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The edge of stationary, radially expanding liquid sheets or receding rims bordering plane
sheets is naturally indented. It presents a collection of cusps at the extremity of which
the liquid constitutive of the sheet concentrates, and is expelled. We give an experimental
description of these cups for a stationary, flat, non viscous Savart sheet. We demonstrate
how these cusps are the structures which accommodate for both mass and momentum
conservation at the sheet edge, we compute their shape, their number around the sheet,
and the remnant momentum carried by the ejected liquid.

1. Introduction

Among the configurations proposed by Felix Savart to study the nature of microscopic
liquid cohesion and its consequences on the sensible world, is that of a jet impacting
normally onto a small solid disk (Savart 1833). At impact, the jet deviates in an axi-
symetric fashion and feeds a radially expanding sheet which is bordered, at some distance
from the impact location, by a rim collecting the liquid. In the absence of interaction with
the surrounding ambient medium (Huang 1970; Villermaux & Clanet 2002; Lhuissier &
Villermaux 2009) or heterogeneous hole nucleation processes (Lhuissier & Villermaux
2013) altering the ballistic motion of the liquid in the sheet, this distance, namely the
stable radius of the sheet has been, following Taylor (1959), conveniently represented
as an equilibrium between the inertia of the flow and capillarity retraction (Clanet &
Villermaux 2002; Villermaux et al. 2013). The sheet rim is, in this vision, assimilated to
a stagnation point: For a jet with diameter d and velocity u, owing to mass conservation
and to the fact that the liquid velocity is preserved along the radial direction r, the sheet
thickness h is

h =
d2

8r
. (1.1)

Balancing the capillary retraction force 2σ with the incident momentum flux ρhu2 (Taylor
1959; Culick 1960), one obtains the radius RTC where all the liquid inertia would be
arrested as

RTC =
ρu2d2

16σ
=

We

16
d, (1.2)

where we have introduced the Weber number We = ρu2d/σ.
If this simple picture offers a good representation of the typical size of the sheet and of

its dependence on We, it is also known to be not exactly accurate (Clanet & Villermaux
2002), the mean sheet radius being observed to be somewhat smaller than anticipated in
equation (1.2), and to be at odd with several crucial phenomena: It, first, disregards the
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Figure 1: Perpendicular view of a water Savart sheet illustrating the regularly spaced
cusp-shaped indentations at the edge. The water impacts in O and flows radially until it
collects in the liquid rim which borders the sheet. ‘Nodes’, i.e. bulges in the rim, form at
the stagnation points of the flow, at the local minima Rn of the sheet radius. The liquid is
evacuated from the sheet at the extremities of the cusps, at the local maxima Re smaller
than the Culick-Taylor radius RTC. The white dot in O has the same diameter d = 3 mm
as the jet, and the impact velocity is u = 2.91 m s−1. This corresponds to a Weber number
We = ρu2d/σ = 353, where ρ = 998 kg m−3 and σ = 72 mN m−1 respectively stand for
the density and the surface tension of the liquid.

actual shape of water sheets, which are obviously not circular, as successively observed
by Savart (1833), Taylor (1959), Huang (1970), Clanet & Villermaux (2002), and as
illustrated in figure 1. Second and more fundamentally, this picture ignores the crucial
question of the mass balance at the rim, that is the mechanism by which the liquid is
evacuated from the sheet, at its edge. This mechanism must be intrinsically coupled to
the details of the sheet shape, and it is clear that a pure stagnation point representation,
if it satisfies momentum balance, eludes the question of mass conservation. Moreover, in
the case of negligible viscosity we are considering here (see Villermaux et al. (2013) for
the corresponding corrections), the mechanism by which the liquid is evacuated not only
influences the circularity, but also determines the remnant radial velocity of the liquid
being evacuated at the sheet edge, which has been shown to be a small but non vanishing
fraction of the initial velocity in the sheet (Clanet & Villermaux 2002), suggesting that
a naive stagnation point vision is ill founded.

These fundamental questions are precisely the motivation for the present study. We
first describe in §2 the shape and the dynamics of the liquid structures bordering the sheet
rim. We then rationalize their (stationary) shape, and total number around the sheet,
in §3. The corresponding model predicts the number of sites of evacuation of the liquid,
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together with its remnant velocity as a function of the Weber number, and explains why
the radius at which evacuation is made is smaller than RTC. Perspectives are outlined in
the conclusion in §4, as well as the influence of liquid viscosity, and of gravity.

