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Introduction

C’est par la logique qu’on démontre, c’est par l’intuition qu’on invente.

(It is by logic that we prove, but by intuition that we discover).

Henri Poincaré, Science et Méthode, 1908.

This year is the 100th anniversary of the death of Jules Henri Poincaré (Nancy, France, 29 April

1854-Paris, France, 17 July 1912), the founding father of Dynamical Systems theory. In mathematics,

he is known as The Last Universalist, since he excelled in all fields of the discipline during his life.

As it is well-known, the motivation of part of his work was the Celestial Mechanics [82, 83] and

more specifically, the three-body problem. Within these more than 100 years, the Dynamical Systems

theory has become one of the most important topics of interest for the scientific community. This

is mainly due to the broad field of application. Although the first applications of Poincaré’s ideas

were in engineering, more concretely in electronic circuits and control theory in the 20’s (Appleton

and Van der Pol [3, 4, 93], Cartan [27], Liénard [69], Andronov and Pontryaguin [1, 2]), nowadays

the applications go from engineering to biomathematics, (such as neural networks [63, 95]) passing

through financial problems and social behaviors [84].

Among dynamical systems, in the last years we have attended to the expansion of the field

of Piecewise-Smooth dynamical systems. First examples of the use of piecewise-smooth functions

(in particular, piecewise linear) are found in the 1937 book of Andronov, Vitt and Khaikin [1],

where they used it to model electronic, mechanical and control systems (saturation functions,

impacts, switching...). Since then, the capability of piecewise-smooth systems to model a multitude

of phenomena has been proven. In the 2008 published book of Mario di Bernardo et al. [35] they

revise the state of the art of piecewise-smooth systems and we can find a huge number of references.
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iv INTRODUCTION

In the framework of piecewise-smooth dynamical systems, there exists a class that is worth

mentioning: the Piecewise Linear (PWL) Systems. As we have just said, the first examples of their

use can be found in [1]. The importance of PWL systems is due, inter alia, to their ability to model

faithfully real applications (neuron models [5, 33, 86], Chua’s circuit [81], Colpitts’s oscillator [74],

Wien-Bridge oscillator [62, 76]), to reproduce bifurcations of differential systems and to show new

behaviors, impossible to obtain under differentiability hypothesis (the behavior around the Teixeira

singularity [90, 91], the continuous matching of two stable linear systems can be unstable [26]...).

Furthermore, although the system can be integrated in each zone of linearity, which allows us to

obtain explicitly some geometric and dynamical basic elements, it is not possible to obtain the

general solution of the system and the classical theory of differential systems cannot be applied to

PWL systems. Therefore, it is necessary creating a new theory to tackle PWL systems.

The first step to analyze PWL systems is their simplification and reduction to a canonical form

[13, 22, 45, 60, 61]. In this thesis, we focus our attention, mainly, on two-zonal three-dimensional

continuous and planar discontinuous PWL systems. The work is split into six chapters. In the first

section of the introductory Chapter 1, we show the canonical forms of the systems object of study

along this work and we do it by classifying the systems from the point of view of the control notions

(observability and controllability), as it was performed in [13, 22].

In a second step, the dynamical behavior must be studied. The analysis begins usually by finding

the equilibrium states, i.e., the equilibrium points of the system and their stabilities. After that,

the objective is the searching of periodic behaviors, that is, periodic orbits. This is neither an easy

task in a differential system in general, nor in a piecewise-smooth system. A usual technique is the

construction of the so-called Poincaré map, which in the case of PWL systems is defined through

the composition of some transition maps, the Poincaré half-maps [56, 59, 72], defined in each zone

of linearity. The second section of Chapter 1 is devoted to defining the Poincaré map for continuous

PWL systems.

As we have just commented, the analysis of periodic orbits in piecewise-smooth systems is not

obvious. One of the aims of this essay is to shed light on this problem, by using different techniques

to analyze the existence, bifurcations and stabilities of periodic orbits in planar and three-dimensional

PWL systems.

To find periodic orbits in planar smooth systems it is well-known the Melnikov theory [8],

sometimes called Malkin-Loud theory [73, 75, 78]. The most important property that a family of

systems must fulfill to apply the Melnikov theory is the existence of a system of the family having a

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.
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continuum of periodic orbits, homoclinic connections or heteroclininic cycles. The Melnikov method

was generalized to planar continuous piecewise-smooth systems in [13]. In Chapter 2 of this thesis,

we generalize the Melnikov theory to hybrid systems (mixture between a flow and a map [35]) and we

apply it to discontinuous PWL systems with two zones of linearity and to continuous PWL systems

with three zones.

On the other hand, we will consider three-dimensional homogeneous continuous PWL systems. In

such systems, when only equilibrium point is the origin, the most significant question is the stability

of this equilibrium point. This is not at all an easy question and the answer can be counterintuitive.

In fact, the continuous matching of two stable linear systems can be unstable [26]. As we explain

in the last section of Chapter 1, the stability of the system is related to the existence of a type of

invariant objects called invariant cones. The analysis of their existence, bifurcations and stabilities is

other objective of this thesis. Specifically, in Chapter 3, we analyze the invariant cones of a family

of observable three-dimensional continuous PWL linear systems by studying the periodic orbits of a

family of planar hybrid PWL systems, where the Melnikov theory of Chapter 2 can be applied.

The original Melnikov theory was developed for smooth planar systems, and in Chapter 2 we have

generalized it to a class of non-smooth systems. In Chapter 4 we adapt it to a class of continuous

three-dimensional systems. As it has been commented, one of the properties that a family of systems

must fulfill to be able to adapt the ideas of the Melnikov theory is the existence of a system of the

family having a continuum of periodic orbits. We have found an appropriate family of non-controllable

systems in Chapter 4 and we have applied the ideas of the Melnikov theory to analyze the existence

of periodic orbits.

The existence of invariant cones in observable PWL systems has been analyzed, inter alia, in

[18, 21, 25]. However, as far as we know, the problem has not been tackled for the non-observable case.

Chapter 5 begins with the analysis of invariant cones in three-dimensional continuous homogeneous

non-observable PWL systems. Among these systems, we set the conditions for the existence of a

system having a cone foliated by periodic orbits. Beyond the Melnikov theory, there exist other

methods to find periodic orbits. For instance, in Chapter 5, we have adapted the method of Chapter

14 of [31] for analyzing the periodic orbits of the continuum that remain after a perturbation which

makes the system observable and non-homogeneous.

The analysis of the existence of periodic orbits or invariant cones by the usual techniques in

PWL systems, for instance, by computing the fixed points of the Poincaré map, needs the transversal

intersection of the orbits (respectively, cones) with the separation boundary between the linearity

Soledad Fernández García
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zones. With the theory and methods that has been developed in this thesis, we have been able to

study the existence of periodic orbits and invariant cones with tangential intersection to the separation

boundary. Between the periodic orbits with tangential intersection with the separation boundary, we

can distinguish two different cases. In a first case, the orbit remain locally in the same zone of

differentiability. This case has been analyzed along the work in chapters 3 and 4. The other possible

case is when the tangent orbit crosses the separation boundary. In Chapter 6, the dynamical richness

that this situation fosters has been shown by analyzing a three-dimensional continuous PWL system

with two zones of linearity, which is considered a PWL version of the well-known Michelson system

[77], which possesses a periodic orbit with two intersection points with the separation plane, which

crosses it with tangential intersection. In particular, it will be shown that the presence of this orbit

is the necessary germ for the existence of the so-called noose bifurcation [58]. The noose bifurcation

occurs when the curve of the family of periodic orbits that appears from a period-doubling bifurcation

and the curve of the original family of periodic orbits come together and annihilate at a saddle-node

bifurcation. Therefore, two of the most common bifurcations of periodic orbits (saddle-node and

period-doubling) are connected by a noose-shaped curve.

To conclude the thesis, we will write a short summary and we will consider the open problems

that arise from this study.

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.



Chapter1
Piecewise Linear Systems. Basic Concepts

In this chapter, we introduce some concepts and tools that are used in the thesis. Among other

things, we will familiarize with the notation that will be employed along the work and the systems

object of study.

The chapter is outlined as follows. In a first section we introduce the main part of the differential

systems to be studied in this work. Continuous Piecewise Linear systems (later on, CPWL) are

introduced and classified from the point of view of control theory, as it was done in [22]. Moreover,

in this first section the canonical forms of planar Discontinuous Piecewise Linear systems (later on,

DPWL) is considered [45]. After that, in a second section we define a useful tool to study the

existence of periodic orbits and invariant manifolds in differential systems in general, but adapted to

CPWL systems: the Poincaré map and the displacement function. Finally, in the last section of this

chapter, we explain the motivation of studying invariant cones in three-dimensional CPWL systems

and we state the basis for their study.

Let us begin by introducing some notation. For a function

x : R −→ R
n,

t 7→ (x1(t), x2(t), . . . , xn(t))
T ,

let us denote by ẋ the derivative of x with respect to the temporal variable t.

Let ei be the i-th vector of the canonical basis of Rn and Mm×n(R) with m, n ∈ N the set

of matrices of order m × n with elements in R. Specifically, we denote Mn(R) the set of squared

matrices of order n with elements in R. By 〈·, ·〉 we denote the usual dot product in R
n and by ‖ · ‖

the euclidean norm associated to this product. Furthermore, in this work, we will use the following

notation, which will be truly useful in the systems object of study and that was previously used in

1



2 CHAPTER 1. PIECEWISE LINEAR SYSTEMS. BASIC CONCEPTS

[13].

M▽x =

{
M−x if x1 ≤ 0,

M+x if x1 > 0,

where M+, M− ∈ Mm×n(R).

1.1 Piecewise Linear Systems. Observability and Controllability.

Canonical forms

In a first subsection we introduce the CPWL systems that have appeared in the literature up to

now, by centering our attention on those that will be studied in this thesis, whose are, mainly, three-

dimensional. After that, we will introduce the canonical form of planar DPWL systems recently found

in [45].

1.1.1 Continuous Piecewise Linear Systems

Definition 1.1 It is said that the autonomous equation

ẋ = f(x), x ∈ R
n, (1.1)

defines a two-zonal continuous piecewise linear (CPWL) system in R
n if there exist a1,a2,v ∈ R

n,

with v 6= 0, A1, A2 ∈ Mn(R) and δ ∈ R such that

(a) f(x) =

{
A1x+ a1 if 〈x,v〉 + δ ≤ 0,

A2x+ a2 if 〈x,v〉 + δ > 0.

(b) A1x+ a1 = A2x+ a2 when 〈x,v〉 + δ = 0.

The hyperplane 〈x,v〉 + δ = 0 is called the separation boundary.

Later on, the set of dynamical systems satisfying Definition 1.1 will be denoted by 2CPWLn. The

separation hyperplane splits the space into two regions, in which system (1.1) is linear. We will see

in the next Proposition that doing an appropriate change of variables the separation boundary can

be transformed into the hyperplane {x1 = 0}.

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.



1.1. PIECEWISE LINEAR SYSTEMS. OBSERVABILITY AND CONTROLLABILITY. CANONICAL FORMS 3

Proposition 1.2 The CPWL system (1.1) can be written into the form

ẋ = f(x) =

{
A−x+ b if x1 ≤ 0,

A+x+ b if x1 > 0.
(1.2)

where b ∈ R
n and the matrices A+, A− ∈ Mn(R) satisfy the relationship

A+ −A− = (A+ −A−)e1e
T
1 .

Proof: Consider the Householder matrix H which verifies condition Hv = (‖v‖, 0, . . . , 0)T ∈ R
n.

The change of variable y = H
(
x+ δv/‖v‖2

)
allows us to write system (1.1) as

ẏ =





HA1Hy +H
(
a1 −A1δv/‖v‖2

)
if y1 ≤ 0,

HA2Hy +H
(
a2 −A2δv/‖v‖2

)
if y1 > 0.

Taking into account the continuity of the field we deduce, on the one hand, the coincidence of

the last n− 1 columns of the matrices HA1H and HA2H and, on the other hand, the equality

H
(
a1 −A1δv/‖v‖2

)
= H

(
a2 −A2δv/‖v‖2

)
.

By taking A− = HA1H, A+ = HA2H and b = H
(
a1 −Aδv/‖v‖2

)
, we conclude the proof by

renaming the variable y by x. ✷

In the following proposition it is stated that the existence and uniqueness of solution of the initial

value problem associated to systems of the class 2CPWLn is guaranteed. In fact, this result is also

valid for systems with m ∈ N zones of definition, mCPWLn.

Proposition 1.3 The initial value problem

{
ẋ = f(x),

x(0) = x0,
(1.3)

with f given in Definition 1.1 and x0 ∈ R
n possesses a unique solution which is defined in R.

Proof: It is sufficient to prove that function f is globally Lipschitz in R
n. (see [31, 80]).

Soledad Fernández García



4 CHAPTER 1. PIECEWISE LINEAR SYSTEMS. BASIC CONCEPTS

From Proposition 1.2, it can be assumed, without loss of generality, that the field f takes the

form (1.2).

Consider the euclidean matrix norm. For x, y ∈ R
n, the following possibilities arise.

(a) If x1 ≥ 0 and y1 ≥ 0, then

‖f(x)− f(y)‖ = ‖A+x−A+y‖ ≤ ‖A+‖ · ‖x− y‖.

(b) If x1 ≤ 0 e y1 ≤ 0, then

‖f(x)− f(y)‖ = ‖A−x−A−y‖ ≤ ‖A−‖ · ‖x− y‖.

(c) If x1 > 0 and y1 < 0, take

z =
y1

y1 − x1
(x− y) + y,

then z1 = 0 and from the continuity of f it follows

‖f(x) − f(y)‖ = ‖f(x)− f(z) + f(z) − f(y)‖ ≤

≤ ‖f(x)− f(z)‖ + ‖f(z) − f(y)‖ =

= ‖A+x−A+z‖+ ‖A−z−A−y‖ ≤

≤ ‖A+‖ · ‖x− z‖+ ‖A−‖ · ‖z − y‖ ≤

≤ max {‖A+‖, ‖A−‖} · ‖x− y‖.

Therefore,

‖f(x)− f(y)‖ ≤ K‖x− y‖ for all x,y ∈ R
n,

where K = max {‖A+‖, ‖A−‖}. That is, f is globally Lipschitz in R
n, so the initial value problem

(1.3) possesses a unique solution defined in R. ✷

In control theory, it is usual to find CPWL systems [6, 13, 22]. In particular, by taking into

consideration observability and controllability notions, the equations of the system can be simplified.

Subsequently, we give a definition of the observability and controllability concepts for 2CPWLn

systems.

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.



1.1. PIECEWISE LINEAR SYSTEMS. OBSERVABILITY AND CONTROLLABILITY. CANONICAL FORMS 5

Definition 1.4 System (1.2) is said to be observable if the observability matrix

O =
(
e1|(A−)T e1|((A−)T )2e1| . . . |((A−)T )n−1e1

)T

has full rank. The system is said to be controllable if the controllability matrix

C =
(
b|A−b|(A−)2b| . . . |(A−)n−1b

)T
,

where b = (A+ −A−)e1, has full rank.

From the notions of observability and controllability, it is possible to simplify the expression of

CPWL systems getting canonical forms. Although the analysis of these canonical forms could be

done in R
n as it was done in [13, 22], we prefer to focus our attention on the three-dimensional case.

In this work, the main part of CPWL systems to consider are in the three-dimensional space.

When n = 3 system (1.2) can be written as block matrices

ẋ = A▽x+ b =

(
a▽11 A12

A▽
21 A22

)
x+ b, (1.4)

where b = (b1, b2, b3)
T ∈ R

3, a+11, a
−
11 ∈ R, A12 ∈ M1×2(R), A

+
21, A

−
21 ∈ M2×1(R) and

A22 ∈ M2(R).

In the following proposition, which was proven in [13, 22], we obtain a canonical form for system

(1.4), under observability hypothesis. The obtained form will be called the Liénard form.

Proposition 1.5 The CPWL system (1.4) is observable if and only if the set of vectors

{A12, A12A22} ⊂ R
2 is a basis of R

2. Moreover, in such a case, there exists a linear change of

variable which takes the system to the Liénard form

ẋ =




t▽ −1 0

m▽ 0 −1

d▽ 0 0


x− a e3, (1.5)

where t▽ = tr(A▽), m▽ and d▽ = det(A▽) are the coefficient of the characteristic polinomial of

A▽ and a ∈ R.

Soledad Fernández García



6 CHAPTER 1. PIECEWISE LINEAR SYSTEMS. BASIC CONCEPTS

Note that, if system (1.4) is non-observable, it can be decoupled. For instance, if A12 = 0 system

(1.4) is, from Proposition 1.5, non-observable, and its equations are





ẋ = a▽11x+ b1,
(
ẏ

ż

)
= A▽

21x+A22

(
y

z

)
+

(
b2

b3

)
,

where variable x evolves independently.

If A12 6= 0 and the set of vectors {A12, A12A22} ⊂ R
2 is linearly dependent, then after direct

changes of variable [13, 22], system (1.4) is written as





(
ẋ

ẏ

)
=

(
a▽11 −1

a▽21 a22

)(
x

y

)
+

(
0

b2

)
,

ż = a▽31x+ a32y + a33z + b3,

(1.6)

and variables x and y evolve independently of z.

Under the hypothesis of observability, the loss of controllability also allows us to decouple the

system. Thus, if system (1.4) is observable, by following [13, 22], it is non-controllable if and only

if matrices A− and A+ share some eigenvalue. If the shared eigenvalue is real, for example λ, the

system can be reduced to 



ẋ = (t▽ − λ)x− y,

ẏ = (m▽ − t▽λ+ λ2)x− z,

ż = λz − a,

where variable z evolves independently.

If the shared eigenvalue is complex, for example α± βi, then the system can be written as





ẋ = (t▽ − 2α)x− y,

ẏ = 2αy − z,

ż = (α2 + β2)y − a,

(1.7)

where variables y and z evolve independently of x. Chapter 4 is focused on the study of the dynamical

behavior of an observable non-controllable system of the family (1.7) and a perturbation of this

situation. The main results of Chapter 4 are published in [17].
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To finish this subsection, we introduce the system that will be considered in the last chapter of

this thesis. It is the representantive of a particular class of observable systems. Specifically, we will

consider a observable reversible divergence-free 2CPWL system with a saddle-focus equilibria in each

zone of linearity.

Consider a non-homogeneous 2CPWL3 system. First, under observability hypothesis, we know

from Proposition 1.5 that the system can be written into the Liénard form (1.5). Without loss of

generality, we can take a = 1,

ẋ =




t▽ −1 0

m▽ 0 −1

d▽ 0 0


x− e3. (1.8)

By assuming that the system is time-reversible with respect to the involution

R(x, y, z) = (−x, y,−z), (1.9)

that is, it is invariant under the transformation

(x, t) 7→ (R (x) ,−t) ,

the following conditions must be fulfilled

t− = −t+, m− = m+, and d− = −d+.

On the other hand, by assuming that the system is divergence-free (i.e., volume preserving), it is

a necessary condition that t+ = t− = 0. Finally, the supposition of the existence of saddle-focus

equilibria in both zones of linearity assures that d+,m+ > 0. By writing d = d+ and m = m+,

system (1.8) must be 



ẋ = −y,
ẏ = mx− z,

ż = d|x| − 1.

(1.10)

The change of variables

X = −m3/2x, Y = my, Z = m3/2x−m1/2z and s = m1/2t,
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transforms the system into 



X ′ = Y,

Y ′ = Z,

Z ′ = 1− Y − d

m3/2
|X|,

(1.11)

where the prime stands for the derivative with respect to s. Renaming X = x, Y = y, Z = z,

d/m3/2 = c and s = t, system (1.11) is rewritten as





ẋ = y,

ẏ = z,

ż = 1− y − c|x|.
(1.12)

In the half-space {x < 0}, the system has exactly one saddle-focus equilibrium point p− =

(−1/c, 0, 0)T , since the eigenvalues of the coefficient matrix of the left zone are λ, α± iβ, with

c = λ(1 + λ2), α = −λ
2
, β =

√
4 + 3λ2

2
. (1.13)

By the reversibility with respect to R, there exists exactly one saddle-focus equilibrium p+ = −p−

in the half-space {x > 0} whose eigenvalues are given by −λ and −α± iβ.

Thus, the parameter λ > 0 can be chosen as the parameter of the family and the system can be

rewritten as 



ẋ = y,

ẏ = z,

ż = 1− y − λ(1 + λ2)|x|.
(1.14)

This system is a piecewise linear version of the well-known Michelson system [39, 58, 67, 77],

namely, 



ẋ = y,

ẏ = z,

ż = ρ2 − y − 1

2
x2,

(1.15)

where the parameter ρ is strictly positive.

Some authors have analyzed the PWL version (1.14) of the well-known Michelson system.

In [19, 20, 46] the authors studied some global connections of the PWL version of the system.

Particularly, they gave an analytical proof of the existence of a pair of homoclinic connections and a
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T-point heteroclinic cycle. On the other hand, in [15, 46] the existence of a family of periodic orbits

which intersects the separation plane at two points is proven. This family of periodic orbits ends in a

special periodic orbit which crosses tangentially the separation plane. As we have commented in the

Introduction of this work, in looking for periodic orbits which cross the separation plane tangentially,

the usual techniques for proving the existence of periodic orbits in PWL systems cannot be applied.

In [68] the authors analyze the dynamics around a flow which is tangent to the section where the

Poincare map is defined (in our case, as we will see in the next section, the separation boundary).

Chapter 6 of this work is devoted to analyzing in system (1.14) the behavior of periodic orbits beyond

the existence of a special periodic orbit which crosses the separation plane tangentially. In particular,

we find that this orbit fosters the existence of periodic orbits which intersect the separation plane at

four points and we study the bifurcations that occur. Furthermore, we will see that this tangential

orbit is the necessary germ for the existence of the so-called noose bifurcation [58]. The results shown

in Chapter 6 are gathered in [14].

1.1.2 Planar Discontinuous Piecewise Linear Systems

After the pioneering book of Filippov [38] in the 80’s and due to the demonstrated applicability

of discontinuous piecewise linear (DPWL) systems, for instance, in engineering and biomathematics

[35], a lot of works have recently appeared in the literature dealing with vector fields where continuity

at the common boundary is not assumed, for instance, [32, 36, 47, 48, 50, 54, 71, 89].

The simplest possible configuration in DPWL systems is the planar case with two linearity regions

separated by a straight line. Similarly to the continuous case, it can be assumed without loss of

generality that the separation line is x = 0, as we enunciate subsequently.

Proposition 1.6 Every planar DPWL system can be written into the form

ẋ = f(x) =

{
A−x+ b− if x < 0,

A+x+ b+ if x > 0,
(1.16)

where b+,b− ∈ R
2 and A+, A− ∈ M2(R).
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Note that, the planar DPWL systems satisfy the relationship

A+

(
0

y

)
+ b+ 6= A−

(
0

y

)
+ b−.

In studying planar DPWL systems (1.16), as usual, the first step is searching a canonical form

which copes with a sufficient broad class of systems. A first canonical form for planar DPWL systems

has been introduced in [45]. In particular, the authors deduce a Liénard-like canonical form with

seven parameters, which is able to cover all the cases where self-sustained oscillations are possible.

The main objective in dealing with planar DPWL systems in this thesis is the analysis of the

existence of periodic orbits. In this subsection we state the Liénard canonical form of planar DPWL

system introduced in Proposition 3.1 of [45],

{
ẋ = t−x− y,

ẏ = d−x− a−,
if x < 0,

{
ẋ = t+x− y + b,

ẏ = d+x− a+,
if x > 0,

(1.17)

where t+, t−, d+, d−, a+, a− ∈ R and b ≥ 0, being t+, t− and d+, d− the trace and the determinant

of the coefficient matrices in their corresponding zone of linearity.

The discontinuity of the vector field at the separation boundary x = 0 leads us to adopt the

Filippov convection (see [38]) to define the vector field at the discontinuity line. Then, the line

x = 0 is divided into two different sets, the sliding set and the crossing set. The sliding set, where

the normal components of both vector fields to the line x = 0 have different sign, is the segment

{(x, y) : x = 0, 0 ≤ y ≤ b}. On the crossing set, which is the complement of the sliding set, the

normal components of both vector fields to the line x = 0 have the same sign and so, the orbits can

be concatenated in the natural way.

System (1.17) can have sliding limit cycles, i.e., limit cycles which have some point in the sliding

set. However, in this work, we will focus our attention on crossing limit cycles, that is, limit cycles

which do not share points with the sliding set. In Chapter 2, crossing limit cycles for the DPWL

system (1.17) are analyzed by means of an adaptation of the Melnikov theory to discontinuous

systems.

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.
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1.2 Poincaré map and Displacement function

To analyze the dynamical behavior of CPWL systems, it is usual to introduce a suitable Poincaré map

defined in the separation boundary, by using some Poincaré half-maps. In the case of system (1.2),

the separation boundary is the hyperplane Π ≡ {x1 = 0}. Now, a Poincaré map for system (1.2) is

defined. A detailed study of Poincaré half-maps can be found in [56, 59, 72].

For every point p = (xp1 , x
p
2 , . . . , x

p
n)T ∈ R

n we denote by xp(t) = (xp1 (t), x
p
2 (t), . . . , x

p
n (t))T

the solution of system (1.2) with initial condition xp(0) = p. The corresponding orbit is denoted

by γp.

Let p be a point located at the separation boundary Π. We say that the orbit γp is transversal

to the boundary in the point p, if the vector tangent to the orbit γp in p is not contained in Π, i.e.,

if the following condition holds

〈e1, A▽p+ b〉 6= 0. (1.18)

Due to the continuity of field (1.2), it is satisfied that 〈e1, A−p+b〉 = 〈e1, A+p+b〉, for every

point p belonging to the separation boundary. Note that, if condition (1.18) is not verified, then p

is a point of tangency of the orbit with Π.

Let us define the left Poincaré half-map associated to system (1.2).

Definition 1.7 Assume that a point p belonging to the separation boundary Π verifies condition

〈e1, A▽p+b〉 ≤ 0. If there exists τ > 0 such that xp(τ) ∈ Π, then we define the left flying half-time

as the positive value τ−p such that xp1 (τ
−
p ) = 0 and xp1 (t) < 0 for all t ∈ (0, τ−p ). In such a case, we

define the left Poincaré half-map in the point p as P−(p) = xp(τ
−
p ).

Given a point p where the left Poincaré half-map is defined and such that both p and its image are

not points of tangency, then the left Poincaré half-map and the left flying half-time are well-defined

in a neighborhood of p and, moreover, they are analytic [72].

Now, we define the right Poincaré half-map associated to system (1.2).

Definition 1.8 Assume that a point p belonging to the separation boundary Π verifies condition

〈e1, A▽p + b〉 ≥ 0. If there exists τ > 0 such that xp(τ) ∈ Π, then we define the right flying

half-time as the positive value τ+p such that xp1 (τ
+
p ) = 0 and xp1 (t) > 0 for all t ∈ (0, τ+p ). In such a
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case, we define the right Poincaré half-map in the point p as P+(p) = xp(τ
+
p ).

Analogously, given a point p where the right Poincaré half-map is defined and such that both

p and its image are not points of tangency, then the right Poincaré half-map and the right flying

half-time are well-defined in a neighborhood of p and, moreover, they are analytic [72].

From the Poincaré half-maps, we define the Poincaré map associated to system (1.2).

Definition 1.9 The Poincaré map P : Π → Π associated to the CPWL system (1.2) is given by the

composition of both Poincaré half-maps, namely,

P = P+ ◦ P−.

Note that, the Poincaré map associated to system (1.2) is well-defined in a point p ∈ Π verifying

〈e1, A▽p+b〉 ≤ 0 if the left Poincaré half-map in p and the right Poincaré half-map in q := P−(p)

are well-defined. In this case, there exist two positive values τ−p and τ+q such that xp1 (τ
−
p ) = 0,

xq1 (τ
+
q ) = 0, xp1 (t) < 0 for all t ∈ (0, τ−p ) and xq1 (t) > 0 for all t ∈ (0, τ+q ). The positive value

τp = τ−p + τ+q is called the flying time and the Poincaré map associated to system (1.2) in the point

p is given by

P (p) = xP−(p)(τ
+
P−(p)

) = xp(τp).

Finally, given a point p where the Poincaré map is well-defined and such that points p, P−(p)

and P (p) are not points of tangency, then the Poincaré map and the flying time are well-defined in

a neighborhood of p and, moreover, both functions are analytic [72].

On the other hand, it is obvious that the fixed points of the Poincaré map correspond to periodic

orbits of system (1.2). Thus, it makes sense to consider a function whose zeros correspond to periodic

orbits of system (1.2), which will be done in the following definition.

Definition 1.10 The displacement function d : Π → Π associated to the CPWL system (1.2) is

given by the difference between the Poincaré map and the identity function, namely,

d = P − id.
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1.3 Invariant Cones in Homogeneous Piecewise Linear Systems

Piecewise linear systems can be used as a tool to understand some basic bifurcations that have their

starting point in the change of stability of one equilibrium point [24, 40, 42, 44, 48]. In some of

the previous works, it is shown that the change of the stability of one equilibrium point forces the

appearance of a limit cycle. Indeed, to analyze this phenomenon it is necessary to study, in some

situations, the behavior of the equilibria on the separation boundaries. The topological type of these

equilibria is essential to assure (or not) the existence of limit cycles. When the system is 2CPWL2,

this behavior is well known [40, 44]. However, the problem is compounded for continuous three-

dimensional systems. For instance, in [26] the authors prove that the continuous matching of two

stable linear systems can be unstable. The instability of the origin, the unique equilibrium point of the

system, can only appear when the system has an invariant cone; by contrast, the absence of invariant

cones assure the stability of the origin when the matrices of the system are Hurwitzian [25, 26]. This is

a generalization of Theorem 3.4 of [12]. Therefore, it is important to study the existence of invariant

cones for this class of systems. We realize that these invariant manifolds can be considered, in the

non-generic case where it is foliated by periodic orbits, as the center manifold for non-smooth systems

[66] and so, the invariant cones have to play an important role. As a remark related, the stability of

the origin can be guaranteed, as it is well known, by means of Lyapunov functions. However, it is not

easy to find Lyapunov functions for PWL systems, even when the involved matrices are Hurwitzian

[55, 88].

In this section the concept of invariant cone in a three-dimensional continuous PWL system is

introduced. To begin with, every homogeneous 2CPWL3 system can be written as

ẋ = f(x) =

{
A−x if x1 ≤ 0,

A+x if x1 > 0,
(1.19)

where the matrices A+, A− ∈ M3(R) satisfy the relationship A+ −A− = (A+ −A−)e1eT1 .

It is possible to introduce an adequate Poincaré map defined in the separation boundary, by using

some Poincaré half-maps, as it has been done in the previous section for a n−dimensional system.

In this case, the separation boundary is the plane Π ≡ {x1 = 0}.
Taking into consideration that vector field f of system (1.19) is homogeneous, i.e. f(µx) = µf(x)

for all x ∈ R
3 and µ ≥ 0, it is easy to see that the maps P+, P− and P are also homogeneous and

hence, these maps transform straight half-lines contained in the plane x1 = 0 and passing through
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the origin into straight half-lines contained in the plane x1 = 0 that also pass through the origin

(see Fig. 1.1). Thus, if the Poincaré map P possesses an invariant straight half-line line we say that

system (1.19) has a two-zonal invariant cone. In Fig. 1.2 it is shown a two-zonal invariant cone

and a continuum of one-zonal invariant cones. In the last case, the system has an invariant cone

intersecting tangentially the separation plane.

p

P−(p)

P (p) = P+(P−(p))

xx1 = 0

Figure 1.1: Poincaré half-maps P+ and P− and Poincaré map P of system (1.19).

Furthermore, it is possible to define a map S− that transforms the slopes of the initial straight

half-lines into the slopes of the final straight half-lines by means of P−. Similarly, we can also define a

map S+ by considering the slopes of initial and final straight half-lines by applying the right Poincaré

half-map P+. Hence, system (1.19) has a two-zonal invariant cone if and only if the map S = S+◦S−

has a fixed point, or equivalently, the generalized eigenvalue problem P (v) = δv has solution. In

[65], the author studies the eigenvalue problem to give some bifurcations of periodic orbits which
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Figure 1.2: (a) A two-zonal invariant cone of system (1.19). (b) A continuum of one-zonal invariant
cones of system (1.19). Note that an invariant cone intersecting tangentially the separation plane
appears.

(a) (b)

live in the invariant cones; in particular, a generalization of the Hopf bifurcation is analyzed. When

the system is observable, an analysis of maps S+ and S− can be found in [25], where the authors

provide a parametric representation of these maps as functions of the flying half-times.

On the other hand, if the flow of system (1.19) is projected onto the unit sphere S2, then the

invariant cones of the system can be considered as periodic orbits of a suitable system defined on

the unit sphere. To see this, by following the original work of Hadeler [52], it is just necessary to do

the change of variables u = x‖x‖−1, r = ‖x‖, for x 6= 0. Then, we obtain the system

{
u̇ = f(u)− 〈f(u),u〉u, u ∈ S2,

ṙ = 〈f(u),u〉 r, r > 0.

Now, it is immediate to observe that the invariant cones of system (1.19) correspond one-to-one to

the periodic orbits of the following continuous piecewise cubic system on S2

u̇ = f(u)− 〈f(u),u〉u, u ∈ S2. (1.20)
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Here, it is possible to define the periodic orbits as one-zonal and two-zonal ones. By using, for example,

system (1.20), one can prove that the one-zonal invariant cones of (1.19) cannot be isolated and in

this case matrix A+ (or A−) has complex eigenvalues with the real part of the complex eigenvalues

and the real eigenvalue shared. Moreover, when system (1.19) possesses one invariant cone living in

each zone of linearity, then the sphere is foliated by a continuum of periodic orbits when the traces

of matrices A+ and A− coincide. Here, two invariant cones tangent to the separation plane appear.

Let us introduce a definition about the invariant cones.

Definition 1.11 It is said that a invariant cone of system (3.1) is hyperbolic (resp. non-hyperbolic)

if its corresponding periodic orbit in S2 is hyperbolic (resp. non-hyperbolic). In the same way, we will

say that the cone is attractive (resp. repulsive, semi-attractive) if its corresponding periodic orbit is

asymptotically stable (resp. unstable, semi-stable).

The works about invariant cones for systems (1.19) that we have found in the current literature

[21, 25] assume observability hypothesis, thus, they study homogeneous systems written in the Liénard

form (1.5). In Chapter 3 of this thesis, we extend the results obtained in [21] and we prove a conjecture

about the existence of saddle-node bifurcation of invariant cones that was stated in [25]. The results

of Chapter 3 have been published in [18]. With the objective of sorting out this lack of information

about the existence of invariant cones in non-observable systems, we center our attention on that

matter in Chapter 5 of this work.
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Chapter2
Melnikov Theory for a Class of Planar Hybrid Systems. Some

Applications

In this chapter, the existence of periodic orbits in a class of planar hybrid piecewise smooth systems

is studied. We understand as hybrid system, a piecewise-smooth system which is a mixture of a flow

and a map. In this class, each zone of differentiability is separated by a straight line and in these

zones, the dynamics is governed by a smooth system. When an orbit reaches the separation line then

a reset map applies before entering the orbit in the other zone.

To find periodic orbits in smooth systems, we can use different techniques. One of them is the

averaging theory [30, 70, 94]. The idea of this theory is to relate the periodic orbits of a system to the

equilibrium points of an autonomous one, the averaged differential system. When a planar smooth

system can be written as a perturbation of another system which has a continuum of periodic orbits,

the Melnikov theory [8], sometimes called Malkin-Loud theory [73, 75, 78], can be applied. Thus,

from the Poincaré map we compute a function, the so-called Melnikov function, whose zeros provide

us the number and positions of the periodic orbits of the perturbed system. Moreover, the Melnikov

theory is applied to study the existence of homoclinic and heteroclinic connections in perturbations

of systems having global connections [51].

The method of averaging has been generalized to continuous non-smooth dynamical systems

[10, 11, 13, 64] but, due to the loss of continuity of the hybrid systems in the separation boundary,

as far as we know, the theory developed up to now cannot be applied to this case. The generalization

of the Melnikov theory for periodic orbits in non-smooth systems has been studied in [13] with planar

continuous piecewise smooth systems. The extension for planar Filippov systems can be seen in [36].

The Melnikov theory for global connections has been generalized to non-smooth systems in [7, 64]. In

[49], the authors consider a Hamiltonian piecewise-defined autonomous system with a region closed

17
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by two heteroclinic connections fully covered by periodic orbits, and the splitting of the separatrices as

well as the persistence of periodic orbits under a non-autonomous periodic Hamiltonian perturbation

is analyzed. In the same spirit, this chapter is devoted to the extension of the Melnikov theory for

periodic orbits to planar hybrid systems, which include the discontinuous ones.

The chapter is organized as follows. In a first section, the classical Melnikov Theory for planar

smooth systems is introduced. Next, in the second section, the planar hybrid systems object of our

study are stated. After that, Sec. 2.3 is focused on defining a Poincaré map and a displacement

function for the hybrid systems presented in Section 2.2. Subsequently, in Section 2.4, the expression

of the Melnikov function is deduced from the displacement function, and the main results of the

chapter are stated. Finally, Section 2.5 is devoted to applying the developed theory to DPWL with

two zones of linearity and CPWL systems with three zones of linearity.

The most important application of the theory developed in this chapter, will be given in Chapter

3. There, we will study the invariant cones of a observable homogeneous 2CPWL3 system, taking

into account their correspondence to periodic orbits of planar hybrid PWL systems with a bilinear

reset map.

The main results of this chapter are enshrined in [16].

2.1 The classical Melnikov theory

Let us consider a vector field f ∈ C1(R2) and assume that the planar system

ẋ = f(x), x ∈ R
2, (2.1)

possesses a continuum of periodic orbits which are transversal to a section. We can assume, without

loss of generality, that the section is Σ = {(0, y) : y ∈ I}, where I ⊂ R is an open interval.

Denote by γy0(t) the periodic orbit of system (2.1) which passes through the point x(0) = (0, y0).

Its period will be denoted by Ty0 , y0 ∈ I.

The problem is to know which of the periodic orbits of system (2.1) remain if the system is

perturbed in the following form

ẋ = f(x) + εg(x, ε,µ), (2.2)

where x ∈ R
2, ε ∈ R, µ ∈ R

k and g ∈ C1.
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If the solution of system (2.2) that for t = 0 passes through (0, y0), with y0 ∈ I, is denoted by

x(t, y0, ε,µ) = (x(t, y0, ε,µ), y(t, y0, ε,µ))
T ,

then, the continuity and differentiability with respect to the initial conditions and parameters, let us

assure that, for ε small enough, the orbit of this solution intersects again to Σ for the first time after

T (y0, ε,µ) in a point x(T (y0, ε,µ), y0, ε,µ).

We can now define the Poincaré map as

P (y0, ε,µ) = x(T (y0, ε,µ), y0, ε,µ)

and the displacement function as

d(y0, ε,µ) = P (y0, ε,µ) − y0.

It is obvious that if y0 is a zero of the displacement function d, then the solution

(x(t, y0, ε,µ), y(t, y0, ε,µ))
T

provides a periodic orbit of system (2.2) with a period of T (y0, ε,µ).

