
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Figure 4.41: Slanted edge crack in a magnetoelectroelastic plate subjected

to impact electromagnetomechanic loadings

and 4.43, mode-I and mode-II stress intensity factors are plotted for differ-

ent combinations of loads. It can be noticed that,

electromagnetic loadings are applied (top left and

when no combination of

top right figures), there

exist two different time ranges in which those parameters are independent

of the electric and magnetic impacts (when applied). This effect disappears

when both electric and magnetic loadings act at the same time.
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Figure 4.42: Normalized dynamic Kj versus the dimensionless time in a

magnetoelectroelastic cracked plate containing an slanted edge crack sub-
jected to different impact loading combinations
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Figure 4.43: Normalized dynamic Kj; versus the dimensionless time in a

magnetoelectroelastic cracked plate containing an slanted edge crack sub-

jected to different impact loading combinations
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Chapter 5

Extended Finite Element
formulation for the analysis of
cracked magnetoelectroelastic

solids

5.1 Introduction

In this chapter, a different numerical technique for the study of static frac-
ture mechanics in magnetoelectroelastic materials is presented.

The analysis of cracked media with the Finite Element Method (FEM)
present a big inconvenient, since the crack must merge with the mesh. This
fact provokes the necessity of remeshing when crack growth problems are
studied. Additionally, mesh refinement and/or singular elements such as
quarter-point elements are also necessary near the crack-tip to capture the

stress singularity.
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To circumvent these difficulties, the eXtended Finite Element Method
(X-FEM), first presented by Belytschko and Black (1999) and Md&es et al.
(1999), is a powerful alternative in computational fracture, which have been
successfully applied to solve crack problems in materials with different be-
havior laws (see, e.g., works by Mdes et al., 1999 in isotropic media, Sukumar
et al., 2004 in bimaterials, Asadpoure and Mohammadi, 2007 in orthotropic
materials and Béchet et al., 2009 in piezoelectric solids). To this end, ad-
ditional (enrichment) functions are added to the classical finite element
approximation through the framework of partition of unity (Babuska and
Melenk, 1997). In other words, in certain nodes of the mesh, new degrees
of freedom are added in order to modelize the discontinuity existing due to
the presence of the crack. The crack interior is represented by a disconti-
nuous (Heaviside) function and the crack-tip is modeled by the asymptotic

crack-tip functions.

In this work, we present a X-FEM approach for fracture analysis in
plane anisotropic magnetoelectroelastic materials. For this purpose, new
crack-tip enrichment functions will be derived and, in order to validate the
proposed method, some problems solved comparing the results with those

obtained by the BEM formulation previously introduced.

5.2 X-FEM formulation

5.2.1 Crack modelling and selection of enriched nodes

Let us consider an arbitrary cracked domain, discretized in elements so that
the nodal set is A/. Then, the displacement of a point x belonging to the

domain considered can be determined by (Moes et al., 1999)
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u(x) =Y Nix)uwit Y Njx)H(X)a;+ Y Ne(x) ) Fa(x)by (5.1)

ieN JENH keENCT [ed

where N; is the shape function associated to the node i, u; is the vec-
tor of the traditional nodal degrees of freedom defined in a finite elements
discretization while a; and b}, are the added set of degrees of freedom in
those elements which contain the crack. H(x) is the generalized Heaviside
function, that simulates the displacement discontinuity on both sides of the
crack faces, and F,, are the crack tip enrichment functions. In a finite ele-
ment mesh, as seen in figure 5.1, the set of nodes which have to be enriched
with Heaviside functions (V) are marked with a solid circle, while the
set of nodes which must be enriched with crack tip enrichment functions

(NCT) are marked with a square.

= £1
B

Figure 5.1: Node selection for enrichment

In a magnetoelectroelatic solid, the variables which appear in equa-
tion (5.1) are defined in an extended way, so u; and a; are four components
vectors and b; is a 32 components vector, as it will be exposed in a later

section.
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5.2.2 Weak formulation and discrete equations

Let us consider an arbitrary cracked domain €2 which contains a boundary I';
where the extended tractions are prescribed and in which impermeable crack
faces condition is considered (extended traction-free crack faces). Let u be
the mechanical displacement and o the mechanical stress tensor, while u
and o are, respectively, the extended displacement vector and the extended
stress tensor. The weak form (principle of virtual work) for a continuous

problem in a magnetoelectroelastic solid is given by

/&:5§dQ—/D:6EdQ—/B:6HdQ:/5meCh-5ﬁdF
Q Q Q T

—/56-5¢dr—/ﬁm-5gpdr+/fmech.5ﬁd9

Tt Ty Q
—/fe-égbdQ—/fm-&de. (5.2)
Q Q

where the superscripts mech, e, and m denote, respectively mechanical,
electrical and magnetic tractions or volume forces.
The use of the generalized notation introduced in chapter 2 allows ex-

pressing the weak form in an elastic-like way

/a:dsdQ:/ﬁ~5u+dF+/f~5udQ (5.3)
Q Ty Q
where : and - denotes, respectively, tensorial and scalar products, f is the
extended force vector per unit volume and p are the prescribed extended
tractions. In particular, p"¢“" are the mechanical tractions and p¢ and p™

are, respectively, their electric and magnetic counterparts

After the appropriate discretizations of the governing equations, the
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following magnetoelectroelastic finite element equations can be derived

kazu + kgp@ + ko0 = frech (5.4a)
kgl — koo — kgpop = 1 (5.4b)
kit — koo — kppp = 17 (5.4c)

which can be also expressed like a simply elastic problem by means of the

generalized notation

kelemuelem _ felem (55)
where
+141
wir— [ aTecan = [ [@Tencae i (o)
Qelem —-1-1

where G is the matrix of shape function derivative.
The global stiffness matrix K is obtained by the assembly of all the
elementary stiffness matrices, and can be obtained as follows
kit ki kY
1 b
ki = | ki ki Ky (5.7)

bu ba bb
K kb k2

while the element contribution to the global element force vector, f is

felem — (pe £ )T (5.8)