2. Phenomenology

The liquid sheet is formed by letting a vertical water jet, with a diameter d = 3 mm,
impacting perpendicularly onto a solid target. The target is a flat disk, with a diameter
of 6 mm, surrounded by a thin corona whose vertical offset with respect to the disk
surface is tuned so as to ensure a right-angle deflection of the jet at impact (see Clanet
& Villermaux 2002). This forms a flat horizontal liquid sheet with radial flow provided
We� 1, as shown in figure 1, where the sheet is seen from the top. The phenomena we
describe here are insensitive to ambient air as long as We < 1000.

The sheet is certainly not exactly circular. Its edge develops regularly spaced cusped-
shaped indentations which result from the self-adaptation of the rim to the liquid flow
which transits through it.

The liquid is mainly evacuated at localized ‘ejection sites’, which are approximately
evenly distributed along the sheet edge. These sites are located at the tips of the inden-
tations, at the local maxima of the sheet radius. On average, they lay on a circle with
radius Re, which is always smaller than the Taylor-Culick radius RTC. At these sites, the
liquid is drained out of the rim by outward jets visible in figure 2, which readily fragment
into drops, as seen in figure 1. The existence of this radial motion demonstrates that
not all of the momentum of the liquid is dissipated at the edge of the sheet, as already
reported by Clanet & Villermaux (2002): The liquid is evacuated with a small, but finite,
remnant velocity.

At the base of the indentations, that is at the minimum radius between two adjacent
ejection sites, the rim develops quasi-stationary bulges, which we call ‘nodes’ because of
their shape, as shown in the magnified views of figure 2. These nodes are on the average
located at a radius Rn such that (figure 1)

Rn < Re < RTC. (2.1)

The nodes connect the two inclined portions of the rim in which the liquid flows towards
the neighboring ejections sites. They are actually the nub of the problem we are consid-
ering, since their number sets the number of ejection sites, and their positions influence
the size of the sheet. Their particular importance arises from the fact that they are the
only portions of the rim which are perpendicular to the radial flow of the sheet; the other
portions being either inclined, or the base of a jet ejecting drops. The nodes are therefore
the only stagnation points of the flow at the edge.

The indentations are not stationary. They are dynamic structures which evolve in time,
are born, move and die randomly along the sheet edge. However, their lifetime is much
longer than the transit time of the liquid particles flowing through them (see figure 2c),
and for these particles, they thus appear as frozen stationary structures, an observation
we will use in §3. The number of these indentations is not fixed. It fluctuates slightly,
as a consequence of the permanent annihilation and inception of new nodes, around a
mean value N , function of the Weber number. Figure 3 illustrates this dynamics. When
two adjacent nodes approach too much from each other, they merge, and N decreases
by a unit (figure 3a). When two adjacent nodes get too distant from each other, a new
node forms on one of the large corrugations which develops on the long rim portions
that separates the nodes from the next ejection site, and N increases by a unit (figure
3b). The newly nucleated node subsequently grows and recedes toward the sheet center
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Figure 2: (a) Details of the sheet edge, and definition of the length scales. The liquid
rim attached to the edge develops a quasi-steady shape with regularly spaced nodes and
ejection sites (We = 592 and the image height is 38.6 mm). (b) Magnified view of a
node showing the control sections I, II and III of the momentum balance at the node.
The velocity components parallel and perpendicular to the rim are u sin θ and u cos θ
respectively (We = 579 and the image height is 13.5 mm). (c) Superposition of twenty
five images equally spaced in time by 200µs. The trajectory of the dark small particles
in the sheet illustrate the constancy of the liquid velocity, in norm and direction, up to
the rim (We = 303 and the image height is 36.7 mm).

until it reaches the same radius Rn as the other nodes. The number N is determined
by the density of nodes for which the annihilation rate equilibrates the inception rate.
The equilibrium is stable, and the global annihilation/inception dynamics maintains a
self-sustained population of nodes at the edge of the sheet.

We emphasize that these indentations are intrinsic to the dynamics of the sheet edge
and are not the result of any artificial forcing. The fact that they have random and moving
locations on the edge means that they do not result from some asymmetries in the jet or
in the impact disk, unlike in the study of Taylor (1959), where the location and number
of the cusps was forced by imposing large amplitude azimuthal modulations of the sheet
thickness (see also Dressaire et al. (2013)). This was checked by rotating either the jet,
the impact disk, or both, and noticing that the indentations behave independently.