Thus, the idea is to find a function y0 = h(ε,µ) such that d(h(ε,µ), ε,µ) = 0. Note that

d(y0, 0,µ) ≡ 0 for all y0 ∈ I, and so ∂d/∂y0 ≡ 0, which prevent from applying the Implicit Function

Theorem for finding the function y0 = h(ε,µ) such that the displacement function vanishes. However,

this allow us to write d as

d(y0, ε,µ) = εD(y0, ε,µ).

Therefore, if there exists a function h such that D(h(ε,µ), ε,µ) = 0, then it is satisfied that

d(h(ε,µ), ε,µ) = 0.

Hence, the problem of finding periodic orbits in the perturbed system (2.2) has been reduced to

the problem of finding implicit solutions of the equation D(y0, ε,µ) = 0.

Then, if there exists y0 ∈ I such that

D(y0, 0,µ) =
∂d

∂ε
(y0, 0,µ) = 0 and

∂D

∂y0
(y0, 0,µ) =

∂2d

∂y0∂ε
(y0, 0,µ) 6= 0,
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the Implicit Function Theorem assures the existence of a solution function defined implicitly

y0 = h(ε,µ).

We call the reduced displacement function to

D(y0, 0,µ) =
∂d

∂ε
(y0, 0,µ).

The Melnikov method establishes that the reduced displacement function is proportional to a

function, so-called Melnikov function, which is exclusively defined from the vector fields f and g.

The Melnikov function for system (2.2) along a periodic orbit γy0(t) with a period of Ty0 is given

by

M(y0,µ) =

∫ Ty0

0
e−

∫ t

0
div f(γy0(s))dsf(γy0(t)) ∧ g(γy0(t), 0,µ)dt, (2.3)

where, if x,y ∈ R
2, we define the wedge product x ∧ y = x1y2 − y1x2 and div f is the divergence

of the vector field f .

Now, by applying the Implicit Function Theorem and the Weierstrass Preparation Theorem [29],

it can be verified the relationship between the number, position and multiplicity of the limit cycles

of system (2.2), when ε is sufficiently small, and the number, position and multiplicity of the zeros

of the Melnikov function. The mail goal of this chapter is to extrapolate the ideas of the Melnikov

theory and to adapt it to a class of planar hybrid systems. In particular, the systems to be considered

are introduced in the following section.

2.2 Statement of the problem

Let us consider the following piecewise smooth system

ẋ = f(x) = (f1(x), f2(x))
T , (2.4)

where x = (x, y)T ∈ R
2 and

f(x) =

{
f−(x) = (f−1 (x), f−2 (x))T if x < 0,

f+(x) = (f+1 (x), f+2 (x))T if x > 0,
(2.5)

with f+, f− ∈ Cr(R2), r ≥ 1 and f1(0, y) = f+1 (0, y) = f−1 (0, y), for all y ∈ R. Note that only the

continuity of the first component of vector field f is required.
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Let us suppose that system (2.4) possesses a continuum of periodic orbits. Specifically, we will

consider the following hypothesis.

Hypothesis 2.1 System (2.4) possesses a continuum of periodic orbits crossing transversally the

separation straight line {x = 0} at two points, (0, y0) and (0, ŷ0) with y0 ∈ I, ŷ0 ∈ Î and y0 > ŷ0,

where I, Î ∈ R are open intervals. Furthermore, we assume without loss of generality that the orbits

are counterclockwise oriented, that is, f1(0, y0) < 0 for all y0 ∈ I and f1(0, ŷ0) > 0 for all ŷ0 ∈ Î ,

see Fig. 2.1.

x

y

y0

ŷ0

γy0

Figure 2.1: Schematic picture of the continuum of periodic orbits of system (2.4).

In the following, we will denote by γz(t) the orbit of system (2.4) passing for t = 0 through the

point (0, z), with z ∈ I ∪ Î.
Let us define the left half-period T−

y0 of the orbit γy0(t) as the time that the orbit γy0(t) spends

going from y0 to ŷ0, the right half-period T+
y0 as the time that the orbit γy0(t) takes going from ŷ0 to

y0 and the period Ty0 as the time that the orbit spends to return to y0 from itself, i.e. Ty0 = T−
y0+T

+
y0 .

Because system (2.4) has a continuum of periodic orbits, it is natural to think about the number

and positions of the periodic orbits that persist after a perturbation. Here, we consider the following

perturbation of system (2.4)

ẋ = f(x) + εg(x, ε,µ), (2.6)
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where ε ∈ R, |ε| ≪ 1, k ∈ N, µ = (µ1, µ2, . . . , µk) ∈ R
k with the reset map

η : Rk+2 −→ R

(y0, ε,µ) 7−→ η(y0, ε,µ)
(2.7)

satisfying

η(y0, 0,µ) = y0 ∈ R, f1(0, y0) · f1(0, η(y0, ε,µ)) > 0

and η ∈ Cr(Rk+2) with r ≥ 1. Finally, let us assume that

g(x, ε,µ) =

{
g−(x, ε,µ) if x < 0,

g+(x, ε,µ) if x > 0,
(2.8)

where g+,g− ∈ Cr(R2 × R×R
k), r ≥ 1.

Note that hybrid system (2.6) has two zones of differentiability, separated by the straight line

x = 0. The dynamics in each zone of differentiability is governed by a smooth system and, when an

orbit reaches the separation line, then before entering the system in the other zone the reset map

given in (2.7) applies. For the sake of clarity, an orbit of system (2.6) visiting both smooth zones is

represented in Fig. 2.2.

Although, a priori, it does not make sense to consider a solution of (2.6) with initial condition in

the separation line x = 0, there is no problem to define a two-zonal periodic orbit for this system. In

fact, according to Fig. 2.2, we have a two-zonal periodic orbit when y0 = η(y2, ε,µ).
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x = 0

Smooth systemSmooth system

(0, y0)

(0, y1)

(0, y2)

(0, η(y1, ε,µ))

(0, η(y2, ε,µ))

Figure 2.2: Representation of an orbit of the hybrid system (2.6) visiting both zones of differentiability,
beginning at (0, y0). The orbit evolves in the zone x < 0 arriving at the point (0, y1), then a reset
map acts getting the orbit to the point (0, η(y1, ε,µ)). After that, the orbit evolves in the zone
x > 0 up to arriving at the point (0, y2), where the reset map applies getting the orbit to the point
(0, η(y2, ε,µ)).

2.3 Definition of a Poincaré map and a displacement function

The first step in the definition of the Melnikov function for system (2.6) is considering some adequate

Poincaré half-maps for both planar smooth systems

ẋ = f−(x) + εg−(x, ε,µ) (2.9)

and

ẋ = f+(x) + εg+(x, ε,µ). (2.10)

For every point p = (0, y0)
T with y0 ∈ I, let us denote by

(x (t, y0, ε,µ) , y (t, y0, ε,µ))
T

the solution of system (2.9) with initial condition p. Due to Hypothesis 2.1, it is clear that for |ε|
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sufficiently small, function x(·, y0, ε,µ) vanishes at some value in the interval (0,+∞), and then,

the corresponding orbit crosses transversally the separation line. We define the left flying half-time

τ−(y0, ε,µ) as the positive value such that x (τ−(y0, ε,µ), y0, ε,µ) = 0 and x (t, y0, ε,µ) < 0 for t

belonging to the interval (0, τ−(y0, ε,µ)). In such a case, the left Poincaré half-map P− of system

(2.9) at the point y0 is defined as P−(y0, ε,µ) = y (τ−(y0, ε,µ), y0, ε,µ).

For system (2.10), one can define in the same way, the right flying half-time τ+(ŷ0, ε,µ) and the

right Poincaré half-map P+(ŷ0, ε,µ).

Note that the left and the right half-periods of the orbit γy0(t) of the continuum of system (2.4)

satisfy T−
y0 = τ−(y0, 0,µ) and T+

y0 = τ+(ŷ0, 0,µ), with ŷ0 = P (y0, 0,µ).

At this point, the Poincaré map and the displacement function for the hybrid system (2.6) can

be defined.

Definition 2.2 Assume that system (2.4) satisfies Hypothesis 2.1. The Poincare map P of system

(2.6) defined in a neighborhood of I × {0} ×R
k+1 is given by

P (y0, ε,µ) = η(P+(η(P−(y0, ε,µ), ε,µ), ε,µ), ε,µ). (2.11)

The displacement function d of system (2.6) is defined by

d(y0, ε,µ) = P (y0, ε,µ) − y0. (2.12)

Note that P and d are functions of class Cr in their respective domains of definition. In Fig. 2.1 the

Poincaré map P defined in (2.11) is represented.

Also note that if η(y0, ε,µ) = y0 for all (y0, ε,µ) ∈ R
k+2, then the Poincaré map defined in

(2.11) is given by P = P+ ◦ P−.

It is obvious that the periodic orbits of system (2.6) correspond one-to-one to the fixed points of

the Poincaré map or, equivalently, to the zeros of the displacement function given in (4.17). Now,

the stability and multiplicity of periodic orbits of system (2.6) are defined.

Definition 2.3 Let ỹ0 be a value such that d(ỹ0, ε,µ) = 0. We say that the corresponding two-

zonal periodic orbit of system (2.6) is a hyperbolic limit cycle if the derivative of the displacement

function d with respect to y0 evaluated at (ỹ0, ε,µ) does not vanish. If this derivative is negative
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x = 0

y0
P (y0)

P−

P+

η

η

P−(y0)

η(P−(y0))

P+(η(P−(y0)))

Figure 2.3: Representation of the Poincaré function defined in (2.11). The dependence with respect
to ε and µ has been removed for the sake of brevity and clarity.

(resp. positive) the limit cycle will be called stable (resp. unstable). If this derivative vanishes, then

we say that the periodic orbit is non-hyperbolic.

It is said that a periodic orbit has multiplicity m ∈ N if the corresponding zero ỹ0 of the

displacement function is a root of multiplicity m.

Once the Poincaré map and the displacement function are defined, it is possible to derive a real

function of a real variable whose zeros provide us the number and position of the limit cycles that

appear after the perturbation. This derivation is developed in Section 2.4.

2.4 Derivation of the Melnikov function. Statement of the main

result

From the definitions of the Poincaré map and the displacement function done for the hybrid system

(2.6), we deduce in this section a function whose roots give us the number and position of the

periodic orbits of the continuum of system (2.4) that remain after the perturbation. This function
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will be called the Melnikov function by similarity between our theory and the Melnikov theory for

smooth systems.

We proceed by analogy with the classical Melnikov theory written in 2.1.

In looking for periodic orbits of the perturbed system (2.6), we must determine the zeros of the

displacement function d defined in (4.17). Then, for every ε sufficiently small, we must find y0 and

µ such that

d(y0, ε,µ) = P (y0, ε,µ) − y0 = 0.

Let us consider the Taylor series expansion of the displacement function at ε = 0

d(y0, ε,µ) = d(y0, 0,µ) + εD(y0, ε,µ).

From Hypothesis 2.1, it is clear that d(y0, 0,µ) = 0, and then, solutions for ε 6= 0 of d(y0, ε,µ) = 0

corresponds to solutions of equation

D(y0, ε,µ) = 0.

To apply the Implicit Function Theorem we need to find y0 and µ such that

D(y0, 0,µ) = 0 and
∂D

∂y0
(y0, 0,µ) 6= 0.

It is clear that

D(y0, 0,µ) =
∂d

∂ε
(y0, 0,µ) =

∂P

∂ε
(y0, 0,µ),

and so, it is enough to search for zeros of the following equation

∂P

∂ε
(y0, 0,µ) = 0. (2.13)

To get it, first we look for an explicit expression of
∂P

∂ε
(y0, 0,µ). Let us start by computing the

characteristic exponent of the periodic orbits of the continuum of system (2.4).

Let us consider the divergence of the discontinuous and piecewise smooth function f as

div f(x) =





∂f+1
∂x

(x) +
∂f+2
∂y

(x) if x > 0,

∂f−1
∂x

(x) +
∂f−2
∂y

(x) if x < 0.
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Proposition 2.4 If system (2.4) satisfies Hypothesis 2.1, then

∫ Ty0

0
div f(γy0(t))dt = 0 for all y0 ∈ I. (2.14)

Proof: From Hypothesis 2.1, P (y0, 0,µ) = y0 for all y0 ∈ I, so,

∂P

∂y0
(y0, 0,µ) = 1 for all y0 ∈ I.

From the results given in [28] about the derivatives of the transition maps, we obtain

∂P−

∂y0
(y0, 0,µ) =

f1(0, y0)

f1(0, P−(y0, 0,µ))
exp

(∫ T−
y0

0
div f(γy0(t))dt

)

and
∂P+

∂ŷ0
(ŷ0, 0,µ) =

f1(0, ŷ0)

f1(0, P+(ŷ0, 0,µ))
exp

(∫ T+
y0

0
div f(γŷ0(t))dt

)
(2.15)

for all y0 ∈ I and ŷ0 ∈ Î. Since P = P+ ◦ P−, ŷ0 = P−(y0, 0,µ) and on a periodic orbit we have

y0 = P+(ŷ0, 0,µ), the proof follows from a direct application of the chain rule. ✷

To obtain the derivatives of the Poincaré half-maps with respect to ε for ε = 0, we will use the

following lemma, whose proof is straightforward.

Lemma 2.5 Consider F ∈ C1(R2,R2), γ(t) a solution of ẋ = F(x), ω ∈ C(R,R2) and x0(t) a

solution of the equation

ẋ = DF(γ(t))x+ ω(t), x ∈ R
2, (2.16)

where DF denotes the jacobian matrix of vector field F.

Then, ψ(t) = F(γ(t)) ∧ x0(t) is a solution of the one-dimensional differential equation

ψ̇(t) = divF(γ(t))ψ(t) + F(γ(t)) ∧ω(t). (2.17)
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Proposition 2.6 If system (2.4) satisfies Hypothesis 2.1, then the following statements hold.

(a) The derivative of the left Poincaré half-map P− with respect to ε for ε = 0 is given by

∂P−

∂ε
(y0, 0,µ) =

ρ−(T−
y0)

f1(0, ŷ0)

∫ T−
y0

0

f−(γy0(t)) ∧ g−(γy0(t), 0,µ)

ρ−(t)
dt, (2.18)

where ŷ0 = P−(y0, 0,µ) and

ρ−(t) = exp

(∫ t

0
div f−(γy0(τ))dτ

)
. (2.19)

(b) The derivative of the right Poincaré half-map P+ with respect to ε for ε = 0 is given by

∂P+

∂ε
(ŷ0, 0,µ) =

ρ+(T+
y0)

f1(0, y0)

∫ T+
y0

0

f+(γŷ0(t)) ∧ g+(γŷ0(t), 0,µ)

ρ+(t)
dt, (2.20)

where y0 = P+(ŷ0, 0,µ) and

ρ+(t) = exp

(∫ t

0
div f+(γŷ0(τ))dτ

)
. (2.21)

Proof: We focus our attention on proving item (a). A similar reasoning allows us to prove statement

(b).

Let us begin by computing the derivatives with respect to ε of the relationships

x(τ−(y0, ε,µ), y0, ε,µ) = 0 and y(τ−(y0, ε,µ), y0, ε,µ) = P−(y0, ε,µ).

Then, we see that the vector function

w(t) =

(
∂x

∂ε
(t, y0, 0,µ),

∂y

∂ε
(t, y0, 0,µ)

)T

satisfies
∂τ−

∂ε
(y0, 0,µ)f

−(0, ŷ0) +w(T−
y0) =

(
0,
∂P−

∂ε
(y0, 0,µ)

)T

(2.22)

where ŷ0 = P−(y0, 0,µ).

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.



2.4. DERIVATION OF THE MELNIKOV FUNCTION. STATEMENT OF THE MAIN RESULT 29

On the other hand, function w(t) is the solution of the initial value problem





ẇ(t) = Df−(γy0(t))w(t) + g−(γy0(t), 0,µ),

w(0) = (0, 0)T .
(2.23)

Now, from Lemma 2.5, it follows that ψ(t) = f−(γy0(t)) ∧w(t) satisfies





ψ̇(t) = div f−(γy0(t))ψ(t) + f−(γy0(t)) ∧ g−(γy0(t), 0,µ),

ψ(0) = 0,
(2.24)

The solution ψ of the linear equation (2.24) can be expressed as

ψ(t) = ρ−(t)

∫ t

0

f−(γy0(τ)) ∧ g−(γy0(τ), 0,µ)

ρ−(τ)
dτ,

where ρ−(t) is defined in (2.19).

From relationship (2.22), directly follows that

ψ(T−
y0) = f1(0, y0) ·

∂P−

∂ε
(0, y0,µ),

and the proof is finished. ✷

Now, the Melnikov function of the perturbed system (2.6) along a periodic orbit γy0(t) of the

unperturbed system (2.4) can be defined, as follows.

Definition 2.7 If system (2.4) satisfies Hypothesis 2.1, the Melnikov function of the perturbed

system (2.6) along a periodic orbit γy0(t) of the unperturbed system (2.4) is defined as

M(y0;µ) =
∂η

∂ε
(y0, 0,µ)+

1

f1(0, y0)

∂η

∂y0
(y0, 0,µ)

[
∂η

∂y0
(ŷ0, 0,µ)

∫ T−
y0

0

f−(γy0(t)) ∧ g−(γy0(t), 0,µ)

ρ−(t)
dt+

ρ+(T+
y0)

(
∂η

∂ε
(ŷ0, 0,µ)f1(0, ŷ0) +

∫ T+
y0

0

f+(γŷ0(t)) ∧ g+(γŷ0(t), 0,µ)

ρ+(t)
dt

)]
,

(2.25)
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where ŷ0 = P−(y0, 0,µ),

ρ−(t) = exp

(∫ t

0
div f−(γy0(τ))dτ

)
, ρ+(t) = exp

(∫ t

0
div f+(γŷ0(τ))dτ

)
.

Through the Melnikov function it is possible to state results about the existence and bifurcation

of limit cycles.

Theorem 2.8 Assume that unperturbed system (2.4) satisfies Hypothesis 2.1 and the functions

f+ + εg+, f− + εg− and η are Cr with r ≥ 1. Consider ỹ0 ∈ I and µ0 ∈ R
k. The following

statements hold.

(a) If M(ỹ0;µ0) 6= 0 then, there exists ε0 > 0 and small enough, such that the perturbed system

(2.6) does not possess periodic orbits in a neighborhood of the periodic orbit γỹ0 for µ = µ0

and |ε| < ε0.

(b) If r ≥ 2, M(ỹ0;µ0) = 0 and q0 := ∂M
∂y0

(ỹ0;µ0) 6= 0, then, the perturbed system (2.6) has a

hyperbolic limit cycle in a neighborhood of γỹ0 , for µ = µ0 and |ε| different from zero and

sufficiently small. Moreover, the limit cycle is asymptotically stable if ε · q0 < 0 and unstable

if ε · q0 > 0.

(c) If r ≥ 3, M(ỹ0;µ0) = q0 = 0 and there exits j ∈ {1, 2, ..., k} such that

∂2M

∂y20
(ỹ0,µ0) 6= 0 and

∂M

∂µj
(ỹ0;µ0) 6= 0,

then, there exist a function µ(ε) = µ0 + O(ε) such that the perturbed system (2.6) has a

unique limit cycle of multiplicity two in a neighborhood of γỹ0, for µ = µ(ε) and |ε| different

from zero and sufficiently small.

Proof: By applying the chain rule in expression (2.11), one obtains

∂P

∂ε
(y0, 0,µ) =

∂η

∂ε
(y0, 0,µ) +

∂η

∂y0
(y0, 0,µ)·

·
[
∂P+

∂ŷ0
(ŷ0, 0,µ)

(
∂η

∂y0
(ŷ0, 0,µ)

∂P−

∂ε
(y0, 0,µ) +

∂η

∂ε
(ŷ0, 0,µ)

)
+
∂P+

∂ε
(ŷ0, 0,µ)

]
.

(2.26)

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.



2.4. DERIVATION OF THE MELNIKOV FUNCTION. STATEMENT OF THE MAIN RESULT 31

Substituting expression (2.15) in relationship (2.26) and taking into account Proposition 2.6, we

arrive to
∂P

∂ε
(y0, 0,µ) =

∂η

∂ε
(y0, 0,µ) +

ρ+(T+
y0)

f1(0, y0)

∂η

∂y0
(y0, 0,µ)·

·
[
∂η

∂y0
(ŷ0, 0,µ)ρ

−(T−
y0)

∫ T−
y0

0

f−(γy0(t)) ∧ g−(γy0(t), 0,µ)

ρ−(t)
dt+

∂η

∂ε
(ŷ0, 0,µ)f1(0, ŷ0) +

∫ T+
y0

0

f+(γy0(t)) ∧ g+(γy0(t), 0,µ)

ρ+(t)
dt

]
.

(2.27)

On the other hand, it is clear that

ρ−(T−
y0) · ρ

+(T+
y0) = 1. (2.28)

Finally, from expressions (2.27) and (2.28), one obtains

∂P

∂ε
(y0, 0,µ) =M(y0;µ), (2.29)

where M(y0;µ) is the Melnikov function for hybrid systems given in (2.25).

The proof continues by using the Implicit Function Theorem and following similar ideas to the

proofs of theorems 1.2 and 1.3 of [8]. ✷

We remark that the third statement of Theorem 2.8 can be extended to limit cycles of higher

multiplicity. Also, the above result can be generalized to the case f+1 (0, y) 6= f−1 (0, y) by obtaining

a slightly different expression for the Melnikov function, see [16]. The expression of the Melnikov

function for Filippov systems can be seen in [36]. In addition, the theory can be extended to the case

with an hybrid unperturbed system and to systems with multiple zones of definition of the vector

field. Nevertheless, we will not detailed these cases to keep the chapter within a reasonable length.

Obviously, when the reset map becomes the identity, (that is, η(y0, ε,µ) = y0), the Melnikov

function (2.25) can be simplified, as we do in the following result.

Proposition 2.9 If system (2.4) satisfies Hypothesis 2.1 and the reset map η satisfies η(y, ε,µ) = y,

in a neighborhood of (I ∪ Î)× {0} × R
k, then the Melnikov function defined in (2.25) becomes

M(y0;µ) =
1

f1(0, y0)

∫ Ty0

0

f(γy0(t)) ∧ g(γy0(t), 0,µ)

ρ(t)
dt, (2.30)
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where ρ(t) = exp

(∫ t

0
div f(γy0(τ))dτ

)
.

Proof: Taking into account that η(y, ε,µ) = y, it follows that expression (2.25) becomes

M(y0;µ) =
1

f1(0, y0)

[∫ T−
y0

0

f−(γy0(t)) ∧ g−(γy0(t), 0,µ)

ρ−(t)
dt+

ρ+(T+
y0)

(∫ T+
y0

0

f+(γŷ0(t)) ∧ g+(γŷ0(t), 0,µ)

ρ+(t)
dt

)]
,

(2.31)

where ŷ0 = P−(y0, 0,µ) and ρ−(t), ρ+(t) are given in (2.19) and (2.21), respectively.

By doing the change of variables s = t + Ty−
0

in the second integral of (2.31) and taking into

account that γŷ0(s− Ty−
0

) = γy0(s) and ρ+(T+
y0) · ρ−(T−

y0) = 1, we get

ρ(T+
y0)

∫ T+
y0

0

f+(γŷ0(t)) ∧ g+(γŷ0(t), 0,µ)

ρ+(t)
dt =

∫ Ty0

T−
y0

(f+(γy0(s)) ∧ g+(γy0(s), 0,µ))

ρ−(T−
y0) · ρ+(s− T−

y0)
ds.

(2.32)

Since for T−
y0 ≤ s ≤ Ty0 , we have

ρ−(T−
y0) · ρ+

(
s− T−

y0

)
= exp

(∫ s

0
div f(γy0(τ))dτ

)
,

the conclusion follows. ✷

Note that expression (2.30) coincides, except for the leading factor 1/(f1(0, y0)), with the classical

Melnikov function [8], see (4.6). If additionally div f(x) = 0 then, expression (2.30) can be further

simplified.

Proposition 2.10 If system (2.4) satisfies Hypothesis 2.1, the reset map η satisfies η(y, ε,µ) = y,

in a neighborhood of (I ∪ Î) × {0} × R
k, and div f(x, y) = 0 for all (x, y) ∈ R

2, x 6= 0, then the
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Melnikov function defined in (2.25) becomes

M(y0;µ) =
−1

f1(0, y0)
·

·
(∫∫

int(γy0 )
divg(x, y, 0,µ) dx dy +

∫ y0

ŷ0

[
g+1 (0, y, 0,µ) − g−1 (0, y, 0,µ)

]
dy

)
.

(2.33)

Proof: Let us consider the following sets

γ+ = γy0 ∩ {(x, y) ∈ R
2 : x > 0}, γ− = γy0 ∩ {(x, y) ∈ R

2 : x < 0},

L+ = {(x, y) ∈ R
2 : y = κy0 + (1− κ)ŷ0, 0 ≤ κ ≤ 1)}

and

L− = {(x, y) ∈ R
2 : y = (1− κ)y0 + κŷ0, 0 ≤ κ ≤ 1)},

(see Fig. 2.4). Since γ+ ∪ L+ is a closed Jordan curve, it surrounds a region Θ+ =int{γ+ ∪ L+}.
Analogously, γ− ∪ L− surrounds a region Θ− =int{γ− ∪ L−}. (see Fig. 2.4). If we denote the

y0y0

Θ− Θ+

γ+

L+

γ−

L−

ŷ0ŷ0

xx

yy

Figure 2.4: Path along the boundary of the set Θ+ ∪ Θ− for applying the Green’s Theorem to a
crossing periodic orbit γy0 of system (2.4).
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orthogonal of a vector field h = (h1, h2)
T as h⊥ = (h2,−h1), from expression (2.30) we can write

f1(0, y0)M(y0;µ) =

∫ Ty0

0
f(γy0(t)) ∧ g(γy0(t), 0,µ)dt =

∫

γ−

(g−)⊥dr+

∫

L−

(g−)⊥dr−
∫

L−

(g−)⊥dr+

∫

γ+

(g+)⊥dr+

∫

L+

(g+)⊥dr−
∫

L+

(g+)⊥dr.

(2.34)

Now, by using the Green’s Theorem, it follows that

f1(0, y0)M(y0;µ) = −
∫∫

Θ−

div g−(x, y, 0,µ)dxdy +

∫ y0

ŷ0

g−1 (0, y, 0,µ)dy

−
∫∫

Θ+

div g+(x, y, 0,µ)dxdy −
∫ y0

ŷ0

g+1 (0, y, 0,µ)dy,

and expression (2.33) is obtained. ✷

Remark 2.11 Note that, expression (2.30) continues being valid for systems with multiple zones,

obviously, when f1 is continuous in R
2 and system (2.6) has not a reset map. Furthermore, if g1 is

continuous, expression (2.33) is translated into

M(y0;µ) =
−1

f1(0, y0)

∫∫

int(γy0 )
divg(x, y, 0,µ) dx dy, (2.35)

expression that remains valid for systems with multiple zones.

To conclude the chapter, we will apply the developed theory to planar DPWL systems with two

zones and to planar CPWL systems with three zones.

2.5 Application to planar continuous and discontinuous piecewise

linear systems

In this section, we apply the developed Melnikov theory to find periodic orbits of two different types

of systems. The section is divided in two subsections.

In the first one, we analyze the existence and saddle-node bifurcation of periodic orbits for two
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different classes of two-zonal planar DPWL systems. Subsequently, a saddle-node bifurcation of

periodic orbits in a class of planar CPWL systems with three zones (3CPWL2) is considered.

2.5.1 Application to two-zonal planar discontinuous piecewise linear systems

We work in this subsection with DPWL systems of the class (1.17). In order to apply the Melnikov

method, we look for systems having a continuum of crossing periodic orbits. There exist different

possibilities, among them, we will focus our attention on two different situations.

First, let us consider a continuous and homogeneous system whose coefficient matrices possess

a pair of complex eigenvalues and they have traces with opposite sign and equal determinants, that

is, we consider the system





ẋ = −2αx− y,

ẏ =
(
α2 + 1

)
x,

if x < 0,





ẋ = 2αx− y,

ẏ =
(
α2 + 1

)
x,

if x > 0,

(2.36)

where α ∈ R. Note that, without loss of generality, we have assumed that the imaginary part of the

eigenvalues is equal to the unity. Otherwise, we can make an appropriate rescaling in time in each

zone of differentiability. System (2.36) is homogeneous, the origin is the unique equilibrium and it is

surrounded by an unbounded continuum of periodic orbits with a period of T = 2π (see [40, 44]).

Specifically, the periodic solution γy0(t) = (xy0(t), yy0(t)) with initial condition γy0(0) = (0, y0),

being y0 > 0, is given by





xy0(t) = −y0e−αt sin t,

yy0(t) = y0e
−αt (α sin t+ cos t) ,

if 0 6 t 6 π,





xy0(t) = −y0eα(t−2π) sin t,

yy0(t) = −y0eα(t−2π) (α sin t+ cos t) ,
if π 6 t 6 2π.

The phase plane of system (2.36) can be seen in Fig. 2.5.
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x

y

y0

γy0

Figure 2.5: Phase plane of the unperturbed system (2.36).

Now, we consider the following perturbation of system (2.36),

{
ẋ = 2(εω − α)x− y,

ẏ = ((εω − α)2 + 1)x+ εA−,
if x < 0,

{
ẋ = 2αx− y + εB,

ẏ = (α2 + 1)x+ εA+,
if x > 0,

(2.37)

where A−, A+, B, ω, ε ∈ R and |ε| ≪ 1.

By studying the Melnikov function (2.25) in this case, since Theorem 2.8, we are able to give the

following result.

Proposition 2.12 If ω 6= 0 and sgn (ω)= sgn
(
2α (A+ +A−)− B(α2 + 1)

)
, then for |ε| 6= 0 and

sufficiently small, system (2.37) possesses a hyperbolic limit cycle which is asymptotically stable if

ε · ω < 0 and unstable if ε · ω > 0. Furthermore, the limit cycle is located in a neighborhood of the

orbit γỹ0 , where

ỹ0 =

(
2α
A+ +A−
α2 + 1

−B

)
1 + eαπ

ωπ
. (2.38)
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Proof: The divergence of the vector field f of system (2.36) is given by

div f(x, y) =





−2α if x < 0,

2α if x > 0.

Some direct but tedious computations allow us to compute the expression of the Melnikov function

(2.25) along a periodic orbit γy0

M(y0;µ) = (1 + eαπ)

(
B − 2α

A+ +A−
α2 + 1

)
+ ωπy0, (2.39)

where µ = (α,A−, A+, B, ω).

If ω 6= 0, then the Melnikov function (2.39) has strictly positive zeros only when

sgn (ω) = sgn
(
2α (A+ +A−)−B(α2 + 1)

)
.

In this case, the Melnikov function vanishes at the point

ỹ0 =

(
2α
A+ +A−
α2 + 1

−B

)
1 + eαπ

ωπ

and the proof concludes by a direct application of Theorem 2.8. ✷

Secondly, let us focus our attention on a different situation where the system possesses a

continuum of periodic orbits. Precisely, we consider

{
ẋ = −y,
ẏ = x− a,

if x < 0,

{
ẋ = −y,
ẏ = x− |a|,

if x > 0,

(2.40)

where a ∈ R. Note that the second component of system (2.40) is discontinuous for |a| 6= 0. The

shape of the continuum of periodic orbits crossing the straight line x = 0 depends on the sign of the

parameter a.

For the case a < 0, the system has two equilibria, the point x̄− = (a, 0) in the zone x < 0 and the

point x̄+ = (|a|, 0) in the zone x > 0. Each equilibrium point is surrounded by a bounded continuum
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of periodic orbits contained in its respective zone and both equilibrium points are surrounded by an

unbounded continuum of periodic orbits γy0, see Fig. 2.6.

x

y

x̄− x̄+

γy0

Figure 2.6: Phase plane of system (2.40) for a < 0.

For the case a > 0, the system has only one equilibrium point which is surrounded by an

unbounded continuum of periodic orbits. The phase plane of system (2.40) for a > 0 is represented

in Fig. 2.7.

We consider the following perturbation of system (2.40)

{
ẋ = 2σεx− y,

ẏ = x− a,
if x < 0,

{
ẋ = 2σεx− y − εB,

ẏ = x− |a|,
if x > 0.

(2.41)

The analysis of system (2.41) via the Melnikov method let us state the following results about

the existence of limit cycles. First, we consider the case a < 0.

Proposition 2.13 Consider system (2.41) with a < 0 and σ 6= 0. Let us define B̃ = −2aσ(1 + 2π).

The following statements hold.
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x

y

x̄+

γy0

Figure 2.7: Phase plane of system (2.40) for a− > 0.

(a) If σ · (B − B̃) > 0, then system (2.41) has two hyperbolic limit cycles for |ε| 6= 0 and small

enough, one asymptotically stable and the other one unstable, and they live in a neighborhood

of the periodic orbits γỹ−
0

and γỹ+
0

, respectively, where

ỹ±0 =
B + 2aσ ±

√
(B + 2aσ)2 − 16a2π2σ2

4πσ
.

(b) If B = B̃, then there exist functions σ(ε) and B(ε) defined for ε sufficiently small, such that

the perturbed system (2.41) with σ = σ(ε) and B = B(ε) has a unique periodic orbit in a

neighborhood of the periodic orbit γ−a, and it possesses multiplicity two.

(c) If σ · (B− B̃) < 0, then for every y0 > 0 there exists ε0 > 0 sufficiently small such that system

(2.41) has not periodic orbits for 0 < |ε| < ε0 near to the periodic orbit γy0 .

Proof: Since vector field of system (2.41) is divergence-free, the Melnikov function M given in

(2.25) can be obtained by means of Proposition 2.10, and after some computations we get that it is

given by

M(y0, σ, a,B) =
2

y0

(
2a2πσ − (2aσ +B)y0 + 2πσy20

)
. (2.42)
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By studying the positive roots and applying Theorem 2.8, the conclusion is straightforward. ✷

Next, we consider the case a > 0.

Proposition 2.14 Consider system (2.41) with a > 0 and σ 6= 0 and let us define B̂ = 2aσπ. The

following statements hold

(a) If σ · (B − B̂) > 0, then system (2.41) has two hyperbolic limit cycles for |ε| 6= 0 and

small enough, one asymptotically stable and the other one unstable. Furthermore, they are,

respectively, in a neighborhood of the periodic orbits γỹ−
0

and γỹ+
0

, where

ỹ±0 =
B ±

√
B2 − 4a2σ2π2

2πσ
.

(b) If B = B̂, then there exist functions σ(ε) and B(ε) defined for ε sufficiently small, such that

the perturbed system (2.41) with σ = σ(ε) and B = B(ε) has a unique periodic orbit in a

neighborhood of the periodic orbit γa and it possesses multiplicity two.

(c) If σ · (B− B̂) < 0, then for every y0 > 0 there exists ε0 > 0 sufficiently small such that system

(2.41) has not periodic orbits for 0 < |ε| < ε0 near to the periodic orbit γy0 .

Proof: Since vector field of system (2.41) is divergence-free, it results from Proposition 2.10 that

the Melnikov function M is given by

M(y0, σ, a,B) =
2

y0

(
σπy20 − y0B + a2σπ

)
. (2.43)

By studying positive roots and applying Theorem 2.8, the conclusion is direct. ✷

2.5.2 Application to three-zonal planar continuous piecewise linear systems

To complete this chapter, the Melnikov theory will be applied to 3CPWL2 systems (see Remark

2.11). Specifically, the existence of a saddle-node bifurcation of three-zonal limit cycles is proven.

Let us consider the Lienard canonical form for continuous symmetric PWL systems with three
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zones of linearity 



ẋ = tex− y − (ti − te)sat(x),

ẏ = dex+ (di − de)sat(x),
(2.44)

where ti, te, di, de ∈ R and sat(x) is the saturation function, that is,

sat (x) =





sgn(x) if |x| > 1,

x if |x| 6 1.

The developed Melnikov theory allows us to get some of the results shown in [41, 92]. In particular,

the saddle-node bifurcation of limit cycles conjectured in [41] and proven in [92] can be proven now

through the Melnikov theory.

Let us remark that ti · te < 0 is a necessary condition for the existence of limit cycles of system

(2.44), see Theorem 1.1 of [41]. We will focus our attention on the analysis of system (2.44) for ti

and te different from zero and small enough. Hence, we consider

ti = εTi, te = εTe, with |ε| ≪ 1.

With this choice and doing ε = 0, system (2.44) becames





ẋ = −y,

ẏ = dex+ (di − de)sat(x),
(2.45)

and we have for ε different from zero,





ẋ = −y + ε(Ti − Te)sat(x),

ẏ = dex+ (di − de)sat(x).
(2.46)

We show only the analysis for di < 0 and de > 0. In this case, system (2.45) possesses three

equilibrium points, one of them is the origin, another one is found in the half-plane x < −1 and the

last one in the half-plane x > 1.

In this case, according to symmetry properties of the unperturbed system (2.45), it can be proven

that the system possesses three different continua of periodic orbits and a pair of homoclinic loops

(see Fig. 2.8).
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x

y

x = −1 x = 1

y0
γy0

Figure 2.8: Phase plane of the unperturbed system (2.45) for di < 0 and de > 0 .

The unbounded continuum of periodic orbits that surrounds the three equilibrium points of system

(2.45) is represented as γy0 , for y0 >
√
−di, where (1, y0) is the intersection point of the curve γy0

with the half straight-line {x = 1, y > 0}, see Fig. 2.8.

Due to vector field (2.45) is divergence-free, taking into account the symmetry of the system and

that

divg(x, y, 0,Ti,Te) =





Te if |x| > 1,

Ti if |x| < 1,

it results from expression (2.35) that the Melnikov function M̃ is given by

M̃(y0;Ti,Te) =
1

y0
(4TiRi(y0) + 4TeRe(y0)) , (2.47)

for y0 >
√
−di, with

Ri(y0) = Area
(
int (γy0) ∩ {(x, y) ∈ R

2 : 0 6 x 6 1, y > 0}
)

and

Re(y0) = Area
(
int (γy0) ∩ {(x, y) ∈ R

2 : x > 1, y > 0}
)
.
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For analyzing the roots of the Melnikov function given in (2.47), it is convenient to consider the

function

M(y0;Ti,Te) = y0M̃ (y0,Ti,Te) = 4TiRi(y0) + 4TeRe(y0). (2.48)

By analyzing the function M we reproduce faithfully the results obtained in [41] and [92] about

the existence and bifurcations of three-zonal limit cycles. In particular, we prove the existence of

a saddle-node bifurcation of three-zonal periodic orbits for system (2.46). Let us remark that the

persistence of the homoclinic loops of system (2.45) can be analyzed through the works [7, 13, 64].

From these works, it can be proven that these homoclinic connections remain if the value K given

in the next result vanishes.

Proposition 2.15 Consider the perturbed system (2.46) with di < 0, de > 0 and Ti · Te < 0 and let

us define

K = Ti
√

−di +
Te√
de

[
di
de

(di − de)

(
π − sin−1

√
de

de − di

)
− di

√
− di
de

]
.

Then, the following statements hold.

(a) Function M(·,Ti,Te) has a unique critic point y∗0 ∈ (
√
−di,+∞).