(2

where, in equations (5.7-5.8), « is the number of crack tip enrichment func-
tions (eight in magnetoelectroelastic solids), and the indexes u, a and b
refer, respectively, to the extended displacement vectors and the extended
new degrees of freedom vectors. The submatrices and vectors that appear

in it can be calculated as
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TS r\T s
ki7 = /(B )" C(B)dQ  (r,s =u,a,b) (5.9a)

/NtdF+/NfdQ (5.9b)
Qe
/NthF—i—/NHfdQ (5.9¢)
0N Qe

- / NiFaZdF—i—/NiFafdQ (a=1,8) (5.9d)
Qe Qe

In equation (5.9) N; is the standard finite element shape function defined
at node 7, and G}, G{ and Gﬁ’ are the nodal matrices of shape function

derivatives, which, for a magnetoelectroelastic material, are given by

Ni,xl 0 0 0
0 Nig O 0
N; 2o Nig, 0 0
Gi=| 0 0 N 0 (5.10)
0 0 Nig O
0 0 0  Nia
L0 0 0  Nia |
[ (NiH),, |
(Nl )7332
Gy = (5.11)

)7%1

)7I2 -
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G/=[G! G GI*¥ GI GFF G GI GIF] (5.12a)
[ (NiFy) sz, 0 0 0
0 (NiFW)szs 0 0
(NiFO()7I2 (NiFoz)azl 0 0
Gbe = 0 0 (NiFy) sz, 0 (5.12b)
0 0 (NiFn) s 0
0 0 0 (NiFy)
L 0 0 0 (NiFa)vﬂcz i

where the comma denotes spatial derivation.

5.2.3 Enrichment functions

The asymptotic displacement fields around the crack tip in an unbounded
magnetoelectroelastic domain were presented in chapter 2. From them, a
set of elementary functions that span the asymptotic fields can be obtained,
for any orientation of the crack and loading combination.

While for isotropic and piezoelectric materials, only four or six functions,
respectively, are necessary to describe all the possible generalized displace-
ment states around the crack tip, for magnetoelectroelastic materials eight
functions are needed. These functions, named as F, in equation (5.1), are
obtained from the asymptotic singular solution presented in section 2.4.2,
and present a similar mathematical structure to those obtained by Béchet

et al. (2009) for piezoelectric materials.

Fo(r,0) = /1 {prcos(61/2) pacos(b2/2) pscos(f3/2) pacos(6s/2)
p1sin(61/2) posin(02/2) pssin(f3/2) pasin(fs/2)} (5.13a)
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where

prc (b, i) = % V2[axP —1)(Eme)? T Re(ur)sin(29) — 1 (5.13b)

and

O = wint (%) + arctan [ prc)] tem (v — wln(5)) (5.13¢)

1+ Re(uk) tan (¢ — 7rInt7(T£))

where Int denotes the integer part of a real number, p; are the four roots
of the characteristic equation (2.45) which imaginary part are positive (or
equivalently, roots of the eigenvalues problem defined by 2.23) and ¢ = §—a,
being 1 the orientation angle of the material axes with respect to the crack
(Figure 5.2). Thus, the enrichment functions may be calculated for every

poling direction with respect to the crack path.

Figure 5.2: Definition of the material axes around the crack tip
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5.3 Element partitioning and numerical integra-

tion

As it has been said, one of the main advances of the X-FEM respect to
the classical FEM approaches in fracture mechanics problems, is the lack of

necessity in matching the crack with the mesh.

However, if an element is intersected by a crack, displacement fields to
be integrated (see equation 5.3) over the element become discontinuous, due
to the discontinuous behavior of both Heaviside and crack tip enrichment
functions. As a result of this, the use of ordinary Gauss rules do not provide

accurate results of the integration.

In this sense, Dolbow (1999) proposed two methods to overcome this
numerical difficulty, consisting in subdividing the intersected element into
either triangles or squares.

In this work, triangulation of the partitioned elements have been adopted.
This method implies that the sub-triangles edges must be adapted to crack
faces (see figure 5.3), since the domain € must be divided into non overlap-

ping subdomains, in which continuous functions shall be integrated.

Figure 5.3: Partitioning of a square finite element in 2-D totally (left) or
partially (right) intersected by the crack (dark line).
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Moreover, ordinary Gauss quadratures have been used for the integra-
tion over non enriched elements and for non partitioned enriched elements
(in this last case, a higher number of gauss points are considered). Non
partitioned enriched elements occur when not all the nodes are enriched.
In other words, either those elements which are "the transition" between
partitioned elements and the non enriched elements, or, in cases where the
crack merges with the mesh, those elements which are separated by the

crack.