3. The structure of the cusps

The indentations of the sheet edge described in figure 2 are quasi-steady structures
composed by a node located in r = Rn plus the associated two oblique rim portions
departing from it. These rim portions, oriented at an angle π/2 − θ with respect to
the direction of the incident flow (direction e2), collide at a radial position r = Re.
The merging of each pair of rim portion coming from adjacent nodes create N = 2π/φ
ejection sites from which the liquid is expelled radially outwards, where φ denotes the
angle between two consecutive nodes (see figure 1).
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Figure 3: Annihilation and inception of the nodes. The time-lapse between successive
images is 18.5 ms and the height of each image is 12.7 mm. (a) When two nodes approach
too much from each other, they either merge, or one of them disappears due to the close
interaction with the other node (We = 463). (b) When neighboring nodes become too
distant from each other, a new node appears due to the corrugations which develop over
the long rim portion (We = 569).

To understand the structure of a cusp, it is first essential to note from figure 2c that,
upstream of the nodes, fluid particles follow a purely radial, ballistic trajectory. There is
no feedback coupling of the sheet edge shape, orientation or position, on the flow in the
sheet. The rim portions are oblique shock waves, and the local equilibrium describing
a cusp overall structure, namely Rn and φ, solely relies on the unperturbed velocity u
and sheet thickness h(r) in its vicinity, as given in equation (1.1). In order to determine
this structure, we now consider a control volume containing a node and delimited by the
sections I, II and III sketched in figure 2b. The net force exerted at surfaces I-III orientates
the liquid momentum flux entering this volume, through II, towards the direction of the
rim, emanating from III. Calling hn = h(Rn), 2L and D, the sheet thickness at the radial
position of the node, the node width, and its diameter in the plane of symmetry (see
figure 2c), respectively, the forces involved in this balance are as follows:
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Figure 4: (a) Half-width L and diameter D of the node (see figure 2) versus We. (b)
Angle θ of the rim at the nodes (as defined in figure 2) versus We. The dashed line
represents θ = 26.6◦ derived in equation (3.6). The inset shows that Rn tends to Re as
We increases.

(a) The net force at I, that is, across the plane of symmetry of the node, is the
sum of the capillary force along the node perimeter −πDσ e1 and of the pressure
force (πD2/4)pII e1, where pII ' 2σ/D denotes the liquid pressure in the node.
(b) The momentum flux and the capillary force at II are respectively given by
ρu2Lhn e2 and 2σL (e1 + e2), where it has been taken into account that the
projected lengths of surface II on the directions e1 and e2 are both approximately
of order L.
(c) Lastly, the capillary force and the pressure force in the rim, at III, are re-
spectively πδσ (sin θ e2 + cos θ e1) and −(πδ2/4)pIII (sin θ e2 + cos θ e1), where δ
is the diameter of the rim and pIII ' 2σ/δ is the capillary pressure in it. The
momentum flux through III is yet an unknown m to be determined as a result
of the momentum balance at the node.

Figure 3 shows that the bulge at the node is a long lived structure slowly growing
from the capillary destabilization of the rim. The relative dimensions of the bulge L
and D must thus be such that it is a marginally stable object with respect to capillary
destabilization in the sense of Plateau, and therefore (Plateau 1873)

L ' πD/2. (3.1)

This is in fair agreement with the measurements of figure 4a showing that L and D are
of the same order of magnitude, and are both much larger (typically 100 times larger)
than the sheet thickness hn to which the bulge is attached.

The fluid particles entering the bulge are reoriented in the direction of the oblique rim
portions. Mass conservation thus provides the value of the rim diameter δ as

uhnL ' (πδ2/4)u sin θ, (3.2)

since the velocity in the rim at the bulge exit is approximately given by u sin θ. Due to
the fact that the contributions of both the capillary and the pressure forces at section
III can be neglected with respect to those at section I, an approximation which will be
justified a posteriori, the momentum exiting the node through III is then, at leading
order,

m ' ρu2hnLe2 − 2σLe2 + 2σLe1 − πDσe1 +
πD

2
e1

= ρu2hnLe2 − 2σLe2 + σLe1.
(3.3)

Now, θ and hn are also linked by the condition that the momentum flux ρu2hn cos2 θ
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absorbed per unit length of the rim is approximately balanced by the capillary forces
2σ acting perpendicularly to the rim; in other words, the rim orientation satisfies the
condition for a stationary inclined shock. This is the Taylor (1959) ‘stagnation point’
representation, omitting the contribution of the centrifugal forces and rim bending due to
the accumulation of momentum from the incoming sheet flow, whose neglect is justified
below. Thus, within relative errors to be determined, the momentum balance in the
direction perpendicular to the shock yields

cos2 θ =
2σ

ρu2hn
, or tan θ =

√
ρu2hn

2σ
− 1 . (3.4)

Consequently, since the momentum flux exiting the node has the same direction as that
of the rim, it follows from equations (3.3) and (3.4) that

tan θ =
m · e2
m · e1

=
ρu2hn/2σ − 1

1/2
=

tan2 θ

1/2
.

