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Here we provide a self-consistent analytical solution describing the unsteady flow in the
slender thin film which is expelled radially outwards when a drop hits a dry solid wall.
Thanks to the fact that the fluxes of mass and momentum entering into the toroidal
rim bordering the expanding liquid sheet are calculated analytically, we show here that
our theoretical results closely follow the measured time-varying position of the rim with
independence of the wetting properties of the substrate. The particularization of the
equations describing the rim dynamics at the instant the drop reaches its maximal
extension which, in analogy with the case of Savart sheets, is characterized by a value of
the local Weber number equal to one, provides an algebraic equation for the maximum
spreading radius also in excellent agreement with experiments. The self-consistent theory
presented here, which does not make use of energetic arguments to predict the maximum
spreading diameter of impacting drops, provides with the time evolution of the thickness
and of the velocity of the rim bordering the expanding sheet. This information is crucial
in the calculation of the diameters and of the velocities of the droplets ejected radially
outwards for drop impact velocities above the splashing threshold.

1. Introduction

The precise description of the rich events following the impact of a drop against a dry
solid has been the subject of a number of recent contributions, see e.g. Roisman (2009);
Eggers et al. (2010); Laan et al. (2014, 2015); Visser et al. (2015); Wildeman et al.
(2016); Lee et al. (2016); Wang & Bourouiba (2017); Wang et al. (2018) for its profound
implications in countless applications like printing, the modeling of spray coating or
the prediction of the spreading of contaminats by rain drops between neighbouring
leaves (Lejeune et al. 2018; Josserand & Thoroddsen 2016). With only a few exceptions
(Roisman et al. 2002; Villermaux & Bossa 2011; Eggers et al. 2010), most of the published
results are limited to report the maximum spreading radii of the impacting drops.
In these works, the results of the maximum radial extension reached by the falling
droplets are expressed in terms of the different dimensionless parameters governing
this common physical situation and also as a function of the type of substrate, which
can be a hydrophilic solid (Roisman 2009; Antonini et al. 2012; Visser et al. 2015), a
superhydrophobic solid (Clanet et al. 2004; Antonini et al. 2012; Lv et al. 2016; Quintero
et al. 2018) or a vapor layer, which is the practical way of imposing a stress free boundary
condition at the bottom of the expanding drop (Tsai et al. 2011; Tran et al. 2012).

The present contribution goes beyond the number of studies that focus on the pre-
diction of the maximum spreading radii of impacting droplets: indeed, our theoretical
results can also be used to calculate the time evolution of the position of the rim limiting
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Figure 1. Sketch showing a drop spreading along a substrate which can be covered or not with
a superhydrophobic material, represented here with a rough texture. The experiments to be
presented next will be conducted impacting drops against either smooth hydrophilic substrates
or against superhydrophobic substrates. (i) Indicates the drop region, 0 6 r 6

√
3t, (ii) indicates

the lamella region,
√

3t 6 r 6 s(t) and (iii) the rim region. The variables s(t), b(t) and v(t)
indicate, respectively, the rim radial position, the rim thickness and the rim velocity; θ is the
dynamical contact angle.

the expanding liquid sheet as well as its thickness. This information is essential to predict
the diameters and velocities of the droplets ejected for drop impact velocities beyond the
splashing threshold (Riboux & Gordillo 2015).

The main idea in the present contribution is that we report an analytical solution for
the unsteady flow in the thin liquid film region coupling the flow in the impacting drop
with that in the toroidal rim bordering the expanding liquid sheet. In this way, we are
able to precisely quantify the unsteady fluxes of mass and momentum that are being
injected into the rim and, following the ideas in Villermaux & Bossa (2011); Eggers et al.
(2010); Riboux & Gordillo (2015), we apply mass and momentum balances at the rim
to deduce the ordinary differential equations governing the time evolution of the rim
radial position and thickness. We validate our theory by comparing our predictions with
the experimental data available in the literature and also with our own experimental
observations.

In §2 we describe the experimental setup and also present the simplified equations
describing the flow. Section §3 is devoted to provide an analytical solution to the
equations governing the slender flow region located upstream the rim, in §4 the theoretical
predictions are compared with experimental measurements and conclusions are presented
in §5.