(b) If K 6= 0 and sgn(Ti) 6= sgn(K), then the following statements hold.

a) If sgn(Ti) = sgn(M(y∗0 ,Ti,Te)), then system (2.46) possesses two three-zonal hyperbolic

limit cycles for |ε| 6= 0 and small enough, one asymptotically stable and the other one

unstable. Furthermore, they are, respectively, in a neighborhood of γŷ1
0

and γŷ2
0
, where

ŷ10, ŷ
2
0 are the only solutions of the equation M(·,Ti,Te) = 0 in the interval (

√
−di,+∞).

b) If M(y∗0,Ti,Te) = 0, then there exist two functions Ti(ε) and Te(ε), defined for ε

sufficiently small, such that system (2.46) with Ti = Ti(ε) and Te = Te(ε) has a unique

three-zonal periodic orbit in a neighborhood of γy∗
0
, and it possesses multiplicity two.

c) If M(y∗0,Ti,Te) 6= 0 and sgn(Ti) 6= sgn(M(y∗0 ,Ti,Te)), then for every y0 > 0 there exists

ε0 > 0 sufficiently small such that system (2.46) has no three-zonal periodic orbits close

to the periodic orbit γy∗
0
, for 0 < |ε| < ε0.
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Proof: Let us suppose Ti > 0, Te < 0. It is easy to see that function M defined in (2.48) satisfies

lim
y0 →

√
−di

y0 >
√
−di

M(y0;Ti,Te) = 2K,

where

K = Ti
√

−di +
Te√
de

[
di
de

(di − de)

(
π − sin−1

√
de

de − di

)
− di

√
− di
de

]
.

The three-zonal periodic orbits γy0, for y0 >
√
−di, are formed from pieces of ellipses in the exterior

zones and pieces from hyperbolas in the interior zone, namely,

(dex− di)
2 + dey

2 = (de − di)
2 + dey

2
0 and dix

2 + y2 = di + y20 .

The area of the portions of these ellipses and hyperbolas which take part in the expression of

function M defined in (2.48), are given by

Ri(y0) =

∫ 0

−1

√
di − di(x+ 1)2 + y20 dx (2.49)

and

Re(y0) =
d2i + dey

2
0

2de
√
de

− 1

de

∫ y0

0

(√
de(y20 − di − y2) + di

)
dy. (2.50)

By substituting expressions (2.49) and (2.50) in (2.48) and by taking the derivative with respect

to y0, one obtains
∂M

∂y0
(y0;Ti,Te) = 4y0F (y0),

where

F (y0) =
Ti√
−di

sinh−1

√
−di

y20 + di
+

Te√
de
π − Te√

de
sin−1

√
dey

2
0

d2i + dey20
.

Since

lim
y0 →

√
−di

y0 >
√
−di

F (y0) = +∞, and lim
y0→+∞

F (y0) =
πTe
2
√
de

< 0,

we deduce that there exists a value y∗0 >
√
−di such that F (y∗0) = 0.
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Due to the function
dF

dy0
(y0) =

−Ti
y20 + di

+
Tedi

d2i + dey
2
0

vanishes at most once in the interval (
√
−di,+∞), the root y∗0 >

√
−di of function F is unique.

That proves the first item.

Let us now turn to the second statement.

It is easy to see that lim
y0→+∞

M(y0;Ti,Te) = −∞. If K < 0, then the following items hold.

• When M(y∗0 ;Ti,Te) > 0, then function M(·;Ti,Te) possesses exactly two zeros ŷ10 < ŷ20 in the

interval (
√
−di,+∞), which satisfy

∂M

∂y0
(ŷ20 ;Ti,Te) < 0 <

∂M

∂y0
(ŷ10 ;Ti,Te), see Fig. 2.9.

2K

M(y0)

√
−di

y∗0

y0

ŷ10 ŷ20

Figure 2.9: Function M defined in (2.48) for Ti > 0,Te < 0,K < 0 and M(y∗0,Ti,Te) > 0.

• If M(y∗0 ;Ti,Te) = 0, then
∂M

∂y0
(y∗0 ;Ti,Te) = 0 and

∂2M

∂y20
(y∗0;Ti,Te) 6= 0, see Fig. 2.10.

• When M(y∗0;Ti,Te) < 0, then function M(·;Ti,Te) does not possess zeros in the interval

(
√
di,+∞), see Fig. 2.11.

The case K > 0 can be analyzed in the same manner.

From this, the conclusions of the second statement are a direct consequence of Theorem 2.8.

That concludes the proof for Ti > 0 and Te < 0. In an analogous way, it would do for Ti < 0

and Te > 0. ✷

In this chapter, we have generalized the Melnikov theory for a class of planar hybrid systems

and we have applied our results to analyze the existence of periodic orbits in planar continuous
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2K

M(y0)

√
−di

y∗0

y0

Figure 2.10: Function M defined in (2.48) for Ti > 0,Te < 0,K < 0 and M(y∗0 ,Ti,Te) = 0.

2K

M(y0)
√
−di

y∗0

y0

Figure 2.11: Function M defined in (2.48) for Ti > 0,Te < 0,K < 0 and M(y∗0 ,Ti,Te) < 0.

and discontinuous PWL systems. One application of the developed theory will be done in the next

chapter, where we analyze periodic orbits of a family of planar hybrid PWL systems.
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Chapter3
Invariant Cones in Three-Dimensional Observable Continuous

Piecewise Linear Systems via Melnikov Theory

In the last section of Chapter 1, the motivation for the analysis of the existence of invariant cones in

CPWL systems was expounded.

The principal aim of this chapter is the application of the theory that has been developed in

Chapter 2 to find invariant cones in three-dimensional observable CPWL homogeneous systems. To

get it, we will relate one-to-one the invariant cones in this class of systems to the periodic orbits of

several planar hybrid systems.

The obtained results, among other things, extend those results given in [25] and prove the

conjecture about the existence of a saddle-node bifurcation of invariant cones stated in that paper.

The chapter is organized as follows. In an introductory section, we state the problem of studying

invariant cones in three-dimensional observable CPWL systems. Next, the equivalence between

invariant cones in three-dimensional observable CPWL systems and periodic orbits in some planar

hybrid systems is stated. The main results are written in Sec. 3.3. Subsequently, we state results of

existence of invariant cones and saddle-node bifurcations of invariant cones. Finally, the last section

is devoted to analyzing the two-zonal invariant cones which arise from the invariant cones of the

unperturbed situation which are tangent to the separation plane x = 0.

The main results of this chapter are published in [18].
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3.1 Introduction and preliminary results

As it was stated in Chapter 1, every homogeneous observable 2CPWL3 system can be written into

the Liénard form

ẋ =M▽x =




t▽ −1 0

m▽ 0 −1

d▽ 0 0


x, (3.1)

where x = (x, y, z)T , being t±,m± and d± the coefficients of the characteristic polynomials of

matrix M±.

On the other hand, in Chapter 1 it has been said that the one-zonal invariant cones of (3.1)

cannot be isolated and in this case matrix M+ (or M−) has complex eigenvalues with the real part

of the complex eigenvalues and the real eigenvalue shared. Moreover, when system (3.1) possesses

one invariant cone living in each zone of linearity, then the space is foliated by invariant cones when

the traces of matrices M+ and M− coincide. Here, two invariant cones tangent to the separation

plane appear. These statements are stated in the next results and are deduced from Proposition 6

and statement (b) of Theorem 2 in [25].

Proposition 3.1 Assume that the eigenvalues of the matrices of system (3.1), M+ and M−, are

λ−, α− ± iβ− and λ+, α+ ± iβ+, respectively, with λ−, α−, β−, λ+, α+, β+ ∈ R, β− > 0 and

β+ > 0. Then, the following statements hold.

(a) If system (3.1) has a one-zonal invariant cone C living in the half-space {x 6 0}, then α− = λ−

and the system has a continuum of one-zonal invariant cones living in the zone {x 6 0}.

(b) If system (3.1) has a one-zonal invariant cone C living in the half-space {x > 0}, then α+ = λ+

and the system has a continuum of one-zonal invariant cones living in the zone {x > 0}.

Proposition 3.2 Under the hypotheses of Proposition 3.1, the three-dimensional space R3 is foliated

by invariant cones of system (3.1) if and only if α− = λ− = α+ = λ+.

Let us introduce one remark about the invariant cones.

Remark 3.3 Under the hypothesis of complex eigenvalues of the matrices of system (3.1), in [25]
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is proven that when two different two-zonal invariant cones appear, they are hyperbolic and they

have exchanged attractiveness. Moreover, if (α− − λ−)(α+ − λ+) < 0 and there exists one unique

invariant cone, it is non-hyperbolic and semi-attractive.

The dynamical behavior considered in Proposition 3.2 provide us the germ necessary to analyze

the presence of invariant cones and the existence of saddle-node bifurcations of invariant cones. The

key idea is to know what invariant cones persist when this situation is perturbed.

3.2 Equivalence between invariant cones in 2CPWL3 systems and

periodic orbits in planar PWL hybrid systems

The correspondence one-to-one between the invariant cones of system (3.1) and periodic orbits of

certain planar hybrid PWL systems is considered in this section. In the following, the characteristic

polynomial of matrices M− and M+ will be denoted by

pM−(λ) = det(M− − λI) = −λ3 + t−λ2 −m−λ+ d−

and

pM+(λ) = det(M+ − λI) = −λ3 + t+λ2 −m+λ+ d+,

respectively.

Let us expose some geometrical properties of the invariant cones that may appear in the class of

systems that we are studying. To begin with, if λ− ∈ R is an eigenvalue of matrix M−, then it is

immediate to observe that the plane Π− ≡ (λ−)2 x− λ−y + z = 0 is an invariant manifold for the

linear system ẋ =M−x, x ∈ R
3. Analogously, if λ+ is a real eigenvalue of matrixM+, then the plane

Π+ ≡ (λ+)
2
x−λ+y+z = 0 is an invariant manifold for the linear system ẋ =M+x, x ∈ R

3. When

λ− 6= λ+, then Π− and Π+ are not invariant manifolds of system (3.1) and when λ− = λ+, then

the planes Π− and Π+ coincide and constitute a planar two-zonal invariant cone for system (3.1).

It is clear that the invariance of these planes must restrict the sets where the invariant cones of

system (3.1), if any, are located. We will say that a cone is above (resp. below) a plane if for every

point (x1, y1, z1) not at the origin and belonging to the cone, there exists another point (x1, y1, z2)

belonging to the plane such that z1 > z2 (resp. z1 < z2). Now, from Lemma 21 and Proposition 22

of [25], it has been proven that the non-planar two-zonal invariant cones of the system, if they exist,
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are located either above or below both planes Π− and Π+. Therefore, we must look for the invariant

cones for system (3.1) above the planes Π− and Π+ or below these planes.

When one search invariant cones above Π+, these cones correspond one-to-one to the periodic

orbits of a planar continuous piecewise quadratic system, as it is established in the next result.

Proposition 3.4 Let λ+ be a real eigenvalue of matrix M+, then the invariant cones of system (3.1)

located above the plane Π+ are in one-to-one correspondence to the periodic orbits of the continuous

planar piecewise quadratic system





u̇1 = (t− − λ+)u1 − u2 − pM−(λ+)u21,

u̇2 =
[
m− + (λ+)

2
]
u1 − 2λ+u2 − pM−(λ+)u1u2 − 1,

if u1 6 0,





u̇1 = (t+ − λ+)u1 − u2,

u̇2 =
[
m+ + (λ+)

2
]
u1 − 2λ+u2 − 1,

if u1 > 0.

(3.2)

Proof: It is sufficient to do the change of variables

u1 =
x

(λ+)2 x− λ+y + z
, u2 =

y

(λ+)2 x− λ+y + z
, Z+ = (λ+)

2
x− λ+y + z, (3.3)

when (λ+)
2
x− λ+y + z > 0. ✷

We can establish an analogous result for the invariant cones living above the plane Π−.

Proposition 3.5 Let λ− be a real eigenvalue of matrix M−, then the invariant cones of system (3.1)

located above the plane Π− are in one-to-one correspondence to the periodic orbits of the continuous

planar piecewise quadratic system





v̇1 = (t− − λ−) v1 − v2,

v̇2 =
[
m− + (λ−)2

]
v1 − 2λ−v2 − 1,

if v1 6 0,





v̇1 = (t− − λ−) v1 − v2 − pM+(λ−)v21 ,

v̇2 =
[
m+ + (λ−)2

]
v1 − 2λ−v2 − pM+(λ−)v1v2 − 1,

if v1 > 0.

(3.4)
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Proof: It is sufficient to do the change of variables

v1 =
x

(λ−)2 x− λ−y + z
, v2 =

y

(λ−)2 x− λ−y + z
, Z− = (λ−)2 x− λ−y + z, (3.5)

when (λ−)2 x− λ−y + z > 0. ✷

Note that for λ+ = λ−, systems (3.2) and (3.4) are planar CPWL systems. Moreover, if λ+ 6= λ−,

then system (3.2) is linear for u1 > 0 and quadratic for u1 6 0; and system (3.4) is linear for v1 6 0

and quadratic for v1 > 0.

Taking into account that piecewise quadratic systems (3.2) and (3.4) have been obtained from

system (3.1) by means of the changes of variables given in (3.3) and (3.5), respectively, we can

conclude that both continuous piecewise quadratic systems must be equivalent in a suitable region

of R
2. Indeed, it is possible to obtain the change of variable which transforms system (3.2) into

system (3.4) as well as the suitable region. From expressions (3.3) and (3.5), one obtains

Z+ − Z− =
(
λ+ − λ−

) [(
λ+ + λ−

)
x− y

]

and so,
Z−

Z+
= 1−

(
λ+ − λ−

) [(
λ+ + λ−

) x

Z+
− y

Z+

]
.

Hence, since u1 = x/Z+, u2 = y/Z+, Z+ > 0, Z− > 0 and Z−/Z+ = u1/v1 = u2/v2, we deduce

that

1−
(
λ+ − λ−

) [(
λ+ + λ−

)
u1 − u2

]
> 0,

v1 =
u1

1− (λ+ − λ−) [(λ+ + λ−)u1 − u2]

and

v2 =
u2

1− (λ+ − λ−) [(λ+ + λ−)u1 − u2]
.

A similar argument can be done to determine that

u1 =
v1

1 + (λ+ − λ−) [(λ+ + λ−) v1 − v2]

and

u2 =
v2

1 + (λ+ − λ−) [(λ+ + λ−) v1 − v2]
.

Soledad Fernández García



52 CHAPTER 3. INVARIANT CONES IN OBSERVABLE 2CPWL3 SYSTEMS VIA MELNIKOV THEORY

The above reasoning allows us to state that if λ+ 6= λ− the quadratic system





u̇1 = (t− − λ+) u1 − u2 − pM−(λ+)u21,

u̇2 =
[
m− + (λ+)

2
]
u1 − 2λ+u2 − pM−(λ+)u1u2 − 1,

is equivalent to the linear system





v̇1 = (t− − λ−) v1 − v2,

v̇2 =
[
m− + (λ−)2

]
v1 − 2λ−v2 − 1,

for each open half-plane determined by the straight line

1−
(
λ+ − λ−

) [(
λ+ + λ−

)
u1 − u2

]
= 0,

and in the same way, the quadratic system





v̇1 = (t− − λ−) v1 − v2 − pM+(λ−)v21 ,

v̇2 =
[
m+ + (λ−)2

]
v1 − 2λ−v2 − pM+(λ−)v1v2 − 1,

is equivalent to the linear system





u̇1 = (t+ − λ+)u1 − u2,

u̇2 =
[
m+ + (λ+)

2
]
u1 − 2λ+u2 − 1,

for each open half-plane determined by the straight line

1 +
(
λ+ − λ−

) [(
λ+ + λ−

)
v1 − v2

]
= 0.

Observe that periodic orbits of piecewise quadratic system (3.2) must belong to the open half-

plane

Ω+ =
{
(u1, u2) ∈ R

2 : 1−
(
λ+ − λ−

) [(
λ+ + λ−

)
u1 − u2

]
> 0
}
, (3.6)

because the invariant cones of system (3.1) located above the plane Π+ also have to be located above

the plane Π−. Analogously, the periodic orbits of piecewise quadratic system (3.4) must belong to
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the open half-plane

Ω− =
{
(v1, v2) ∈ R

2 : 1 +
(
λ+ − λ−

) [(
λ+ + λ−

)
v1 − v2

]
> 0
}
. (3.7)

We represent the half-planes Ω+ and Ω− in the Fig. 3.1 in the case λ−−λ+ > 0 and λ−+λ+ < 0.

The remaining cases have analogous representations.

Note that the origin belongs to half-planes Ω+ and Ω−, and that Ω+ = Ω− = R for λ+ = λ−.

u1

u2

Ω−

(λ− − λ+)−1

Ω+

v1

v2

−(λ− − λ+)−1

Figure 3.1: The half-planes Ω+ and Ω− defined in (3.6) and (3.7) for the case λ− − λ+ > 0 and
λ− + λ+ < 0.

From the above reasoning, we can describe a hybrid planar PWL system, with the proposal to

search the periodic orbits of systems (3.2) or (3.4), that is, the invariant cones of system (3.1) above

planes Π− and Π+.

Proposition 3.6 The invariant cones of system (3.1) located above planes Π− and Π+ are in one-

to-one correspondence to periodic orbits of the planar hybrid piecewise linear system





ẋ = 2(α− − λ−)x− y

ẏ =
[
(α− − λ−)2 + (β−)2

]
x− 1

if x < 0,





ẋ = 2(α+ − λ+)x− y

ẏ =
[
(α+ − λ+)

2
+ (β+)

2
]
x− 1

if x > 0,

(3.8)
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defined in the region Ω = Ω1 ∪ Ω2, where

Ω1 =
{
(x, y) ∈ R

2 : 1 +
(
λ+ − λ−

) [(
λ+ − λ−

)
x− y

]
> 0, x 6 0

}
(3.9)

and

Ω2 =
{
(x, y) ∈ R

2 : 1−
(
λ+ − λ−

) [(
λ− − λ+

)
x− y

]
> 0, x > 0

}
, (3.10)

with the reset map

R : Ω ∩ {x = 0} −→ Ω ∩ {x = 0}
(0, y) 7−→ (0, δ(y)),

(3.11)

being

δ(y) =





y

1− (λ+ − λ−)y
if y 6 0,

y

1 + (λ+ − λ−)y
if y > 0.

(3.12)

Proof: The following discontinuous change of variables





v1 =
u1

1− (λ+ − λ−) [(λ+ + λ−)u1 − u2]

v2 =
u2

1− (λ+ − λ−) [(λ+ + λ−)u1 − u2]

for u1 6 0,





v1 = u1,

v2 = u2,
for u1 > 0,

(3.13)

defined in the half-plane Ω+, where Ω+ is given in (3.6), transforms system (3.2) into the planar

PWL system 



v̇1 = (t− − λ−) v1 − v2,

v̇2 =
[
m− + (λ−)2

]
v1 − 2λ−v2 − 1,

if v1 < 0,





v̇1 = (t+ − λ+) v1 − v2,

v̇2 =
[
m+ + (λ+)

2
]
v1 − 2λ+v2 − 1,

if v1 > 0,

(3.14)

and the set Ω+ into the set Ω̃ = Ω̃1 ∪ Ω̃2, where

Ω̃1 =
{
(v1, v2) ∈ R

2 : 1 +
(
λ+ − λ−

) [(
λ+ + λ−

)
v1 − v2

]
> 0, v1 6 0

}
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and

Ω̃2 =
{
(v1, v2) ∈ R

2 : 1−
(
λ+ − λ−

) [(
λ+ + λ−

)
v1 − v2

]
> 0, v1 > 0

}
.

Note that system (3.14) needs the reset map

R̃ : Ω̃ ∩ {v1 = 0} −→ Ω̃ ∩ {v1 = 0}
(0, v2) 7−→ (0, δ̃(v2)),

where

δ̃(v2) =





v2
1− (λ+ − λ−)v2

if v2 6 0,

v2
1 + (λ+ − λ−)v2

if v2 > 0,

which is a direct consequence of the discontinuous change (3.13). Now, the last change of variables

x = v1, y =

{
−2λ−v1 + v2 if v1 6 0,

−2λ+v1 + v2 if v1 > 0,

transforms system (3.14) into system (3.8), the regions Ω̃1 and Ω̃2 into the regions Ω1 and Ω2, given

in (3.9) and (3.10), respectively, and the reset map R̃ into the reset map R. This concludes the

proof. ✷

We represent the sets Ω̃ and Ω in Fig. 3.2 for the case λ− − λ+ > 0 and λ− + λ+ < 0. The

remaining cases have analogous representations.

It is clear that Proposition 3.6 has a dual result, that we enunciate without proof, for the invariant

cones living below planes Π− and Π+.

Proposition 3.7 The invariant cones of system (3.1) located below planes Π− and Π+ are in one-

to-one correspondence to the periodic orbits of the planar hybrid PWL system





ẋ = 2(α− − λ−)x− y

ẏ =
[
(α− − λ−)2 + (β−)2

]
x+ 1

if x < 0,





ẋ = 2(α+ − λ+)x− y

ẏ =
[
(α+ − λ+)

2
+ (β+)

2
]
x+ 1

if x > 0,

(3.15)

Soledad Fernández García



56 CHAPTER 3. INVARIANT CONES IN OBSERVABLE 2CPWL3 SYSTEMS VIA MELNIKOV THEORY

Figure 3.2: The sets Ω̃ = Ω̃1 ∪ Ω̃2 and Ω = Ω1 ∪Ω2 for λ− − λ+ > 0 and λ− + λ+ < 0.

v2

Ω̃2

v1

Ω̃1

y

Ω2

x

Ω1

(λ− − λ+)−1 (λ− − λ+)−1

−(λ− − λ+)−1 −(λ− − λ+)−1

defined in the region Ω̂ = Ω̂1 ∪ Ω̂2, where

Ω̂1 =
{
(x, y) ∈ R

2 : 1−
(
λ+ − λ−

) [(
λ+ − λ−

)
x− y

]
> 0, x 6 0

}

and

Ω̂2 =
{
(x, y) ∈ R

2 : 1 +
(
λ+ − λ−

) [(
λ− − λ+

)
x− y

]
> 0, x > 0

}
,

with the reset map

R−1 : Ω ∩ {x = 0} −→ Ω ∩ {x = 0}
(0, y) 7−→ (0, δ−1(y)),

where δ is defined in (3.12).

3.3 Statement of main results

To begin this section we present the unperturbed system and its perturbation. As we have written

in Sec. 3.1, the dynamical behavior considered in Proposition 3.2 provide us the germ necessary to

analyze the existence and bifurcations of two-zonal invariant cones. Note that system (3.1), under
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conditions of Proposition 3.2, can be written as

ẋ =





N+x if x > 0,

N−x if x < 0,
(3.16)

where

N+ =




3λ− −1 0

2(λ−)2 + (β+)2 0 −1

(λ−)3 + λ−(β+)2 0 0


 ,

N− =




3λ− −1 0

2(λ−)2 + (β−)2 0 −1

(λ−)3 + λ−(β−)2 0 0


 ,

(3.17)

with λ−, β−, β+ ∈ R, β− > 0 and β+ > 0. This system will be called the unperturbed system.

We ask about invariant cones of the unperturbed system (3.16) that remain when it is perturbed.

As the eigenvalues of the coefficient matrices N− and N+ are λ−, λ− ± iβ− and λ−, λ− ± iβ+,

respectively, to perturb the system it is natural to assume that coefficient matrices of the perturbed

system possess a pair of complex conjugate eigenvalues. Furthermore, these eigenvalues must be

close to the eigenvalues of the unperturbed system. Hence, we can assume that the eigenvalues of

the coefficient matrices of the perturbed system are λ−, α− ± iβ− and λ+, α+ ± iβ+, with

α− = λ− + εσ−, α+ = λ− + εσ+ and λ+ = λ− + εΛ, (3.18)

where λ−, σ−, σ+,Λ, ε ∈ R and |ε| << 1.

From system (3.1), assuming that the eigenvalues of matrices M+ and M− have the form given

in (3.18), we arrive to the perturbed system

ẋ =





(N+ + εL+)x if x > 0,

(N− + εL−)x if x < 0,
(3.19)
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where N− and N+ are given in (3.17), L− = b−e1T and L+ = b+e1
T , with

b− =




2σ−

3λ−σ− + ε(σ−)2

2(λ−)2σ− + ελ−(σ−)2


 ,

b+ =




2σ+ + Λ

3λ−σ+ + λ−Λ +O(ε)

2(λ−)2σ+ + Λ((λ−)2 + (β+)2) +O(ε)




and λ−, σ−, σ+,Λ, ε ∈ R, |ε| ≪ 1.

Note that the invariant plane of the left zone for the perturbed system (3.19) is Π−, the same

as that of the unperturbed system (3.16). Nevertheless, the invariant plane of the right zone, which

we will denote by Π+
ε , has a different expression Π+

ε ≡ (λ− + εΛ)
2
x− (λ− + εΛ)y + z = 0.

At this time, we are able to expose the main results of this chapter. The proofs are based on

the equivalence between invariant cones in three-dimensional CPWL systems and periodic orbits in

planar hybrid PWL systems (which is stated in Sec. 3.2). Thus, two functions whose zeros provide us

the invariant cones that persist will be constructed. These functions will be called Melnikov functions.

Note that one could also use the method of averaging for manifolds [79], since, as it is proved in

[10], this approach can be extended for Lipschitzian systems; but that would require us to work with

system (1.20), which is a continuous piecewise cubic system on S2, rather than a planar piecewise

linear system.

The second items of the following theorems will allow us give some results of saddle-node

bifurcation of invariant cones of system (3.1).

We only prove Theorem 3.8. Similar reasoning let us prove Theorem 3.9.

Theorem 3.8 Consider the Melnikov function

M1(y0;µ) = (σ+ − Λ)F (y0, β
+) + σ−G(y0, β

−)− y30Λ, (3.20)
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defined for y0 > 0 and µ = (σ−, σ+,Λ, β−, β+) ∈ R
5, where

F (y0, a) =
π(1 + a2y20)

a3
+

2y0
a2

− I(y0, a), G(y0, a) =
−2y0
a2

+ I(y0, a), (3.21)

being

I(y0, a) =
1

a

((
1

a2
+ y20

)
sin−1 ay0√

1 + a2y20
+
y0
a

)
for a > 0.

Assume that there exist ȳ0 > 0 and µ0 ∈ R
5 such that M1(ȳ0;µ0) = 0 and denote

q1 =
∂M1

∂y0
(ȳ0;µ0).

Then, the following statements hold.

(a) If q1 6= 0, then the perturbed system (3.19) has a hyperbolic two-zonal invariant cone located

above the planes Π− and Π+
ε , for ε different from zero and sufficiently small. Moreover, the

invariant cone is repulsive if ε · q1 < 0 and attractive if ε · q1 > 0.

(b) If q1 = 0, then there exists a function µ = µ(ε) = µ0 + O(ε) such that system (3.19) has a

unique non-hyperbolic semi-attractive two-zonal invariant cone located above the planes Π−

and Π+
ε , for ε different from zero and sufficiently small.

Proof: For the unperturbed system (3.16), α− = λ− = α+ = λ+, so applying Proposition 3.6, the

invariant cones located above plane Π− = Π+ are in one-to-one correspondence to periodic orbits

of the planar CPWL system {
ẋ = −y
ẏ = (β−)2x− 1

if x < 0,

{
ẋ = −y
ẏ = (β+)2x− 1

if x > 0,

(3.22)

defined in R
2. Note that, as λ+ = λ−, the reset map defined in (3.11) is the identity function and the

resulting system is a planar CPWL system. Now, let us describe the phase plane of system (3.22). As

β−, β+ > 0, system (3.22) possesses only one equilibrium point x̄ = (1/(β+)2, 0). Moreover, system

(3.22) is invariant under the transformation (t, y) → (−t,−y). From this invariance and taking into

account that the equilibrium point x̄ is a linear center of the right zone, we conclude that there exists
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an unbounded continuum of periodic orbits surrounding the equilibrium point x̄ (see Fig. 3.3). In the

y

y0

−y0

xx̄

Figure 3.3: Representation of the continuum of periodic orbits of system (3.22).

continuum, there exist periodic orbits contained in the zone x ≥ 0 and periodic orbits contained in

both zones. The orbit passing through (x, y) = (0, 0) is tangent to the vertical axis and corresponds

to the invariant cone which is tangent to the separation plane and it is located above the planes Π−

and Π+. The two-zonal orbits form an unbounded continuum of periodic orbits crossing transversally

the separation line x = 0 counterclockwise. If we integrate the system, we find out that every two-

zonal orbit is formed from two pieces of ellipses, joined with continuity and differentiability at the

separation line x = 0. This family of periodic orbits can be parameterized as

Γy0 ≡
{

((β−)2x− 1)2 + (β−)2y2 = 1 + (β−)2y20 if x < 0,

((β+)2x− 1)2 + (β+)2y2 = 1 + (β+)2y20 if x ≥ 0,

where y0 ∈ (0,+∞) is the intersection point of the periodic orbit with the vertical axis.

On the other hand, applying Proposition 3.6 to system (3.19), we can asserts that invariant cones

of this system located above planes Π− and Π+
ε are in one-to-one correspondence to periodic orbits
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of the planar hybrid PWL system

{
ẋ = 2εσ−x− y

ẏ = (ε2(σ−)2 + (β−)2)x− 1
if x < 0,

{
ẋ = 2ε(σ+ − Λ)x− y

ẏ = (ε2(σ+ − Λ)2 + (β+)2)x− 1
if x > 0,

(3.23)

defined into the region Ωε = Ωε1 ∪ Ωε2, where

Ωε1 =
{
(x, y) ∈ R

2 : 1 + εΛ (εΛx− y) > 0, x 6 0
}

and

Ωε2 =
{
(x, y) ∈ R

2 : 1 + εΛ (εΛx+ y) > 0, x > 0
}
,

with the reset map

Rε : Ωε ∩ {x = 0} −→ Ωε ∩ {x = 0}
(0, y) 7−→ (0, δε(y)),

being

δε(y) =





y

1− εΛy
if y 6 0,

y

1 + εΛy
if y > 0.

Note that system (3.23) is a perturbation of system (3.22).

The previous system (3.23) is a planar hybrid PWL system of the family (2.6). Therefore, the

theory that has been developed in Chapter 2 can be applied here. Specifically, the Melnikov function

M defined in (2.25) particularized for system (3.23) is given by

M(y0;µ) = − 2

y0
M1(y0;µ),

where M1(y0;µ) =Mc(y0;µ) − y30Λ, with

Mc(y0;µ) = (σ+ − Λ)S+(y0,µ) + σ−S−(y0,µ),
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being

S+(y0;µ) = Area(int(Γy0 ∩ {(x, y) ∈ R
2 : x > 0})) (3.24)

and

S−(y0;µ) = Area(int(Γy0 ∩ {(x, y) ∈ R
2 : x < 0})). (3.25)

Finding the explicit formulas of areas (3.24) and (3.25), the function M1 is given in expression (3.20).

The proof conclude by direct application of Theorem 2.8 ✷

Theorem 3.9 Consider the Melnikov function

M2(y0;µ) = (σ+ − Λ)G(y0, β
+) + σ−F (y0, β

−) + y30Λ, (3.26)

defined for y0 > 0 and µ = (σ−, σ+,Λ, β−, β+) ∈ R
5, where F and G are given in (3.21). Assume

that there exist ȳ0 > 0 and µ0 ∈ R
5 such that M2(ȳ0;µ0) = 0 and denote

q2 =
∂M2

∂y0
(ȳ0;µ0).

Then, the following statements hold.

(a) If q2 6= 0, then the perturbed system (3.19) has a hyperbolic two-zonal invariant cone located

below the planes Π− and Π+
ε , for ε different from zero and sufficiently small. Moreover, the

invariant cone is repulsive if ε · q2 < 0 and attractive if ε · q2 > 0.

(b) If q2 = 0, then there exists a function µ = µ(ε) = µ0 + O(ε) such that system (3.19) has a

unique non-hyperbolic semi-attractive two-zonal invariant cone located below the planes Π−

and Π+
ε , for ε different from zero and sufficiently small.

3.4 Conditions for the existence and saddle-node bifurcation of

invariant cones

In this section, by using theorems 3.8 and 3.9, we give specific conditions about the parameters of

the perturbed system (3.19), which allow us to guarantee the existence of two-zonal invariant cones.

These results agree with those given in Theorem 2 of [25]. Furthermore, by means of the theory

developed in this work, we are able to prove the conjecture done in [25] about the existence of a
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saddle-node bifurcation of invariant cones. In fact, we will give an explicit expression of the function

which characterize the saddle-node bifurcation.

In the next section we will see that, although the results given in [21] about the existence and

saddle-node bifurcation of invariant cones cannot be applied to system (3.19), we are able to extend

the results given there through the theory developed in this work.

Let us begin by proving some results about the existence of invariant cones in system (3.19).

Functions M1 and M2 given in (3.20) and (3.26), respectively, are defined for y0 > 0. However,

we can extend by continuity the definition to y0 = 0,

M1(0,µ) =
π

(β+)3
(σ+ − Λ) and M2(0,µ) =

π

(β−)3
σ−.

We will occasionally delete the parameter µ in the expressions of Melnikov functions and we will

denote the derivative with respect to the variable y0 by a prime.

To start, a result about the existence of exactly two two-zonal invariant cones for the perturbed

system (3.19) is stated.

Theorem 3.10 If Λ · σ− < 0 and Λ(σ+ − Λ) > 0, then the perturbed system (3.19) has exactly

two two-zonal invariant cones for |ε| 6= 0 sufficiently small, one of them above the planes Π− and

Π+
ε and another below them. Moreover, if Λ · ε < 0, the invariant cone located above the planes is

attractive and the other one is repulsive. On the contrary, if Λ · ε > 0, the invariant cone located

above the planes is repulsive and the other one is attractive.

Proof: To prove the existence of invariant cones we first show that functions M1 and M2 given in

(3.20) and (3.26), respectively, possess simple zeros in (0,+∞).

The function M1 satisfies the following properties

M1(0) =
π

(β+)3
(σ+ − Λ) and lim

y0→+∞
M1(y0) = −(sgn(Λ))(+∞). (3.27)

Therefore, if Λ(σ+ − Λ) > 0, M1 possesses at least one zero ȳ0 > 0. In the same way, the function

M2 satisfies

M2(0) =
π

(β−)3
σ− and lim

y0→+∞
M2(y0) = (sgn(Λ))(+∞),

so, if σ− · Λ < 0, M2 possesses at least one zero ȳ∗0 > 0.
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Taking into account Remark 3.3, the roots ȳ0 and ȳ∗0 must be unique and simple. Moreover, it

is easy to see that

sgn(M ′
1(ȳ0)) = −sgn(Λ) and sgn(M ′

2(ȳ
∗
0)) = sgn(Λ),

so, the proof concludes by direct application of the first item of theorems 3.8 and 3.9. ✷

After that, we give two results about the existence of one two-zonal invariant cone above

(respectively, below) the planes Π− and Π+
ε . We shall only prove the first theorem because the

second one can be demonstrated working with the Melnikov function M2 in the same way as we do

with M1 in the proof of the first one.

Theorem 3.11 If Λ(σ+−Λ) > 0 and Λ(2(σ−−σ+)−Λ) > 0, then the perturbed system (3.19) has

one two-zonal invariant cone above the planes Π− and Π+
ε for |ε| 6= 0 sufficiently small. Moreover,

if Λ · ε < 0, the invariant cone is attractive and if Λ · ε > 0, the invariant cone is repulsive.

Proof: From (3.27), we know that if Λ(σ+ − Λ) < 0, M1 possesses at least one zero ȳ0 > 0. We

can now obtain M ′
1(y0) =Md(y0)y0, where

Md(y0) =

−3Λy0 +
2σ−

β−
sin−1 (β−)2y0√

1 + (β−)2y20
+

2(σ+ − Λ)

β+

(
π − sin−1 (β+)2y0√

1 + (β+)2y20

)
.

(3.28)

This function satisfies

Md(0) =
2π(σ+ − Λ)

β+
and lim

y0→+∞
Md(y0) = −(sgn(Λ))(+∞),

so, under the hypothesis Λ(σ+ − Λ) < 0, Md possesses at least one zero in (0,+∞). Moreover,

it is easy to see that M ′
d(y0) has at most two strictly positive zeros. Taking into account that

M ′
d(0) = 2(σ− − σ+) − Λ and assuming Λ(2(σ− − σ+) − Λ+) > 0, it is direct to check that Md

possesses exactly one zero in (0,+∞) and so, the zero ȳ0 is unique and it is simple. The proof

concludes by direct application of the first item of Theorem 3.8. ✷

Theorem 3.12 If Λ · σ− < 0 and Λ(2(σ− − σ+) − Λ) > 0, then the perturbed system (3.19) has
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one two-zonal invariant cone below the planes Π− and Π+
ε for |ε| 6= 0 sufficiently small. Moreover,

if Λ · ε > 0, the invariant cone is attractive and if Λ · ε < 0, the invariant cone is repulsive.

Note that, under the hypotheses of theorems 3.10, 3.11 and 3.12, it is impossible to find a saddle-

node bifurcation of two-zonal invariant cones, because we know from [25] that the maximum number

of two-zonal invariant cones which can appear is two. Nevertheless, if we consider β− = β+, we are

able to prove the conjecture about the existence of saddle-node bifurcation of two-zonal invariant

cones given in [25].

Specifically, the hypotheses in Conjecture 3 of [25] were t+ 6= t− and λ+ 6= λ−, which in the case

of system (3.19) are translated into ε(2(σ−−σ+)−Λ) 6= 0 and εΛ 6= 0, hypotheses that are fulfilled

in the following two results about the existence of a saddle-node bifurcation of invariant cones.

In the first result, the invariant cones arise above the planes Π− and Π+
ε , and in the next one,

below them. Only the first theorem is proven because the second one can be demonstrated simply

by working with the Melnikov function M2 in the same way as we do with M1 in the proof of the

first one.

Theorem 3.13 Suppose β− = β+, Λ+σ−−σ+ 6= 0 and Λ(2(σ− −σ+)−Λ) > 0. Let the function

SN1(Λ, σ
+, σ−, β+) be defined as

SN1(Λ, σ
+, σ−, β+) = π(Λ− σ+) +

3

2

√
Λ(2(σ− − σ+)− Λ)−

(Λ + σ− − σ+) sin−1 (β+)2ỹ0√
1 + (β+)2(ỹ0)2

,
(3.29)

where

ỹ0 =

√
2(σ− − σ+)− Λ

(β+)2Λ
. (3.30)

If there exist Λ̄, σ̄+, σ̄−, β̄+ ∈ R for which SN1(Λ̄, σ̄
+, σ̄−, β̄+) = 0, then there exist functions

Λ(ε) = Λ̄ +O(ε), σ+(ε) = σ̄+ +O(ε) and σ−(ε) = σ̄− +O(ε), defined for |ε| sufficiently small, so

that the perturbed system (3.19) with Λ = Λ(ε), σ+ = σ+(ε), σ− = σ−(ε) and β− = β+ = β̄+,

has exactly one two-zonal invariant cone above the planes Π− and Π+
ε , which is non-hyperbolic and

semi-attractive, for |ε| 6= 0 and small enough.
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Proof: We are looking for a strictly positive double zero of the Melnikov functionM1, i.e., a solution

of the system {
M1(y0) = 0,

M ′
1(y0) = 0.