(3.5)

This gives

tan θ = 1/2, that is θ ' 26.6 , (3.6)

a value for the cusps angle at the node θ which matches the measurements reported in
figure 4b. Finally, making use of relations (1.1), (1.2), (3.4) and (3.6), the radial position
of the node is expressed as a function of the Taylor-Culick radius as

1

cos2 θ
=

ρu2d2

16σRn
=

5

4
, (3.7)

which yields the radius of the nodes

Rn =
4

5
RTC, (3.8)

representing well the measurements in figure 5a. The relative errors made in this carica-
ture are weak: Since sin θ ' 1/2, it follows from equation (3.2) that δ/L '

√
(8/π)hn/L '

0.16 (see figures 2 and 4). Therefore, the ratio in each direction e1 and e2 of the capil-
lary forces acting at the node surface III, πδσ (sin θ e2 + cos θ e1), with respect to the net
capillary force acting at surfaces I and II, namely, −2σL e2+σL e1 are given respectively
by δ/L (π/2) cos θ ' 0.2 and δ/L (π/4) sin θ ' 0.06, justifying why they were neglected
in equation (3.3). The centrifugal force in the balance of momentum perpendicular to the
rim at the bulge exit is ρu2 sin2 θ δ2/Rn ∼ |m|/Rn ∼ σL/Rn. Thus, since the capillary
force acting normally to the rim is 2σ, the relative error made in the balance (3.4) is of
order L/(2Rn)� 1 (see figure 1), further supporting the approximation made.

We now turn to the ejection radius Re. Assimilating the rim departing from a node
to a straight line (the actual shape is slightly bent inward, see figure 1 and Clanet &
Villermaux 2002) ending at a radius Re, the angle φ in figure 1 simply expresses as a
function of the ratio Rn/Re according to

Re

Rn
=

cos θ

cos(θ + φ/2)
. (3.9)

If nothing destabilizes it before that point, the rim will extend down to the unsurpassable
Taylor-Culick radius. Imposing, with no justification at this stage, Re = RTC, and making
use of Rn/RTC = cos2 θ from (3.8), equation (3.9) reduces to

cos(θ + φ/2) = cos3 θ. (3.10)
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Figure 5: (a) Average radius of the nodes and of the cusps extremities versus We. The
yellow plain line shows the Taylor-Culick radius. The red dashed line is (4/5)RTC from
equation (3.8). (b) Number of sites of ejection at the edge of the sheet versus We. (•)
present study, (2) data from figure 12 in Clanet & Villermaux (2002).

With θ ' 26.6◦, this yields φ ' 35◦ and N = 2π/φ ' 10. The measurements of the
number of cusps N shown in figure 5b are somewhat consistent with this value, at least
in order of magnitude: there are indeed of the order of 10 cusps around the sheet, but
what figure 5b also shows is a distinctive increase of N with We.

The reason for this discrepancy is that the ejection radius Re is not RTC, as seen in
figures 1 and 5a. The liquid is ejected upstream of RTC because, as can be appreciated
from figures 2b and 3, the growth of capillary perturbations along the rim breaks the
latter before it has the chance to reach the Taylor-Culick radius. The rim capillary
perturbations grow with a characteristic time τ ∼

√
ρδ3/σ, that is, considering the

proportionality of δ to hn suggested by figure 4a and equation (3.2),

τ ∼
√
ρh3n
σ
. (3.11)

Right after exiting the node, the perturbations are convected along the rim with a ve-
locity u sin θ (this velocity is further altered since the rim keeps accumulating mass and
momentum down to the ejection site, see e.g. Bremond & Villermaux (2006)). The arc
length between the node and the position where the rim has lost its integrity by capillary
instability (and therefore sheds mass, thus defining Re) is thus expected to decrease with
the Weber number as

u sin θ τ ∼ dWe−1, (3.12)

where equation (3.4) has been used.
The trend of equation (3.12) is in qualitative agreement with the observation shown

in the inset of figure 4b, indicating that Re tends towards Rn as We increases. Since
equation (3.9) expresses that φ decreases for increasing Rn/Re, this explains why the
number of cusps N is a growing function of the Weber number: the capillary instability
limits the length of the rim earlier for larger We.