2. Description of experiments and of the equations governing the flow

Two high speed cameras have been placed perpendicularly to each other to record
simultaneously the impact of water drops of radii R falling from rest over a dry solid at a
velocity V . With the purpose of analyzing the influence of the wetting properties of the
solid on the drop spreading dynamics, the substrate can be either a smooth solid surface or
a substrate covered by a commercial superhydrophobic coating (Lv et al. 2016; Quintero
et al. 2018). Drops are formed quasi-statically at normal atmospheric conditions and the
origin of times, T = 0, is set at the instant the drop first touches the solid, see figure 1. The
Ohnesorge, Reynolds, Weber and capillary numbers are defined here as Oh = µ/

√
ρRσ,

Re = ρ V R/µ, We = Oh2 Re2, Ca = µV/σ with ρ, µ and σ indicating the liquid density,
viscosity and interfacial tension coefficient respectively. Figure 1 illustrates that, while
the bottom of the falling droplet always touches the substrate, the edge of the expanding
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lamella may be or not in contact with the solid. Indeed, for the case of superhydrophobic
coatings, the rim never touches the substrate whereas for the case of smooth hydrophilic
or hydrophobic substrates the rim will take-off from the solid only when the aerodynamic
lift is strong enough (Riboux & Gordillo 2014).

Before presenting the equations governing the rim dynamics and the flow in the so
called lamella region, which is located upstream the rim, see figure 1, let us point out
first that we will follow the notation in Riboux & Gordillo (2014) and, along the text,
dimensionless variables will be written using lower case letters to differentiate them
from their dimensional counterparts (in capital letters). In addition, distances, times
and pressures will be made non-dimensional using, as characteristic values, R, R/V and
ρV 2.

The radial position and the thickness of the rim, indicated here using the time
dependent variables s(t) and b(t) [see figures 1 and 2], can be calculated from the following
balances of mass and momentum (see the Appendix)

α
π

4

db2

dt
= [u(s, t)− v]h(s, t) ,

ds

dt
= v ,

α
π b2

4

dv

dt
= [u(s, t)− v]

2
h(s, t)− (1 + β) We−1.

 (2.1)

with u(r, t) and h(r, t) in equations (2.1) the averaged radial velocity and the thickness
of the thin film -the lamella- which extends along the spatio-temporal region located in
between the impacting drop and the rim, namely,

√
3t 6 r 6 s(t) (see figures 1 and

2). In equation (2.1), we distinguish two cases depending on the wetting properties
of the solid. Indeed, the sketch in figure 1 shows that the main difference existing
between droplets spreading over hydrophilic or superhydrophobic substrates is that, in
the latter case, the edge of the rim is never in contact with the solid. Therefore, for the
case of superhydrophobic coatings, α = 1 because the rim cross-sectional area can be
approximated by that of a circle and β = 1 because the liquid in the rim is not in contact
with the substrate -see figure 1- whereas in the case of hydrophilic ones, α = 1/2 because
the rim cross-sectional area can be approximated by that of a semicircle -see figure 1-
and, since the rim contacts the solid in this case, β = − cos θ, with θ the advancing
contact angle (Eggers et al. 2010).

The system of ordinary differential equations (2.1) is integrated once the averaged
velocity u(r, t) and the height of the liquid film h(r, t) in the lamella are determined and
are particularized at the radial position where the rim is localted, r = s(t). The differential
equations for u(r, t) and h(r, t) are deduced in the Appendix applying balances of mass
and momentum to a differential portion of the lamella and taking into account that the
lamella is a slender thin liquid film namely, ∂h/∂r � 1, a condition which also yields
that the pressure gradients in the liquid can be neglected within the spatio-temporal
region

√
3t 6 r 6 s(t) (see figure 2). Using these ideas, we show in the Appendix that

the system of partial differential equations describing the fields u(r, t) and h(r, t) is

∂(rh)

∂t
+ u

∂(rh)

∂r
= −rh∂u

∂r
and

∂ u

∂ t
+ u

∂ u

∂ r
= −λ u

h
√

Re t
, (2.2)

with λ a free constant whose value, λ = 1, is adjusted in what follows to reproduce the
experimental observations. The system (2.2) is solved specifying the values of u and h
at the spatio-temporal boundary separating the drop and the lamella regions, namely,
r =
√