It should be remarked that when an element is subdivided in triangles, a
remeshing is not carried out. As it has been said, the element belonging to
the FEM mesh (parent element), must be partitioned into non overlapping
triangular elements Q2 (children elements) so that Q = (nj Q2 being m
the number of subtriangles in the partition. This partition i)zrécedure differs
from remeshing in two key features. First, element partitioning is performed
only to carry out the numerical integration (no additional degrees of freedom
are added); second, the basis functions are tied to the parent element and

not to the subtriangles.

5.4 Computation of generalized stress intensity fac-

tors

In this part of the work, the computation of ESIF has been carried out
by means of an energy integral method, following the technique developed

by Rao and Kuna (2008, 2010). A brief description of this approach follows.
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5.4.1 Interaction integral method for magnetoelectroelastic

materials

Works by Wang and Mai (2003, 2004) provide the expression for the path

independent J-integral in a magnetoelectroelastic cracked solid:

J = /(W51j — O45Ui1 — Dj¢71 - Bj¢71)nj dl’ (5.14)
Ta

where the index 4 and j vary from 1 to 2 in two-dimensional solids, I'y
is an arbitrary enclosing contour around the crack tip and n; is the j—th
component of the outward unit vector normal to it. W is the electromag-
netic enthalpy density which, for a linear magnetoelectroelastic solid, can

be expressed as

1
W = S(oieij — D;Ej — B;jHj) (5.15)

If the divergence theorem is now applied to equation (5.14), J-integral

can be transformed into an equivalent domain form as

J = /(Uz‘jui,l + Djd1+ Bjps — Wéij)g,; dA
A

+ [+ Dy + Bpa - Wa)jadd  (510)

A
where A is the area inside the contour I'4 and ¢ is an arbitrary smoothing
function such that it is unity at the crack tip and zero on the boundary
domain I'y4. In equation 5.16, the second term vanishes in homogeneous
magnetoelectroelastic materials, since the material properties are constant

in such solids. Thus, the expression for the J-integral results as follows
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J = /(aijum + Djp1+ Bjp1 — Waij)g,; dA. (5.17)
A
Equations (5.15) and (5.17) can be rewritten in terms of the extended

variables defined in chapter 2 as

1
J = /(Uljul,l — W51j)q7j dA, W = 5017‘61]'. (5.18)
A
Let us now consider two independent equilibrium states for the cracked

body. The first one corresponds to the state that must be solved, and the
second one corresponds to an auxiliary state, which can be the near-tip
displacement field for any of the extended opening fracture modes. In this
work, for the sake of convenience, the asymptotic fields expressed in terms
of the generalized Stroh’s formalism introduced in section 2.2.2 have been
used.

The superposition of those two states considered produces another equi-

librium state for which the J-integral is

1) = [((ohy+ o8 uha + 1)~ W51 0

A
1
W) = 5[(05) + Jg))(sg) + 6(13))] (5.19)

J-integral given in equation (5.19) can be decomposed into
JO = gO 4 5@ 4 pr12) (5.20)

The interaction integral M is then given by

MU = /(Ug)uﬂ +oufl) = WD)q;dA (5.21)
A
with
1
w2 — 5@%)5}3) n Ug)s(é)) (5.22)
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Since the elecromagnetomechanical J-integral is equal to the total en-
ergy release rate and this can be expressed in terms of the extended stress
intensity factors (Tian and Rajapakse, 2005b) as seen in equation (3.146),

for two dimensional problems, one can write, for any equilibrium state

1 1 1 1
J = iK%IYn + §K?Y22 + §K12VY44 + §K‘2/Y55 + KiKirYio (5.23)

+ KiKvYos + K KyYos + KipKvYis + K KvYis + Kiv Ky Yys

which, substituted in (5.20), leads to the following expression of the inter-

action integral

MO = KKV KPRV + KIDKYe K IEYe
+(KVED + KK )Y + (KK + KW KDY (5.24)
FORPRE & KR + U+ KR

+(KYEP + KV KDy + (KY KD + KD K vy

The individual extended stress intensity factors are evaluated by solving
the system of linear algebraic equations obtained from (5.24) by choosing
appropriate auxiliary states. For instance, if auxiliary state is taken so that
K§2) =1and Kﬁ) =0, Kg,) =0, K‘(,z) = 0, equation (5.24) can be reduced
to

MO = KWy, + KWy, 4+ K}%/)Yu + K‘(})Yza (5.25)

Similarly, other three equations can be obtained

MO = KWV + KDY+ K Y+ KPYis (5.26)
MOP) = KDY, + KV + KDY + KDYas (5.27)

MOB) = KMoy + KDYis + K Yas + K Yas (5.28)



142 Chapter 5.0. X-FEM for cracked magnetoelectroelastic solids

So, finally, the determination of the extended stress intensity factors is

reduced to solving the following system of linear equations:

MO K

M(l’I) K(l)
=Y I

1,1V (1

Az\gu V>) Kﬁvi
KV

5.5 Validation

Some static crack problems in magnetoelectroelastic media are solved to
validate the formulation. The numerical results obtained by the X-FEM
are compared with those obtained by the boundary element formulation
presented previously. As in the previous chaper, a BaTiOs — CoFes0y
composite with a V;=0.5 is considered. The properties of such material are
shown in table 4.1.

In all computations linear quadrilateral elements are used. A 2 x 2
Gauss quadrature rule is used in every non-enriched element, whereas for
non-partitioned enriched elements a 5 x 5 Gauss rule is used. For enriched
elements that are partitioned into subtriangles, a seven point Gauss rule is

used in each one.