This capillary instability is, furthermore, appreciably excited by the strong agitation in
the rim itself which results from the dissipation of the mechanical energy it absorbs. The
hieratic motions of the bulge at the node are for instance obvious in figure 3. The rate of
energy dissipation u′3/D, per unit mass ρLD2 of the bulge, defines a typical turbulent
velocity u′ which is, equilibrating the kinetic incident energy from the sheet with that
dissipated at the bulge location, such that

1

2
ρu2hnLu ∼ ρD2L

u′3

D
, (3.13)
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hence

u′ ∼
(
σu

ρD

)1/3

. (3.14)

We have already noted in equation (3.1) that the bulge aspect ratio L/D is of order unity,
since it is a marginally stable structure with respect to the rim capillary instability. We
can now estimate its absolute size, or at least give an upper bound of it: It must be such
that its internal velocity fluctuations do not break it. Therefore, the Weber number Wec
based on D and u′ should be at most of order unity, i.e.,

Wec =
ρu′2D

σ
= O(1). (3.15)

Consequently, by making use of hn = 2σ/(ρu2) × RTC/Rn from (3.4), one anticipates
that

D

hn
∼ Rn

RTC
We3c , (3.16)

which is essentially a constant, as seen in figure 4a.

4. Conclusion and extensions

The above relation in equation (3.16) completes the description of the cusps bordering
stationary, radially expanding liquid sheets, for which we have successively given the
radius of the nodes Rn, the shape of the bulges at the nodes L/D, their absolute size
D, the distance between the nodes and the radial extremity of the cusps Re (where the
sheet disrupts into drops), and the number of ejection sites N .

These cusps are the structures which accommodate for both mass and momentum
conservation at the sheet edge when its radius (Rn or Re) is steady. They are not present
on a rim recently formed by, for example, cutting a sheet along a straight line (Lhuissier
& Villermaux 2011), or piercing it by a hole. In this early dynamics, the rim collects the
liquid of the sheet as it recedes, before instabilities (capillary, centrifugal) destabilize it.
The cusps must thus be understood as the saturated, ultimate late stages form of the
transient natural instabilities the rim undergoes as soon as it is formed, and for which
figure 3 illustrates the dynamics. To this respect, they bear obvious similarities with the
cusps formed on premixed flame fronts (Michelson & Sivashinsky 1982; D’Angelo et al.
2000; Aldbrege & Killingsworth 2004), and in general with fronts which propagate normal
to themselves and suffer a geometric, Eikonal type of focussing, an analogy which will
probably be worth pursuing.

A last, and important consequence of the present findings is the direct prediction of
the ejection velocity of the liquid when it is expelled from the sheet at Re. Fluid particles
flow with an approximate velocity u sin θ at the rim junction with the node which slightly
varies up to the ejection site due to the mass and momentum accumulation along the
rim. This effect is also partly responsible for the rim portions from opposite sides to be
inclined with an angle smaller than θ (see figure 1). At the extremity of a symmetric
cusp, the liquid is thus expelled with a velocity of the order but smaller than u sin2 θ
(the collision of the two rims is inelastic). The average radial velocity ue at which the
jets (readily breaking into drops) are ejected from the sheet is thus, using equations (3.7)
and (3.8)

ue
u

. 1− Rn

RTC
=

1

5
. (4.1)

This is in agreement with the measurements in Clanet & Villermaux (2002) showing
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that the ratio of velocities in equation (4.1) indeed approaches 1/5 by slowly increasing
with increasing We, consistently with the fact that Rn approaches Re as We increases
(see also figure 4b). That ejection velocity is, however and interestingly, practically zero
with higher viscosity liquids (see Villermaux et al. 2013). This fact is consistent with the
determinant role invoked here that is played by the capillary instability, not only because
it limits the rim extension once the cusps are formed, but also because it is the source of
the cusps nucleation, as explained above. If this instability is damped by viscosity (see
e.g. Eggers & Villermaux 2008), the rim has no chance to grow thickness modulations,
i.e. bulges, which are, as figure 3 suggests, necessary for cusps formation. This is why the
sheet reaches its maximal extension, expelling the liquid with vanishingly small remnant
radial momentum when the liquid viscosity prevents capillary destabilization of the rim.

A similar role is surprisingly played by gravity: our sheet is formed perpendicular to
gravity. If it were slightly bent upwards, the number of cusps would reduce, and conversely
if it were bent downwards. We suspect that gravity damps (conversely hastens) the rim
capillary instability through a Rayleigh-Taylor kind of mechanism, a specific study left
for future research.

We acknowledge financial support from Institut Carnot STAR under Project AAP-
2013, and from the Spanish MINECO under Project DPI2011-28356-C03-01.
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