3 t, (see figures 1-2).
Notice first that, in the frictionless case λ = 0, both the height of the lamella and the
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Figure 2. (a) Sketch showing, in a spatio-temporal diagram, the different regions defined to

analyze the flow. The lamella region (ii) lies in between the end of the drop region, r =
√

3t and
the rim, located at r = s(t). The integration of the differential equations describing the flow in the

lamella is carried our along rays dr/dt = u(r =
√

3x, x) =
√

3/x departing from the boundary

r =
√

3x, with x a parameter denoting time. (b) The rays reaching the maximum radius smax

at the instant tmax depart from the boundary r =
√

3x at an instant xmax < tmax. The curves
in figure (b) have been calculated for the following values of the parameters: Oh = 2.9 × 10−3

and We = 300, which are representative values for the spreading of milimetric water droplets
over a hydrophilic substrate.

liquid velocity at r =
√

3t were already given using potential flow numerical simulations
in figure 4 in Riboux & Gordillo (2016): u(r =

√
3t, t) = ua(t) =

√
3/t and h(r =√

3t, t) = ha(t) the function approximated by equation (7.20) in the Appendix. For the
case λ 6= 0 the presence of the boundary layer does not change, to leading order, the
velocity field at surface of the drop. Therefore, the application of a mass balance in the
drop region 0 6 r 6

√
3t expresses that the flow rate entering into the lamella is the

same as in the potential flow case, a fact implying that, for a boundary-layer velocity
profile of the type given in equation (7.6) in the Appendix,√

3/t ha(t) =
√

3/t(h(r =
√

3t, t)− δ(t)) +
√

3/t δ(t)/2 = u(r =
√

3t, t)h(r =
√

3t, t)
(2.3)

with δ(t) the thickness of the boundary layer and, hence, for λ 6= 0,

h(r =
√

3t, t) = ha(t)

(
1 +

δ(t)

2ha(t)

)
u(r =

√
3t, t) = ua(t)

(
1 +

δ(t)

2ha(t)

)−1

with ua(t) =
√

3/t and δ(t) =
√
t/Re .

(2.4)

3. Solution of the equations describing flow in the lamella

The solution to the system of equations (2.1), (2.2) and (2.4) could be accomplished
numerically, as it is reported in Quintero et al. (2018), but the purpose here is to provide
an approximate analytical solution in the limit Re � 1, which will be shown to be in
excellent agreement with experiments, thus notably simplifying the calculations. With
that idea in mind, notice first that the Re−1/2 dependence depicted in equations (2.2)
suggests that the fields u(r, t) and h(r, t) can be expressed as

u(r, t) = u0(r, t)+Re−1/2 u1(r, t)+O(Re−1) , h(r, t) = h0(r, t)+Re−1/2 h1(r, t)+O(Re−1) .
(3.1)
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Indeed, the substitution of the ansatz (3.1) into equations (2.2) yields the following two
equations for u0(r, t) and h0(r, t):

∂ u0
∂ t

+ u0
∂ u0
∂ r

= 0 =⇒ Du0
Dt

= 0

∂(rh0)

∂t
+ u0

∂(rh0)

∂r
= −rh0

∂u0
∂r

=⇒ D (rh0)

Dt
= −rh0

∂u0
∂r

,

(3.2)

with D/Dt ≡ ∂/∂ t+u0∂/∂ r, and the following two additional equations for u1(r, t) and
h1(r, t):

∂ u1
∂ t

+ u0
∂ u1
∂ r

+ u1
∂ u0
∂ r

= − λu0

h0
√
t

=⇒ Du1
Dt

+ u1
∂ u0
∂ r

= − λu0

h0
√
t

and

∂(rh1)

∂t
+ u0

∂(rh1)

∂r
+ u1

∂(rh0)

∂r
= −rh0

∂u1
∂r
− rh1

∂u0
∂r

=⇒ D (rh1)

Dt
+ rh1

∂ u0
∂ r

= − ∂

∂ r
(rh0u1) .