(3.31)

This system is equivalent, for y0 6= 0, to

{
M1(y0) = 0,

Md(y0) = 0,
(3.32)

where Md(y0) is given in (3.28). Imposing β− = β+, we can find the value of sin−1((β+)2y0/(1 +

(β+)2y20)
−1/2) from the first equation of (3.32), provided that Λ+ σ+ − σ− 6= 0. Substituting it in

the second equation of (3.32), we arrive to

y0

(
2(σ− − σ+)− Λ(1 + (β+)2y20)

1 + (β+)2y20

)
= 0.

The unique strictly positive solution of the previous equation is given by

ỹ0 =

√
2(σ− − σ+)− Λ

(β+)2Λ
,

provided that Λ(2(σ− −σ+)−Λ) > 0. Now, substituting y0 = ỹ0 in the first equation of (3.31), we

have that M1 has a positive double zero when

π(Λ− σ+)+

3

2

√
Λ(2(σ− − σ+)− Λ)− (Λ + σ− − σ+) sin−1 (β+)2ỹ0√

1 + (β+)2(ỹ0)2
= 0.

The proof concludes by direct application of the second item of Theorem 3.8. ✷

Theorem 3.14 Suppose β− = β+, Λ+σ−−σ+ 6= 0 and Λ(2(σ−−σ+)−Λ) > 0. Let the function

SN2(Λ, σ
+, σ−, β+) be defined as

SN2(Λ, σ
+, σ−, β+) =

πσ− +
3

2

√
Λ(2(σ− − σ+)− Λ)− (Λ + σ− − σ+) sin−1 (β+)2ỹ0√

1 + (β+)2(ỹ0)2
,
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where ỹ0 is given in (3.30). If there exist Λ̄, σ̄+, σ̄−, β̄+ ∈ R for which SN2(Λ̄, σ̄
+, σ̄−, β̄+) = 0,

then there exist functions Λ(ε) = Λ̄+O(ε), σ+(ε) = σ̄++O(ε) and σ−(ε) = σ̄−+O(ε), defined for

|ε| sufficiently small, so that the perturbed system (3.19) with Λ = Λ(ε), σ+ = σ+(ε), σ− = σ−(ε)

and β− = β+ = β̄+, has exactly one two-zonal invariant cone below the planes Π− and Π+
ε , which

is non-hyperbolic and semi-attractive, for |ε| 6= 0 and small enough.

To illustrate the behavior of the Melnikov functions described in Theorem 3.13, we represent in

Fig. 3.4 the Melnikov function M1 under the hypotheses of this theorem. Note that this situation

corresponds to a saddle-node bifurcation of invariant cones. If we change a little bit the values of the

parameters of the perturbed system (3.19), the Melnikov function M1 can have exactly two simple

roots, which give us two two-zonal hyperbolic invariant cones or, in the opposite way, it has not

roots, which corresponds to the non-existence of invariant cones of the perturbed system (3.19) in a

neighborhood of the invariant cone of the unperturbed system (3.16) corresponding to the periodic

orbit Γỹ0 .

M1

y0
ỹ0

Figure 3.4: The Melnikov function M1 under the hypotheses of Theorem 3.13 when SN1 defined in
(3.29) vanishes.

3.5 Bifurcations of invariant cones which are tangent to the

separation plane

In this last section, we will focus our attention on the existence of invariant cones which arise from

the invariant cones of the unperturbed system (3.16) which are tangent to the separation plane
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x = 0. A similar situation was analyzed in [21]. There, the following parameters were considered,

η = 3λ+ − λ− − 2α− and η̃ = 3λ− − λ+ − 2α+. (3.33)

For the perturbed system (3.19), these quantities are

η = ε(3Λ− − 2σ−) and η̃ = −ε(Λ + 2σ+). (3.34)

It is a necessary condition for the application of the results given in [21], that these parameters were

different from zero in system (3.16), which is not fulfilled in our case. Nevertheless, we are able to

prove similar results about the existence and bifurcation of invariant cones, by applying the theory

developed in this chapter, as we are going to see in detail in the following lines.

Let us begin by analyzing the existence of tangent cones for system (3.16). Note that there are

two tangent cones, one on each zone of linearity. We will denote the tangent cone contained in the

half-space {x ≤ 0} as C−
0 and the tangent cone contained in the half-space {x ≥ 0} as C+

0 . The

invariant cone C+
0 corresponds to the periodic orbit of planar CPWL unperturbed system (3.22) which

is tangent to the separation straight line x = 0. A similar comment can be done for the invariant

cone C−
0 .

To begin with, we present two results about the existence of one two-zonal invariant cone above

(respectively, below) the planes Π− and Π+
ε . Only the first theorem will be proven because the second

one can be demonstrated working with the Melnikov function M2.

Theorem 3.15 Suppose (σ+ − Λ)(2σ− − 3Λ) < 0 and |σ+ − Λ| is sufficiently small. Then, the

perturbed system (3.19) has one two-zonal invariant cone located above the planes Π− and Π+
ε ,

near to C+
0 , for |ε| 6= 0 and small enough. Moreover, if (σ+ − Λ)ε < 0, the invariant cone is

attractive and if (σ+ − Λ)ε > 0, the invariant cone is repulsive.

Proof: Consider the function

Mr(y0) =
M1(y0)

S+(y0)
. (3.35)

Due to function S+(y0) is strictly positive for y0 ≥ 0, see (3.24), function Mr possesses the same

roots as M1, with the same multiplicity.

Assume that all the parameters of the system are fixed, except σ+. We define the following
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function

H(s, σ+) =Mr(s
1/3, σ+),

where we have assumed that the Melnikov reduced function (3.35) is function of σ+ too. Then,

assuming 2σ− − 3Λ 6= 0, one obtains

H(0,Λ) = 0 and
∂H

∂s
(0,Λ) = (β+)3(2σ− − 3Λ)/(3π) 6= 0.

By applying the Implicit Function Theorem we deduce that there exists a function f which is defined

in a neighborhood U of (0,Λ), such that H(f(σ+), σ+) = 0 for all σ+ ∈ U , i.e., the equation

Mr(y0) = 0 has one solution ŷ0 = (f(σ+))1/3 provided that |σ+ − Λ| is small enough. Moreover, it

is easy to see that sgn(f(σ+)) = −sgn((σ+ − Λ)(2σ− − 3Λ)). So, the solution ŷ0 is positive when

(σ+ − Λ)(2σ− − 3Λ) < 0. Therefore, there exists a positive simple root ŷ0 > 0 of the Melnikov

function M1 near to y0 = 0. On the other hand, sgn(M ′
1(ŷ0))=sgn(M ′

r(ŷ0)) = sgn(2σ− − 3Λ) 6= 0.

The proof concludes by direct application of the first item of Theorem 3.8. ✷

Theorem 3.16 Suppose σ−(2σ++Λ) < 0 and |σ−| is sufficiently small. Then, the perturbed system

(3.19) has one two-zonal invariant cone located below the planes Π− and Π+
ε , near to C−

0 , for |ε| 6= 0

and small enough. Moreover, if σ− · ε < 0, the invariant cone is attractive and if σ− · ε > 0, the

invariant cone is repulsive.

Finally, by adding some more hypotheses to those considered in theorems 3.15 and 3.16,

respectively, we establish two results about a saddle-node bifurcation of two-zonal invariant cones.

We only prove the first theorem because the second one can be proven just working with the Melnikov

function M2. To do that, we need a previous result about the roots of a polynomial of degree 5. The

result is given in Proposition 6 of [43].

Lemma 3.17 Consider the function

P (x) = b0 + b3x
3 + b5x

5, (3.36)
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with b5 6= 0. The nonnegative solutions of equation

P (x) = 0, (3.37)

behave as follows.

1. For b0 = 0 the equation has always the zero solution, it has not positive solution if b3 · b5 > 0

and it has the positive solution x =
√

−b3/b5 > 0 when b3 · b5 < 0.

2. For b3 = 0 the equation has not positive solution if b0 · b5 > 0 and has one positive solution

for b0 · b5 < 0.

3. If b0 · b5 > 0 and b0 · b3 > 0 there are not positive solutions.

4. If b0 · b5 < 0 there is only one positive solution.

5. If b0 · b5 > 0 and b0 · b3 < 0, we can define in the parameter plane (b0, b3) the expression given

by

h∗(b0, b3) = b0 +
2

5
b3

(
−3b3
5b5

)3/2

, (3.38)

so that,

(a) If b0h∗(b0, b3) < 0, then equation (3.37) has two positive solutions.

(b) If b0h∗(b0, b3) = 0, then equation (3.37) has only one positive solution, namely x =
√

−3b3/5b5 > 0.

(c) If b0h∗(b0, b3) > 0, the equation (3.37) has not positive solutions.

Theorem 3.18 Assume |σ+ − Λ| and |2σ− − 3Λ| are sufficiently small, (σ+ − Λ)(2σ− − 3Λ) < 0

and (σ+−Λ)σ− < 0. Then, there exists a function SN01(Λ, σ
+, σ−, β+, β−) whose local expression

is given by

SN01(Λ, σ
+, σ−, β+, β−) =

= σ+ − Λ+ 2(β+)3
2σ− − 3Λ

15π

(
3(2σ− − 3Λ)

2(β−)2σ− + 5(β+)2(2σ− − 3Λ)

)3/2

+ . . .

such that the following statements hold.
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(a) If (σ+ − Λ)SN01(Λ, σ
+, σ−, β+, β−) < 0, then system (3.19) has two two-zonal invariant

cones above the planes Π− and Π+
ε , near to C+

0 , for |ε| 6= 0 and small enough. One of them

is attractive and the other one is repulsive.

(b) If there exist Λ̄, σ̄+, σ̄−, β̄+, β̄− ∈ R for which SN01(Λ̄, σ̄
+, σ̄−, β̄+, β̄−) = 0, then there

exist functions Λ(ε) = Λ̄ + O(ε), σ+(ε) = σ̄+ + O(ε) and σ−(ε) = σ̄− + O(ε), defined for

|ε| sufficiently small, such that the perturbed system (3.19) with Λ = Λ(ε), σ+ = σ+(ε),

σ− = σ−(ε), β+ = β̄+ and β− = β̄−, has exactly one two-zonal invariant cone above the

planes Π− and Π+
ε , near to C+

0 , which is non-hyperbolic and semi-attractive, for |ε| 6= 0 and

small enough.

(c) If (σ+−Λ)SN01(Λ, σ
+, σ−, β+, β−) > 0, then system (3.19) has no two-zonal invariant cones

above the planes Π− and Π+
ε , for |ε| 6= 0 and small enough, near to C+

0 .

Proof: As we have noted in the proof of Theorem 3.15, function Mr defined in (3.35) possesses

the same roots as M1 with the same multiplicity. This function can be written in a neighborhood of

y0 = 0 into the form

Mr(y0) =

σ+ − Λ+ (β+)3
(
2σ− − 3Λ

3π
y30 −

2(β−)2σ− + 5(β+)2(2σ− − 3Λ)

15π
y50

)
+O(y60).

Therefore, if (σ+ − Λ, 2σ− − 3Λ) ≃ (0, 0), then we can find zeros of Mr for |y0| sufficiently small

finding the roots of

Q(y0) = σ+ − Λ+
(β+)3(2σ− + 3Λ)

3π
y30 −

(β+)3(2(β−)2σ− + 5(β+)2(2σ− − 3Λ))

15π
y50. (3.39)

By applying statement 5 of Lemma 3.17 and taking into account that for the polynomial Q given

in (3.39),

b0 = σ+ − Λ, b3 =
(β+)3(2σ− − 3Λ)

3π

and

b5 = −(β+)3(2(β−)2σ− + 5(β+)2(2σ− − 3Λ))

15π
,
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it follows that for (σ+ − Λ)(2σ− + 3Λ) < 0 and (σ+ − Λ) < 0, there exits a function given by

h(Λ, σ+, σ−, β+, β−) =

= σ+ − Λ + 2(β+)3
2σ− − 3Λ

15π

(
3(2σ− − 3Λ)

2(β−)2σ− + 5(β+)2(2σ− − 3Λ)

)3/2

,

such that,

(a) If (σ+ − Λ)h(Λ, σ+, σ−, β+, β−) < 0, then polynomial Q has two positive roots.

(b) If h(Λ, σ+, σ−, β+, β−) = 0, then polynomial Q has only one positive root.

(c) If (σ+ − Λ)h(Λ, σ+, σ−, β+, β−) > 0, the polynomial Q has not positive roots.

The proof concludes by direct application of Theorem 3.8. ✷

Theorem 3.19 Assume |σ−| and |2σ+ + Λ| are sufficiently small, σ− · (2σ+ + Λ) < 0 and

(σ+ −Λ) ·σ− < 0. Then, there exists a function SN02(Λ, σ
+, σ−, β+, β−) whose local expression is

SN02(Λ, σ
+, σ−, β+, β−) =

= σ− + 2(β−)3
2σ+ + Λ

15π

(
3(2σ+ + Λ)

5(β−)2(2σ+ + Λ) + 2(β+)2(σ+ − Λ)

)3/2

+ . . .

such that the following statements hold.

(a) If σ− · SN02(Λ, σ
+, σ−, β+, β−) < 0, then system (3.19) has two two-zonal invariant cones

below the planes Π− and Π+
ε , near to C−

0 , for |ε| 6= 0 and small enough. One of them is

attractive and the other one is repulsive.

(b) If there exist Λ̄, σ̄+, σ̄−, β̄+, β̄− ∈ R for which SN02(Λ̄, σ̄
+, σ̄−, β̄+, β̄−) = 0, then there

exist functions Λ(ε) = Λ̄ + O(ε), σ+(ε) = σ̄+ + O(ε) and σ−(ε) = σ̄− + O(ε), defined for

|ε| sufficiently small, such that the perturbed system (3.19) with Λ = Λ(ε), σ+ = σ+(ε),

σ− = σ−(ε), β+ = β̄+ and β− = β̄−, has exactly one two-zonal invariant cone below the

planes Π− and Π+
ε , near to C−

0 , which is non-hyperbolic and semi-attractive, for |ε| 6= 0 and

small enough.

(c) If σ− · SN02(Λ, σ
+, σ−, β+, β−) > 0, then system (3.19) has no two-zonal invariant cones

below the planes Π− and Π+
ε , near to C−

0 , for |ε| 6= 0 and small enough.
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It is worth mentioning that theorems 3.15 and 3.16 describe the existence of invariant cones in

the perturbed system (3.19). We can say that these periodic orbits arise, under the hypothesis of

Theorem 3.15 (respectively, 3.16), from the invariant cone tangent to the separation plane x = 0

which is in the half-space x ≥ 0 (respectively x ≤ 0). The appearance of this invariant cone is

known as the focus-center-limit cycle bifurcation. A generic situation of this bifurcation is described

in [21]. However, it is not possible to apply the results given in [21] to our unperturbed system (3.16)

because the coefficients η and η̃ given in expression (3.34), which characterize the bifurcation, are

zero for system (3.16). We can say that theorems 3.15 and 3.16 give conditions for spreading out in

one direction the focus-center-limit cycle bifurcation when η = 0 (respectively, η̃ = 0), and theorems

3.18 and 3.19 study the degeneration of this bifurcation.
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Chapter4
Periodic Orbits for Perturbations of Three-Dimensional

Non-Controllable Continuous Piecewise Linear Systems

In this chapter, we consider the existence of periodic orbits in a class of three-dimensional CPWL

systems with two zones.

In order to analyze a family of dynamical systems, it is usual to begin detecting the elements of

the family which satisfy some non-generic property (in our case, the lack of controllability). Next, the

dynamical behavior of this non-generic system is studied. After that, if it is possible, some systems in

the family are described as perturbations of the non-generic system studied, and then, the dynamical

behavior of the perturbed systems is analyzed [8, 30, 70, 87, 94].

The non-generic system object of study in this chapter is a non-controllable 2CPWL3 system

which possesses a continuum of periodic orbits. As it has been pointed out in the previous chapters,

if we perturb a planar differential system having continuum of periodic orbits, we can think about

the number and positions of the periodic orbits that persist under the perturbation. To solve this

problem in the planar case, we find the Melnikov theory, as we have been studying in the previous

chapters.

In the three-dimensional systems object of study, 2CPWL3 systems, we are going to extend the

ideas of the Melnikov theory for planar systems to dimension three, by defining a function whose roots

will provide us the number and position of the periodic orbits that survive after the perturbation.

The chapter is structured as follows. In a first section, the non-controllable 2CPWL3 system is

introduced. Subsequently, in Sec. 4.2, we perform a perturbation which makes the system controllable.

After that, in Sec. 4.3 we construct a suitable Melnikov function. The following section is devoted

to the analysis of the Melnikov function. Finally, in the last section we state some results about the

existence and stability of periodic orbits and we perform a bifurcation analysis.

75
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Some of the main results of this chapter are published in [17].

4.1 The unperturbed system

We consider 2CPWL3 systems. To be able to adapt the ideas of the Melnikov theory, we need

a 2CPWL3 system having a continuum of periodic orbits. From the analysis done in [22, 23] the

appropriate candidate is a non-controllable observable system of the family (1.7). By imposing the

existence of periodic orbits to systems of the form (1.7), (that is, α = 0) and doing an appropriate

change of variable we obtain the following partially decoupled system





ẋ = λ▽x− y,

ẏ = z,

ż = 1− y,

(4.1)

with λ+, λ− ∈ R.

Moreover, coefficient matrices in both linear zones share the pair of complex eigenvalues ±i. The

matrix of the zone x < 0 possesses the real eigenvalue λ− and the matrix of the zone x > 0 has the

real eigenvalue λ+.

To start, the solution of the linear system





ẏ = z,

ż = 1− y,

with initial condition

(y(0), z(0)) = (1 + r cos(θ0), r sin(θ0)), being r > 0 and θ0 ∈ [0, 2π),

is given by

y(t) = 1 + r cos(t− θ0), z(t) = r sin(t− θ0).

Therefore, the cylinders of equation

(y − 1)2 + z2 = r2, with r ≥ 0 (4.2)
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are invariant manifolds for system (4.1).

Taking θ = t− θ0 as a new independent variable, we obtain

y(θ) = 1 + r cos θ, z(θ) = r sin θ. (4.3)

The substitution of (4.3) in the first equation of (4.1) drives us to the following non-autonomous

one-dimensional reduced equation

dx

dθ
=

{
λ+x− 1− r cos θ, if x ≥ 0,

λ−x− 1− r cos θ, if x < 0.
(4.4)

This equation collects the dynamical behavior of the three-dimensional system (4.1). It reminds us

to a Ricatti equation with periodic coefficients [53].

The analysis done in [23] about the equation (4.4) lets us state the following theorem about

system (4.1).

Theorem 4.1 System (4.1) satisfies the following properties.

(a) The periodic orbits, if they exist, have a period of 2π.

(b) If λ+ ≤ 0 and λ− ≥ 0, system (4.1) has neither equilibrium points nor periodic orbits.

(c) If λ− < 0 and λ+ ≤ 0 (respectively, λ− ≥ 0 and λ+ > 0), then system (4.1) has a

unique equilibrium point (x̄, ȳ, z̄) = (1/λ−, 1, 0), (respectively, (x̄, ȳ, z̄) = (1/λ+, 1, 0)) and an

unbounded continuum of periodic orbits.

(d) If λ− < 0 y λ+ > 0, then system (4.1) has exactly two equilibrium points (x̄, ȳ, z̄) =

(1/λ−, 1, 0) and (x̄, ȳ, z̄) = (1/λ+, 1, 0) and a bounded continuum of periodic orbits. Moreover,

the system possesses a heteroclinic orbit of equation {(x, 1, 0) : 1/λ− < x < 1/λ+} joining

both equilibrium points.

The properties stated in Theorem 4.1 let us draw the bifurcation diagram of Fig. 4.1. The lines

λ+ = 0 and λ− = 0 are bifurcation straight-lines of system (4.1). There, the equilibrium points

target to infinity, where they disappear and the structure of the periodic orbits changes.
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A unique equilibrium point.
An unbounded continuum
of periodic orbits.

There are not equilibria.
There are not periodic orbits.

x

-

+

Two equilibrium points.
A bounded continuum
of periodic orbits.
A heteroclinic conexion.

A unique equilibrium point.
An unbounded continuum
of periodic orbits.

λ

λ

Figure 4.1: Bifurcation diagram of system (4.1).

For the development which will be explored later, it is important to describe some other properties

of system (4.1). We show these properties graphically in Fig. 4.2.

We know from Theorem 4.1 that the unperturbed system (4.1) has one invariant manifold foliated

by periodic orbits in the cases λ− < 0, λ+ ≤ 0 (resp. λ− ≥ 0, λ+ > 0) and λ− < 0, λ+ > 0. Consider

one of these situations. For the sake of simplicity, we work in the polar coordinates introduced in (4.3).

We will focus our attention on the periodic orbits which have points in common with the separation

plane. Each one of these periodic orbits, except those that have a non-transversal intersection with the

separation plane, intersects this plane at two points, (0, θ0, r0), (0, θ1, r0), where θ0 ∈ I0 ⊂ (0, 2π),

θ1 ∈ I1 ⊂ (0, 2π), with I0, I1 open intervals. As a consequence, the continuum intersects the

separation plane in two curves which can be parameterized as

Γ ≡ r = r̂(θ0), θ0 ∈ Ī0 and Γ̃ ≡ r = r̃(θ1), θ1 ∈ Ī1
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Γ

x = 0

τ− = 0

τ− = 2π

Γ̃

(a) Bounded continuum.

Γ̃

x = 0

τ− = 0

Γ

(b) Unbounded continuum with a
unique equilibrium point in x > 0.

Γ̃

x = 0

τ− = 2π

Γ

(c) Unbounded continuum with a
unique equilibrium point in x < 0.

Figure 4.2: Continuum of periodic orbits of the unperturbed system and its intersection with the
separation plane for cases explained in Theorem 4.1.

with 1+ r̂(θ0) cos θ0 ≥ 0 and 1+ r̃(θ1) cos θ1 ≤ 0, where Ī0 and Ī1 are, respectively, the intervals I0

and I1 by adding it some of their endpoints, depending on the properties of the chosen continuum,

as it will be explained in a few lines. Therefore, for the unperturbed system, each point of the curve

(θ0, r̂(θ0)) with θ0 ∈ Ī0, is a fixed point of the Poincaré map.

Let θ̄0 be a point in Ī0. The periodic orbit of system (4.1) with initial condition (0, θ̄0, r̂(θ̄0))

has a left half-period τ−(θ̄0) and a right half-period τ+(θ̄0) = 2π − τ−(θ̄0) because, as it is stated

in Theorem 4.1, every periodic orbit of the unperturbed system has a period of 2π. Moreover, the

half-period of each periodic orbit is unique and allows us to parameterize the curve r = r̂(θ0), θ0 ∈ Ī0
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as

Γ ≡ (θ0(τ
−), r(τ−)), (4.5)

with τ− in a subinterval I of [0, 2π]. The corresponding periodic orbit of the continuum will be

denoted by χτ− .

On the one hand, if λ− < 0 and λ+ > 0, we know from Theorem 4.1 that system (4.1) has two

equilibrium points, one in zone x > 0 and the other in zone x < 0. These equilibria are surrounded by

periodic orbits found in a plane, and in the corresponding half-space. The last two of these periodic

orbits living in only one zone, have tangential intersection with the separation plane, see Fig. 4.2

(a). The one which surrounds the equilibrium point in x ≤ 0 has left half-period τ− = 2π (τ+ = 0)

and the one which surrounds the equilibrium point in x > 0 has left half-period τ− = 0 (τ+ = 2π).

Thus, the interval of definition where is located the parameter τ− for the description of the curve Γ

is the interval [0, 2π], see [17].

On the other hand, if λ+ > 0 and λ− ≥ 0, system (4.1) possesses an unbounded continuum of

periodic orbits and a unique equilibrium point in the zone x > 0. This point is locally surrounded

by periodic orbits living in a plane and are in the zone x > 0, see Fig. 4.2 (b). The last one of

these one-zonal periodic orbits, touches tangentially the separation plane, and we can say that its

left half-period is τ− = 0 (τ+ = 2π). Therefore, the parameter which defines the curve Γ is located

in an interval of the form I = [0, τ̃−), where τ̃− will be determined in the following result.

Analogously, if λ− < 0 and λ+ ≤ 0, system (4.1) possesses an unbounded continuum of periodic

orbits and a unique equilibrium point which is located in the zone x < 0. This point is locally

surrounded by periodic orbits living in a plane and are in the zone x < 0, see Fig. 4.2 (c). The last

one of these one-zonal periodic orbits, touches tangentially the separation plane, and we can say

that its left half-period is τ− = 2π (τ+ = 0). Therefore, the parameter which defines the curve Γ is

located in an interval of the form I = (τ̃−, 2π], where τ̃− will be determined in the following result.

Proposition 4.2 Consider the function

N(τ−) = (λ− − λ+)(eλ
+(τ−−2π)+λ−τ− + 1)−

(λ− − λ+)(eλ
+(τ−−2π) + eλ

−τ−) cos τ−−
(1 + λ−λ+)(eλ

−τ− − eλ
+(τ−−2π)) sin τ−.

(4.6)
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If λ+ · λ− ≥ 0 and λ+ + λ− 6= 0 then, there exists a unique τ̃− ∈ (0, 2π) such that

N(τ̃−) = 0. (4.7)

Moreover, in this case the value τ̃ allows us to define the interval of definition of the curve Γ.

Proof: We begin by doing r → +∞ in the reduced equation (4.4). To do that, first we perform

the change of variable X = x/r. By doing r → +∞ we obtain the equation

dX

dθ
= λ▽X − cos θ,

which renaming X in small letter, corresponds to the three-dimensional homogeneous system





ẋ = λ▽x− y,

ẏ = z,

ż = −y,

(4.8)

which is the homogeneous system associated to system (4.1). According to [25] this system has a

unique two-zonal invariant cone which is foliated by period orbits. These periodic orbits has a period

of 2π and the same left half-period τ̃−.

From Proposition 11 of [25], τ̃− is determined as the only solution in (0, 2π) of the system





λ− + [(λ−)2 + 1]
e−λ−ssin s

ϕ−λ−(s)
= λ+ − [(λ+)2 + 1]

eλ
+(2π−s) sin (2π − s)

ϕλ+(2π − s)

λ− − [(λ−)2 + 1]
eλ

−ssin s

ϕλ−(s)
= λ+ + [(λ+)2 + 1]

e−λ+(2π−s) sin (2π − s)

ϕ−λ+(2π − s)
,

(4.9)

where ϕω(s) = 1− eωs(cos s− ω sin s) is the Andronov function, see [1].

Both equations of system (4.9) are equivalents. Hence, τ̃− is the only solution in (0, 2π) of

λ− + [(λ−)2 + 1]
e−λ−ssin s

ϕ−λ−(s)
= λ+ − [(λ+)2 + 1]

eλ
+(2π−s) sin (2π − s)

ϕλ+(2π − s)
. (4.10)

It is easy to see that (4.10) is equivalent to N(s) = 0 with N given in (4.6).

Therefore τ̃− is given as the only solution in the interval (0, 2π) of the equation N(s) = 0. ✷
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Remark 4.3 Note that, for the bounded continuum there exists r̂ such that there are not periodic

orbits with a ratio greater than r̂, i.e., it corresponds to the most external periodic orbit of the

continuum. This value is given in Theorem 4.19 in [23]. On the corresponding cylinder, there exits a

unique half-stable periodic orbit with left half-period

τ−∗ = 2λ+π/(λ+ − λ−). (4.11)

For the sake of brevity, we will denote the corresponding intersection point of this periodic orbit with

the curve Γ given in (4.5) as (θ̃, r̃). It is remarkable that the corresponding continuum is compact

but it is not normally hyperbolic [34].

At this point, we are able to ask about the periodic orbits of the continuum described in Theorem

4.1 which persist after a perturbation.

To analyze that, we translate to a three-dimensional piecewise linear systems family, the ideas of

the Melnikov theory for planar systems.

4.2 Construction of the perturbed system

As it was analyzed in Chapter 1, under the observability hypothesis, every 2CPWL3 system can be

written in the Liénard’s form

ẋ =




t▽ −1 0

m▽ 0 −1

d▽ 0 0


x− e3. (4.12)

From now on, it will be useful to write the Liénard system (4.12) in cylindrical coordinates. That

is what we will do in the next proposition.

Proposition 4.4 There is a change of variables that transforms the Liénard system (4.12) into the
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form 



ẋ = t+x− 1− r cos θ,

ṙ = ((m+ − 1) cos θ + (t+ − d+) sin θ)x,

θ̇ = ((t+ − d+) cos θ − (m+ − 1) sin θ)
x

r
− 1,

if x ≥ 0,





ẋ = t−x− 1− r cos θ,

ṙ = ((m− − 1) cos θ + (t− − d−) sin θ)x,

θ̇ = ((t− − d−) cos θ − (m− − 1) sin θ)
x

r
− 1,

if x < 0,

(4.13)

with r > 0, θ ∈ [0, 2π).

Proof: After the change of variables Z = x − z and the additional change y = 1 + r cos θ, Z =

r sin θ, with r ≥ 0, θ ∈ [0, 2π), system (4.12) takes the form (4.13). ✷

Note that the matrices of the unperturbed system (4.1) share the pair of complex conjugate

eigenvalues ±i. If we want to perturb system (4.1) it is natural to suppose that coefficient matrices

of the perturbed system have a pair of complex conjugate eigenvalues. Then, we assume that the

coefficient matrix in the right zone x > 0 has the eigenvalues λ+, α+± iβ+ and the coefficient matrix

in the left zone x < 0 has the eigenvalues λ−, α− ± iβ−, with β+ · β− 6= 0.

Furthermore, these eigenvalues must be near to the spectrum of the coefficient matrices of the

unperturbed system (4.1), therefore, we can assume

α− = εΛ−, β− = 1, α+ = εΛ+, β+ = 1 + εB, (4.14)

where ε is sufficiently small and Λ−,Λ+, B ∈ R. Note that is not restrictive assuming β− = 1,

because always exists a change of variable, affecting to the temporal variable, so that β− can be

equal to the unity.
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From system (4.13) and with the choice made in (4.14) we arrive to the perturbed system

ẋ =








λ−x− rcθ − 1

0

−1


+ ε




2Λ−x

(a−cθ + b−sθ)x

(b−cθ − a−sθ)
x
r


 if x < 0,




λ+x− rcθ − 1

0

−1


+ ε




2Λ+x

(a+cθ + b+sθ)x

(b+cθ − a+sθ)
x
r


 if x ≥ 0,

(4.15)

where,
cθ = cos θ, sθ = sin θ,

a− = ε(Λ−)2 + 2Λ−λ−, b− = 2Λ− − ε(Λ−)2λ−,

a+ = ε(Λ+)2 + 2Λ+λ+ + 2B + εB2,

b+ = 2Λ+ − ε(Λ+)2λ+ − εB2λ+ − 2Bλ+.

(4.16)

It is clear that if ε = 0, system (4.15) is the expression in polar coordinates of the unperturbed

system (4.1).

4.3 Derivation of the Melnikov function

As it has been done in the previous chapters, we will construct a Melnikov function from a Poincaré

map and displacement function on. The definition of a Poincaré map and a displacement function can

be done by means of the composition of the Poincaré half-maps, following a development similar to

those done in Chapter 1. For this particular case, it is better to define these functions by considering

cylindrical coordinates. Thus, to find periodic orbits of system (4.15) we must find roots of the

displacement function

d(θ, r, ε) = P (θ, r, ε)− (θ, r) (4.17)

equivalently,

d(θ, r, ε) =

(
d1(θ, r, ε)

d2(θ, r, ε)

)
=

(
P1(θ, r, ε)− θ

P2(θ, r, ε) − r

)
=

(
0

0

)
. (4.18)

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.



4.3. DERIVATION OF THE MELNIKOV FUNCTION 85

For system (4.1), the Poincaré map can be written into the form

P (θ, r, 0) =

(
P1(θ, r, 0)

P2(θ, r, 0)

)
=

(
Q1(θ, r)

r

)

since cylinders (4.2) are invariants. The function Q1 is determined by the one-dimensional equation

(4.4). Then,

d(θ, r, 0) =

(
d1(θ, r, 0)

d2(θ, r, 0)

)
=

(
Q1(θ, r)− θ

0

)
.

Consider I the interval of definition of the curve Γ. Let τ̄−0 ∈ int(I), i.e. a point of curve Γ,

which we denote by (θ̄0, r̄0). This point belongs to the periodic orbit χτ̄−
0

. The periodic orbit χτ̄−
0

has two points in common with the separation plane that intersect it transversally.

We have that d(θ̄0, r̄0, 0) = (0, 0)T . The Jacobian matrix of d(θ, r, 0) with respect to (θ, r)

evaluated in (θ̄0, r̄0) is 


∂Q1

∂θ
(θ̄0, r̄0)− 1

∂Q1

∂r
(θ̄0, r̄0)

0 0


 .

This matrix has no full rank and we cannot apply the Implicit Function Theorem. Nevertheless, from

[23] it follows that
∂Q1

∂θ
(θ̄0, r̄0) = eλ

−τ̄−
0
+(2π−τ̄−

0
)λ+

and so, if the periodic orbit is not the most external periodic orbit of the bounded continuum, we

deduce (see Remark 4.3)

∂d1
∂θ

(θ̄0, r̄0, 0) = eλ
−τ̄−

0
+(2π−τ̄−

0
)λ+ − 1 6= 0 (4.19)

and if we apply the Implicit Function Theorem, there exists a function gθ̄0 , defined in a neighborhood

V of (r0, 0), with gθ̄0(r̄0, 0) = θ̄0 such that d1(gθ̄0(r, ε), r, ε) = 0, for all (r, ε) ∈ V . Replacing it in

the second equation of (4.18) we arrive to d2(gθ̄0(r, ε), r, ε) = 0.

Denote

d̃2(r, ε) = d2(gθ̄0(r, ε), r, ε). (4.20)

Now, to study the periodic orbits that persist in the perturbed system (4.15), we just analyze the
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equation

d̃2(r̄0, ε) = 0. (4.21)

We have d̃2(r̄0, ε) = εD̃2(r̄0, ε), since d̃2(r̄0, 0) = d2(gθ̄0(r̄0, 0), r̄0, 0) = 0. As r̄0 depends on

value τ−0 , we can write that D̃2 depends only on τ̄−0 and ε.

Therefore, if there exists τ̂− such that

D̃2(τ̂
−, 0) = 0,

∂D̃2

∂τ−
(τ̂−, 0) 6= 0, (4.22)

by applying the Implicit Function Theorem, we can state that there exist ε0 > 0 and a function

τ− = τ−(ε) defined in (−ε0, ε0) such that D̃2(τ
−(ε), ε) = 0, for ε ∈ (−ε0, ε0). So, to find the roots

of equation (4.21) when |ε| 6= 0 and sufficiently small, it is enough to find simple zeros of equation

D̃2(τ̄
−
0 , 0) = 0. In other words, the simple roots of

∂d̃2
∂ε

(r̄0, 0) = 0. (4.23)

The roots of the previous equation will give us some of the periodic orbits of the continuum that

remain in the perturbed system (4.15).

Next, we establish ∂d̃2
∂ε (r̄0, 0) through the second component of the derivatives of the Poincaré

half-maps.

Lemma 4.5 Let τ̄−0 ∈ int(I) be a left half-period different from τ−∗ given in (4.11), i.e., a point

(θ̄0, r̄0) = (θ0(τ̄
−
0 ), r0(τ̄

−
0 )) ∈ Γ \ {(θ̃, r̃)}, with Γ given in (4.5). The function d̃2 defined in (4.20)

satisfies
∂d̃2
∂ε

(r̄0, 0) =
∂P−

2

∂ε
(θ̄0, r̄0, 0) +

∂P+
2

∂ε
(θ̄1, r̄0, 0), (4.24)

where θ̄1 = P−
1 (θ̄0, r̄0, 0).

Proof: From the definition of d̃2 given in (4.20) we obtain

∂d̃2
∂ε

(r̄0, 0) =
∂d2
∂θ

(gθ̄0(r̄0, 0), r̄0, 0)
∂gθ̄0
∂ε

(r̄0, 0) +
∂d2
∂ε

(gθ̄0(r̄0, 0), r̄0, 0) =

=
∂d2
∂ε

(gθ̄0(r̄0, 0), r̄0, 0).
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On the other hand d2(θ̄0, r̄0, ε) = P2(θ̄0, r̄0, ε) − r̄0, and then,

∂d2
∂ε

(θ̄0, r̄0, ε) =
∂P2

∂ε
(θ̄0, r̄0, ε),

hence,
∂d̃2
∂ε

(r̄0, 0) =
∂d2
∂ε

(gθ̄0(r̄0, 0), r̄0, 0) =
∂d2
∂ε

(θ̄0, r̄0, 0) =
∂P2

∂ε
(θ̄0, r̄0, 0).

Moreover, P (θ̄0, r̄0, ε) = P+(P−(θ̄0, r̄0, ε), ε) = P+(P−
1 (θ̄0, r̄0, ε), P

−
2 (θ̄0, r̄0, ε), ε). Therefore,

we can write

∂P2

∂ε
(θ̄0, r̄0, 0) =

∂P+
2

∂θ
(θ̄1, r̄0, 0)

∂P−
1

∂ε
(θ̄0, r̄0, 0) +

∂P+
2

∂r
(θ̄1, r̄0, 0)

∂P−
2

∂ε
(θ̄0, r̄0, 0) +

∂P+
2

∂ε
(θ̄1, r̄0, 0),

where θ̄1 = P−
1 (θ̄0, r̄0, 0). We know that P+

2 (θ, r, 0) = r, thus we obtain (4.24) and the proof is

completed. ✷

In the next proposition we give an integral expression of ∂d̃2
∂ε (r̄0, 0).

Proposition 4.6 Let τ̄−0 ∈ int(I) be a left half-period different from τ−∗ given in (4.11), i.e., a point

(θ̄0, r̄0) = (θ0(τ̄
−
0 ), r0(τ̄

−
0 )) ∈ Γ \ {(θ̃, r̃)}, with Γ given in (4.5) and denote θ̄1 = P−

1 (θ̄0, r̄0, 0). The

function d̃2 defined in (4.20) satisfies

∂d̃2
∂ε

(r̄0, 0) = 2Λ−
∫ τ̄−

0

0
(λ− cos(θ̄0 − t) + sin(θ̄0 − t))x−(t)dt+

2B

∫ 2π−τ̄−
0

0
(cos(θ̄1 − t)− λ+ sin(θ̄1 − t))x+(t)dt+

2Λ+

∫ 2π−τ̄−
0

0
(λ+ cos(θ̄1 − t) + sin(θ̄1 − t))x+(t)dt,

(4.25)

where x−(t) is the solution of the initial value problem





ẋ− = λ−x− − r̄0 cos(θ̄0 − t)− 1,

x−(0) = 0,
(4.26)
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and x+(t) is the solution of the initial value problem





ẋ+ = λ+x+ − r̄0 cos(θ̄1 − t)− 1,

x+(0) = 0.
(4.27)

Proof: On the one hand, from Lemma 4.5, one obtains

∂d̃2
∂ε

(r̄0, 0) =
∂P−

2

∂ε
(θ̄0, r̄0, 0) +

∂P+
2

∂ε
(θ̄1, r̄0, 0).