5.5.1 Slanted central crack in a magnetoelectroelastic plate

A finite magnetoelectroelastic plate with a central inclined crack under com-
bined electro-magneto-mechanical loads is analyzed. In Figure 5.4 the ge-
ometry and loading are described. The ratio between the crack length
and plate width is a/w = 0.2. The plate is under uniform tension in the
9 direction, o992, and subjected to both electric and magnetic loadings:

Dy = 0.1-10%92(C - N™') and By = 1-10"%092(A~" - m). The prob-
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Table 5.1: Benchmark results for a crack in a finite plate.

0 | Ki/(o22yma) | Kir/(o22y/Ta) | Kiv/(D2y/ma) | Kv/(Bzy/ma)
0° 1.0241 ~ 0 1.0226 1.0395
15° 0.9562 0.2506 0.9869 1.0103
30° 0.7720 0.4361 0.8845 0.9206

lem has been solved for three different uniform meshes (25 x 50, 50 x 100,

75 x 150), and for three different angles of the crack with respect to the x;

axis (6 = 0°, 15°, 30°).

The polarization direction coincides with the zs-

axis, and the benchmark results, obtained by means of the BEM formulation

proposed in this thesis are presented in table 5.1.

Figure 5.4: Geometry

slanted crack

Poling direction
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and loads for a magnetoelectroelastic plate with a

In table 5.2, the extended finite element results, normalized with the

BEM ones, are presented for three meshes.

A good agreement between
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both formulations is found.

Table 5.2: ESIF for a crack in a finite plate.

0 | ESIF | (25x50) | (50 x 100) | (75 x 150)

0° | KI' | 0982 | 09911 0.9916
K3, ~1 ~1 ~1
K | 09901 | 0.9940 0.9952
Ky | 09561 | 0.9827 0.9846

15° | Kj | 10256 | 0.9918 0.9951
K3 | 1.0311 | 0.9885 0.9876
K, | 1.0359 1.0181 1.0186
Ky | 09718 | 0.9575 0.9723

30° | K; | 0.9803 1.0062 1.0116
Ki | 1.0541 1.0071 0.9998
K3, | 1.0372 1.0178 1.0137
Ky | 09472 | 0.9995 0.9987

5.5.2 Double-edge crack in magnetoelectroelastic plate

A double-edge crack in a finite magnetoelectroelastic plate under combined
electro-magneto-mechanical loads is next analyzed. The geometry and load-
ing are illustrated in Figure 5.5. The ratio between the crack length and the
plate width is given by a/w = 0.25, being the load values and polarization
angle the same as in the previous example. In table 5.3 the benchmark
results for the normalized ESIF are shown.

In table 5.4, the extended finite element results, normalized with the

BEM ones, are presented for three meshes. A good agreement between
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Figure 5.5: Geometry and loads for a magnetoelectroelastic plate with a

double-edge crack

Table 5.3: Benchmark results for a double edge crack in a finite plate.

Ki/(o2avma) | Kii/(022v/ma) | Kiv/(D2y/ma) | Kv/(Bay/ma)
1.1197 ~ 0 1.1062 1.3636

both formulations is found. It should be remarked that identical results for

both crack tips are obtained.

Table 5.4: ESIF for a double edge crack in a finite plate.

ESIF | (25 x 50) | (50 x 100) | (75 x 150)
K; | 09732 0.9844 0.9845
K3, ~1 ~1 ~1
Ky, | 09778 0.9855 0.9848
Ky | 0.9408 0.9825 0.9840
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Chapter 6

Crack face boundary

conditions

6.1 Introduction

In fracture mechanics analysis of multifield materials in general, and of mag-
netoelectroelastic media in particular, three different boundary conditions
on open crack surfaces can be considered, depending on the electromag-
netic conductivity considered between both crack faces. These conditions
were summarized in chapter 2 and, in this chapter, the procedure to solve a
fracture mechanics problems considering any of those crack face boundary
conditions will be introduced, and the implications of them on the fracture

parameters, studied by solving simple and multiple cracks problem.

For solving impermeable and permeable crack problems (ideal crack face
boundary conditions), it will be enough to apply the corresponding bound-
ary conditions to the system of equations obtained by the evaluation of

the boundary integral equations (3.37-3.38). However, the more realistic
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semipermeable condition is given by a non-linear equation. Then, for solv-
ing that problem, an iterative algorithm will be proposed and implemented.
That algorithm is a generalization of the one proposed by Denda (2008) for

piezoelectric cracked solids.

6.2 Numerical solution algorithm for semiperme-

able cracks

Let us call the jumps of the electric and magnetic potentials in the crack as
04 = (¢7 —¢7) and 85 = (o™ — ). The semipermeable solution implies
that the electric and magnetic potentials, the electric displacement and
the magnetic induction on the crack faces are generally different to zero.
Thus, the semipermeable crack solution is somewhere in between the two
ideal crack surface boundary condition, so the semipermeable values of the
jump in the electric and magnetic potentials, d4 and J5, will be equal to the
impermeable values multiplied by a proportionality factor, h. and h,,, lower
than one. An iteration procedure to determine these factors is proposed
herein. This procedure is based on the search of adequate values of d4 and
05. The use of them as boundary conditions of the problem, shall lead to the
values of the permittivity and permeability in the crack, equation (2.35).
The iteration will be carried out until those values are equal to the reference
values of the permittivity and the permeability in the medium between the
crack surfaces, ¢y and vg. The following iteration procedure for multiple

cracks problem is proposed.