(3.3)

Equations (3.2)-(3.3) need to satisfy the boundary conditions deduced from (2.4) at
the boundary (r, t) = (

√
3x, x) separating the drop and the lamella regions. For those

cases in which δ(x) =
√
x/Re � ha(x) the Taylor expansion of u in (2.4) yields u(r =√

3x, x) ' ua(x) (1− δ(x)/(2ha(x))). It happens, however, that in spite of Re � 1,
the ratio δ(x)/ha(x) could be close to unity for sufficiently large values of the Ohnesorge
number or for sufficiently large times after impact (Eggers et al. 2010; Visser et al. 2015).
Motivated by this fact, the boundary conditions in (2.4) will be approximated here as

h(
√

3x, x) = ha(x) +

√
x

2
Re−1/2; u(

√
3x, x) '

√
3

x
−
√

3χ

2ha(x)
Re−1/2 , (3.4)

with χ a constant such that the expression in (3.4) is a good approximation to the
exact value of u in (2.4) for all values of t. Indeed, consider for instance that δ/h ' 1:
in this case, equation (3.4) would be, for χ = 2/3, an excellent approximation to the
initial condition for u in (2.4). For the range of Ohnesorge numbers considered here,
10−3 . Oh . 10−2, the ratio δ(t)/ha(t) is close to unity or even slightly larger than one
and hence, equation (3.4) is a very good approximation to the exact value of u given in
equation (2.4) for χ = 0.6; this is the reason why all the results presented here have been
calculated for χ = 0.6. Notice, however, that for the impact of drops with values of the
Ohnesorge number larger than those considered here, δ/ha > 1 andχ in equation (3.4)
should be even smaller i.e., χ < 0.6.

From equations (3.1) and (3.4) it is thus deduced that

u0 =

√
3

x
, u1 = −

√
3χ

2ha(x)
, h0 = ha(x) and h1 =

√
x

2
at (r, t) = (

√
3x, x) .

(3.5)
The integration along rays dr/dt =

√
3/x of the momentum equation in (3.2), subjected

to the corresponding boundary condition in (3.5) yields (see figure 2a)

u0(r, t) =

√
3

x
along

dr

dt
=

√
3

x
=⇒ r =

√
3x+

√
3

x
(t− x)

=⇒ r =

√
3

x
t =⇒ x = 3

(
t

r

)2

=⇒ u0(r, t) =

√
3

3 (t/r)
2 =

r

t
.

(3.6)

Moreover, the integration of the equation for h0(r, t) in (3.2) along the ray dr/dt =
√

3/x
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yields

∂(rh0)

∂t
+ u0

∂(rh0)

∂r
+
rh0
t

= 0 =⇒ D (rh0t)

Dt
= 0 =⇒ h0(r, t) = 9

t2

r4
ha[3(t/r)2] ,

(3.7)

where we have made use of the fact that ∂u0/∂r = 1/t, of the relationship between x
with r and t in equation (3.6) and of the corresponding boundary condition in equation
(3.5).

Now, multiplying by t both sides of equations in (3.3), one obtains that:

D (u1t)

Dt
= − λu0

h0
√
t
t ,

D (rh1t)

Dt
= −1

t

∂

∂ r
(rh0tu1t) . (3.8)

The equation for u1 in (3.8) can be integrated along rays r =
√

3/x t (see figure 2a)
taking into account that, by virtue of equation (3.7), D(rh0t)/Dt = 0:

D (u1t)

Dt
= − λu0

h0
√
t
t =⇒ D (u1t)

Dt
= −λu0rt

2

rh0t
√
t

= − λu0

rh0t
√
t

√
3

x
t3

=⇒ D (u1trh0t)

Dt
=
−3λ

x
t5/2 =⇒ u1(r, t) = − 1

t ha(x)

[√
3χx

2
+

2
√

3λ

7x5/2

(
t7/2 − x7/2

)]
,

(3.9)

where we made use of the boundary condition for u1 in (3.5) and also of the fact that,
along rays dr/dt = u0 =

√
3/x departing from the spatio-temporal boundary (r, t) =

(
√

3x, x), r =
√

3/x t, u0 =
√

3/x and rh0t =
√

3xha(x)x (see figure 2a).