On the other hand, it is easy to see that P−
2 (θ̄0, r̄0, ε) = r−(τ̄−0 , θ̄0, r̄0, ε), where x−(t, θ̄0, r̄0, ε) =

(x−(t, θ̄0, r̄0, ε), r−(t, θ̄0, r̄0, ε), θ−(t, θ̄0, r̄0, ε)) is the solution of the initial value problem








ẋ

ṙ

θ̇


 =




λ−x− r cos θ − 1

0

−1


+ ε




2Λ−x

(a− cos θ + b− sin θ)x

(b− cos θ − a− sin θ)
x

r


 ,




x(0)

r(0)

θ(0)


 =




0

r̄0

θ̄0


 ,

with a− and b− given in (4.16). Thus, ∂P−

2

∂ε (θ̄0, r̄0, 0) = ∂r−

∂ε (τ̄−0 , θ̄0, r̄0, 0). Similarly,

we can see that ∂P+

2

∂ε (θ̄1, r̄0, 0) = ∂r+

∂ε (2π − τ̄−0 , θ̄1, r̄0, 0), where x+(t, θ̄1, r̄0, ε) =

(x+(t, θ̄1, r̄0, ε), θ
+(t, θ̄1, r̄0, ε), r

+(t, θ̄1, r̄0, ε)) is the solution of the initial value problem








ẋ

ṙ

θ̇


 =




λ+x− r cos θ − 1

0

−1


+ ε




2Λ+x

(a+ cos θ + b+ sin θ)x

(b+ cos θ − a+ sin θ)
x

r


 ,




x(0)

r(0)

θ(0)


 =




0

r̄0

θ̄1


 ,

with a+ and b+ given in (4.16).
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Hence,
∂d̃2
∂ε

(r̄0, 0) =
∂r−

∂ε
(τ̄−0 , θ̄0, r̄0, 0) +

∂r+

∂ε
(2π − τ̄−0 , θ̄1, r̄0, 0). (4.28)

Now, we will find ∂r−

∂ε (τ̄−0 , θ̄0, r̄0, 0). Denotes ∂r−

∂ε (t, θ̄0, r̄0, 0) = r−ε (t, θ̄0, r̄0, 0).

If we take the derivative in the left zone of (4.15), i.e., x < 0, with respect to ε and we make

ε = 0, we deduce that r−ε (·, θ̄0, r̄0, 0) satisfies the initial value problem

{
ṙ−ε = (2Λ−λ− cos(θ̄0 − t) + 2Λ− sin(θ̄0 − t))x−(t),

r−ε (0) = 0,

with x−(t) the solution of the initial value problem (4.26).

Then,

r−ε (τ̄
−
0 , θ̄0, r̄0, 0) = 2Λ−

∫ τ̄−
0

0
(λ− cos(θ̄0 − t) + sin(θ̄0 − t))x−(t)dt. (4.29)

Denote
∂r+

∂ε
(t, θ̄1, r̄0, 0) = r+ε (t, θ̄1, r̄0, 0). Reasoning as we did to find r−ε (τ̄

−
0 , θ̄0, r̄0, 0) and

taking into account τ̄+0 = 2π − τ̄−0 , we get

r+ε (2π − τ̄−0 , θ̄1, r̄0, 0) = 2B

∫ 2π−τ̄−
0

0
(cos(θ̄1 − t)− λ+ sin(θ̄1 − t))x+(t)dt+

2Λ+

∫ 2π−τ̄−
0

0
(λ+ cos(θ̄1 − t) + sin(θ̄1 − t))x+(t)dt.

(4.30)

From (4.29), (4.30) and (4.28), the proof is finished. ✷

Remark 4.7 Note that the definition of d̃2, given in (4.20), involves the function gθ̄0 that exists if

τ̄−0 6= τ−∗ , with τ−∗ given in (4.11), i.e. if the periodic orbit does not correspond to the most external

periodic orbit of the bounded continuum. However, the derivative of ∂d̃2
∂ε (r̄0, 0) has an expression that

involves the partial derivatives with respect to ε of the Poincare half-maps, that are well defined in

every periodic orbit transversal to the separation plane, even in the most external periodic orbit of the

bounded continuum. Therefore, we are now able to define the Melnikov function for all τ− ∈ int(I),

as we are going to do in the next definition.

Definition 4.8 Let τ− ∈ int(I) be a left half-period, i.e., a point (θ0, r0) of the curve Γ given in

(4.5) and denote θ1 = P−
1 (θ0, r0, 0).
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We define the Melnikov function of system (4.15) as

M(τ−;µ) = 2Λ−
∫ τ−

0
(λ− cos(θ0 − t) + sin(θ0 − t))x−(t)dt+

2B

∫ 2π−τ−

0
(cos (θ1 − t)− λ+ sin(θ1 − t))x+(t)dt+

2Λ+

∫ 2π−τ−

0
(λ+ cos(θ1 − t) + sin(θ1 − t))x+(t)dt

(4.31)

where µ = (λ+, λ−,Λ+,Λ−, B), x−(t) is the solution of the initial value problem





ẋ− = λ−x− − r0 cos(θ0 − t)− 1,

x−(0) = 0,
(4.32)

and x+(t) is the solution of the initial value problem





ẋ+ = λ+x+ − r0 cos(θ1 − t)− 1,

x+(0) = 0.
(4.33)

Note that, due to the continuity and differentiability of the Poincaré half-maps, it is clear that

the Melnikov function is analytic in τ− ∈ int(I). Indeed, as we will see later, we can extend the

definition up to some of the endpoints of I.

To finish this section, we write the Melnikov function in another way.

Proposition 4.9 Let τ− ∈ int(I) be a left half-period, i.e. a point (θ0, r0) of the curve (4.5). We

can express the Melnikov function given in (4.31) as

M(τ−;µ) =

2Λ−
(
r0τ

−

2
− s0cτ− + c0sτ− + s0 +

r0
4
s2τ−(c

2
0 − s20) + r0c0s0s

2
τ−

)
+

2B
(
−r0

2
s2τ−(c

2
0 − s20) +

r0
2
c0s0s2τ− − c0 + c0cτ− + s0sτ−

)
+

2Λ+

(
r0π − r0τ

−

2
+ s0cτ− − c0sτ− − s0 −

r0
4
s2τ−(c

2
0 − s20)− r0c0s0s

2
τ−

)
,

(4.34)

where µ = (λ+, λ−,Λ+,Λ−, B), c0 = cos θ0, s0 = sin θ0, cτ− = cos τ−, sτ− = sin τ− and

s2τ− = sin 2τ−.
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Proof: First, we are going to find r−ε (τ
−θ̄0, r̄0, 0), i.e. the value of

r−ε (τ
−θ̄0, r̄0, 0) = 2Λ−

∫ τ−

0
(λ− cos(θ0 − t) + sin(θ0 − t))x−(t)dt,

where x−(t) is the solution of the initial value problem (4.32).

If we multiply ẋ−(t) = λ−x− − r0 cos(θ0 − t)− 1 by cos(θ0 − t) and we integrate this equation

from 0 to τ− we have

∫ τ−

0
ẋ−(t) cos(θ0 − t)dt =

λ−
∫ τ−

0
x−(t) cos(θ0 − t)dt− r0

∫ τ−

0
cos2(θ0 − t)dt−

∫ τ−

0
cos(θ0 − t)dt.

Then, by integrating by parts taking into account x−(0) = 0, x−(τ−) = 0, we arrive to

∫ τ−

0
(λ− cos(θ0 − t) + sin(θ0 − t))x−(t)dt =

r0

∫ τ−

0
cos2(θ0 − t)dt+

∫ τ−

0
cos(θ0 − t)dt.

(4.35)

Now, we calculate the integrals of the right part to deduce the expression

r−ε (τ
−, θ̄0, r̄0, ) =

2Λ−
(
r0τ

−

2
− s0cτ− + c0sτ− + s0 +

r0
4
s2τ−(c

2
0 − s20) + r0c0s0s

2
τ−

)
,

(4.36)

with c0, s0 and sτ− given in (4.34). Reasoning as we did to find r−ε (τ̄
−, θ̄0, r̄0, 0) given in (4.36)

and taking into account that x+(0) = 0, x+(2π− τ−) = 0, where x+(t) is the solution of the initial

value problem (4.33) and θ1 = θ0 − τ−, yields

∫ 2π−τ−

0
(cos(θ1 − t)− λ+ sin(θ1 − t))x+(t)dt =

−r0
∫ 2π−τ−

0
cos(θ1 − t) sin(θ1 − t)dt−

∫ 2π−τ−

0
sin(θ1 − t)dt,

(4.37)
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and ∫ 2π−τ−

0
(λ+ cos(θ1 − t) + sin(θ1 − t))x+(t)dt =

r0

∫ 2π−τ−

0
cos2(θ1 − t)dt+

∫ 2π−τ−

0
cos(θ1 − t)dt.

(4.38)

Now, it is enough to compute the integrals of the second terms of (4.37) and (4.38) and taking

into account that θ1 = θ0 − t to arrive to

r+ε (2π − τ−, θ̄1, r̄0, 0) =

2B
(
−r0

2
s2τ−(c

2
0 − s20) +

r0
2
c0s0s2τ− − c0 + c0cτ− −+s0sτ−

)
+

2Λ+

(
r0π − r0τ

−

2
+ s0cτ− − c0sτ− − s0 −

r0
4
s2τ−(c

2
0 − s20)− r0c0s0s

2
τ−

)
,

(4.39)

with c0, s0, cτ− and sτ− given in (4.34).

As (4.36) and (4.39) hold, the proof is finished. ✷

In order to summarize the information developed up till now, we state the following result whose

proof is straightforward.

Theorem 4.10 Assume that the Melnikov function M(·, µ) given in (4.31) possesses a simple zero

τ̂− ∈ int(I ). The following properties hold.

(a) If λ+ > 0 and λ− ≥ 0 (or λ+ ≤ 0 and λ− < 0), then the perturbed system (4.15) possesses a

periodic orbits in a neighborhood of χτ̂− for |ε| 6= 0 sufficiently small.

(b) If λ+ > 0 and λ− < 0 and τ̂− 6= τ−∗ with τ−∗ given in (4.11), the perturbed system (4.15) has

a limit cycle in a neighborhood of χτ̂− , for |ε| 6= 0 sufficiently small.

To complete this section, let us introduce a new function

Mr(τ
−;µ) =

M(τ−;µ)

r0(τ−, λ−, λ+)

where µ = (λ+, λ−,Λ+,Λ−, B), which will be called the reduced Melnikov function and has the

same zeros and the same multiplicity that the Melnikov function M .

For the sake of brevity, we will occasionally delete the parameter µ in the Melnikov and the

reduced Melnikov function’s writing.
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The reduced Melnikov function presents more interesting properties than the Melnikov function,

because it lets us determine the existence of zeros of the Melnikov function in an easier way. Moreover,

if M(τ̂−) = 0, then it is easy to see that sgn(M ′(τ̂−)) =sgn(M ′
r(τ̂

−)). In fact, as

M ′
r(τ

−) =
M ′(τ−)r0(τ−)−M(τ−)r′0(τ

−)

r20(τ
−)

,

if M(τ̂−) = 0, it is satisfied that

M ′
r(τ̂

−) =
M ′(τ̂−)

r0(τ̂−)

and so,

sgn(M ′(τ̂−)) = sgn(M ′
r
(τ̂−)). (4.40)

4.4 Properties of the Melnikov function

In this section we will study some properties of the Melnikov function defined in (4.31) and the

reduced Melnikov function. These properties will be very useful to analyze, in the next section, the

existence of periodic orbits, their stabilities and the bifurcations that may appear in the perturbed

system (4.15) when the values of the parameters change.

We will analyze some symmetry properties of the Melnikov function. Concretely, we will study

the Melnikov function in the case that the system is reversible.

After that, we will perform an analysis of the value of the Melnikov function and its derivatives

up to some order in the endpoints of the existence domain.

4.4.1 Reversibility

We want to know how is the behavior of the Melnikov function under some reversibility hypothesis.

Concretely, we would like to know what occurs to the Melnikov function if we consider a reversible

perturbation and the unperturbed system is reversible too. Let us consider reversible systems under

the involution
R : R3 −→ R

3

(x, y, z)T 7→ (−x, y,−z)T ,
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that is, they are invariant under the transformation

(x, t) 7→ (R (x) ,−t) .

Note that this is the reversibility given in (1.9) that the PWL Michelson system (1.14) introduced

in Chapter 1 has.

Coming back to system (4.12), it is reversible under the symmetry R if and only if

t+ = −t−,m+ = m− and d+ = −d−.

Analogously, the unperturbed system (4.1) is reversible under R if and only if λ+ = −λ−.

We will center our attention now on the case λ+ = −λ− > 0 (bounded continuum). We wonder

about the behavior if one considers a reversible perturbation, i.e., if in the perturbed system (4.15)

Λ+ = −Λ− and B = 0. From the expression of the Melnikov function given in (4.34), we can prove

the following symmetry property, whose proof is straightforward.

Proposition 4.11 Assume that in the unperturbed system (4.1) we choose λ+ = −λ− > 0. If we

do a reversible perturbation, i.e. if we consider the perturbed system (4.15) with Λ+ = −Λ− and

B = 0, then the Melnikov function satisfies the symmetry property −M(τ− + π) = M(−τ− + π).

Moreover, M(π) = 0.

In Fig. 4.42 we observe that under the reversibility hypotheses, the symmetry properties studied

in Proposition 4.11 hold.

Remark 4.12 Although the Melnikov function for the reversible case vanishes at τ−∗ = π, which

corresponds to the most external periodic orbit of the bounded continuum in the reversible case

(see Remark 4.3), we cannot assure, at the beginning, the persistence of this periodic orbit (see

Remark 4.7). However, in this case, it can be proven the persistence of this periodic orbit, due to its

transversal intersection with the separation plane and its reversible character.
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Π 2Π
Τ
-

(a) λ+ = −λ−, Λ+ = −Λ− > 0.

Π 2Π
Τ
-

(b) λ+ = −λ−, Λ+ = −Λ− < 0.

Figure 4.3: Melnikov function M defined in (4.31) in the reversible case.

4.4.2 Analysis at the endpoints of the intervals

In this subsection, we want to extend the value of the reduced Melnikov function and their derivatives

up to some order in the endpoints of the definition interval.

Later on, limits at the endpoints of the existence domain of M will be considered laterals. For the

sake of brevity, we will omit the corresponding notation. Likewise, we will not use special notation to

denote lateral consecutive derivatives of the Melnikov function M and the reduced Melnikov function

Mr with respect to τ− in the endpoints of the existence domain. The proofs of the following results

are tedious but direct. In spite of that, to calculate the derivatives of an order greater than three, we

have used the symbolic manipulation programs Maple and Mathematica, and we have obtained the

same results in both programs.

Proposition 4.13 The following properties hold.

(a) If λ− < 0, λ+ > 0, or λ+ > 0, λ− ≥ 0, the Melnikov function M in the left endpoint of its

definition interval τ− = 0, behaves

lim
τ−→0

M(τ−) = 2Λ+π

√
1 +

1

(λ+)2
.

(b) If λ− < 0, λ+ > 0, or λ+ ≤ 0, λ− < 0, the Melnikov function M in the right endpoint of its
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definition interval τ− = 2π, behaves

lim
τ−→2π

M(τ−) = 2Λ−π

√
1 +

1

(λ−)2
.

From Proposition 4.13 we can define by continuity the Melnikov function in its corresponding

endpoints of definition as

M(0) = 2Λ+π

√
1 +

1

(λ+)2
,

M(2π) = 2Λ−π

√
1 +

1

(λ−)2
.

(4.41)

With these values of definition at the endpoints of the domain, we can obtain the successive

derivatives of the Melnikov function. However, we can obtain results in an easier way by working

with the reduced Melnikov function.

In the next proposition we will analyze the derivatives of the Melnikov reduced function at τ− = 0

and τ− = 2π.

Proposition 4.14 The following properties are satisfied.

(a) If λ− < 0, λ+ > 0, or λ+ > 0, λ− ≥ 0, the Melnikov reduced function Mr satisfies the

following properties at the left endpoint of its interval of definition.

Mr(0) = 2Λ+π, M ′
r(0) = 0, M ′′

r (0) = 0, M iv
r (0) = 0,

M ′′′
r (0) =

B(λ− − λ+) + (Λ− − Λ+)(1 + λ−λ+)

1 + (λ+)2
,

Mv
r (0) =

B(λ− − λ+)(5(λ+)2 − 10λ−λ+ − (λ−)2 − 9)

3(1 + (λ+)2)
+

(Λ+ − Λ−)(3− 5(λ−)2 + 19λ−λ+ + (λ−)3λ+ − 11(λ+)2 + 4(λ−)2(λ+)2 − 5λ−(λ+)3)

3(1 + (λ+)2)
.

(b) If λ− < 0, λ+ > 0, or λ+ ≤ 0, λ− < 0, the Melnikov reduced function Mr satisfies the
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following properties at the right endpoint of its interval of definition.

Mr(2π) = 2Λ−π, M ′
r(2π) = 0, M ′′

r (2π) = 0, M iv
r (2π) = 0,

M ′′′
r (2π) =

B(λ+ − λ−) + (Λ− − Λ+)(1 + λ−λ+)

1 + (λ−)2
,

Mv
r (2π) =

B(λ+ − λ−)(5(λ−)2 − 10λ−λ+ − (λ+)2 − 9)

3(1 + (λ−)2)
+

(Λ+ − Λ−)(3− 5(λ+)2 + 19λ−λ+ + (λ+)3λ− − 11(λ−)2 + 4(λ−)2(λ+)2 − 5λ+(λ−)3)

3(1 + (λ−)2)
.

Particularly, when the third derivative is zero, the fifth derivative has a more compact expression.

Proposition 4.15 Under the hypotheses of Proposition 4.14, if M ′′′
r (0) = 0, then Mv

r (0) =

2(Λ− − Λ+)(1 + (λ−)2).

Proposition 4.16 Under the hypotheses of Proposition 4.14, if M ′′′
r (2π) = 0, then Mv

r (2π) =

2(Λ− − Λ+)(1 + (λ+)2).

To conclude this section, we ask about the behavior of the Melnikov function in a neighborhood

of the value τ̃− defined in Proposition 4.2 when λ+ > 0, λ− ≥ 0 and λ+ ≤ 0, λ− < 0.

From expressions given in (4.35), (4.37) and (4.38) it is deduced that the Melnikov function can

be written as

M(τ−) = 2(Λ−I−(τ−)−BI+1 (τ−) + Λ+I+2 (τ−))r0(τ
−) + C(τ−),
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where

I−(τ−) =

∫ τ−

0
cos2(θ0 − t)dt,

I+1 (τ−) =

∫ 2π−τ−

0
cos(θ1 − t) sin(θ1 − t)dt,

I+2 (τ−) =

∫ 2π−τ−

0
cos2(θ1 − t)dt,

C(τ−) = 2

(
Λ−
∫ τ−

0
cos(θ0 − t)dt+ Λ+

∫ 2π−τ−

0
cos(θ1 − t)dt−B

∫ 2π−τ−

0
sin(θ1 − t)dt

)
.

It can be proven that limτ−→τ̃− r0(τ
−) = +∞ and that, in some cases, the Melnikov function

is not bounded. For instance, by substituting B = 0 and taking into account that I−(τ−) > 0 and

I+2 (τ−) > 0, we can conclude that limτ−→τ̃− M(τ−) = +∞ if Λ+ > 0 and Λ− > 0 and that

limτ−→τ̃− M(τ−) = −∞ if Λ+ < 0 and Λ− < 0.

However, in other cases the function M can be bounded. Therefore, if we choose Λ−, Λ+ and

B such that

Λ−I−(τ̃−)−BI+1 (τ̃
−) + Λ+I+2 (τ̃−) = 0,

then limτ−→τ̃− M(τ−) is not, at the beginning, determined, and we may have a finite limit.

We can determine this limit, for example, for λ+ = λ− and Λ+ = −Λ−. In such a case, it is easy

to see that τ̃− = π. The Melnikov function has, in that case, the following expression

M(τ−) = 2Λ+(π − τ− + sin τ−)

√
sec2(τ−/2)(1 + (λ−)2)

(λ−)2
,

with τ− ∈ [0, π) if λ− > 0 and τ− ∈ (π, 2π] if λ− < 0. Note that it does not depend on the

parameter B. It is easy to see that

lim
τ−→π−

M(τ−) = 8Λ+

√
1 +

1

(λ−)2

lim
τ−→π+

M(τ−) = −8Λ+

√
1 +

1

(λ−)2

hence, in both cases, M is bounded in its definition domain.

In Fig. 4.4 it can be seen the behavior of function M for λ+ = λ− 6= 0 and Λ+ = −Λ− 6= 0,

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.



4.4. PROPERTIES OF THE MELNIKOV FUNCTION 99

depending on the signs of λ+ and Λ+.

0 Π

Τ
-

(a) Λ+ > 0, λ− > 0.

Π 2Π
Τ
-

(b) Λ+ > 0, λ− < 0.

Π

Τ
-

(c) Λ+ < 0, λ− > 0.

Π 2Π
Τ
-

(d) Λ+ < 0, λ− < 0.

Figure 4.4: The Melnikov function M in cases λ+ = λ− 6= 0 and Λ+ = −Λ− 6= 0, depending on the
signs of λ+ and λ+.

Observe that for the case λ+ = λ− 6= 0 and Λ+ = −Λ− 6= 0, the Melnikov function M does not

vanish in its existence domain.

In fact, it is easy to analyze the case λ+ = λ− 6= 0. In this case, the unperturbed system (4.1)

is linear and the perturbed system (4.15) is non-controllable, see Chapter 1. Then, its dynamics is

basically planar and it is organized on the invariant plane defined by the common real eigenvalue

λ+ = λ− and the invariant cylinders given in (4.2). Now, the Melnikov function is simply

M(τ−) = (2Λ+π − (Λ+ − Λ−)τ− + (Λ+ − Λ−) sin τ−)

√
sec2(τ−/2)(1 + (λ−)2)

(λ−)2
. (4.42)

Note that it does not depend on the parameter B. Their behavior can be easily established and in

particular, its zeros in its existence domain. In Fig. 4.5 we can see different cases that may appear.
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This behavior let us do a bifurcation analysis of periodic orbits in this case. Such analysis, as we will

Π 2Π
Τ
-

(a) Λ+ + Λ− > 0 and Λ− > 0.

Π 2Π
Τ
-

(b) Λ+ + Λ− > 0 and Λ− < 0.

Π 2Π
Τ
-

(c) Λ+ + Λ− < 0 and Λ− > 0.

Π 2Π
Τ
-

(d) Λ+ + Λ− < 0 and Λ− < 0.

Figure 4.5: Melnikov function M in cases λ+ = λ− < 0 and Λ++Λ− 6= 0. Observe that the Melnikov
function M can have only one zero.

see in Sec. 4.5.3, coincides with the analysis done in [13, 41, 44, 85] about the Hopf bifurcation from

infinity, for planar piecewise linear systems with two zones.

Coming back to the general case, it is possible to give unbounded behaviors of the Melnikov

function M , with or without roots. See Fig. 4.6.
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Τ
-

(a) Λ− = 0.17, B = 0,Λ+ = −0.2,
λ− = 0.1, λ+ = 0.2.

Τ
-

(b) Λ− = −0.1, B = 0,Λ+ = 0.3,
λ− = 0.4, λ+ = 0.5.

Τ
-

(c) Λ− = −0.1, B = 10,Λ+ = 0.3,
λ− = 0.4, λ+ = 0.5.

Τ
-

(d) Λ− = 0.17, B = 6,Λ+ = −0.2,
λ− = 0.1, λ+ = 0.2.

Τ
-

(e) Λ− = −0.25, B = −5,Λ+ = −0.003,
λ− = 0.4, λ+ = 0.5.

Τ
-

(f) Λ− = −0.167, B = −3,Λ+ = −0.003,
λ− = 0.4, λ+ = 0.5.

Figure 4.6: Examples of unbounded behaviors of the Melnikov function M in the case λ+, λ− > 0
and Λ+ 6= 0, Λ− 6= 0. Observe that the Melnikon function M can have no, one or two zeros. Thus,
a saddle-node bifurcation may appear, see picture (f).

4.5 Existence and stability of periodic orbits. Bifurcation analysis

In this section we are going to state some of the most important results of this chapter.
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First, we state some results about the existence of periodic orbits in the perturbed system (4.15)

and their stabilities. Later, we will study their possible bifurcations.

All this analysis will be done through the Melnikov and the reduced Melnikov function and we

will use their the properties studied in Sec. 4.4.

4.5.1 First results about the existence and stability of periodic orbits

In this subsection, we will analyze the existence of zeros of the Melnikov function and their relation

to periodic orbits of the perturbed system (4.15).

Remind that the periodic orbits of the continuum with common points with the separation plane

x = 0 are denoted by χτ− , where τ− is the left half-period of the orbit.

To begin with, we state an easy result about the existence of periodic orbits for the unperturbed

system (4.1)

Theorem 4.17 Assume that λ+ > 0 and λ− < 0. If Λ+ · Λ− < 0, then the Melnikov function M

has a root τ̂− ∈ (0, 2π). Moreover, if τ̂− 6= τ−∗ , where τ−∗ was given in (4.11) and M ′(τ̂−) 6= 0,

then the perturbed system (4.15) has a two-zonal limit cycle in a neighborhood of χτ̂− , for |ε| 6= 0

sufficiently small.

Proof: By taking into account that the Melnikov function in the case λ+ > 0 and λ− < 0 is

continuous in [0, 2π] and moreover (see (4.41))

M(0) = 2Λ+π

√
1 +

1

(λ+)2
and M(2π) = 2Λ−π

√
1 +

1

(λ−)2
,

it follows that the Melnikov function M possesses a zero τ̂− ∈ (0, 2π). Then, from Theorem 4.10

we know that if this root is simple and τ̂− 6= τ−∗ , then the perturbed system (4.1) has a limit cycle

in a neighborhood of the periodic orbit χτ̂− and the proof is finished. ✷

Remark 4.18 Usually, conditions imposed in Theorem 4.17 will be satisfied, because τ− = τ−∗ would

be a solution of M(τ−) = 0 when Λ+,Λ− and B satisfy condition

Λ−a+ Λ+b+Bc = 0, (4.43)
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where

a =

∫ τ−∗

0
(λ− cos(θ0 − t) + sin(θ0 − t))x−(t)dt+

b =

∫ 2π−τ−∗

0
(cos (θ1 − t)− λ+ sin(θ1 − t))x+(t)dt+

c =

∫ 2π−τ−∗

0
(λ+ cos(θ1 − t) + sin(θ1 − t))x+(t)dt.

This relationship is not generic. It is the equation of a plane in the three-dimensional space Λ+–Λ−–B.

For instance, if λ+ = 0.15, λ− = −0.25,Λ+ = 0.1,Λ− = −0.2, there exists a unique B which

satisfies (4.43), and its approximate value is B = B̄ ≃ 0.33979. That is, if B 6= B̄, then Theorem

4.17 can be applied. Nevertheless, for B = B̄ Theorem 4.17 cannot be applied, and in this case we

do not know if the periodic orbit exists or not in a neighborhood of χτ−∗
. Note that, in the reversible

case, it remains, as we have described in Remark 4.12.

Now, we will look for the existence of periodic orbits of the perturbed system (4.15), close to the

periodic orbits of the unperturbed system (4.1) which are tangent to the separation plane x = 0.

We want to study the behavior near to periodic orbits χ0 and χ2π of the unperturbed system,

when this makes sense.

To prove the existence of limit cycles in the perturbed system close to the periodic orbits χ0 and

χ2π of the unperturbed system, we must study the existence of simple zeros of the Melnikov function

defined in (4.31) near to τ− = 0 and τ− = 2π.

In the following results, we use the parameters

σ+ = B(λ− − λ+) + (Λ− − Λ+)(1 + λ−λ+),

σ− = B(λ+ − λ−) + (Λ− − Λ+)(1 + λ−λ+).
(4.44)

Firstly, we state the next result about the existence of a periodic orbit of the perturbed system

close to the periodic orbit χ0 of the unperturbed. The following development and reasonings are

similar to those used in Section 3.5.

Theorem 4.19 Consider the perturbed system (4.15) in the cases λ+ > 0, λ− < 0, or λ+ > 0,

λ− ≥ 0. Suppose Λ+ · σ+ < 0 and |Λ+| is sufficiently small. Then, the perturbed system (4.15) has

a two-zonal limit cycle in a neighborhood of χτ̂− , for |ε| 6= 0 and sufficiently small, where τ̂− is the
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only solution of the Melnikov function close to τ− = 0.

Furthermore, one of the characteristic multipliers of this limit cycle is always strictly greater than

1 and the other one is strictly greater than 1 if σ+ · ε > 0 and strictly less than 1 if σ+ · ε < 0.

Proof: On the one hand, we define the following function

F (s,Λ+) =Mr(s
1/3,Λ+),

where we have assumed that the Melnikov reduced function is function of Λ+ too. Then,

F (0, 0) = 0 and
∂F

∂s
(0, 0) = σ+/(1 + (λ+)2) 6= 0.

By applying the Implicit Function Theorem we deduce that there exists a function f which is defined

in a neighborhood U of the origin, such that F (f(Λ+),Λ+) = 0 for all Λ+ ∈ U , i.e., the equation

Mr(τ
−) = 0 has one solution τ̂− = (f(Λ+))1/3 provided that |Λ+| is small enough. Moreover,

it is easy to see that sgn(f(Λ+)) = −sgn(Λ+ · σ+). Therefore, the solution τ̂− is positive when

Λ+ · σ+ < 0. Moreover, sgn(M ′
r(τ̂

−)) =sgn(σ+) 6= 0 and from (4.40) sgn(M ′
r(τ̂

−)) =sgn(M ′(τ̂−)).

Then, sgn(M ′(τ̂−)) =sgn(σ+) 6= 0.

Hence, there exists a positive simple root τ̂− > 0 of the Melnikov function M near to τ− = 0,

and we can suppose that it is different from τ−∗ given in (4.11). Furthermore, from (4.40) it is satisfied

that

sgn(M ′(τ̂−)) = sgn(M ′
r
(τ̂−)),

and it is obvious that if |Λ+| ≃ 0 and σ+ 6= 0, then

sgn(M ′
r
(τ̂−)) = sgn(σ+) 6= 0,

so we get that

sgn(M ′(τ̂−)) = sgn(σ+) 6= 0.

On the other hand, simple roots of the Melnikov function different from τ−∗ correspond to periodic

orbits of the perturbed system (4.15). Then the system has, for |ε| 6= 0 and sufficiently small, a two-

zonal limit cycle in a neighborhood of the periodic orbit χτ̂− of the unperturbed system (4.1), which

we denote by Υτ̂− and is near to χ0. Now, we are going to examine the characteristic multipliers of
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Υτ̂− .

The characteristic multipliers are the eigenvalues of the Jacobian matrix of the Poincare map

evaluated at the periodic orbit. From the analysis done in [23], the characteristic multipliers of χτ̂−

for the unperturbed system (4.1) are µ1 = exp(λ−τ̂− + λ+(2π − τ̂−)) and µ2 = 1. As τ̂− ≃ 0 and

λ+ > 0 yields µ1 > 1. Due to the continuity and differentiability, one characteristic multiplier of the

periodic orbit Υτ̂− must be greater than 1 if |Λ+| and ε are different from zero and small enough.

For determining the other characteristic multiplier, we must study the sign of
∂d2
∂r (gθ(τ̂−)(r(τ̂

−), ε), r(τ̂−), ε). From the analysis developed up to now, we have d2(θ, r, ε) =

εD2(θ, r, 0) +O(ε), so

∂d2
∂r

(gθ(τ̂−)(r(τ̂
−), ε), r(τ̂−), ε) = ε

∂D̃2

∂r
(r(τ̂−), 0) +O(ε).

We know D̃2(r(τ̂
−), 0) =M(τ̂−), therefore

∂D̃2

∂r
(r(τ̂−), 0) =

∂M
∂τ−

(τ̂−)
∂r
∂τ−

(τ̂−)
,

and the denominator is different from zero provided that we are not in the most external

periodic orbit of the continuum. Then, if ∂M
∂τ−

(τ̂−) 6= 0, we are able to establish the sign of
∂d2
∂r (gθ(τ̂−)(r(τ̂

−), ε), r(τ̂−), ε).

We know that sgn
(
∂M
∂τ− (τ̂

−)
)
=sgn(σ+) 6= 0. Moreover ∂r

∂τ− (τ̂
−) > 0 if we are near to the periodic

orbit χτ̂− which is close to χ0. As a result, we conclude sgn
(
∂d2
∂r (gθ(τ̂−)(r(τ̂

−), ε), r(τ̂−), ε)
)

=

sgn(ε · σ+), and the proof is completed. ✷

Analogously, we can prove the following result, which provides us the existence of a periodic orbit

of the perturbed system close to the periodic orbit χ2π of the unperturbed system, which is tangent

to the separation plane.

Theorem 4.20 Consider the perturbed system (4.15) in the cases λ+ > 0, λ− < 0, or λ+ ≤ 0,

λ− < 0. Suppose Λ− · σ− > 0 and |Λ−| is sufficiently small. Then, the perturbed system (4.15) has

a two-zonal limit cycle in a neighborhood of χτ̂− , for |ε| 6= 0 and sufficiently small, where τ̂− is the

only solution of the Melnikov function close to τ− = 2π.

Furthermore, one of the characteristic multipliers is always strictly less than 1 and the other one

is strictly greater than 1 if σ− · ε < 0 and strictly less than 1 if σ− · ε > 0.
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In Fig. 4.7 we have represented the different possibilities for the graphic of the Melnikov function M

in a neighborhood of τ− = 0 for |Λ+| small and σ+ > 0.

Τ
-

(a) Λ+ = 0.

Τ
-

(b) Λ+ < 0.

Τ
-

(c) Λ+ > 0.

Figure 4.7: Graphic of the Melnikov function M in a neighborhood of τ− = 0 for |Λ+| sufficiently
small and σ+ > 0.

In Fig. 4.8 we have represented different possibilities of the graphic of the Melnikov function M

in a neighborhood of τ− = 0 for |Λ+| small and σ+ < 0.

4.5.2 Saddle-node bifurcation of periodic orbits

In the results given in the previous subsection, we assumed that σ+ and σ− were different from zero,

but we can suppose that they vanish. In this case, we can have up to two zeros of the Melnikov

function and a saddle-node bifurcation of periodic orbits can be described. To do that, we will need

Lemma 3.17 presented in Chapter 3.

Theorem 4.21 Consider the perturbed system (4.15) in the cases λ+ > 0, λ− < 0, or λ+ ≤ 0,

λ− < 0. Assume Λ+ 6= Λ−, Λ+ · Λ− > 0, Λ+ · σ+ < 0 and |Λ+|,|σ+| are sufficiently small. Then,
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Τ
-

(a) Λ+ = 0.

Τ
-

(b) Λ+ < 0.

Τ
-

(c) Λ+ > 0.

Figure 4.8: Graphic of the Melnikov function M in a neighborhood of τ− = 0 for |Λ+| sufficiently
small and σ+ < 0.

there is a function SN0(Λ
+,Λ−, λ+, λ−, B) defined locally by

SN0(Λ
+,Λ−, λ+, λ−, σ+) =

=
120Λ+π

(1 + (λ+)2)(Λ− − Λ+)
− 24

√
6

(
− σ+

(1 + (λ+)2)(Λ− − Λ+)

)5/2

+ . . .
(4.45)

such that the following statements hold.

(a) If Λ+ · SN0(Λ
+,Λ−, λ+, λ−, B) < 0 and |ε| 6= 0 is sufficiently small, the perturbed system

(4.15) has two two-zonal periodic orbits in a neighborhood of χ0.

(b) If SN0(Λ
+,Λ−, λ+, λ−, B) = 0, there exist functions Λ+(ε), Λ−(ε) and B(ε), defined for |ε|

sufficiently small, such that the perturbed system (4.15) with Λ+ = Λ+(ε), Λ− = Λ−(ε) and

B = B(ε) has exactly one periodic orbit in a neighborhood of χ0 for |ε| 6= 0 sufficiently small.

(c) If Λ+ · SN0(Λ
+,Λ−, λ+, λ−, B) > 0 and |ε| 6= 0 is sufficiently small, the perturbed system

(4.15) has not periodic orbits in a neighborhood of χ0.
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Proof: The reduced Melnikov function can be written in a neighborhood of τ− = 0 into the form

Mr(τ
−) = 2Λ+π +

σ+

6(1 + (λ+)2)
(τ−)3 +

(Λ− − Λ+)(1 + (λ+)2) +O(σ+)

60
(τ−)5 +O((τ−)6).

Therefore, if (Λ+, σ+) ≃ (0, 0), then we can find roots of Mr(τ
−) = 0 for |τ−| sufficiently small

solving

2Λ+π +
σ+

6(1 + (λ+)2)
(τ−)3 +

(Λ− − Λ+)(1 + (λ+)2)

60
(τ−)5 = 0.

Finally, by applying Lemma 3.17, the Weierstrass Preparation Theorem and analogous reasoning

to those given in the proof of Theorem 1.3 of [8], the conclusion is straightforward. ✷

In Fig. 4.9 we have represented different possibilities for the graphic of the Melnikov function M in

a neighborhood of τ− = 0 for Λ+ · Λ− > 0, Λ+ · σ+ < 0 with |Λ+| and |σ+| small enough.

Τ
-

(a) Λ+ · SN0(Λ
+,Λ−, B, λ+, λ−) > 0.

Τ
-

(b) SN0(Λ
+,Λ−, B, λ+, λ−) = 0.

Τ
-

(c) Λ+ · SN0(Λ
+,Λ−, B, λ+, λ−) < 0.

Figure 4.9: Graphic of the Melnikov function M in a neighborhood of τ− = 0 for Λ+ · Λ− > 0,
Λ+ · σ+ < 0 with |Λ+| and |σ+| small enough.

An analogous analysis can be done for χ2π, when this makes sense.
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Theorem 4.22 Consider the perturbed system (4.15) in the cases λ+ > 0, λ− < 0, or λ+ ≤ 0,

λ− < 0. Assume Λ+ 6= Λ−, Λ+ · Λ− > 0, Λ− · σ− > 0 and |Λ−|, |σ−| are sufficiently small. Then,

there is a function SN2π(Λ
+,Λ−, B, λ+, λ−) defined locally by

SN2π(Λ
+,Λ−, B, λ+, λ−) =

= 2Λ−π − σ−

15(1 + (λ−)2)

( −6σ−

(Λ− − Λ+)(1 + (λ−)2)(1 + (λ+)2)

)3/2

+ . . .
(4.46)

such that the next statements hold.

(a) If Λ− · SN2π(Λ
+,Λ−, λ+, λ−, B) > 0 and |ε| 6= 0 is sufficiently small, the perturbed system

(4.15) has two two-zonal periodic orbits in a neighborhood of χ2π.

(b) If SN2π(Λ
+,Λ−, λ+, λ−, B) = 0, there exist functions Λ+(ε), Λ−(ε) and B(ε) defined for |ε|

sufficiently small, such that the perturbed system (4.15) with Λ+ = Λ+(ε), Λ− = Λ−(ε) and

B = B(ε) has exactly one periodic orbit in a neighborhood of χ2π for |ε| 6= 0 sufficiently small.