1. Get the impermeable solution 5[[10], 6%0], which will be used as the start-

ing point of the iteration procedure. The number between brackets

denotes number of iteration step.



6.2 Numerical solution algorithm for semipermeable cracks 149

2. Define, for each crack k, two pairs of proportionality parameters h’gi
and hF (i=1,2), which vary in the interval (0,1). In figure 6.1 it
is shown the behaviors of the permittivity and the permeability in
a crack with respect to parameters h. and h,,. In such figure, the
flat grey surfaces denotes the values of ¢y (left) and ~ (right). Let
us remark that the sought point will be the intersection between the

intersection lines appearing in each figure.

3. (a) Take, for each crack, h*! and h¥! slightly bigger than zero (what
would correspond to the quasi-permeable solution) and h’f and
hk¥2 slightly lower than one (what would correspond to the quasi-

impermeable solution). Then, set

A A

a0 ) piag

(b) Calculate the mechanical crack opening displacement, the electric
displacement and the magnetic induction based on the set values
introduced in the previous item.

k1 hk2 hkl th

(c) Calculate for each crack k and each parameter hZ', he?, hil, b

at M points (nodal points) &;

) ) 5ki i

#—W@@@; (6.2)
. o ke

= Bl 2 &) (6.3)

o5 (&)
which are obtained by the substitution in equation (2.35) of the
corresponding ECOD and the electric (D,,) and magnetic (B,)

tractions previously obtained in step (3b).
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(d) Calculate the averages for each crack and each pair of parameters

hF" and A% of the parameteres defined in section (3c).

M ki
ohi _ 21 (6.4)
= .

M ki

Wki — ijl FYJZ (6 5)
7 .

This parameter are the so-called electric permittivity in the crack

and magnetic permeability in the crack, respectively.

(e) While the electric permittivity and magnetic permeability of any
crack is not equal to the values for the medium between the crack
surfaces, iterate using a procedure to solve non-linear equations,
until a pair of values hY (" and K5 for each crack is obtained.

Let us remark that all those values may be different.

k

4. After setting 54["] = hlgi["]5£01 and 5?"1 = h%[n]ééo], solve the problem

required to get the semipermeable solution searched.

Figure 6.1: Behavior of the permittivity (left) and the permeability (right)

in the crack with respect to parameters h’gi and hfrf
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6.3 Validation of the algorithm

In this section, several fracture mechanics problems for different crack faces
boundary conditions will be solved. In all simulations, a BaTi0O3—CoFey04
magnetoelectroelastic solid with a V; = 0.5, which properties are listed
in table 4.1, will be considered. In all cases, the medium between both
crack faces is air, what implies that the electric permittivity and magnetic
permeability are, respectively, ¢g = 8.8542 - 107'2N/V? and ~g = 4n -
1077 N/A2.

6.3.1 Griffith crack in a magnetoelectroelastic solid

In order to validate the proposed algorithm, numerical results are obtained
and compared with the analytical solution of a single horizontal crack of
length 2¢ in an infinite magnetoelectroelastic domain (see figure 4.1). This
solution, first obtained by Wang and Mai (2006), will be briefly presented.

The extended crack opening displacements 07, I = 1, ..., 5; are given by

Sr=uf —u; =2Y15(055 — 059)\/a? — x? (6.6)
where Y is the compliance (Irwin) matrix defined in equation (3.145), 055
are the components of the extended stress tensor applied, 09, are the com-
ponents of the extended stress tensor on the crack surfaces, and the sum-
mation rule over repeated is applied. The different crack face boundary

conditions that may be considered for the crack are

(1) Fully impermeable crack. In this case, the crack is extended traction

free, what implies that
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where, since D;‘ = D, and B;' = B, , the upperindex c¢ has been

used to denote either of the crack surfaces.

(i) Fully permeable crack. For fully permeable cracks no jump in the elec-

tromagnetic potential appear. This condition can be expressed as

54:0 ; 55:0 (6.8)

The substitution of that condition in (6.6) will lead to a system of
equation whose solution provides the analytical expressions of the ex-

tended tractions on the crack faces

(YasYs5 — Y57Y4s5)
DS = S 6.9
27 (YasYss — YasaYas) 772 (6.92)
B — (Y57Ya4 — Y4JY54)JOO (6.9)
27 (YasYss — YauYas) 72 '

(iii) Semipermeable crack. The semipermeable crack conditions are

ngz = —6054 5 3552 = —’7055 (610)

where € is the permittivity of the medium between the crack faces and
vo its permeability. Substituting now (6.10) in (6.6) and operating a
non-linear system of equations which defines the extended tractions

in a semipermeable crack, it will be obtained.

Yij05 — YyuD§ — Yy5B5
Y2JO'302 - Y24D§ - Y25B§
Y5505 — Y54 D5 — Y5585
Y2505 — You D5 — Yo5 BS

D5 = —¢ (6.11a)

By =

(6.11b)
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where € is the permittivity of the medium between the crack faces

and ~yg its permeability.

The analytical solution previously deduced will be compared with the
results obtained with the proposed formulation. In figure 6.2 the mechani-
cal opening displacement are shown for the case in which only a mechanical
loading is applied and in the case in which a combination of loads defined
by 055 = 1N/m?, D = 107?C/N and B = 1078A~! . m is applied.
The analytical solution is plotted in lines, comparing them with the results
obtained numerically (points), and those magnitudes are normalized with
their respective value under permeable conditions in x; = 0. Excellent
agreement between both sets of solutions is observed. It can be seen that,
in both cases, the semipermeable solution is between the permeable and
the impermeable ones. When only mechanical loading is applied, the crack
opening displacement under impermeable condition, 85", is the smallest
value, while the presence of positive electromagnetic loads, which tend to
open the crack, leads to the largest values, because any degree of permeabil-
ity provokes that the influence of those loads decreases. Let us remark that
the permeable solution is independent of the presence of electromagnetic
loading and the resulting mechanical stress intensity factors are indepen-
dent of the boundary condition considered.

In figure 6.3 the analytically obtained jumps in the electric and magnetic
potentials are compared with the results obtained numerically (points) with
an excellent agreement again. Those magnitudes are normalized with their
respective values under impermeable conditions in the center of the crack
(1 =0).

In figure 6.4, the electric displacement and magnetic induction on the

crack surfaces are shown in comparison with the analytical results (lines),
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Figure 6.2: Crack opening displacement when only a mechanical loading is
applied (left) and a full combination of electromagnetomechanic loading is

applied (right).

x =0
x =0
1

3
4

8,18

5,18

Figure 6.3: Electric (left) and magnetic (right) potentials jumps on the

crack.

also for the three boundary conditions considered and normalized with the
applied electric and magnetic loads. In all figures, an excellent agreement

between the numerical and analytical results can be observed.
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Figure 6.4: Electric displacement (left) and magnetic induction (right) on

the crack surfaces.

6.3.2 Central straight crack in a finite plate

A central crack in a magnetoelectroelastic plate like the one in Figure 4.35 is
analyzed. The ratio between the crack length and the plate width is a/w =
0.2. Thirty two quadratic elements were used for meshing the external

boundary, while ten equal quadratic elements were taken for the crack.

In table 6.1 the normalized fracture parameters are shown when the load-
ing combination is 653 = 1N/m?, D$® = 107°C/N and B3® = 10784~ 1. m.
ESIF are normalized for the corresponding values to a Griffith impermeable
crack subjected to the same loads, while the different energy release rates
are normalized with the absolute value of the total energy release rate for
an impermeable crack in an infinite domain. Considerable differences were
found in the electromagnetic stress intensity factors when different crack
face boundary conditions (CFBC) were considered but not in the mechani-
cal SIF. As expected, electric and magnetic energy release rates are negligi-
ble when permeable cracks are analyzed, what implies that mechanical and

total energies are the same.
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Table 6.1: Fracture parameters for straight crack in a plate

ERR | CFBC | TIP A-B | ESIF | CFBC | TIP A-B
Grot Imp -1.0354 K; | Imp 1.0255
Semip -0.9162 Semip 1.0255
Perm 0.1276 Perm 1.0258

Gl mp 02240 | Ky | Imp | 2.4187e-009

Semip 0.2188 Semip | 2.4185e-009

Perm 0.1276 Perm | 2.4145e-009
Gerec | Imp -1.2565 Krv | Imp 1.0190
Semip -1.1330 Semip 0.9696
Perm ~ 0 Perm 0.0777
Guagy | Imp | -0.2804.1072 | Ky | Imp 1.0205
Semip | -0.1946-102 Semip 0.8893
Perm ~ 0 Perm 0.2212

In figure 6.5, total energy release rate is shown for o35 = 1N/m?

DS = 1079C/N and different values of magnetic loading, for the three
crack face boundary conditions considered. The results are normalized with
the value of the total energy release rate corresponding to a Griffith imper-
meable crack subjected only to a mechanical load. If a permeable crack is
considered, the normalized G'7,; takes a constant value equal to G7,,=1.124,
which is the same for any loading combination. The presence of electromag-
netic fields shall decrease the energy release rate when the crack is not fully
permeable. This fact implies that the total energy release rate can not be
adopted as a fracture criteria. Moreover, it can be realized that the non-

linear effect of loadings and that the energy release rate is always smaller
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in semipermeable cracks.
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Figure 6.5: Total energy release rate for straight crack in a plate.

6.3.3 Three parallel cracks in an unbounded domain

To further confirm the validity of the iteration scheme, a case involving
interaction among three parallel cracks in an infinite will be next considered.
In this case the solutions for the upper or lower cracks are different to the
middle one’s. The distance between cracks is half the semilength of each
crack as shown in Figure 6.6. The values of the loads are again o055 =
IN/m?, D = 1072C/N and B$° = 107841 . m, and ten equal elements
for each crack are used for meshing purposes.

In figure 6.7, mechanical opening displacement as well as the jump in
the electric and the magnetic potentials are plotted. Absolute values of the
ECOD are always smaller in the central crack, and any degree of perme-
ability in the crack shall reduce them.