(c) If Λ− · SN2π(Λ
+,Λ−, λ+, λ−, B) < 0 and |ε| 6= 0 sufficiently small, the perturbed system

(4.15) has not periodic orbits in a neighborhood of χ2π.

Remark 4.23 It is worth mentioning here that theorems 4.19 and 4.20 describe the existence of

periodic orbits in the perturbed system (4.15). We can say that these periodic orbits arise, in the

hypothesis of Theorem 4.19 (respectively 4.20), from the periodic orbit tangent to the separation

plane x = 0 which is in the half-space x ≥ 0 (respectively x ≤ 0). The appearance of this periodic

orbit is known as the focus-center-limit cycle bifurcation. A generic situation of this bifurcation is

described in Theorem 1 of [24]. It is not possible to apply this result to our unperturbed system (4.1)

because the coefficient δ of Theorem 1 of [24], which characterize the bifurcation, is zero for our

system, namely,

δ = −2(Λ− +B(λ− − λ+) + (Λ− + Λ+)λ−λ+ − Λ+(λ+)2)ε+O(ε2).

We can say that theorems 4.19 and 4.20 give conditions for spreading out in one direction the focus-

center-limit cycle bifurcation when δ = 0 and theorems 4.21 and 4.22 study the degeneration of this

bifurcation.
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4.5.3 Hopf bifurcation from infinity

This subsection is devoted to the study of the Hopf bifurcation from infinity for part of the systems

object of study in this chapter. We want to analyze, under the presence of an unbounded continuum,

the existence of zeros of the Melnikov function, close to the value τ̃− which was described in

Proposition 4.2.

We will analyze the case λ+ = λ− 6= 0. In this case, as we have described in the previous section,

the Melnikov function takes the form given in (4.42), the reduced Melnikov function is

Mr(τ
−) = 2Λ+π − (Λ+ − Λ−)τ− + (Λ+ − Λ−) sin τ− (4.47)

and the value τ̃− = π.

Before stating the result about the Hopf bifurcation from infinity, we give a result about the

existence of periodic orbits.

Theorem 4.24 Assume that λ+ = λ− 6= 0. Then, the following conditions are satisfied.

(a) If λ+ = λ− > 0 and Λ+(Λ+ +Λ−) < 0, then the perturbed system (4.15) possesses a unique

limit cycle for |ε| 6= 0 sufficiently small. Moreover, the limit cycle possesses a characteristic

multiplier grater that 1 and another greater that 1 if ε(Λ+ + Λ−) > 0 and less that 1 if

ε(Λ+ + Λ−) < 0.

(b) If λ+ = λ− > 0 and Λ+(Λ+ + Λ−) > 0, then the perturbed system (4.15) has not periodic

orbits for |ε| 6= 0 sufficiently small.

(c) If λ+ = λ− < 0 and Λ−(Λ+ +Λ−) < 0, then the perturbed system (4.15) possesses a unique

limit cycle for |ε| 6= 0 sufficiently small. Moreover, the limit cycle possesses a characteristic

multiplier less that 1 and another less that 1 if ε(Λ+ + Λ−) < 0 and greater than 1 if

ε(Λ+ + Λ−) > 0.

(d) If λ+ = λ− > 0 and Λ−(Λ+ + Λ−) > 0, then the perturbed system (4.15) has not periodic

orbits for |ε| 6= 0 sufficiently small.

Proof: It is enough to study the growth of the reduced Melnikov function in its interval of definition

and its value at the endpoints of that interval.
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By remembering that in this case the reduced Melnikov function has the expression given in

(4.47), we have that

M ′
r(τ

−) = −(Λ+ − Λ−) + (Λ+ − Λ−) cos τ−

does not vanishes in the interval (0, 2π), so Mr is strictly increasing in such interval.

Furthermore, Mr(0) = 2Λ+π, Mr(π) = (Λ+ +Λ−)π, Mr(2π) = 2Λ−π and taking into account

the chosen signs in each item, the proof is direct, just by using a compactness argument for items

(b) and (d), and reminding that periodic orbits, if they exist, are in a plane.

Finally, the conclusions about the characteristic multipliers are straightforward, by using similar

reasonings to those made in the proof of Theorem 4.19. ✷

Remark 4.25 The behavior described in Theorem 4.24 agrees with the study made in [13, 41, 44, 85]

about periodic orbits of planar piecewise linear systems with two zones. From these works, it can be

deduced that a system written in Liénard form





ẋ = 2α+x− y,

ẏ = ((α+)2 + (β+)2)x+ a
if x ≥ 0,





ẋ = 2α−x− y,

ẏ = ((α−)2 + (β−)2)x+ a
if x < 0,

(4.48)

with a ∈ {−1, 1}, only possesses a limit cycle in the following situations.

(a) The equilibrium point is in the zone x > 0 and α+

(
α+

β+
+
α−

β−

)
< 0.

(b) The equilibrium point is in the zone x < 0 and α−
(
α+

β+
+
α−

β−

)
< 0.

When λ+ = λ− 6= 0, the dynamics of the perturbed system (4.15) is basically planar and on

the invariant plane it is organized by a system of the form (4.48), where α+ = εΛ+, α+ = εΛ+,

β+ = 1 + εB and β− = 1. When |ε| 6= 0 is sufficiently small, it is easy to see that conditions of

Theorem 4.24 are not more than a new redaction of the results about the existence of limit cycles

for system (4.48) which were described in [13, 41, 44, 85].

Finally, we give a result which collects the appearance of a large periodic orbit, i.e., a result that

proves the existence of a Hopf bifurcation from infinity.
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Theorem 4.26 Assume that λ+ = λ− 6= 0. Then, the following properties hold.

(a) If λ+ = λ− > 0, Λ+(Λ+ + Λ−) < 0 and |Λ+ + Λ−| is sufficiently small, then the perturbed

system (4.15) possesses a unique limit cycle for |ε| 6= 0 small enough with left half-period

τ− ≃ π and less than π. Moreover, this limit cycle is born with infinite amplitude.

(b) If λ+ = λ− < 0, Λ−(Λ+ + Λ−) < 0 and |Λ+ + Λ−| is sufficiently small, then the perturbed

system (4.15) possesses a unique limit cycle for |ε| 6= 0 small enough with left half-period

τ− ≃ π and grater than π. Moreover, this limit cycle is born with infinite amplitude.

Proof: It is enough to take into account that Mr(π) = 0 when Λ+ + Λ− = 0.

Now, if we just develop Mr in a neighborhood of π and apply the reasonings from theorems 4.19

and 4.20 to guarantee the existence of zeros of Mr close to π when |Λ+ +Λ−| is sufficiently small.

Note that the limit cycle is born with infinite amplitude because the zeros that appear are close

to π. ✷

In Fig. 4.10 we show some graphics for illustrating the behavior of the Melnikov function in a vicinity

of the appearance of the Hopf bifurcation from infinity.

In this chapter, we have analyzed the existence of periodic orbits in a perturbation of a class of

three-dimensional non-controllable CPWL systems via an adaptation of the Melnikov theory. In the

next chapter, we use different skills to analyze the existence of periodic orbits in a perturbation of a

class of three-dimensional non-observable CPWL systems.
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0 Π

Τ
-

(a) Λ+ + Λ− > 0 and Λ+ > 0.

Π

Τ
-

(b) Λ+ + Λ− > 0 and Λ+ < 0.

Π

Τ
-

(c) Λ+ + Λ− < 0 and Λ+ > 0.

Π

Τ
-

(d) Λ+ + Λ− < 0 and Λ+ < 0.

Figure 4.10: Melnikov function M in cases λ+ = λ− > 0 and Λ+ + Λ− 6= 0.
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Chapter5
Periodic Orbits for Perturbations of Three-Dimensional

Non-Observable Continuous Piecewise Linear Systems.

At it was pointed out in the last section of the introductory chapter, the existence of invariant cones

is an important matter for analyzing the stability of homogeneous 2CPWL3 systems.

The works about invariant cones that we can find in the current literature [21, 25, 65, 66] assume

observability hypothesis. In Chapter 3 of this work, we have extended the results obtained in [21]

and we have proven the conjecture about the existence of saddle-node bifurcation of invariant cones

that was stated in [25]. At the beginning of this chapter, we deal with the analysis of invariant cones

in non-observable homogeneous 2CPWL3 systems.

In [26] the existence of an observable 2CPWL3 system having an invariant cone foliated by

periodic orbits is proven. However, it was not possible to characterize this property. In this chapter,

we consider the problem in non-observable PWL systems, and we are able to find explicitly a system

having an invariant cone foliated by periodic orbits. Once we have this non-generic situation, one can

wonder about the number and position of the periodic orbits that remain if one perturbs the system,

by making it observable and non-homogeneous.

To analyze the existence of periodic orbits in dynamical systems, apart from the Menikov theory,

we find in the literature the averaging method [87, 94]. The main idea of this method is to relate

the periodic solutions of a system to the equilibria of an autonomous one, the averaged differential

system. In [9] the authors analyze from the point of view of the averaging method, the persistence

of periodic orbits of an invariant manifold of periodic solutions. The method of averaging has been

generalized to continuous non-smooth dynamical systems [10, 11, 13, 64]. However, in this Chapter

we have opted to tackle the problem from another point of view. Specifically, we write the system in

the appropriate form to be able to use the techniques of Chapter 14 of [31] where non-autonomous
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perturbations of a linear system with periodic solutions were studied.

The chapter is organized as follows. In a first section we remember the normal form of non-

observable 2CPWL3 systems introduced in the first chapter of this work. In a second section, we

analyze the existence of invariant cones in homogeneous non-observable 2CPWL3 systems. Sec.

5.3 is devoted to the obtention of an homogeneous non-observable 2CPWL3 system having an

invariant cone foliated by periodic orbit, the unperturbed system. In Sec. 5.4, this non-generic

situation is perturbed, by making the system observable and non-homogeneous. The last section

of this chapter is devoted to the analysis of the persistence of the periodic orbits of the continuum

after the perturbation.

5.1 Non-observable 2CPWL3 systems

In the introductory Chapter 1 we have discussed that every 2CPWL3 system can be written into the

form (1.4), namely,

ẋ = A▽x+ b =

(
a▽11 A12

A▽
21 A22

)
x+ b, (5.1)

where b = (b1, b2, b3)
T ∈ R

3, a+11, a
−
11 ∈ R, A12 ∈ M1×2(R), A

+
21, A

−
21 ∈ M2×1(R) and

A22 ∈ M2(R).

Furthermore, if system (5.1) is non-observable and A12 6= (0, 0)T , then there exist a linear change

of variables which transforms it into the form (1.6), i.e.,





ẋ = b▽11x− y,

ẏ = b▽21x+ b22y + b2,

ż = b▽31x+ b32y + b33z + b3.

(5.2)

In looking for invariant cones, we are interested in homogeneous systems. Under the hypothesis of

homogeneity, the system is 



ẋ = b▽11x− y,

ẏ = b▽21x+ b22y,

ż = b▽31x+ b32y + b33z.

(5.3)

In the following proposition, system (5.3) will be further simplified.
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Proposition 5.1 There exists a linear change of variable which transforms system (5.3) into





ẋ = c▽11x− y,

ẏ = c▽21x,

ż = c▽31x+ c33z,

(5.4)

where

c±11 = b±11 + b22, c±21 = b±21, c±31 = b32b
±
11 + b±31 − b32b33, c33 = b33. (5.5)

Proof: By performing the change of variable

Z = b32x+ z

and just renaming the variable Z as z, it is easy to see that system (5.3) is transformed into





ẋ = b▽11x− y,

ẏ = b▽21x+ b22y,

ż = (b32b
▽
11 + b▽31 − b32b33)x+ b33z.

(5.6)

Now, by changing

Y = b22x+ y

and renaming the variable Y as y, system (5.7) is transformed into





ẋ = (b▽11 + b22)x− y,

ẏ = b▽21x,

ż = (b32b
▽
11 + b▽31 − b32b33)x+ b33z

(5.7)

and the conclusion follows. ✷

5.2 Invariant cones in non-observable 2CPWL3 systems

In this section we analyze the existence of invariant cones in non-observable 2CPWL3 systems, which

we have just seen that can be written into the form (5.4). In looking for invariant cones, by analogy

with the observable case, we will assume the existence of complex eigenvalues in both zones of
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linearity. Then, system (5.4) can be expressed in terms of the eigenvalues of the coefficient matrices,

namely, α±±iβ± and λ, as 



ẋ = 2α▽x− y,

ẏ = ((α▽)2 + (β▽)2)x,

ż = c▽31x+ λz,

(5.8)

where

α± =
1

2
c±11, β± =

1

2

√
4c±21 − (c±11)

2 and λ = c33. (5.9)

Note that λ is a shared real eigenvalue of both coefficient matrices due to the lack of the observability.

Moreover, we assume in the rest of this chapter that the system cannot be fully decoupled in any of

both zones of linearity, i.e., c+31 · c−31 6= 0.

Later on, it will be useful to introduce the following notation

γ± =
α± − λ

β±
and δ± =

(α± − λ)2 + (β±)2

c±31
6= 0. (5.10)

Before proceeding analyzing the two-zonal invariant cones of system (5.8), we will show some

properties of planar invariant surfaces for this system and their relative position with respect to the

two-zonal invariant cones. The following study is an adaptation to non-observable systems of the

study done in [25] for observable systems. We begin by introducing some concepts.

Let A be a real matrix with eigenvalues λ and α±iβ, where β > 0. The invariant plane containing

the origin for the system ẋ = Ax will be referred to as the focal plane of the matrix A. That focal

plane is also a planar invariant cone for the system ẋ = Ax.

Lemma 5.2 If the real matrix M has the form

M =




2α −1 0

(α2 + β2) 0 0

c31 0 λ




with β > 0 and c31 6= 0, then its focal plane is given by ΠF ≡ −λx+ y − δz = 0, where

δ =
(α− λ)2 + β2

c31
.
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Proof: It is obvious that the eigenvalues of matrix M are given by λ and α± iβ. It is well known

that if v is an eigenvector of MT associated to the real eigenvalue λ, then v is orthogonal to the

focal plane of M. Here, it is easy to see that v = (−λ, 1,−δ)T is an eigenvector of MT associated

to λ, and the conclusion follows. ✷

By using Lemma 5.2 under the assumption c+31 · c−31 6= 0, coefficient matrices of both zones of

linearity of system (5.8) have, respectively, the focal planes

Π+
F ≡ −λx+ y − δ+z = 0 and Π−

F ≡ −λx+ y − δ−z = 0, (5.11)

where δ± are given in (5.10).

Next, the focal half-planes of system (5.8) are introduced.

Definition 5.3 The half-plane

Π−
HF ≡ Π−

F ∩ {x ≤ 0}, (5.12)

where Π−
F is given in (5.11) is said to be the left focal half-plane of system (5.8) and the half-plane

Π+
HF ≡ Π+

F ∩ {x ≥ 0}, (5.13)

where Π+
F is given in (5.11) is said to be the right focal half-plane of system (5.8).

Note that, when δ+ = δ−, the union of both focal half-planes constitutes a planar two-zonal

invariant cone of system (5.8).

Now, the relative position of the focal half-planes and the two-zonal invariant cones, if any, for

non-observable CPWL systems will be established. Remember that, we say that a cone is above

(respectively, below) a plane if for every point (x1, y1, z1) not at the origin and belonging to the

cone, there exists another point (x1, y1, z2) belonging to the plane such that z1 > z2 (respectively,

z1 < z2).

Lemma 5.4 If system (5.8) has a non-planar invariant cone C, then C is either above or below both

focal half-planes Π+
HF and Π−

HF .

Proof: If δ− = δ+, then as indicated before, system (5.8) has one invariant plane and the conclusion
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is straightforward.

Next, we will consider the case δ+ 6= δ−. The focal half-planes intersect the separation plane

x = 0 at the lines

r+ ≡ {x = 0, δ+z − y = 0} and r− ≡ {x = 0, δ−z − y = 0}.

At the plane x = 0, from the first equation of system (5.8) we have ẋ|x=0 = −y, so the flow enters

into the region x < 0 for y > 0 and enters into the region x > 0 for y < 0.

Now, if the half straight-line r0 ≡ {z = (1/δ0)y, y ≥ 0}, where δ0 ∈ R \ {0} generates a two-

zonal invariant cone C, then the line r0 is transformed into the half straight-line r1 = P−(r0) ≡
{x = 0, z = (1/δ1)y, y ≤ 0}, by means of the flow in the region x < 0, and we obtain r0 = P+(r1)

by means of the flow in the region x > 0.

Assume that δ+ > δ− and the invariant cone C is above the half-plane Π−
HF , i.e. δ− > δ0 (see

Fig. 5.1). If δ1 < δ+, then P+(r1) must be below the straight line r+ (see Fig. 5.1 again). If δ1 = δ+,

then r1 ≡ r+ ∩ {y ≤ 0} and P+(r1) ≡ r+ ∩ {y ≥ 0}. In both cases, P+(r1) 6= r0 and r0 does not

generate a two-zonal invariant cone. Consequently, we must have δ1 > δ+, i.e., the invariant cone is

also above Π+
HF .

The remaining cases can be analogously proven. ✷

In the following result we will prove that the non-planar two-zonal invariant cones of system

(5.8), if any, do not share points (apart from the origin) with the whole focal planes of the coefficient

matrices.

Proposition 5.5 If system (5.8) has a non-planar two-zonal invariant cone C, then C is either above

or below both whole focal planes Π+
F and Π−

F .

Proof: If δ+ = δ−, the proof is obvious.

When δ+ 6= δ−, performing in system (5.8) the change

Z = −λx+ y − δ+z,
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Figure 5.1: The straight lines r+ and r− and the half straight-lines r0 and r1 when δ+ > δ− and
δ1 < δ+.

one gets





ẋ = 2α−x− y,

ẏ = ((α−)2 + (β−)2)x,

Ż = (δ− − δ+)c−31x+ λZ.

if x < 0,





ẋ = 2α+x− y,

ẏ = ((α+)2 + (β+)2)x,

Ż = λZ.

if x > 0. (5.14)

Moreover, the right focal half-plane of (5.14) is {Z = 0} ∩ {x ≥ 0}.
If system (5.8) has a two-zonal invariant cone C, then system (5.14) has a two-zonal invariant

cone C̃. This cone C̃ does not intersect the half-plane {Z = 0} ∩ {x ≥ 0}, because the cone C does

not cut the right focal half-plane Π+
HF of (5.8), see Lemma 5.4. Therefore, the cone C̃ only may cut

the plane Z = 0 for x < 0.

Due to δ+ 6= δ−, the derivative ż on the half-plane {Z = 0} ∩ {x < 0}, is given by

Ż = (δ− − δ+)c−31x 6= 0, i.e., this derivative does not change its sign on this half-plane, so the
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invariant cone C̃ cannot cut the cited half-plane and the two-zonal invariant cone C does not intersect

with the plane Π+
F .

Analogously, one can prove that the non-planar two-zonal invariant cone C, cannot intersect the

plane Π−
F .

Finally, it can be deduced, by considering again Lemma 5.4, that the non-planar two-zonal

invariant cone is either above or below both focal planes. ✷

Now, we are able to analyze the existence of invariant cones in system (5.8), as we perform in

the following proposition.

Proposition 5.6 Define the values

η = δ−δ+
(
1− e(γ

−+γ+)π
)
, (5.15)

µ = δ+(1 + eγ
−π)− δ−eγ

−π(1 + eγ
+π) (5.16)

and

ρ = e−(γ++γ−)π, (5.17)

where γ± and δ± are given in (5.10). The following properties hold.

(a) If µ 6= 0, system (5.8) possesses a unique two-zonal invariant cone such that vc0 := η/µ provides

the slope of the half straight-line intersection between the invariant cone and the separation

plane x = 0 which is localized in the half-plane y > 0. Moreover, the invariant cone is attractive

when ρ < 1 and repulsive when ρ > 1.

(b) If η 6= 0 and µ = 0, system (5.8) does not possess any two-zonal invariant cone.

Proof: For the sake of clarity, let us denote T▽ = 2α▽ and D▽ = (α▽)2 + (β▽)2. Thus, system

(5.8) can be expressed as 



ẋ = T▽x− y,

ẏ = D▽x,

ż = c▽31x+ λz.

(5.18)

We search for an invariant cone of system (5.18). Consider a half straight-line contained on the

separation plane and passing through the origin. This line has a slope of v0 = y0/z0, where z0 6= 0.
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Note that we assume z0 6= 0 because if z0 = 0, then the half straight-line is locus in the axis z, i.e.,

y = 0. Then, due to ẋ|x=0 = −y, it will be for the points in the half straight-line that ẋ = 0, and

the flow cannot cross the separation plane x = 0. Therefore, the existence of invariant cones is not

possible.

Assume that y0 > 0. Then, first the system of the left zone is applied. Due to the homogeneity,

the line is mapped into another half straight-line of the same class with a slope of v1 = y1/z1 with

z1 6= 0. After that, the system of the right zone is applied and the half straight-line is transformed

into another half straight-line of the same type with a slope of v2 = y2/z2 with z2 6= 0. The existence

of a two-zonal invariant cone is obviously characterized by the equation

v0 = v2. (5.19)

From Proposition 5.5 it is known that, the non-planar two-zonal invariant cones, if any, are located

above or below both focal planes Π+
F and Π−

F , whose expressions are given in (5.11).

Consider the following change of variable in the left zone

Z = −λx+ y − δ−z,

which takes system (5.18) in the left zone to





ẋ = T−x− y,

ẏ = D−x,

Ż = λZ.

(5.20)

In looking for invariant cones above or below the left focal plane, we consider when Z 6= 0 the

following last change of variable

U = x/Z, V = y/Z,

which transform system (5.20) into





U̇ = (T− − λ)U − V,

V̇ = D−U − λV,

Ż = λZ.

(5.21)
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Note that,

V =
y

Z
=

y

−λx+ y − δ−z
=

y/z

−λx/z + y/z − δ−

when z 6= 0. In looking for invariant cones, it is enough to consider the planar subsystem in the

variables U and V. Coefficient matrices of this system have the pair of complex conjugated eigenvalues

(α− − λ)± iβ−. Take a point such that U = 0, (0, V0) with V0 > 0, that is,

V0 =
y0/z0

y0/z0 − δ−
=

v0
v0 − δ−

,

where v0 = y0/z0. First, the system of the left zone is applied. It is easy to see by integrating system

(5.21) that the following intersection point with the line U = 0 is given by (0, V1) with

V1 = −eπγ−

V0, (5.22)

where γ− is given in (5.10). Due to V1 is located in the line U = 0, it could be written as

V1 =
y1/z1

y1/z1 − δ−
=

v1
v1 − δ−

, (5.23)

and then, equation (5.22) is translated into

v1
v1 − δ−

= −eγ−π v0
v0 − δ−

. (5.24)

Now, by reasoning analogously with the system of the right zone, it is clear that the following

intersection point with the line U = 0 is given by a point (0, V2) with

V2 =
v2

v2 − δ+
= −eγ+π v1

v1 − δ+
. (5.25)

From expressions (5.24) and (5.25) it can be obtained v2 as a function of v0, that is,

v2 = h(v0) =
δ+δ−e(γ

−+γ+)πv0

δ−(1 + eγ+π)eγ−πv0 + δ+(δ− − (1 + eγ−π)v0)
.

From equation (5.19), we know that there exists an invariant cone when v0 = v2, i.e., if function h

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.



5.3. THE UNPERTURBED SYSTEM 125

has a fix point, that is, when

v0 = vc0 :=
η

µ
=

δ−δ+
(
1− e(γ

−+γ+)π
)

δ+(1 + eγ−π)− δ−eγ−π(1 + eγ+π)
. (5.26)

If µ 6= 0, it is obvious that vc0 provides the slope of the half straight-line intersection between the

invariant cone and the separation plane x = 0, which is localized in the half-plane y > 0.

If µ = 0 and η 6= 0 the half straight-line is locus in the axis z, i.e., y = 0. Then, due to

ẋ|x=0 = −y, it is fulfilled that ẋ = 0 for the points in the half straight-line, and the flow cannot

cross the separation plane x = 0. Therefore, the existence of invariant cones is not possible.

Finally, the derivative of function h with respect to v0 evaluated in vc0 results the value ρ given

in (5.17) and the proof is finished. ✷

It is worth noting that, from Proposition 5.6, the impossibility of having two two-zonal invariant

cones in the non-observable system (5.8), follows. Therefore, it is not possible to get saddle-node

bifurcation of two-zonal invariant cones, and the dynamics is simpler than the observable case, where

the saddle-node bifurcation of invariant cones occurs, as it has been proven in Chapter 3 of this work.

On the other hand, when δ− = δ+ = δ, the slope vc0 given in (5.26) becomes δ, and the condition

for the existence of a two-zonal invariant cone, µ 6= 0 with µ given in (5.16), is satisfied provided that

γ+ + γ− 6= 0. In this non-generic case, focal planes of both zones of linearity coincide and become

−λx+ y − δz = 0.

Thus, the invariant cone is this invariant plane. Therefore, in looking for non-planar two-zonal

invariant cones, condition δ+ 6= δ− must be satisfied.

5.3 Non-observable 2CPWL3 system with an invariant cone foliated

by periodic orbits: the unperturbed system

Among the non-observable systems of the family (5.8), we want to obtain one having an invariant

cone foliated by periodic orbits. To get it, by following the ideas of the Van der Pol and Duffing

canonical forms [13], we simplify the expression of the family (5.8), by performing a linear change of

variables that linearize the third equation of the system.
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Proposition 5.7 Consider system (5.8). If one of the following statements holds

(a) c+31 = c−31

(b) c+31 6= c−31, α
+ = α− and β+ 6= β−,

(c) c+31 6= c−31, α
+ 6= α−, and δ+c+31 6= δ−c−31,

then there exists a linear change of variables which transforms system (5.8) into





ẋ = 2α▽x− y,

ẏ = ((α▽)2 + (β▽)2)x,

ż = kx+ λz,

(5.27)

where

k =





c31 if c31 := c+31 = c−31,

c−31c
+
31(δ

+ − δ−)

(β+)2 − (β−)2
if c+31 6= c−31, α+ = α− and β+ 6= β−,

c−31c
+
31(δ

− − δ+)

c+31 − c−31
if c+31 6= c−31, α+ 6= α− and δ+c+31 6= δ−c−31.

(5.28)

Proof: Take into account that if c+31 = c−31, the system is already in the desired form (5.27) with

k = c31 := c−31 = c+31. Let us consider the remaining cases, where it will be assumed that c+31 6= c−31.

First, we consider the case α+ 6= α− and δ+c+31 6= δ−c−31. By performing the following change of

variables

Z =
c+31 − c−31

2(α− − α+)
x+ z

and renaming the variable Z in small letter again, it is easy to see that system (5.4) is transformed

into 



ẋ = 2α▽x− y,

ẏ = ((α▽)2 + (β▽)2)x,

ż = d31x+ d32y + λz,

(5.29)

where

d31 =
2α+c−31 − 2α−c+31 + λ(c+31 − c−31)

2(α+ − α−)
and d32 =

c−31 − c+31
2(α− − α+)

. (5.30)
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Finally, the change

Z = (d32c− λ)x+ y + cz,

where

c =
δ−c−31 − δ+c+31
c+31 − c−31

6= 0, (5.31)

takes the system to the promised form (5.27), just renaming the variable Z in small letter.

To finish with, we must consider the case α := α+ = α− and β+ 6= β−, i.e., system (5.8) is

given by 



ẋ = 2αx− y,

ẏ = (α2 + (β▽)2)x,

ż = c▽31x+ λz.

(5.32)

The change of variable

Z = −Aλx+Ay + z,

where A = (c−31 − c+31)/((β
+)2 − (β−)2)), allows us to transform system (5.32) into (5.27) with

α+ = α− = α, by concluding the proof. ✷

If ones assumes that k 6= 0, where k is given in (5.28), then system (5.27) can be written as





ẋ = 2α▽x− y,

ẏ = ((α▽)2 + (β▽)2)x,

ż = x+ λz.

(5.33)

Note that if k = 0, then system (5.27) is decoupled and variable z evolves independently of variables

x and y.

System (5.33) possesses, under some hypotheses, a two-zonal invariant cone foliated by periodic

orbits, as we detail in the following proposition.

Proposition 5.8 System (5.33) when α+/β+ + α−/β− = 0 and λ 6= 0 possesses a two-zonal

invariant cone foliated by periodic orbits with a period of T = π/β− + π/β+. Moreover

ṽc0 :=
δ−δ+(1− e−λ(1/β−+1/β+)π)

δ+ + eγ−π(δ+ − δ−)− δ−e−λ(1/β−+1/β+)π
6= 0 (5.34)
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where γ− and δ± are given in (5.10), provides the slope of the half straight-line intersection between

the invariant cone and the separation plane x = 0 which is localized in the half-plane y > 0.

Furthermore, the invariant cone is attractive when λ < 0 and repulsive when λ > 0.

Proof: On the one hand, consider the planar system

{
ẋ = 2α▽x− y,

ẏ = ((α▽)2 + (β▽)2)x.
(5.35)

Take a point (0, y0) with y0 < 0. First, the system of the right zone is applied. It is easy to see that

the following intersection point of the orbit passing through this point with the separation line x = 0

is given by (0,−eπα+/β+

y0). After that, the system of the left zone is applied and the following

intersection point with the separation line is given by (0, eπ(α
+/β++α−/β−)y0). Therefore, system

(5.35) possesses a continuum of periodic orbits with a period of T = π/β− + π/β+ when

α+/β+ + α−/β− = 0. (5.36)

Under condition (5.36) and by assuming λ 6= 0, it is easy to see that statement (a) of Proposition

5.6 holds, so the system possesses a two-zonal invariant cone and

ṽc0 :=
δ−δ+(1− e−λ(1/β−+1/β+)π)

δ+ + eγ−π(δ+ − δ−)− δ−e−λ(1/β−+1/β+)π
6= 0

provides the slope of the half straight-line intersection between the invariant cone and the separation

plane x = 0 which is localized in the half-plane y > 0. The attractiveness of the invariant cone

depends on the parameter ρ given in (5.17), which under the hypotheses results eλ(1/β
++1/β−)π.

Taking into account that eλ(1/β
++1/β−)π > 1 if λ > 0 and eλ(1/β

++1/β−)π < 1 if λ < 0, the

attractiveness follows.

Finally, the conjunction of the existence of the two-zonal invariant cone together with the

existence of the continuum of periodic orbits, forces the two-zonal invariant cone to be foliated

by periodic orbits.

✷

Note that system (5.35) in the particular case α− = −α− and β+ = β− = 1, has been studied

in Chapter 2, see (2.36), where it was proven that it has a continuum of periodic orbits. In that case
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condition (5.36) is clearly fulfilled.

From now on, system (5.33) under the hypothesis of Proposition 5.8 is called the unperturbed

system.

5.4 Construction of the perturbed system

Under the hypothesis of Proposition 5.7 and k 6= 0, with k given in (5.28), system (5.8) becomes

system (5.33). In Proposition 5.8 of the previous Sec. 5.3, we have set the hypothesis for the existence

of a cone foliated of periodic orbits in system (5.33), from now on, the unperturbed system. In this

section, our aim is the form of the perturbation of this system, to study in the next section the

conditions for the persistence of periodic orbits of the continuum in the perturbed system.

We are going to perturb system (5.8) and we proceed by doing the same change of variables

that we have done to system (5.8) in Proposition 5.7, if it is possible, to the perturbation of system

(5.8). The perturbation intends to be the most generic possible. First, for the persistence of isolated

period orbits, we need to make the system non-homogeneous. To achieve this non-homogeneity we

add the independent term εc2 in the second equation of system (5.8). Any other independent term

can be annihilated by means of linear changes of variable. On the other hand, we add a term which

breaks the non-observability hypothesis. This term will be εz and it is added in the second equation.

Specifically, let us consider the following perturbation of system (5.8), which becomes observable

and non-homogeneous, 



ẋ = 2α▽x− y,

ẏ = ((α▽)2 + (β▽)2)x+ ε(z + c2),

ż = c▽31x+ λz,

(5.37)

where |ε| ≪ 1 and c2 ∈ R.

Under hypotheses of Proposition 5.7, it is possible proceeding by performing the same changes

of variables done in the proof of case of Proposition 5.7 to system (5.37). In particular, we analyze

most generic case, that is, when statement (c) is fulfilled, i.e.,

c+31 6= c−31 , α+ 6= α−, and δ+c+31 6= δ−c−31.

The remaining cases can be analyzed analogously. Under the hypotheses of statement (c) of
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Proposition 5.7, system (5.37) can be transformed into





ẋ = 2α▽x− y,

ẏ = ((α▽)2 + (β▽)2)x+ ε

(
λx

c
− y

c
+
z

c
+ c2

)
,

ż = kx+ λz + ε

(
λx

c
− y

c
+
z

c
+ c2

)
,

(5.38)

where c is given in (5.31) and k is given by the third expression in (5.28).

In order to reduce the size of the independent term in the third equation, under the assumption

λ 6= 0, we do one more change of variable

Z = z − εc2
λ
,

and renaming the variable Z in small letter, the system is written as





ẋ = 2α▽x− y,

ẏ = ((α▽)2 + (β▽)2)x+
ε

c

(
λx− y + z − εc2

λ

)
+ εc2,

ż = kx+ λz +
ε

c

(
λx− y + z − εc2

λ

)
.

(5.39)

Note that, if k 6= 0, it is possible to rescale the system as





ẋ = 2α▽x− y,

ẏ = ((α▽)2 + (β▽)2)x+
ε

c

(
λx− y + kz − εc2

λ

)
+ εc2,

ż = x+ λz +
ε

kc

(
λx− y + kz − εc2

λ

)
,

(5.40)

or equivalently, 



ẋ = 2α▽x− y,

ẏ = ((α▽)2 + (β▽)2)x+ ε
(
Ñ(x, y, z, ε) + c2

)
,

ż = x+ λz +
ε

k
Ñ(x, y, z, ε),

(5.41)

where

Ñ(x, y, z, ε) =
1

c

(
λx− y + kz − εc2

λ

)
.
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Note that when ε = 0, system (5.41) is system (5.33) and under the hypothesis of Proposition 5.8

system (5.33) is the unperturbed system. Thus, system (5.41) for ε 6= 0 and under the hypothesis

of Proposition 5.8 will be called the perturbed system. Now, our objective is the analysis of the

periodic orbits of the perturbed system which come from the periodic orbits of the continuum of the

unperturbed system.

5.5 The persistence of periodic orbits in the perturbed system

In this section, we analyze the periodic orbits of the continuum of the unperturbed system (system

(5.33) under the hypotheses of Proposition 5.8), that persist in the perturbed system (5.41).

To study the existence, uniqueness and asymptotic stability of T -periodic orbits of the perturbed

system, we are going to use the ideas from Chapter 14 of [31]. To apply these ideas, it is necessary

to write the system in the form,
dx

ds
= Ax+ εf(s,x, ε), (5.42)

where A ∈ M2(R), x ∈ R
2, 0 < ε ≪ 1 and f ∈ C0(R × R

2 × [0, 1),R2) is T -periodic in the first

variable.

In looking for a system of the form (5.42), we perform some changes of variables to system

(5.41).

In a first step, the idea is doing a change of variables to piecewise defined generalized polar

coordinates and obtaining a system that if the third variable vanishes, then it represents the invariant

cone.

Remember that the period of the orbits of the continuum of periodic orbits of system (5.33)

under the hypotheses of Proposition 5.8 is given by T = π/β− + π/β+.

We perform a piecewise change for variables x and y, taking into account the periodic orbits

of system (5.33). Concretely, in x < 0, we change the variables x, y by s, y0, and in x > 0 by

y0, r where y0 is the positive intersection of the corresponding periodic orbit with the axis y = 0,

s is the time that takes the orbit to arrive to the point (x, y) from the initial condition (0, y0) and

r = s − π/β− − π/β+. Note that s ∈ (0, π/β−) for x < 0 and s ∈ (π/β−,T ) for x > 0, see Fig.

5.2.

On the other hand, we change variable z by z̃, a new variable which measures the distance

between the third component z of the point p = (x, y, z) and the invariant cone of system (5.33),

see Fig. 5.3.
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y
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(x,y)τ =
π
β

τ =
π
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−
−

+
+

0

Figure 5.2: Change of the variables (x, y) to piecewise defined generalized polar coordinates (s, y0).

Let us denote

φ(s; (x0, y0, z0)) = (φ1(s; (x0, y0, z0)), φ2(s; (x0, y0, z0)), φ3(s; (x0, y0, z0)))

the solution of system (5.33) with initial condition (x(0), y(0), z(0)) = (x0, y0, z0). With the

considerations above, we perform the following piecewise change of variables,




x

y

z


 =





(
eÃ

−s 0

0 0 1

)



0

y0

z̃


+




0

0

φ3(s; (0, y0, y0/ṽ
c
0))


 if x < 0,

(
eÃ

+(s−T ) 0

0 0 1

)



0

y0

z̃


+




0

0

φ3(s− T , (0, y0, y0/ṽc0))


 if x > 0,

(5.43)
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x

y

z

z~

p

(x,y)

y0
s

Figure 5.3: Change of the variables (x, y, z) to generalized polar coordinates (s, y0, z̃).

where y0 > 0, with ṽc0 given in (5.34) and

Ã± =

(
2α± −1

(α±)2 + (β±)2 0

)
.

Note that (0, y0, y0/ṽc0) is the point located at the intersection between the separation plane and the

cone such that y0 > 0.
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It is easy to see that the explicit expression of the solution φ3(s; (0, y0, y0/ṽc0)) is given by

φ3(s; (0, y0, y0/ṽ
c
0)) =

{
φ−3 (s, y0, ṽ

c
0) if s ∈ (0, π/β−),

φ+3 (s− T , y0, ṽc0) if s ∈ (π/β−,T ),

where

φ±3 (s, y0, ṽ
c
0) = y0e

λsβ
±(δ±/ṽc0 − 1) + e(α

±−λ)s(β± cos(β±s) + (λ− α±) sin(β±s))

β±δ±
.

After the change of variables (5.43), function Ñ is rewritten in the left zone as

Ñ−
p (s, y0, z̃, ε) =

1

c

[
eα

−s
(
(λ+ α−) sin(β−s)− β− cos(β−s)

) y0
β−

+ k
(
z̃ + φ−3 (s, y0, ṽ

c
0)
)
− εc2

λ

]

(5.44)

with s ∈ (0, π/β−) and in the right zone as

Ñ+
p (s, y0, z̃, ε) =

1

c

[
eα

+S
(
(λ+ α+) sin(β+S)− β+ cos(β+S)

) y0
β+

+ k
(
z̃ + φ+3 (S, y0, ṽ

c
0)
)
− εc2

λ

]
,

(5.45)

where S = s− T and s ∈ (π/β−,T ).