In table 6.2 the normalized ESIF in tips A and B (figure 6.6) are shown.
Such ESIF are normalized with the corresponding ones to an impermeable

Griffith crack.
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Figure 6.6: Three parallel cracks in a magnetoelectroelastic domain.
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Table 6.2: ESIF in tips A and B (figure 6.6) for three parallel cracks

ESIF | CFBC | TIP A | TIP B
K Imp | 0.6865 | 0.4634
Semip | 0.6872 | 0.4626

Perm | 0.6865 | 0.4634

Kir Imp | 0.1379 ~0
Semip | 0.1385 ~ 0
Perm | 0.1467 ~ 0

Kry | Imp | 0.7405 | 0.5992
Semip | 0.7068 | 0.5429
Perm | 0.0514 | 0.0345

Ky Imp | 0.7939 | 0.6643
Semip | 0.6717 | 0.4739
Perm | 0.1482 | 0.0993

Moreover, in tables 6.3 and 6.4, the energy release rates at tips A and B,
respectively, are shown for two different combination of loads; the first one
(Comb. 1) is only a mechanical loading, while the second one (Comb. 2) is
the combination described above. The values obtained are normalized with
total energy corresponding to a Griffith impermeable crack subjected only
to a mechanical load. Total and mechanical energy release rates present the
same value and are independent of the presence of electromagnetic load-
ings when a permeable crack face boundary condition is considered. The
presence of those loads, however, change the tendency of the behavior of
the mechanical energy release rate: when only a mechanical load is applied,

ng ' is increased with the permeability and permittivity of the medium
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while, in the other hand the action of electromagnetical loadings make that

magnitude maximum when the medium is considered to be impermeable.

Table 6.3: ERR in tip A for three parallel cracks (figure 6.6)

ERR CFBC | TIP A - Comb; | TIP A - Comby
Grol Imp 0.4889 -0.4975
Semip 0.4949 -4.4644
Perm 0.5241 0.5241
G| mmp 0.4912 0.9254
Semip 0.4941 0.9064
Perm 0.5241 0.5241
Gprpc | Imp -2.2063-103 -5.9026
Semip | 0.6037-1073 -5.3601
Perm ~0 ~0
Guracy | Imp -1.0118-1074 -1.7043-1072
Semip | 0.2032-1073 -1.0714-1072
Perm ~0 ~0
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Table 6.4: ERR in tip B for three parallel cracks (figure 6.6)

ERR CFBC | TIP B - Comby | TIP B - Combs
Grot Imp 0.2017 -3.4715
Semip 0.2119 -2.7697
Perm 0.2257 0.2257
™l Imp 0.2073 0.4530
Semip 0.2119 0.4287
Perm 0.2257 0.2257
Gerec | Imp -5.3847-1073 -3.9117
Semip | -0.0691-103 -3.1933
Perm ~0 ~ 0
Gurracn | Imp -0.2358-1073 -1.2837-1072
Semip | -0.9695-10* -0.5118-1072
Perm ~0 ~0
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Chapter 7

Conclusions and future

developments

7.1 Conclusions

In this work, a deep study about the behavior of cracked magnetoelectroelas-
tic solids under static, time-harmonic and impact electromagnetomechanic
loadings has been carried out. For that purpose two numerical tools have
been implemented, based on the hypersingular formulation of the boundary

element method and the extended finite element method.

The BEM model was performed following the ideas proposed by Garcia-
Séanchez and coworkers (2005; 2008a; 2008b) for anisotropic and piezoelectric
material models. For its development, certain fundamental solutions are
needed. In static problems, that fundamental solution (already available
in literature, like in the work by Liu et al., 2001) has an explicit form.
However, for dynamic problems, the fundamental solution needed presents

an integral form. These dynamic Green’s functions have been obtained
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during the realization of this work.

When those fundamental solutions are implemented in a BEM code,
some singular integrals arise in those cases in which the collocation point
belongs to the element where the integration is being performed. The most
delicate issue in the dual formulation is the treatment of the strongly singu-
lar and hypersingular integrals, which are successfully carried out by means
of a change of variable that decompose those integrals in some regular inte-
grals plus singular integrals with known analytical solutions. In other words,
numerical integrations are restricted to regular integrals, thus increasing the

accuracy of the proposed approach.

Regarding BEM for the study of dynamic fracture, the implementation
of the dynamic Green’s functions admit a decomposition in two parts, a
singular (which coincides with the static solution, except for a constant
and, thus, is independent of the frequency) and a regular one. However,
that regular part presents, in the terms corresponding to the hypersingular
integrals, a logarithmic singularity (which can be solved by the use of log-
arithmic quadratures). Moreover, it presents and oscillatory behavior for

high frequencies or integration points far from the source.

The time domain BEM formulation involves Riemann convolution prod-
ucts which, in this work, has been approximated by the Lubich’s quadrature
formula. The solution of several problems reveal a high stability in the for-
mulation as well as an independency between spatial and time discretization,

not present in other formulations.

For the computation of the fracture parameters, a quarter point dis-
continuous element at the crack tip has been used. This element present
a collocation point very close to the crack tip, where displacements and

electric and magnetic potentials have known expressions in terms of the
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extended stress intensity factors. The substitution in them of the extended
displacements in the nearest collocation point to the crack tip allows to ob-
tain the fracture parameters with almost no computational cost and a great
accuracy, as it has been demonstrated by comparing the results obtained
numerically with the results available in the literature obtained by different

methods.

Most of the work has been carried out under the assumption of imper-
meable cracks. However, an algorithm for the study of semipermeable and
permeable cracks subjected to static loads, has been designed and imple-
mented in the last section of this thesis. The analysis of the results obtained
considering other crack faces boundary conditions reveal differences, which
might be considerable, in the fracture parameters depending on the con-
dition adopted. However, it suggests that the approximated impermeable
condition is good enough to obtain a first approximation of the mechanical
energy release rate, which may be involved in a fracture criteria, when air
or vacuum is considered between crack surfaces. As a matter of fact, that
magnitude, as well as electric and magnetic energy release rates, decrease

when the permittivity and/or permeability of the medium is increased.

In this work, a X-FEM model has been developed as well for the study
of static fracture. For that purpose, new crack tip enrichment functions
have been obtained, and some problems solved, comparing the results with
those obtained with the BEM formulation also presented. A good accuracy
is obtained in the fracture parameters, which have been obtained by means

of the equivalent domain form of the Interaction Integral Method.

Let us now remark that all the models developed in this work may
be used for the analysis of cracked anisotropic and piezoelectric solids, by

vanishing the corresponding coupling properties.
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7.2 Future Developments

This work presented robust and accurate numerical models for the study of
fracture mechanics problems in 2-D magnetoelectroelastic media. However,
some issues are still open.

The most direct future development which can be performed in the
model, might be considering different crack faces boundary conditions in
dynamic problems, adopting the more realistic condition in transient peri-
ods. Recently, Landis (2004) suggested the so called energetically consistent
boundary conditions for piezoelectric solids, which improved the crack faces
boundary conditions obtained by the capacitor analogy proposed by Hao
and Shen (1994). This new condition leads to the presence of mechanical
tractions on the crack surfaces. An extension of this model and a com-
parative study with the results obtained in this work should be a future
work.

As it has been already said, time-harmonic fundamental solution presents
an oscillatory behavior which makes more difficult to obtain results for
high frequency and/or far field. In this sense, it is necessary to obtain an
asymptotic far field solution as an extension of the obtained by Saez and
Dominguez (2000) for transversely isotropic materials.

Both BEM and X-FEM have been proved to be accurate numerical tools
for the study of crack growth in cracked solids. However, no fracture criteria
is unanimously accepted for magnetoelectroelastic solids. In this sense, the
performance of extensive experimental tests are definitely needed to advance
in the fracture knowledge of magnetoelectroelastic materials.

The X-FEM model may be improved in a double way. First, by ob-
taining more compact crack tip enrichment functions based on the matrix

form (Stroh’s formalism) of the asymptotic displacement fields. This is an
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already started work by the author. Moreover, the model may be improved
by the use of blending elements, as well as by incorporating second order
terms to the asymptotic expressions of the fields (T-stress), in order to de-
velop a Hybrid Analytical and X-FEM (HAX-FEM) model in an similar
way as done by Réthoré et al. (2009) for isotropic materials. With such
improvements, the approximation of the ECOD may be accurate enough to
obtain the fracture parameters by a direct evaluation, what would reduce

the computational cost in the postprocessing.
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Appendix A

Definition of the

two-dimensional characteristics

The two dimensional material parameters introduced in section 2.4.3 follow

from the three dimensional material properties defined in section 2.2.

an = % (c22(eazy22 — B3,) + €22h3y + 2263y — 202e22h2)

aj2 = _% (c12(eav22 — B32) + exnharhoz + y2ze21e22 — Baa(eanhaz — ezohan))
ba1 = % (v22(caze21 — cr2€22) — Boz(cazhar — c12haz) + hoo(hozear — horez))
do1 = _% (e22(c12ha2 — Cazho1) + Baa(cazen — cizen) + eaa(hazea — haiean))
agy = % (vaz(criens + €3)) + ea2h3y — Baa(c11fz + 2e21h21))

bos = _% (v22(c12€21 — c11€22) — Baa(cr2ha1 — c11hao) + hai(hazear — haress))
dag = % (e22(c11hoz — c12ho1) + Paz(crzear — crien) + ea1(hazear — haenr))
a3 = % (men — )
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1

bis = 5 (v11e13 — hizBr)
diz = —% (Br1e13 — hazer)
011 = é (vi1css + his)

Ay = —é (Br1css + erzhis)

1
022 = 1 (v22(c11c22 — cly) + c11h3y + cash3) — 2c12h12ha2)
1
Agy = ) (Ba2(c11c22 — ¢1y) + crieazhas + cazeathar — cia(ezzhar + eathss))
1
(= B (e11c33 + €i3)

1
2=~ (e22(cricon — €l) + c11€35 + cone3) — 2c12€12€22)

where the Voigt notation has been used and

A =(c1122 — 1) (€22722 — B335) + €3, (22722 + h3y) + €39(c11722 + h3))
+ 2622(e21(c12has — ca2ho1) + eaa(ci2ho1 — c11h22))

— 2eg1€92(C12722 + harhas) + €aa(c11h3y + caoh3 — ciahaihas)

and

B = eq1(cszmn + his) — Bii(essBin + 2e13has) + yiels



Appendix B

Radon transform

The Radon transform of an arbitrary function f(x) is defined by

f(s.m) = R{f(x)} = / F(05(s — - x)dx,

(B.1)

where s = n-x is a real transform parameter and n is a unit normal vector.

The Radon transform is an integration of f(x) over n-x = s, i.e., over a

surface for 3-D and along a line for 2-D.

The inverse Radon-transform is given by

f(x) =R~ {f(s,n)} = / f(n-x,n)dn,

where
—#Bgf(s, n), for 3-D
0,

Fls.m) =K {f(sm)} = 1 [ %S@n) ;o 2D

(B.2)

(B.3)

The inverse Radon transform R* defined by (B.2) is a surface integral over

a unit sphere in 3-D case and a line integral over a unit circle in 2-D case.

The main properties of the Radon transform defined in equation (B.1)

are
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A Homogeneity
~ 1~

f(es,en) = Zf(s,n)

B Linearity
R{cif +cagl = e1f + 2

C Transform of derivatives
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