The change of variables (5.43) transforms system (5.41) into





ṡ = 1− εM▽
1 (s, y0, z̃, ε),

ẏ0 = εM▽
2 (s, y0, z̃, ε),

˙̃z = λz̃ + εM▽
3 (s, y0, z̃, ε),

(5.46)

where

M▽
1 (s, y0, z̃, ε) =





w−
1

y0
(Ñ−

p (s, y0, z̃, ε) + c2), if s ∈ (0, π/β−),

w+
1

y0
(Ñ+

p (s, y0, z̃, ε) + c2), if s ∈ (π/β−,T ),

M▽
2 (s, y0, z̃, ε) =





w−
2 (Ñ

−
p (s, y0, z̃, ε) + c2), if s ∈ (0, π/β−),

w+
2 (Ñ

+
p (s, y0, z̃, ε) + c2), if s ∈ (π/β−,T ),

(5.47)
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and

M▽
3 (s, y0, z̃, ε) =





dφ−3
ds

(s, y0, ṽ
c
0)(Ñ

−
p (s, y0, z̃, ε) + c2) +

Ñ−
p (s, y0, z̃, ε)

k
), if s ∈ (0, π/β−),

dφ+3
ds

(s, y0, ṽ
c
0)(Ñ

+
p (s, y0, z̃, ε) + c2) +

Ñ+
p (s, y0, z̃, ε)

k
, if s ∈ (π/β−,T ),

(5.48)

being

w±
1 =





w−
1 :=

e−α−s sin(β−s)

β−
if s ∈ (0, π/β−),

w+
1 :=

e−α+(s−T ) sin(β+(s−T ))

β+
if s ∈ (π/β−,T )

and

w±
2 =





w−
2 :=

e−α−s(β− cos(β−s) + α− sin(β−s))

β−
if s ∈ (0, π/β−),

w+
2 :=

e−α+(s−T )(β+ cos(β+(s− T )) + α+ sin(β+(s − T )))

β+
if s ∈ (π/β−,T ).

System (5.46) can be transformed into a planar system of the form (5.42), where the role of the

temporal variable will be captured by the variable s. Thus, from system (5.46),





y′0 =
dy0
ds

= ε
M▽

2 (s, y0, z̃, ε)

1− εM▽
1 (s, y0, z̃, ε)

,

z̃′ =
dz̃

ds
=
λz̃ + εM▽

3 (s, y0, z̃, 0)

1− εM▽
1 (s, y0, z̃, ε)

.

(5.49)

The previous system can be rewritten as,

{
y′0 = εM▽

2 (s, y0, z̃, 0) +O(ε2),

z̃′ = λz̃ + εM▽
3 (s, y0, z̃, 0) +O(ε2).

(5.50)

This is a system of the desired form

x′ = Ax+ εf(s,x, ε), (5.51)
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where x = (y0, z̃)
T ,

A =

(
0 0

0 λ

)
,

and

f(s,x, ε) =

(
M▽

2 (s,x, 0) +O(ε2)

M▽
3 (s,x, 0) +O(ε2)

)
.

Now, we look for periodic orbits of the perturbed system (5.51).

Consider the solution ψ = ψ(s,x∗, ε), where ψ(0,x∗, ε) = x∗, which exists for s in some interval

containing 0 ≤ s ≤ T , and it is continuous in ε for ε sufficiently close to ε = 0. From (5.51), using

the variation-of-constants formula, we obtain

ψ(s,x∗, ε) = esAx∗ + ε

∫ s

0
e(s−r)Af(r, ψ(r,x∗ , ε), ε)dr. (5.52)

It follows directly from (5.52), that a necessary and sufficient condition for ψ to be periodic of period

T is that

(eT A − I)x∗ + ε

∫ T

0
e(T −r)Af(r, ψ(r,x∗, ε), ε)dr = (0, 0)T , (5.53)

or equivalently, if we denote x∗ = (y∗0 , z̃
∗)T ,

(
0 0

0 eλT − 1

)(
y∗0

z̃∗

)
+ ε

∫ T

0

(
1 0

0 eλ(T −r)

)(
M▽

2 (r,x∗, 0) +O(ε2)

M▽
3 (r,x∗, 0) +O(ε2)

)
dr =

(
0

0

)
.

(5.54)

This is a system of two equations for the two unknowns consisting of the components y∗0 and z̃∗ of

x∗, namely, 



ε

∫ T

0

(
M▽

2 (r,x∗, 0) +O(ε2)
)
dr = 0,

(eλT − 1)z̃∗ + ε

∫ T

0
eλ(T −r)

(
M▽

3 (r,x∗, 0) +O(ε2)
)
dr = 0.

(5.55)

It is obvious that, if the following equation holds,

∫ T

0

(
M▽

2 (r,x∗, 0) +O(ε2)
)
dr = 0, (5.56)
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the first equation of system (5.55) is fulfilled. Then, let us replace system (5.55) by





∫ T

0

(
M▽

2 (r,x∗, 0) +O(ε2)
)
dr = 0,

(eλT − 1)z̃∗ + ε

∫ T

0
eλ(T −r)

(
M▽

3 (r,x∗, 0) +O(ε2)
)
dr = 0.

(5.57)

Note that he second equation of system (5.57) is fulfilled for ε = 0 and z̃∗ = 0. On the other hand,

for ε = 0 and z̃∗ = 0, the first equation of system (5.57) is equivalent to

I(y∗0(0)) =

∫ T

0
M▽

2 (r, y∗0(0), 0, 0)dr = 0. (5.58)

For the sake of brevity, let us denote y∗0(0) = y0. Due to the piecewise definition of function M▽
2 ,

the computation of integral (5.58) must be split into two pieces, in the following form,

I(y0) = I1(y0) + I2(y0) =

∫ π/β−

0
M−

2 (s, y0, 0, 0)ds +

∫ T

π/β−

M+
2 (s, y0, 0, 0)ds. (5.59)

The direct calculation of integrals I1 and I2 by taking into account condition (5.36) allows us to

write

I(y0) = a+ by0, (5.60)

where

a = 2c2
α−

β−

(
1 + e

α−

β−
π
)(

1

β−
+

1

β+

)

(
α−

β−

)2

+ 1

(5.61)

and

b = c−1

(
π

2(β−)3
((α−)2 − (β−)2 − α−λ) +

kJ−

(β−)2δ−
+

π

2(β+)3
((α+)2 − (β+)2 − α+λ) +

kJ+

(β+)2δ+

)
,

(5.62)

being

J− =
(β−)2(2α− − λ)(δ−/ṽc0 − 1)(1 + e−γ−π)

δ−
+

(
1− e

−λ

β−
π
)
(β−)2(2(β−)2 + λ2 − 2α−(λ− α−))

λ(4(β−)2 + λ2)
,
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J+ =
−(β+)2(2α+ − λ)(δ+/ṽc0 − 1)(1 + eγ

+π)

δ+
+

(
e

λ

β+ π − 1

)
(β+)2(2(β+)2 + λ2 − 2α+(λ− α+))

λ(4(β+)2 + λ2)
,

with γ± and δ± given in (5.10), c given in (5.31), k given in (5.28) and ṽc0 given in (5.34).

Therefore, equation (5.58) has solution for y∗0(0) = −a/b := yc0, provided that b 6= 0, where a

and b are given in (5.61) and (5.62), respectively.

It is obvious that,

p(s) = ψ(s, (yc0, 0), 0) (5.63)

is a periodic solution with period T of system (5.51) when ε = 0. It is worth noting that this

orbit corresponds, when it is possible to undo the change of variables, to that periodic orbit of the

continuum of the unperturbed system (5.33) whose intersection with the separation plane {x = 0}
is given by yc0.

In the following theorem we prove the existence of a periodic solution of system (5.51) for |ε| 6= 0

sufficiently small and consequently, the existence of a periodic orbit of system (5.41).

Theorem 5.9 Consider the perturbed system (5.41) with α+/β+ + α−/β− = 0, λ 6= 0 and k 6= 0

where k is given in (5.28). If a · b < 0, where a and b are given in (5.61) and (5.62), and |ε| 6= 0 is

sufficiently small, then there exists a periodic orbit of system (5.41) with a period of T +O(ε), coming

from the orbit of the continuum whose positive intersection with the separation plane {x = 0} is

given by yc0 = −a/b.

Proof: First we prove that under the assumptions λ 6= 0 and b 6= 0 where b is given in (5.62), there

exists a unique periodic solution q = q(s, ε) of system (5.51) with period T , which is continuous in

(s, ε) for all s and |ε| sufficiently small, and which for ε = 0 reduces to q(s, 0) = p(s) where p(s)

is given in (5.63). To obtain this, it will be shown that, for sufficiently small |ε|, system (5.57) has

a unique x∗ = x∗(ε), continuous in ε and with x∗(0) = (0, yc0)
T . From this, it follows directly that

q(s, ε) = ψ(s,x∗(ε), ε) is the desired solution.

For ε = 0, the second equation of system (5.57) is a homogeneous linear equation whose only

solution is z̃∗(0) = 0. Moreover, the first equation of system (5.57) for ε = 0 is equation (5.58). It

has been computed that this equation has a solution y∗0(0) = yc0 when b 6= 0, with b given in (5.62).
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Let us rewrite system (5.57) as

{
F1(ε, y

∗
0 , z̃

∗) = 0,

F2(ε, y
∗
0 , z̃

∗) = 0.
(5.64)

Function F1 is linear in the variables (y∗0, z̃
∗) due to the linear character of function M▽

2 given in

(5.47) and function F2 is quadratic in the variables (y∗0 , z̃
∗) due to the quadratic character of function

M▽
3 given in (5.48). Thus, to apply the Implicit Function Theorem, it is necessary to prove that

the jacobian of the left side of system (5.64) with respect to y∗0 and z̃∗ evaluated at ε = 0 and

(y∗0, z̃
∗) = (yc0, 0) does not vanish, i.e. det(J(0, yc0, 0)) 6= 0, where

J(ε, yc0, z̃
∗) =




∂F1

∂y∗0
(ε, y∗0 , z̃

∗)
∂F1

∂z̃∗
(ε, y∗0 , z̃

∗)

∂F2

∂y∗0
(ε, y∗0 , z̃

∗)
∂F2

∂z̃∗
(ε, y∗0 , z̃

∗)


 . (5.65)

It is easy to see that

∂F2

∂y∗0
(0, yc0, 0) = 0 and

∂F2

∂z̃∗
(0, yc0, 0) = eλT − 1,

and
∂F1

∂y∗0
(0, yc0, 0) = b.

By hypothesis b 6= 0 and λ 6= 0, and so,

J(0, yc0, 0) = b
(
eλT − 1

)
6= 0.

Therefore, by the Implicit Function Theorem, system (5.57) has a unique solution x∗ = x∗(ε)

for sufficiently small |ε|, which is continuous in ε, and such that x∗(0) = (yc0, 0). Thus, there exists

a unique periodic solution q = q(s, ε) of system (5.51) with period T , which is continuous in (s, ε)

for all s and |ε| sufficiently small, and which for ε = 0 reduces to q(s, 0) = p(s) where p(s) is given

in (5.63).

Simply undoing the change of variables (5.43), which is possible provided that yc0 > 0 (i.e.,

a · b < 0) and taking into account the first equation of system (5.46), the conclusion follows. ✷

Note that Theorem 5.9 could be stated, under hypothesis (c) of Proposition 5.7, for system
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(5.37).

In this chapter, we have analyzed the existence of invariant cones in non-observable PWL systems.

Among the non-observable systems having an invariant cone, we have found a specific system with

an invariant cone foliated by periodic orbits. Finally, after a perturbation which made the system

observable and non-homogeneous, we have proven the persistence of one periodic orbit of the

continuum. Note that, from the continua of periodic orbits analyzed in Chapter 4, we have proven

that in some cases two periodic orbits remain after the perturbation. However, in this chapter, we

have only captured the persistence of one periodic orbit of the continuum.
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Chapter6
Transversal Tangency in PWL Michelson System

In the previous chapters of this work, we have analyzed the existence of periodic orbits in planar

and three-dimensional piecewise linear systems. We have studied periodic orbits with transversal

intersection to the separation boundary and, in some cases, periodic orbits where the contact between

the orbit and the separation boundary is tangential, but the orbit does not cross the separation

boundary. In this chapter, we will analyze the behavior of a three-dimensional piecewise linear version

of the Michelson system (1.14) around a two-zonal reversible periodic orbit with two intersection

points with the separation plane which crosses it by one of these points tangentially. Specifically, we

will see that this tangency fosters the emergence of reversible periodic orbits with four intersection

points with the separation plane.

In the last section of this chapter we will see numerically that the orbit with transversal tangency

to the separation plane is the starting-point for the appearance of the noose bifurcation. The results of

this last section appeared previously in [46] and we add it to this chapter for the sake of completeness.

We will analyze numerically the different bifurcations that the family of reversible periodic orbits with

two and four transversal intersection points with the separation plane experiments, by comparing the

behavior to that of the smooth Michelson system.

The chapter is outlined as follows. In a first section we remember the PWL version of the

Michelson system which was introduced in Chapter 1. Sec. 6.2 is focused on the problem of the

existence of reversible periodic orbits with two points of intersection with the separation plane.

Subsequently, Sec. 6.3 states the problem of the existence of reversible periodic orbits with four points

of intersection with the separation plane. This problem consist of the so-called closing equations and

some inequalities. Sec. 6.4 is centered on the proof of the existence of solution for the closing

equations set out in Sec. 6.3. After that, Sec. 6.5 is focused on the analysis of the inequalities set out
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in Sec. 6.3. Finally, Sec. 6.6 is devoted to performing some numerical analysis and to studying some

bifurcations of periodic orbits that appear on the system, centering our attention on the existence

of the noose bifurcation. In this section, it will be pointed out the similitude between the piecewise

linear version of the Michelson system and the Michelson differentiable system.

The results of this chapter are gathered in [14].

6.1 The piecewise linear version of the Michelson system

The original Michelson [39, 58, 67, 77, 96] system is given by





ẋ = y,

ẏ = z,

ż = ρ2 − y − 1

2
x2,

(6.1)

where the parameter ρ is strictly positive and the dot denotes the derivative with respect to the

temporal variable t.

As we have seen in the introductory chapter, specifically at the end of Section 1.1.1, just

performing a linear change of variables, followed by the change of function x2 → |x|, the following

piecewise linear version of the Michelson system is gotten





ẋ = y,

ẏ = z,

ż = 1− y − λ(1 + λ2)|x|,
(6.2)

with the parameter λ strictly positive.

Let us begin with the properties of system (6.2). The Michelson system (6.1) and the piecewise

linear version (6.2) are volume-preserving and time-reversible with respect to the involution (1.9),

R(x, y, z) = (−x, y,−z).
Continuous system (6.2) is given by two linear systems separated by the plane Σ ≡ {x = 0},

called the separation plane, and it can be written in matrix form as

ẋ =

{
A+x+ e3 if x ≥ 0,

A−x+ e3 if x ≤ 0,
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with x = (x, y, z)T , e3 = (0, 0, 1)T ,

A+ =




0 1 0

0 0 1

−λ(1 + λ2) −1 0


 and A− =




0 1 0

0 0 1

λ(1 + λ2) −1 0


 . (6.3)

In the half-space {x < 0}, the system has exactly one saddle-focus equilibrium point p− =

(−1/(λ(1 + λ2)), 0, 0)T , since the eigenvalues of matrix A− are λ, α± iβ, with

α = −λ
2
, β =

√
4 + 3λ2

2
. (6.4)

By the reversibility with respect to R, there exists exactly one saddle-focus equilibrium p+ = −p−
in the half-space {x > 0}, whose eigenvalues are given by −λ and −α± iβ.

On the other hand, taking into consideration that system (6.2) is formed by two linear systems

separated by the plane Σ, it is also interesting to understand the behavior of the flow crossing this

plane. From the first equation of the system, it is clear that an orbit which intersects the plane Σ at

a point (0, y0, z0) with y0 > 0, crosses transversally the separation plane from {x < 0} to {x > 0}.
Analogously, when y0 < 0 the orbit crosses transversally the separation plane from {x > 0} to

{x < 0}. In the case y0 = 0, the local shape of the orbit depends on the sign of z0. For z0 > 0 the

orbit is locally contained in {x ≥ 0}, for z0 < 0 the orbit is locally contained in {x ≤ 0} and for

z0 = 0 the orbit crosses the plane Σ tangentially from {x < 0} to {x > 0}. The z−axis is called the

tangency line of the system. More details about this behavior can be found in [19, 20, 72].

Taking into account that both linear systems correspond to saddle-focus equilibria, it is direct to

check that a periodic orbit must visit both half-spaces, {x > 0} and {x < 0}. Hence, the periodic

orbits of system (6.2) have to intersect the separation plane at least at two points. Moreover, in this

chapter we focus our attention on reversible periodic orbits, i.e., periodic orbits which are invariant

with respect to the involution R.

6.2 Reversible Periodic Orbits with two intersection points with the

separation plane

In this section, we are going to introduce a set of conditions to characterize RP2-orbits (Reversible

Periodic orbits with 2 points of intersection with the separation plane), as it was done in [15].
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It is well known that a periodic orbit is reversible if and only if it intersects twice the set of fixed

points of involution R, Fix(R), which in this case corresponds to the y-axis.

For every point p = (x0, y0, z0)
T ∈ R

3, we denote by x(t;λ,p) =

(x(t;λ,p), y(t;λ,p), z(t;λ,p))T the solution of system (6.2) with parameter λ and initial

condition x(0;λ,p) = p. Assume that there exist three real values t̂1 > 0, λ̂ > 0 and ŷ0 such that

p̂1 := x(t̂1; λ̂, p̂0) ∈ Fix(R), (6.5)

ŷ0 < 0, (6.6)

x(s; λ̂, p̂0) < 0 for all s ∈ (0, t̂1), (6.7)

where p̂0 = (0, ŷ0, 0). Then, under hypotheses (6.5)–(6.7), system (6.2) has for λ = λ̂ an RP2-orbit

whose period is 2t̂1 (half-period t̂1), and whose points of intersection with the separation plane are

p̂0 and p̂1 = (0, ŷ1, 0). In Fig. 6.1, a schematic drawing of an RP2-orbit is shown.

x

y

zΣ

p̂0

p̂1

Figure 6.1: Qualitative picture of a reversible periodic orbit of system (6.2) which has exactly two
intersections with the plane Σ.

Note that, from hypotheses (6.5)–(6.7) and the properties of the flow crossing the separation

plane, the inequality ŷ1 ≥ 0 must be fulfilled.

In the case ŷ1 = 0, the RP2-orbit crosses the plane {x = 0} at p̂1 = (0, 0, 0) tangentially. The

existence of this periodic orbit was established in the second statement of Theorem 1 of [15]. This
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result is the starting-point of this chapter, and is written subsequently.

Proposition 6.1 There exists a value λ = λC > 0 such that system (6.2) has a RP2-orbit with

periods less than 4π which crosses the separation plane through the origin tangentially.

The half-period of the RP2-orbit that crosses the plane Σ tangentially, is denoted by tC . In

Lemma 4 of [15] it has been proven that this half-period is contained in an interval that depends on

the value λC , concretely,

tC ∈


 3π√

3λ2C + 4
,

4π√
3λ2C + 4


 . (6.8)

Numerical computations allow us to obtain the values of tC ≃ 5.2434 and λC ≃ 0.5851. The

RP2-orbit that crosses the separation plane tangentially for λ = λC is drawn in Fig. 6.2.

-2

0

2

-2

-1
0

1

-2

-1

0

1

2

x

y

z

Figure 6.2: RP2-orbit of system (6.2) which crosses the separation plane tangentially.

It is natural to think that beyond RP2-orbit, RP4-orbits (Reversible Periodic orbits with 4 points

of intersection with the separation plane) appear, because it is known that close to an orbit crossing

the separation plane with a cubic tangency, orbits which cross the separation plane by three points

transversally, appear [68]. Moreover, numerical simulations support this fact. The rest of the chapter

is focused on the proof by hand of the appearance of RP4-orbits.
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6.3 Reversible Periodic Orbits with four intersection points with the

separation plane

This section is devoted to introducing a set of conditions to characterize RP4-orbits.

Assume that there exist four real values t̂1 > 0, t̂2 > 0, λ̂ > 0 and ŷ0 such that

p̂1 := x(t̂1; λ̂, p̂0) ∈ Σ, (6.9)

p̂2 := x(t̂2; λ̂, p̂1) ∈ Fix(R), (6.10)

ŷ0 < 0, (6.11)

x(s; λ̂, p̂0) < 0 for all s ∈ (0, t̂1), (6.12)

x(s; λ̂, p̂1) > 0 for all s ∈ (0, t̂2), (6.13)

where p̂0 = (0, ŷ0, 0). Then, under hypotheses (6.9)–(6.13), provided that p̂0 6= p̂2, system (6.2) has

for λ = λ̂ an RP4-orbit, whose half-period is t̂ = t̂1 + t̂2 and whose intersections with the separation

plane are p̂0, p̂1, p̂2 and p̂3 = R(p̂1). In Fig. 6.3, a schematic picture of an RP4-orbit is shown.

The points p̂0, p̂1, p̂2 and p̂3 are also represented.

x y

zΣ

p̂0

p̂1

p̂2

p̂3

Figure 6.3: Qualitalive picture of a reversible periodic orbit of system (6.2) which exactly four
intersections with the plane Σ.

Solutions of conditions (6.9)–(6.13) may correspond to RP4-orbits or RP2-orbits, as we
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characterize in the following remark.

Remark 6.2 Suppose that a triple (t1, t2, λ) = (t̂1, t̂2, λ̂), with t̂1 > 0, t̂2 ≥ 0 and λ̂ > 0 verifies

conditions (6.9)–(6.13). Then, the following statements hold.

(a) If p̂0 6= p̂2 and t̂2 6= 0, system (6.2) has for λ = λ̂ an RP4-orbit.

(b) If p̂0 = p̂2, then t̂1 = t̂2 6= 0 and system (6.2) has for λ = λ̂ an RP2-orbit.

(c) If t̂2 = 0, system (6.2) has for λ = λ̂ an RP2-orbit. In particular, if (t̂1, t̂2, λ̂) = (tC , 0, λC ),

then system (6.2) has for λ = λC an RP2-orbit that crosses the plane Σ tangentially through

the origin (see Proposition 6.1).

Note that, from hypotheses (6.9)–(6.13) and the properties of the flow crossing the separation

plane, the inequalities

ŷ1 = y(t̂1; λ̂, p̂0) ≥ 0 (6.14)

and

ŷ2 = y(t̂2; λ̂, p̂1) ≤ 0 (6.15)

must be satisfied. For the points satisfying conditions (6.9)–(6.13) corresponding to RP4-orbits, these

inequalities must be strict.

Inequalities (6.14) and (6.15) will help us to prove inequalities given in (6.11)–(6.13).

6.4 Analysis of the closing equations

This section is focused on the proof of the existence of solution of (6.9) and (6.10), from now on,

the closing equations. We are going to see that the system of the closing equations is a system of six

equations and seven unknowns, namely, (t1, t2, y0, y1, z1, y2, λ). The first step will be its reduction to

a system of two equations and three unknowns, namely, (t1, t2, λ). After that, we will check that the

values (tC , 0, λC) corresponding to the RP2-orbit that crosses the separation plane tangentially satisfy

the closing equations. Nevertheless, in looking for solutions which correspond to RP4-orbits, we need

solutions with t2 6= 0. Therefore, the idea is the application of the Implicit Function Theorem to get

solutions (t̃1(t2), t2, λ̃(t2)) starting from (t̃1(0), 0, λ̃(0)) = (tC , 0, λC) such that t2 6= 0. However, we

will see that it is impossible to apply directly the Implicit Function Theorem, and it will be necessary

Soledad Fernández García



148 CHAPTER 6. TRANSVERSAL TANGENCY IN PWL MICHELSON SYSTEM

a previous desingularization of the system. Thus, we will get solutions of the closing equations with

t2 6= 0.

We begin with the reduction of the system of six equations and seven unknowns to a system of

two equations and three unknowns.

Let (t1, t2, y0, y1, z1, y2, λ) = (t̂1, t̂2, ŷ0, ŷ1, ẑ1, ŷ2, λ̂) be a solution of the system given by (6.9)

and (6.10), i.e.,

p1 := x(t1;λ,p0) ∈ Σ, (6.16)

p2 := x(t2;λ,p1) ∈ Fix(R), (6.17)

with y0 < 0, where p0 = (0, y0, 0). According to conditions (6.11)–(6.13), the expression of x in

equation (6.16) (respectively, in equation (6.17)) can be obtained by integrating the linear system

in the half-space {x < 0} (respectively, in the half-space {x > 0}). So, it is convenient to introduce

the following notation.

Let x−(t;λ,p) (respectively, x+(t;λ,p)) be the solution of the linear system ẋ = A−x + e3

(respectively, ẋ = A+x + e3) with parameter λ and initial condition x(0;λ,p) = p, where the

matrices A− and A+ are given in (6.3).

The system formed by (6.16) and (6.17) is a system with six equations and seven unknowns,

x−(t1;λ, (0, y0, 0)) = 0, (6.18)

y−(t1;λ, (0, y0, 0)) = y1, (6.19)

z−(t1;λ, (0, y0, 0)) = z1, (6.20)

x+(t2;λ, (0, y1, z1)) = 0, (6.21)

y+(t2;λ, (0, y1, z1)) = y2, (6.22)

z+(t2;λ, (0, y1, z1)) = 0. (6.23)

However, after some manipulations, it can be transformed into a system with two equations and

three unknowns.

Let us begin with the analysis of equations (6.18)–(6.20), which can be written explicitly in the
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following form,

2β
[
(1 + λ2)(1 + λ2y0)e

t1λ − (1 + 3λ2)
]
e

t1
2
λ − 2λ2β

[
(1 + λ2)y0 − 2

]
cos(βt1)

+λ
[
(1 + λ2)(2 + 3λ2)y0 − 2

]
sin(βt1) = 0

(6.24)

et1λ

2β(1 + 3λ2)

[
2β(1 + λ2y0) + e−

3t1
2

λ ·

·
[
2β
(
(1 + 2λ2)y0 − 1

)
cos (βt1) + λ (y0 − 3) sin (βt1)

]]
= y1,

(6.25)

et1λ

2β(1 + 3λ2)

[
2βλ(1 + λ2y0)− 2β

(
1 + λ2y0

)
λe−

3t1
2

λ cos (βt1)

−
(
(2 + 6λ2 + 3λ4)y0 − (2 + 3λ2)

)
e−

3t1
2

λ sin (βt1)
]
= z1.

(6.26)

From equation (6.24), the value y0 can be expressed as a function of t1 and λ. We denote this

function by y0 = Y0(t1, λ) and it is given by

Y0(t1, λ) =
2β
[
1 + 3λ2 − (1 + λ2)eλt1

]
e

t1
2
λ − 4λ2β cos(βt1) + 2λ sin(βt1)

λ(1 + λ2)
[
2λβ

(
e

3t1
2

λ − cos(βt1)
)
+ (2 + 3λ2) sin(βt1)

] ,

provided that the denominator does not vanish, where β was given in (6.4). Denote the denominator

as

D(t1, λ) = λ(1 + λ2)
[
2λβ

(
e

3λt1
2 − cos(βt1)

)
+ (2 + 3λ2) sin(βt1)

]
. (6.27)

Functions D(t1, λ) and Y0(t1, λ) were studied in [15]. Concretely, it was proven that they verify

D(t1, λ) > 0 and Y0(t1, λ) < 0 for every (t1, λ) such that it corresponds to an RP2-orbit, including

the orbit which crosses the separation plane tangentially, thus

D(tC , λC) > 0 (6.28)

and

Y0(tC , λC) < 0. (6.29)

By substituting y0 = Y0(t1, λ) in equation (6.25), it can be obtained an explicit expression of y1

in terms of t1 and λ, which is called Y1(t1, λ). Similarly, from equation (6.26) it can be obtained an
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explicit expression of z1 in terms of t1 and λ, which is called Z1(t1, λ). More concretely, we define

X1(t1, λ) = x−(t1;λ, (0, Y0(t1, λ), 0)),

Y1(t1, λ) = y−(t1;λ, (0, Y0(t1, λ), 0)),

Z1(t1, λ) = z−(t1;λ, (0, Y0(t1, λ), 0)).

(6.30)

With this notation, X1(t1, λ) = 0,

Y1(t1, λ) =
M(t1, λ)

D(t1, λ)
(6.31)

and

Z1(t1, λ) =
Q(t1, λ)

D(t1, λ)
,

where

M(t1, λ) = 2β(eλt1 − 1)
[
λ2(1 + eλt1)e−

λt1
2 − (1 + 2λ2) cos(βt1)

]
+ λ(1 + eλt1) sin(βt1),

Q(t1, λ) = 2λ3β
[
e−

λt1
2 (1 + e2λt1)− (1 + eλt1) cos(βt1)

]
+ (eλt1 − 1)(2 + 6λ2 + 3λ4) sin(βt1)

and D(t1, λ) is given in (6.27).

Thus, if D(t1, λ) does not vanish, the system of equations (6.18)–(6.23) is reduced to

{
X2(t1, t2, λ) = 0,

Z2(t1, t2, λ) = 0,
(6.32)

where {
X2(t1, t2, λ) = x+(t2;λ, (0, Y1(t1, λ), Z1(t1, λ)),

Z2(t1, t2, λ) = z+(t2;λ, (0, Y1(t1, λ), Z1(t1, λ))).
(6.33)

Moreover, the notation

Y2(t1, t2, λ) = y+(t2;λ, (0, Y1(t1, λ), Z1(t1, λ))), (6.34)

will be useful later on.

Therefore, it is clear that when (t1, t2, λ) is a solution of system (6.32) such that D(t1, λ) does

not vanish, then (t1, t2, λ, Y0(t1, λ), Y1(t1, λ), Z1(t1, λ), Y2(t1, t2, λ)) is a solution of (6.18)–(6.23).

Reciprocally, if (t1, t2, λ, y0, y1, z1, y2) is a solution of (6.18)–(6.23) such that D(t1, λ) does not

vanish, then (t1, t2, λ) is a solution of (6.32). We can say, roughly speaking, that (6.9) and (6.10)
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is equivalent to (6.32). Note that the solutions of this system correspond to periodic orbits when

inequalities (6.11)–(6.13) are satisfied.

Once we have reduced the system of the closing equations to (6.32), we are going to center our

attention on the analytic proof of its existence of solution.

It is important to remind that taking into account inequalities (6.28) and (6.29), the solution

(t1, t2, λ) = (tC , 0, λC) of system (6.32) corresponds to the RP2-orbit which crosses the separation

plane tangentially at the origin, see Remark 6.2. That lead us to study the system (6.32) in a

neighborhood of (tC , 0, λC). The idea is to apply the Implicit Function Theorem to system (6.32)

in a neighborhood of the point (t̃1(0), 0, λ̃(0)) = (tC , 0, λC ) to get solutions (t̃1(t2), t2, λ̃(t2)) with

t2 6= 0. However, it is impossible to apply directly the Implicit Function Theorem and a previous

desingularization of the system is required.

Let us write the first equation of system (6.32) through its Taylor series expansion in a

neighborhood of t2 = 0,

X2(t1, t2, λ) = X2(t1, 0, λ) +
∂X2

∂t2
(t1, 0, λ)t2 +H(t1, t2, λ)t

2
2 = 0. (6.35)

From the first equation of system (6.33) and taking into account equation (6.21), it follows that

X2(t1, 0, λ) = x+(0;λ, (0, Y1(t1, λ), Z1(t1, λ))) = 0. Moreover, by taking into consideration the first

equation of system (6.2), ẋ = y, it follows that

∂X2

∂t2
(t1, 0, λ) =

∂x+

∂t2
(0;λ, (0, Y1(t1, λ), Z1(t1, λ))) = Y1(t1, λ),

so, equation (6.35) becomes into

t2 [Y1(t1, λ) +H(t1, t2, λ)t2] = 0, (6.36)

which is always zero for t2 = 0. Therefore, it is not possible to apply directly the Implicit Function

Theorem to equation (6.36). We define

X̃2(t1, t2, λ) =
1

t2
X2(t1, t2, λ) = Y1(t1, λ) +H(t1, t2, λ)t2,

for t2 6= 0. We are going to be more specific with the last expression because it will be

useful later on. Taking into account that solutions of system (6.2) satisfy ẏ = z, we can write
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H(t1, t2, λ) =
1
2Z1(t1, λ) + H̃(t1, t2, λ)t2, and then,

X̃2(t1, t2, λ) = Y1(t1, λ) +
1

2
Z1(t1, λ)t2 + H̃(t1, t2, λ)t

2
2. (6.37)

Hence, solutions of system (6.32) with t2 6= 0 correspond to solutions of

{
X̃2(t1, t2, λ) = 0,

Z2(t1, t2, λ) = 0.

Note that despite t2 = 0, the triple (t1, t2, λ) = (tC , 0, λC ) is also a solution of this system

because Y1(tC , λC) = 0 for the RP2-orbit which crosses the separation plane tangentially.

After the desingularization, we can use the Implicit Function Theorem to get solutions

(t̃1(t2), t2, λ̃(t2)) with t2 6= 0 and small enough, starting from the tangency, that is, (t̃1(0), 0, λ̃(0)) =

(tC , 0, λC). Specifically, it must be proven that det(J(tC , 0, λC)) 6= 0, where

J(t1, t2, λ) =




∂X̃2

∂t1
(t1, t2, λ)

∂X̃2

∂λ
(t1, t2, λ)

∂Z2

∂t1
(t1, t2, λ)

∂Z2

∂λ
(t1, t2, λ)



. (6.38)

As a previous step in the proof of this condition, the following two lemmas are stated.

For the sake of brevity, we are going to denote

q = (0, Y0(t1, λ), 0) and qC = (0, Y0(tC , λC), 0). (6.39)

Lemma 6.3 The function x−(t1;λ,q) satisfies the following property

∂x−

∂y0
(tC ;λC ,qC) = λC(1 + λ2C)(Y0(tC , λC))

2,

where q = (0, Y0(t1, λ), 0) and qC = (0, Y0(tC , λC), 0) are given in (6.39).

Proof: The function
∂x−

∂y0
(t;λC ,qC)

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.



6.4. ANALYSIS OF THE CLOSING EQUATIONS 153

for every 0 ≤ t ≤ tC is the first component of the solution of system

ẇ =




0 1 0

0 0 1

λC(1 + λ2C) −1 0


w (6.40)

which satisfies the initial condition w(0) = (0, 1, 0)T .

Consider the functions

v1(t) = ẋ(t;λC ,qC) =
(
y−, z−, 1− y− + λC(1 + λ2C)x

−)T
∣∣∣
(t;λC ,qC)

,

v2(t) = v̇1(t) =
(
z−, 1− y− + λC(1 + λ2C)x

−,−z− + λC(1 + λ2C)y
−)T

∣∣∣
(t;λC ,qC)

,

and

v3(t) = v̇2(t)

=
(
1− y− + λC(1 + λ2C)x

−,−z− + λC(1 + λ2C)y
−,−1 + y− + λC(1 + λ2C)(z

− − x−)
)T ∣∣∣

(t;λC ,qC)
.

Functions v1, v2 and v3 form a fundamental system of solutions of system (6.40) because

det(v1(tC)|v2(tC)|v3(tC)) = det




0 0 1

0 1 0

1 0 −1


 = −1 6= 0.

Therefore, the function w(t) can be written as w(t) = α1v1(t) + α2v2(t) + α3v3(t), where

(α1, α2, α3)
T satisfies

α1v1(0) + α2v2(0) + α3v3(0) = (0, 1, 0)T .

That is, (α1, α2, α3)
T is the unique solution of system




Y0(tC , λC) 0 1− Y0(tC , λC)

0 1− Y0(tC , λC) λC(1 + λ2C)Y0(tC , λC)

1− Y0(tC , λC) λC(1 + λ2C)Y0(tC , λC) Y0(tC , λC)− 1







α1

α2

α3


 =




0

1

0


 .

Thus, taking into account that equality det(v1(tC)|v2(tC)|v3(tC)) = det(v1(0)|v2(0)|v3(0)) holds,
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by solving the system we obtain α1 = λC(1 + λ2C)Y0(tC , λC)(Y0(tC , λC)− 1), α2 = 1− Y0(tC , λC)

and α3 = λC(1 + λ2C)(Y0(tC , λC))
2. Then,

w(tC) = α1v1(tC) + α2v2(tC) + α3v3(tC) = (α3, α2, α1 − α3)
T

and the conclusion is direct. ✷

Lemma 6.4 The determinant of the jacobian matrix (6.38) evaluated at (t1, t2, λ) = (tC , 0, λC )

can be written as

det(J(tC , 0, λC)) = −∂Y1
∂λ

(tC , λC).

Proof: We are going to prove that

∂X̃2

∂t1
(tC , 0, λC) = 0 (6.41)

and
∂Z2

∂t1
(tC , 0, λC ) = 1. (6.42)

Then, the determinant of the jacobian matrix (6.38) is reduced to

det(J(tC , 0, λC )) = −∂X̃2

∂λ
(tC , 0, λC)

and by using (6.37), we get
∂X̃2

∂λ
(tC , 0, λC ) =

∂Y1
∂λ

(tC , λC), (6.43)

and the conclusion follows.

Let us begin with the achievement of relation (6.41). From expression (6.37), one obtains

∂X̃2

∂t1
(t1, 0, λ) =

∂Y1
∂t1

(t1, λ).
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Taking into account the equations of system (6.2), it follows that

∂Y1
∂t1

(t1, λ) =
∂

∂t1

(
y−(t1;λ,q)

)

= Z1(t1, λ) +
∂y−

∂y0
(t1;λ,q)

∂Y0
∂t1

(t1, λ).
(6.44)

On the other hand, taking into consideration the first equation of system (6.2), ẋ = y, one obtains

that
∂X1

∂t1
(t1, λ) =

∂

∂t1

(
x−(t1;λ,q)

)

= Y1(t1, λ) +
∂x−

∂y0
(t1;λ,q)

∂Y0
∂t1

(t1, λ).

Since X1(t1, λ) is identically zero, it follows that
∂X1

∂t1
(t1, λ) is indentically zero too. Therefore,

from the last equality it is satisfied that

Y1(t1, λ) +
∂x−

∂y0
(t1;λ,q)

∂Y0
∂t1

(t1, λ) = 0. (6.45)

Remember that Y1(tC , λC) = 0. Moreover Y0(tC , λC) < 0, thus ∂x−

∂y0
(tC ;λC ,qC)) 6= 0 (see Lemma

6.3). Therefore, by evaluating equation (6.45) at (t1, λ) = (tC , λC) it follows that

∂Y0
∂t1

(tC , λC) = 0. (6.46)

From this equality, by evaluating equation (6.44) at (t1, λ) = (tC , λC), and taking into account that

Z1(tC , λC) = 0, we obtain
∂Y1
∂t1

(tC , λC) = 0, (6.47)

and so, relation (6.41) holds.

Now, we proceed to prove equality (6.42). Let us compute the following Taylor series expansion

Z2(t1, t2, λ) = Z2(t1, 0, λ) +
∂Z2

∂t2
(t1, 0, λ)t2 + H̄(t1, t2, λ)t

2
2.

The second equation of system (6.33) evaluated in t2 = 0 is

Z2(t1, 0, λ) = z+(0;λ, (0, Y1(t1, λ), Z1(t1, λ))) = Z1(t1, λ).
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Therefore, it is obvious that
∂Z2

∂t1
(tC , 0, λC ) =

∂Z1

∂t1
(tC , λC). (6.48)

Taking this into consideration and that solutions of system (6.2) satisfy ż = 1− y + λ(1 + λ2)x in

the half-space {x < 0}, we obtain that

∂Z1

∂t1
(t1, λ) =

∂

∂t1

[
z−(t1;λ,q)

]

= 1− Y1(t1, λ) + λ(1 + λ2)X1(t1, λ) +
∂z−

∂y0
(t1;λ,q)

∂Y0
∂t1

(t1, λ).

By evaluating (6.49) at (t1, λ) = (tC , λC), taking into account expression (6.46) and that

X1(tC , λC) = Y1(tC , λC) = 0, it follows that

∂Z1

∂t1
(tC , λC) = 1, (6.49)

and then, from equalities (6.48) and (6.49), expression (6.42) holds and the proof is completed. ✷

Note that, to apply the Implicit Function Theorem, the problem is now reduced to prove that

∂Y1
∂λ

(tC , λC) 6= 0. (6.50)

From the explicit expression of Y1(t1, λ) given in (6.31), by taking derivative with respect to λ

we obtain

∂Y1
∂λ

(t1, λ) =

∂M

∂λ
(t1, λ)D(t1, λ)−M (t1, λ)

∂D

∂λ
(t1, λ)

(D(t1, λ))2
.

Remind that Y1(tC , λC) = 0, and so, M(tC , λC) = 0. Then, the derivative of function Y1(t1, λ) with

respect to λ at (t1, λ) = (tC , λC) is

∂Y1
∂λ

(tC , λC) =
∂M

∂λ
(tC , λC)

1

D(tC , λC)
. (6.51)

Hence, condition (6.50) is equivalent to

∂M

∂λ
(tC , λC) 6= 0.

In the following proposition, we prove the existence of solution of the closing equations of the
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RP4-orbits, just by checking that the previous condition holds.

Proposition 6.5 There exist a value ε̃ > 0 and two analytic functions

t̃1 = t̃1(t2), λ̃ = λ̃(t2) (6.52)

defined for |t2| < ε̃, such that t̃1(0) = tC , λ̃(0) = λC and (t̃1, t2, λ̃) is solution of system (6.32).

Furthermore,

(t̃1, t2, λ̃, Y0(t̃1, λ̃), Y1(t̃1, λ̃), Z1(t̃1, λ̃), Y2(t̃1, t2, λ̃))

is solution of equations (6.18)–(6.23).

Proof: As it has been explained before, we must prove that

∂M

∂λ
(tC , λC) 6= 0.

More suitable coordinates are chosen by replacing t1 with the new variable τ = βt1, where β was

given in (6.4). By doing this change of coordinates we obtain

M̃(τ, λ) =M (τ/β, λ) = Ã(τ, λ) + B̃(τ, λ) cos τ + C̃(τ, λ) sin τ, (6.53)

with
Ã(τ, λ) = 2βλ2(e

2λτ
β − 1)e

−λτ
2β ,

B̃(τ, λ) = −2β(1 + 2λ2)(e
λτ
β − 1),

C̃(τ, λ) = λ(1 + e
λτ
β ).

For λ 6= 0, we consider the function

S(τ, λ) := −M(τ, λ)

Ã(τ, λ)
=

cos τ

X̃(τ, λ)
+

sin τ

Ỹ (τ, λ)
− 1,

being X̃(τ, λ) = −Ã(τ, λ)/B̃(τ, λ) and Ỹ (τ, λ) = −Ã(τ, λ)/C̃(τ, λ) for every τ > 0.

Let us denote τC = βCtC , where βC :=
√

4 + 3λ2C/2. From the bound for tC given in (6.8), it

follows that τC ∈ (3π/2, 2π) . For that reason, we restrict the study to this interval.

Fix a value τ ∈ (3π/2, 2π). In order to analyze the derivative of function S(τ, λ) with respect to
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λ, we are going to compute the derivative of functions X̃(τ, λ) and Ỹ (τ, λ) with respect to λ. The

derivative of function X̃ with respect to λ is

∂X̃

∂λ
(τ, λ) =

λ
(
λτ(e

λτ
β − 1)(1 + 2λ2) + 4β3(1 + e

λτ
β )
)
e−

λτ
2β

2β3(1 + 2λ2)2
,

which is strictly positive, for λ > 0 and τ > 0.

On the other hand, the derivative of function Ỹ with respect to λ is

∂Ỹ

∂λ
(τ, λ) =

(
β(1− e

λτ
β )(2 + 3λ2)− λτ(1 + e

λτ
β )
)
e
−λτ

2β

β2
,

which is strictly negative, for λ > 0 and τ > 0.

Therefore, the derivative of function S(τ, λ) with respect to λ,

∂S

∂λ
(τ, λ) = −∂X̃

∂λ
(τ, λ)

cos τ

(X̃(τ, λ))2
− ∂Ỹ

∂λ
(τ, λ)

sin τ

(Ỹ (τ, λ))2
,

is strictly negative, for every τ ∈ (3π/2, 2π).

Taking into account that Ã(τ, λ) is strictly positive, for every λ > 0 and τ > 0, and that

S(τC , λC) =M(τC , λC) = 0, it follows that

∂M̃

∂λ
(τC , λC) = −A(τC , λC)

∂S

∂λ
(τC , λC) > 0.

Therefore, it is concluded that
∂M

∂λ
(tC , λC) > 0. (6.54)

Furthermore, from inequality (6.28) we know that D(tC , λC) > 0 and then, by continuity with

respect to t2, there exists ε̃ > 0 and functions t̃1(t2), and λ̃(t2) such that D(t̃1(t2), λ̃(t2)) > 0 for

|t2| < ε̃. Then, by taking into account that solutions of system (6.32) such that D(t1, λ) does not

vanish, correspond to solutions of system (6.18)–(6.23), the proof is finished. ✷

Note that, from expression (6.51) and taking into account inequalities (6.28) and (6.54), it follows

that
∂Y1
∂λ

(tC , λC) > 0. (6.55)
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6.5 Verification of the inequalities. Statement of the main result

This section is focused on the analysis of the inequalities that the solutions of system (6.18)–(6.23)

must satisfy to correspond to an RP4-orbit.

To check whether the solution (t̃1(t2), λ̃(t2)) of system (6.18)–(6.23) given in Proposition 6.5

corresponds to an RP4-orbit, inequalities (6.11)–(6.13) must be fulfilled. This inequalities are

translated into

Y0(t̃1(t2), λ̃(t2)) < 0, (6.56)

x−(s, λ̃(t2), (0, Y0(t̃1(t2), 0))) < 0 for all s ∈ (0, t̃1(t2)) (6.57)

x+(t̃1(t2), s, λ̃(t2), (0, Y0(t̃1(t2), 0))) > 0 for all s ∈ (0, t2), (6.58)

for 0 ≤ t2 < ε̃, with ε̃ given in Proposition 6.5.

It is known that Y0(tC , λC) < 0, see (6.29). Hence, due to the continuity of the solutions with

respect to t2, it is obvious that inequality (6.56) holds for 0 ≤ t2 < ε̃.

As a previous step in the proof of (6.57) and (6.58), we are going to focus our attention on

proving conditions (6.14) and (6.15), which using the notation introduced in definitions (6.30) and

(6.33) can be written as {
Y1(t̃1(t2), λ̃(t2)) ≥ 0,

Y2(t̃1(t2), t2, λ̃(t2)) ≤ 0,
(6.59)

for 0 ≤ t2 < ε̃.

Once these inequalities will be proven, we will do the proof of inequalities (6.57) and (6.58).

To begin with the proof of inequalities (6.59), we obtain in the following lemma an approximation

of functions t̃1 = t̃1(t2) and λ̃ = λ̃(t2) up to the first non-zero term after the constant term.

Lemma 6.6 The solution functions of the closing equations given in Proposition 6.5 satisfy





t̃1(t2) = tC − t2 +O(t22),

λ̃(t2) = λC − 1

6

(
∂Y1
∂λ

(tC , λC)

)−1

t22 +O(t32),
(6.60)

where |t2| < ε̃.
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Proof: It is clear that

λ̃(0) = λC and t̃1(0) = tC . (6.61)

From now on, let us denote by a prime the derivatives with respect to t2 of functions t̃1 and λ̃.

From Proposition 6.5, (t̃1(t2), t2, λ̃(t2)) satisfies the system of equations (6.32), that is,

{
X̃2(t̃1(t2), t2, λ̃(t2)) = 0,

Z2(t̃1(t2), t2, λ̃(t2)) = 0,
(6.62)

for |t2| < ε̃.

Taking derivatives with respect to t2, and evaluating it in t2 = 0, it is easy to see that λ̃′(0) and

t̃′1(0) must satisfy the system of equations




∂X̃2

∂t1
(tC , 0, λC )

∂X̃2

∂λ
(tC , 0, λC )

∂Z2

∂t1
(tC , 0, λC)

∂Z2

∂λ
(tC , 0, λC)







t̃′1(0)

λ̃′(0)


 = −




∂X̃2

∂t2
(tC , 0, λC)

∂Z2

∂t2
(tC , 0, λC )


 .

From equalities (6.41)-(6.43), this is equivalent to




0
∂Y1
∂λ

(tC , λC)

1
∂Z2

∂λ
(tC , 0, λC)







t̃′1(0)

λ̃′(0)


 = −




∂X̃2

∂t2
(tC , 0, λC )

∂Z2

∂t2
(tC , 0, λC)


 . (6.63)

Moreover, from definition (6.37), it is easy to check that

∂X̃2

∂t2
(tC , 0, λC) = 0.

On the other hand, remember that the Taylor series expansion of function Z2(t1, t2, λ) is

Z2(t1, t2, λ) = Z1(t1, λ) +
∂Z2

∂t2
(t1, 0, λ)t2 + H̄(t1, t2, λ)t

2
2.

By taking this into account and that solutions of system (6.2) satisfy ż = 1− y − λ(1 + λ2)x in the

half-space {x > 0}, the Taylor series expansion can be written as

Z2(t1, t2, λ) = Z1(t1, λ) + (1− Y2(t1, 0, λ)− λ(1 + λ2)X2(t1, 0, λ))t2 + H̄(t1, t2, λ)t
2
2.
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Simply remembering definitions given in (6.33) and (6.34) and evaluating them in t2 = 0, this can

be rewritten as

Z2(t1, t2, λ) = Z1(t1, λ) + (1− Y1(t1, λ)− λ(1 + λ2)X1(t1, λ))t2

+ H̄(t1, t2, λ)t
2
2,

and from this development, it can be computed for (t1, t2, λ) = (tC , 0, λC) that

∂Z2

∂t2
(tC , 0, λC ) = 1− Y1(tC , λC)− λC(1 + λ2C)X1(tC , λC) = 1.

Thus, system (6.63) becomes




0
∂Y1
∂λ

(tC , λC)

1
∂Z2

∂λ
(tC , 0, λC)







t̃′1(0)

λ̃′(0)


 = −




0

1


 .

Taking into account that condition (6.55) holds, this system has a unique solution which is given by

λ̃′(0) = 0 and t̃′1(0) = −1. (6.64)

Therefore, we have the following first approximation of the functions t̃1 and λ̃,

{
t̃1(t2) = tC − t2 +O(t22),

λ̃(t2) = λC +O(t22).

We have found a non-zero term after the constant one for the function t̃1, but not for λ̃. Thus, the

following objective is to compute λ̃′′(0).

The derivative of X̃2 with respect to t2 is

d

dt2

[
X̃2(t̃1(t2), t2, λ̃(t2))

]
=

∂X̃2

∂t1
(t̃1(t2), t2, λ̃(t2))t̃

′
1(t2) +

∂X̃2

∂t2
(t̃1(t2), t2, λ̃(t2))

+
∂X̃2

∂λ
(t̃1(t2), t2, λ̃(t2))λ̃

′(t2).

If we calculate the derivative of this expression with respect to t2 and we evaluate it in t2 = 0,
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by taking into account equalities (6.61) and (6.64), one arrives to

[
d2

dt22

[
X̃2(t̃1(t2), t2, λ̃(t2))

]]∣∣∣∣
t2=0

= −
[
d

dt2

[
∂X̃2

∂t1
(t̃1(t2), t2, λ̃(t2))

]]∣∣∣∣∣
t2=0

+
∂X̃2

∂t1
(tC , 0, λC)t̃

′′
1(0)

+

[
d

dt2

[
∂X̃2

∂t2
(t̃1(t2), t2, λ̃(t2))

]]∣∣∣∣∣
t2=0

+
∂X̃2

∂λ
(tC , 0, λC)λ̃

′′(0).

(6.65)

From the first equation of system (6.62), it can be affirmed that

[
d2

dt22

[
X̃2(t̃1(t2), t2, λ̃(t2))

]]∣∣∣∣
t2=0

= 0,

which from equation (6.65) and taking into consideration (6.41), is translated into

−
[
d

dt2

[
∂X̃2

∂t1
(t̃1(t2), t2, λ̃(t2))

]]∣∣∣∣∣
t2=0

+

[
d

dt2

[
∂X̃2

∂t2
(t̃1(t2), t2, λ̃(t2))

]]∣∣∣∣∣
t2=0

+
∂X̃2

∂λ
(tC , 0, λC )λ̃

′′(0) = 0.

From this equation, by taking into account expression (6.43) and inequality (6.55), it is possible

to obtain that

λ̃′′(0) =

[
d

dt2

[
∂X̃2

∂t1
(t̃1(t2), t2, λ̃(t2))

]
− d

dt2

[
∂X̃2

∂t2
(t̃1(t2), t2, λ̃(t2))

]]∣∣∣∣∣
t2=0

∂Y1
∂λ

(tC , λC)

. (6.66)

For the sake of brevity, we only specify the computation of the first addend of the numerator of

expression (6.66). The second one can be computed analogously.

To begin with, remember the following expression of function X̃2 (see (6.37))

X̃2(t1, t2, λ) = Y1(t1, λ) +
1

2
Z1(t1, λ)t2 + H̃(t1, t2, λ)t

2
2.

From this, and taking into consideration (6.44) and (6.49), the derivative of X̃2 with respect to t1
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is given by

∂X̃2

∂t1
(t1, t2, λ) = Z1(t1, λ) +

∂y−

∂y0
(t1;λ,q)

∂Y0
∂t1

(t1, λ)

+
1

2

(
1− Y1(t1, λ) + λ(1 + λ2)X1(t1, λ) +

∂z−

∂y0
(t1;λ,q)

∂Y0
∂t1

(t1, λ)

)
t2

+
∂H̃

∂t1
(t1, t2, λ)t

2
2,

where q was defined in (6.39).

Now, taking into account (6.64), if one substitutes (t1, λ) = (t̃1(t2), λ̃(t2)) in the last equality,

takes the derivative of this expression with respect to t2 and evaluates it in t2 = 0, it follows that

[
d

dt2

[
∂X̃2

∂t1
(t̃1(t2), t2, λ̃(t2))

]]∣∣∣∣∣
t2=0

= −∂Z1

∂t1
(tC , λC)

+

[
d

dt2

[
∂y−

∂y0
(t̃1(t2); λ̃(t2), q̃)

]
∂Y0
∂t1

(t̃1(t2), λ̃(t2))

]∣∣∣∣
t2=0

+

[
∂y−

∂y0
(t̃1(t2); λ̃(t2), q̃)

d

dt2

[
∂Y0
∂t1

(t̃1(t2), λ̃(t2))

]]∣∣∣∣
t2=0

+
1

2

(
1− Y1(tC , λC) + λC(1 + λ2C)X1(tC , λC)

+
∂z−

∂y0
(tC ;λC ,qC)

∂Y0
∂t1

(tC , λC)

)
,

(6.67)

where

q̃ = (0, Y0(t̃1(t2), λ̃(t2)), 0) (6.68)

and qC was defined in (6.39).

Let us compute the previous expression. By taking into consideration equalities (6.64), it is easy

to see that [
d

dt2

[
∂Y0
∂t1

(t̃1(t2), λ̃(t2))

]]∣∣∣∣
t2=0

= −∂
2Y0
∂t21

(tC , λC). (6.69)

If we take the derivative with respect to t1 in expression (6.45) and evaluate it in (t1, λ) = (tC , λC),

it follows that

∂Y1
∂t1

(tC , λC)+

[
∂

∂t1

[
∂x−

∂y0
(t1;λ,q)

]]∣∣∣∣
(tC ,λC ,qC)

∂Y0
∂t1

(tC , λC)+
∂x−

∂y0
(tC ;λC ,qC)

∂2Y0
∂t21

(tC , λC) = 0.
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From this expression and taking into account Lemma 6.3 and equalities (6.46) and (6.47), it follows

that
∂2Y0
∂t21

(tC , λC) = 0. (6.70)

Therefore, from equality (6.69), one obtains

[
d

dt2

[
∂Y0
∂t1

(t̃1(t2), λ̃(t2))

]]∣∣∣∣
t2=0

= 0.

From relation (6.67), by taking into consideration thatX1(tC , λC) = Y1(tC , λC) = 0, expressions

(6.46), (6.49) and the previous equality, one concludes that

[
d

dt2

[
∂X̃2

∂t1
(t̃1(t2), t2, λ̃(t2))

]]∣∣∣∣∣
t2=0

= −1

2
.

Analogously, it can be proven that

[
d

dt2

[
∂X̃2

∂t2
(t̃1(t2), t2, λ̃(t2))

]]∣∣∣∣∣
t2=0

= −1

6
.

By substituting these two last equalities in expression (6.66), it follows that

λ̃′′(0) = −
(
3
∂Y1
∂λ

(tC , λC)

)−1

(6.71)

and the proof is completed. ✷

Through the approximation of functions λ̃ and t̃1 got in Lemma 6.6, we are going to prove

several inequalities. Two of them are given in (6.59) and one more that will be useful in the proof of

inequality (6.57).

Lemma 6.7 Let t̃1(t2) and λ̃(t2) be the functions defined in Proposition 6.5. The Taylor series

expansion up to the first non-zero term of functions Y1(t̃1(t2), λ̃(t2)), Y2(t̃1(t2), t2, λ̃(t2)) and
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Z1(t̃1(t2), λ̃(t2)), is given by





Y1(t̃1(t2), λ̃(t2)) =
1

3
t22 +O(t32),

Y2(t̃1(t2), t2, λ̃(t2)) = −1

6
t22 +O(t32),

Z1(t̃1(t2), λ̃(t2)) = −t2 +O(t22).

Proof: The proofs of the three equalities are similar, so we only prove the first one.

By the definition given in (6.30), the equality Y1(t̃1(t2), λ̃(t2)) = y−(t̃1(t2); λ̃(t2), q̃), where q̃

was given in (6.68), holds.

We proceed to compute the Taylor series expansion of function Y1(t̃1(t2), λ̃(t2)) up to the first

non-zero term. The constant term of the expansion is given by

Y1(t̃1(0), λ̃(0)) = Y1(tC , λC) = 0. (6.72)

Consider now the derivative with respect to t2,

d

dt2

[
Y1(t̃1(t2), λ̃(t2))

]
=

d

dt2

[
y−(t̃1(t2); λ̃(t2), q̃)

]

= z−(t̃1(t2); λ̃(t2), q̃)t̃′1(t2) +
∂y−

∂λ
(t̃1(t2); λ̃(t2), q̃)λ̃

′(t2)

+
∂y−

∂y0
(t̃1(t2); λ̃(t2), q̃)

(
∂Y0
∂t1

(t̃1(t2), λ̃(t2))t̃
′
1(t2) +

∂Y0
∂λ

(t̃1(t2), λ̃(t2))λ̃
′(t2)

)
.

(6.73)

By evaluating the derivative given in (6.73) for t2 = 0 using the notation qC introduced in (6.39),

and taking into account (6.64), it is clear that

d

dt2

[
Y1(t̃1(t2), λ̃(t2))

]∣∣∣∣
t2=0

=

[
−z−(t̃1(t2); λ̃(t2), q̃)−

∂y−

∂y0
(t̃1(t2); λ̃(t2), q̃)

∂Y0
∂t1

(t̃1(t2), λ̃(t2))

]∣∣∣∣
(tC ;λC ,qC)

= 0,
(6.74)

due to z(tC ;λC ,qC) = 0 and relationship (6.46).

For the sake of brevity, sometimes we delete the dependence with respect to the arguments in

the following expressions.

By taking the derivative with respect to t2 of expression (6.73) and particularizing it in t2 = 0,
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it follows that

d2

dt22

[
y−(t̃1(t2); λ̃(t2), q̃)

]∣∣∣∣
t2=0

=

[
1− ∂z−

∂y0

∂Y0
∂t1

+
∂y−

∂λ
λ̃′′(0) − ∂y−

∂y0

d

dt2

(
∂Y0
∂t1

)
+
∂y−

∂y0

∂Y0
∂λ

λ̃′′(0)

]∣∣∣∣
(tC ;λC ,qC)

=
2

3
,

(6.75)

due to equations (6.46), (6.69)–(6.71) and the equality

(
∂y

∂y0

∂Y0
∂λ

+
∂y

∂λ

)∣∣∣∣
(tC ;λC ,qC)

=
∂Y1
∂λ

(tC , λC).

From equalities (6.72), (6.74) and (6.75), we conclude that

y−(t̃1(t2); λ̃(t2), q̃) =
1

3
t22 +O(t32)

and the proof is finished. ✷

In Lemma 6.7 we have computed the Taylor series expansion up to the first non-zero term, of

functions Y1(t̃1(t2), λ̃(t2)), Y2(t̃1(t2), t2, λ̃(t2)) and Z1(t̃1(t2), λ̃(t2)). It is a remarkably fact that,

although the first terms of the Taylor series expansion of functions t̃2(t2) and λ̃(t2) depends on the

values tC and λC (see (6.60)), the approximations given in Lemma 6.7 do not depend on these

values.

At this point, we are going to center our attention on proving the inequalities given in (6.57) and

(6.58).

On the one hand, from the second inequality in (6.59) and taking into account that 0 ≤ t2 < ε̃,

when ε̃ is sufficiently small, (6.58) follows.

On the other hand, to finish this section, we prove inequality (6.57) in the following proposition.

Proposition 6.8 Consider functions t̃1(t2) and λ̃(t2), given in Proposition 6.5, and q̃ =

(0, Y0(t̃1(t2), λ̃(t2)), 0) given in (6.68). For every t2 > 0 and sufficiently small, it is satisfied that

x−(s; λ̃(t2), q̃) < 0, for all s ∈ (0, t̃1(t2)).

Proof: For the sake of brevity, we are going to remove the argument of functions t̃1(t2) and λ̃(t2).

From expressions (6.8) and the first equation of system (6.60), it follows that t̃1 = tC − t2 +
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O(t22) < 2π/βC , for t2 > 0 and sufficiently small, where βC =
√

4 + 3λ2C/2. Moreover, from

the second equation of system (6.60), and inequality (6.55), we conclude that λ̃ < λC and so,√
4 + 3λ̃2/2 = β̃ < βC . Therefore, 2π/βC < 2π/β̃ and t̃1 < 2π/β̃.

Now, we are going to see that, under the hypotheses, if there exists a value sx ∈ (0, t̃1) such

that x−(sx; λ̃, q̃) ≥ 0, then the value t̃1 must be greater than 2π/β̃.

Remember that the first two equations of system (6.2) are ẋ = y, ẏ = z, and that Y0(t̃1, λ̃) < 0

for t2 > 0 and sufficiently small. Then, function x−(s; λ̃, q̃) satisfies x−(0; λ̃, q̃) = x−(t̃1; λ̃, q̃) = 0,

x−(sx; λ̃, q̃) ≥ 0 and ẋ(0; λ̃, q̃) = y−(0; λ̃, q̃) = Y0(t̃1, λ̃) < 0.

Furthermore, from Lemma 6.7 one obtains that y−(t̃1; λ̃, q̃) = Y1(t̃1, λ̃) > 0, for t2 > 0

and sufficiently small. Therefore, there exist three values 0 < sy1 < sy2 < sy3 < t̃1 such that

y−(sy1; λ̃, q̃) < 0, y−(sy2; λ̃, q̃) > 0 and y−(sy3; λ̃, q̃) < 0.

It is clear now that there exist two values 0 < sz1 < sz2 < t̃1, where z−(sz1; λ̃, q̃) =

z−(sz2; λ̃, q̃) = 0, y−(sz1; λ̃, q̃) > 0 and y−(sz2; λ̃, q̃) < 0. Moreover, from the hypotheses, it

holds that z−(0; λ̃, q̃) = 0 and from Lemma 6.7 we get that z−(t̃1; λ̃, q̃) = Z1(t̃1, λ̃) < 0, for t2 > 0

and sufficiently small.

Consider function V (s) = −λy−(s; λ̃, q̃)+ z−(s; λ̃, q̃). Since λ̃ > 0, from the previous reasoning

it follows that V (0) > 0, V (sz1) < 0, V (sz2) > 0 and V (t̃1) < 0. Therefore, function V vanishes at

three values 0 < sv1 < sv2 < sv3 < t̃1. But, it is easy to see that the expression of function V (s) is

given by

V (s) = eλ̃s(h1 cos(β̃s) + h2 sin(β̃s)),

where h1 and h2 do not depend on s. Thus, sv3 − sv1 ≥ 2π/β̃ and since t̃1 > sv3 − sv1, the result

is proven. ✷

The development done up to now allows us to state the main result of this chapter, about the

existence of RP4-orbits in system (6.2).

Theorem 6.9 Let λC be the defined value in Proposition 6.1. Then, there exists ε > 0 such that

system (6.2) possesses, for every λ ∈ (λC − ε, λC), an RP4-orbit with period less than 4π.
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6.6 Noose bifurcation and numerical analysis

The numerical analysis included in this section appeared before in [46]. We has decided to include it

for the sake of completeness.

Roughly speaking, we are going to see that the existence of the crossing tangency forces the

appearance of a small extra loop which grows while the period increases. This loop continues growing

until it collides with the large loop. In Fig. 6.4, the projections onto the (x, y)-plane of three RP4-

orbits are shown. The first projection corresponds to an RP4-orbit close to the RP2-orbit that crosses

the separation plane tangentially. The second one corresponds to an RP4-orbit where the small loop

is growing. The third projection corresponds to an RP4-orbit obtained close to the collision of the

small loop with the big one.
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Figure 6.4: (a)–(c) Projections into the plane (x, y) of three RP4-orbits. (d)–(f) Intersection points
of these periodic orbits with the separation plane.

In the analysis of reversible periodic orbits by using transversal sections to the flow, it is usual to

use the half-period as a natural variable. From now on, this half-period will be used in bifurcation
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diagrams. For instance, in Fig. 6.5 the family of periodic orbits involved in the noose structure is

shown in a λ versus the half-period (that is, t = t1+ t2) bifurcation diagram. Concretely, the dashed

curve corresponds to RP2-orbits (it has been obtained previously in [15]) and the solid one to RP4-

orbits. Observe that point p̄t ≃ (5.2434, 0.5851) separates these two kinds of periodic orbits and

corresponds the RP2-orbit that crosses the separation plane at the origin tangentially. To determine

the curve of RP4-orbits a continuation algorithm based on the pseudo arc-length method [48, 57]

has been applied. Other points are shown. Point sn ≃ (3.7237, 0.8481) corresponds to a saddle-

node bifurcation of periodic orbits whose existence has been proven in Proposition 5 of [15]. Point

p̄d1 ≃ (3.1669, 0.4259) corresponds to a period-doubling bifurcation of period orbits whose existence

has been checked numerically. Finally, the thin solid line joins p̄d1 with p̄f ≃ (6.3337, 0.4259) and

the noose-shaped curve is closed.

2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

λ

p
t

t

p̄d1

sn

p̄fp̄f

Figure 6.5: Noose structure in the piecewise linear version of the Michelson system (6.2). The solid
curve that begins at p̄t ≃ (5.2434, 0.5851) and ends at point p̄f ≃ (6.3337, 0.4259) corresponds
to RP4-orbits. The dashed curve corresponds to RP2-orbits. The points sn ≃ (3.7237, 0.8481) and
p̄d1 ≃ (3.1669, 0.4259) are also shown. The point sn (respectively, p̄d1) corresponds to a saddle-
node (respectively, period-doubling) bifurcation. The thin solid line joins the periodic orbits involved
in the period-doubling bifurcation.

To visualize the noose structure of reversible periodic orbits, it is convenient to represent the

curves of RP2-orbits and RP4-orbits, which are shown in Fig. 6.5, in the three-dimensional space

(t1, t2, λ).

Remember that for t2 = 0 solutions of system (6.32) are also solutions of system (6.5), that

is, solutions that correspond to RP2-orbits are a particular case of solutions which correspond to
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RP4-orbits. Therefore, the curve of RP2-orbits shown in Fig. 6.5 can be represented in the plane

{t2 = 0}, see Fig. 6.6. Note that, by the reversibility with respect to R, the symmetrical curve with

respect to the plane T =
{
(t1, t2, λ) ∈ R

3 : t1 − t2 = 0
}

lies in the plane {t1 = 0}, and it is also

a curve of RP2-orbits. Moreover, if t1 = t2, solutions of system (6.32) correspond also to solutions

of system (6.5). In this case, the curve of RP2-orbits is located in the plane T. Therefore, the curve

of RP2-orbits shown in Fig. 6.5 can be seen as three different curves in the three-dimensional space

(t1, t2, λ).

In Fig. 6.6, the solid curve corresponds to RP4-orbits. This solid curve joins the two points pt1 =

(tC , 0, λC) and pt2 = (0, tC , λC), and it passes through the point pd1 ≃ (3.1669, 3.1669, 0.4259).

By the reversibility with respect to the involution R, this curve of RP4-orbits is symmetrical with

respect to the plane T. Moreover, the point pd1 belongs to the curve of RP2-orbits located into the

plane T. Therefore, there exists a period-doubling bifurcation at this point and a closed noose can

be formed.
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Figure 6.6: Curves of reversible periodic orbits in the three-dimensional space (t1, t2, λ). The dashed
curves correspond to RP2-orbits. The three curves finish at the tangency point. The solid one
corresponds to RP4-orbits. It joins the points pt1 ≃ (5.2435, 0, 0.5851) and pt2 ≃ (0, 5.2435, 0.5851)
through the point pd1 ≃ (3.1669, 3.1669, 0.4259).

Now, we analyze the stability and bifurcations of the reversible periodic orbits that are involved

in the noose bifurcation. The characteristic (Floquet) multipliers of an RP2-orbit that corresponds

to a solution (t1, λ) of condition (6.5) and without tangency points with the separation plane, are
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determined by the eigenvalues of the matrix (see [24])

M1 = exp (A+t1) · exp (A−t1).

Analogously, the characteristic multipliers of an RP4-orbit associated with a solution (t1, t2, λ)

of system (6.32) and without tangency points with the separation plane, are characterized by the

eigenvalues of the matrix

M2 = exp (A+t1) · exp (A−t2) · exp (A+t2) · exp (A−t1).

For the particular case t2 = 0, it is obvious that M2 = M1.

Note that, although these results are not valid when a periodic orbit has a tangency with the

separation plane, the matrices M1 and M2 are always defined for all the values of t1 and t2. In

particular, at the tangency point p̄t, the matrices M1 and M2 coincide and their eigenvalues are

µ1 ≃ 1, µ2 ≃ 55.2870 and µ3 ≃ 0.0181. On the other hand, the logarithm of module (lg |µ|) and the

principal argument (arg µ) of the eigenvalues of the matrices M2 and M2 are continuous functions

of the parameter λ.

Let us observe that one of the characteristic multipliers of reversible periodic orbits of system

(6.2) is always 1. This characteristic multiplier is called the trivial Floquet multiplier. The others two

eigenvalues are inverse of one another. This is because the periodic orbits are reversible or the system

is divergence-free.

In Fig. 6.7, a schematic picture of the logarithm of the module and the principal argument of the

characteristic multipliers, versus the half-period, is shown. Concretely, the dashed curve corresponds

to these functions when the periodic solution is an RP2-orbit, while the solid one corresponds to these

functions for RP4-orbits. From this figure, some conclusions about the stabilities and bifurcations of

periodic solutions can be deduced.

From the value t = π to the value t = A ≃ 3.1669, the characteristic multipliers have module

equal to one, while the arguments go from zero to ±π. The RP2-orbit that borns at λ = 0 is initially

elliptic.

For t = A, both multipliers are equal to −1 and they become negative after this value. Therefore,

at t = A there exists a period-doubling bifurcation and the RP2-orbits become Möbius type. This

character lasts until t = B ≃ 3.6843, where there exists another period-doubling bifurcation.

From t = B to t = C ≃ 3.7237, the RP2-orbits are elliptic. At t = C, the characteristic
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multipliers are equal to one and they become real and positive after this value. Therefore, there

exists a saddle-node bifurcation at t = C, (see [15]) and the periodic orbits are hyperbolic until they

arrive to t = D ≃ 5.5084.

At t = D there exists a pitchfork bifurcation, because the characteristic multipliers are equal to

one and the arguments of these multipliers are zero. From t = D to t = E ≃ 5.5696, the RP4-orbits

are elliptic, because the characteristic multipliers have module equal to one and its argument is either

π or −π. For t = E, both multipliers are −1 and they become negative after this value. Therefore,

at t = E there exists a period-doubling bifurcation and the RP4-orbits become Möbius type until

t = F ≃ 6.1260, where there exists another period doubling bifurcation.

From t = F to t = G ≃ 6.3338, the RP4-orbits are elliptic. Finally, at t = G all characteristic

multipliers are equal to one. It is the terminal point of the curve of RP4-orbits which closes the

noose.
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Figure 6.7: Schematic picture of the logarithm of the module and the principal argument of the
characteristic multipliers of the matrices M1 and M2 versus the half-period. The dashed curve
corresponds to the logarithm of the module (a) and principal argument (b) of the multipliers of
matrix M1, while the solid one stands for the multipliers of matrix M2.

In Fig. 6.8, a schematic picture of the noose bifurcation of system (6.2) together with the structure

of periodic orbits bifurcations that appears, are shown. Concretely, the dashed line corresponds to

RP2-orbits, while the solid one stands for RP4-orbits. On this curve of periodic orbits, there exists

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.



6.6. NOOSE BIFURCATION AND NUMERICAL ANALYSIS 173

four period-doubling bifurcations (at points p̄d1, p̄d2, p̄d3 and p̄d4, which correspond to A, B, E

and F, respectively), a saddle-node bifurcation (at point sn, that corresponds to C) and a pitchfork

bifurcation (at point p̄b, which corresponds to D). The point p̄f corresponds to G, which allows to

close the noose. The character of the periodic orbits that appear in each zone are also indicated in

this figure.

t

λ

p
t

p̄d1

p̄d2

sn
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h
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Figure 6.8: Schematic picture of the noose bifurcation in the piecewise linear version of the Michelson
system (6.2). The dashed curve corresponds to RP2-orbits, which ends at the tangency point p̄t.
The solid one corresponds to RP4-orbits. This curve begins at this tangency point and finishes at
point p̄f . The period-doubling bifurcations (p̄d1, p̄d2, p̄d3 and p̄d4), the pitchfork bifurcation (p̄b)
and the saddle-node bifurcation (sn) which have been described in the text are shown. The types
of periodic orbit are also indicated, where e, h and m stand for elliptic, hyperbolic and Möbius,
respectively. The thin solid line does not correspond to periodic orbits. This line connects the points
that correspond to periodic orbits involved in the period-doubling bifurcation.

Let us observe that the structure of bifurcations of reversible periodic orbits involved in this noose

bifurcation is identical to the original Michelson system [39, 58]. This structure concerns not only

the bifurcations of reversible periodic orbits, but also their character (hyperbolic, elliptic or Möbius).

From the analysis done in this chapter for the piecewise version of the Michelson system, we can

conclude that the existence of the orbit tangent to the separation plane plays an essential role in the

appearance of the small loop that finally ends by closing the noose structure. Thus, we think that

in the differentiable Michelson system, an analogous behavior should appear. That is, it should be a

periodic orbit tangent to the plane {x = 0}, such that it forces the appearance of a small loop in

the orbit, being the tangent orbit the germ for the closing of the noose bifurcation that exits.

Soledad Fernández García





Conclusions and Open Problems

To conclude with this thesis, it is convenient to write a brief summary about the considered problems,

the obtained results, the developed methods and the open problems that arise from this work.

Along the whole work we have analyzed the existence of periodic orbits and invariant sets in

piecewise-smooth systems, by means of different techniques. Thus, after an introductory chapter,

where we introduced the concepts about piecewise linear systems that would be used in the work, in

Chapter 2, we have generalized the Melnikov theory to hybrid and discontinuous piecewise-smooth

systems. The principal results of this chapter are written in [16].

In Chapter 3, we have analyzed the existence of invariant cones in a class of observable 2CPWL3

systems by applying the Melnikov theory developed in Chapter 2 to some related planar hybrid

systems. The main result of this chapter is the proof of the existence of a saddle-node bifurcation

of invariant cones, as it was conjectured in [25]. This and other interesting results obtained in the

chapter are published in [18].

After that, we centered our attention in Chapter 4 in an adaptation of the Melnikov theory to

a three-dimensional CPWL system, by using the ideas of the Melnikov theory for planar systems

to perturbations of an appropriate class of non-controllable 2CPWL3 systems. Part of the results

obtained in this chapter are published in [17].

Subsequently, in Chapter 5, first we have studied the existence of invariant cones in non-observable

2CPWL3 systems, by using different techniques from that used for observable systems in Chapter 3.

After that, we have found a system with an invariant cone foliated by periodic orbits and we have

applied an adaptation of the method of Chapter 14 of [31] to catch the periodic orbits that remain

after a perturbation of the system.

Finally, in Chapter 6, we have analyzed periodic orbits in a piecewise-smooth version of the

well-known Michelson system, and we have concluded that the existence of an orbit tangent to the
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separation plane plays an essential role in the appearance of the small loop that finally ends by closing

the noose structure. The results of this chapter are gathered in [14].

With respect to open problems that have arisen from this work, we should emphasize some of

them.

First, the focus-center-limit cycle bifurcation and its degeneration, the saddle-node bifurcation,

for the class of hybrid systems analyzed in Chapter 2 can be studied.

With respect to the invariant cones obtained in Chapter 3 as well as 5, it has been analyzed the

stability of the invariant surface, but it is an open problem the study of the stability on the cone.

On the other hand, the Hopf bifurcation from infinity obtained in Chapter 4 is a partial result,

that we would like to describe completely. Moreover, although the analysis in this chapter is restricted

to a piecewise linear system with two zones, it would be interesting to extend it to perturbations of

non-controllable systems with more zones of linearity.

The analysis done in Chapter 5 could be generalized to the perturbation of a system (observable

or not) having an invariant cone foliated by periodic orbits. We think that under generic hypotheses,

only one periodic orbit of the continuum persists, and it should correspond to the unique solution of

a linear equation analogous to I(y0) = 0 with I(y0) given in (5.60).

In Chapter 6, we have stated first necessary conditions for the existence of the noose bifurcation

in the PWL Michelson system. The open problem to finish with the research done in Chapter 6, is

the proof by hand of the existence of the noose bifurcation in the piecewise version of the Michelson

system. After that, we think that this study may be adapted to reversible, divergence-free, piecewise

linear systems of more dimensions.

Finally, it is possible to think about the adaptation of the methods and techniques that have been

developed in this work to analyze periodic orbits and invariant sets in Filippov systems. For instance,

periodic orbits in the so-called Teixeira singularity may be analyzed by adapting the Melnikov theory.

A first approximation to the dynamics of the Teixeira singularity has been done in [37].

Bifurcations of Periodic Orbits and Invariant Sets in Piecewise Linear Dynamical Systems.
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