To integrate the equation for h1 in (3.8) it is first convenient to notice that
∂(u1trh0t)/∂r can be calculated as the increment d (u1trh0t) between two neighbouring
rays departing from the spatio-temporal boundary (r, t) = (

√
3x, x) at the consecutive

instants x − dx and x which, at a given instant t are thus separated a distance
dr =

√
3/2x−3/2tdx (see figure 2a). Consequently, making use of the solution for u1trh0t

in (3.9) and of dr =
√

3/2x−3/2tdx,

−1

t

∂

∂ r
(u1trh0t) = − 2

14
√

3 t2

[
(52.5χ− 30λ)x3 − 12λx−1/2t7/2

]
, (3.10)

where use of the boundary condition for u1 in (3.5) has been made.

Hence, the integration of the equation for h1 in (3.8) along the ray dr/dt =
√

3/x
yields

rh1t−
√

3xxh1(x) =
2

14
√

3

[
(52.5χ− 30λ)x3

(
t−1 − x−1

)
+

24λ

5
x−1/2

(
t5/2 − x5/2

)]
=⇒ h1(r, t) =

1

rt

[√
3

2
x2 +

√
3(105χ− 60λ)

42
x3
(
t−1 − x−1

)
+

24
√

3λ

105
x−1/2

(
t5/2 − x5/2

)]
,

(3.11)

where use of the result in equation (3.10) and of the boundary condition for h1 in (3.5) has
been made. Equations (3.1), (3.6), (3.7), (3.9), (3.11) provide the following expressions



A theory on the spreading of impacting droplets 7

0.1
0.2

z (a)

0.1
0.2

z (b)

0.1
0.2

z (c)Sim. [1]
Model - Eq. (3.12)

0.1
0.2

z (d)p
3t [2] [3]

[4]

0.1
0.2

z (e)

0.1
0.2

z (f)ha(t)

0.1
0.2

z (g)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
r

0.1
0.2

z (h)

Figure 3. (a) The analytical expression for h0(r, t) = 9 t2/r4 ha[3(t/r)2] in equation (3.12),

represented with a black line accurately predicts, in the lamella region
√

3t 6 r < s(t), the
thickness of the thin liquid film calculated numerically in Riboux & Gordillo (2016) [1], for the
free slip case (λ = 0, Re→∞) and We = 100: notice that the simulations in Riboux & Gordillo
(2016) reveal that h(r, t) does not depend on We for We � 1. (a) t = 0.19, (b) 0.25, (c) 0.32,
(d) 0.45, (e) 0.55, (f) 0.70, (g) 0.90 and (h) t = 1.10. The functions h(r, t) predicted using the
theoretical approaches in Roisman (2009) [2], Eggers et al. (2010) [3], Wang & Bourouiba (2017)
[4] are also included in this figure.

for u(r, t) and h(r, t):

u(r, t) =
r

t
− Re−1/2

t

[√
3χx

2ha(x)
+

2
√

3λ

7ha(x)x5/2

(
t7/2 − x7/2

)]
+O(Re−1)

h(r, t) = 9
t2

r4
ha[3(t/r)2] +

Re−1/2

rt

[√
3

2
x2 +

√
3(105χ− 60λ)

42
x3
(
t−1 − x−1

)
+

24
√

3λ

105
x−1/2

(
t5/2 − x5/2

)]
+O(Re−1) .

(3.12)

Figure 3 shows that our theoretical prediction for the height of the lamella given
in equation (3.12) in the limit Re → ∞, with ha(x) approximated by equation (7.20)
in the Appendix, is in excellent agreement with the results obtained from the boundary
integral numerical simulations reported in Riboux & Gordillo (2016); the predicted values
of h(r, t) calculated using other theoretical approaches are also included in this figure.
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(a)

(b)

(c)

(d)

(e)

( f )

Figure 4. Comparison between the predicted and the observed position of the rim bordering
the expanding lamella for the case of a water droplet of radius R = 1.46 mm impacting against a
superhydrophobic substrate (top part of each image) or against a hydrophilic substrate (bottom
part of each image). From left to right, V = 1.59 m/s (We = 50), V = 1.94 m/s (We = 76) and
V = 2.37 m/s (We = 114). The values of the dimensionless instants of time corresponding to
each of the rows in the figure are: (a) t = T (V/R) ≈ 0.5, (b) t ≈ 1.0, (c) 1.5, (d) 2.0 and (e) 2.5
and (f) 3.5.
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(a)

(b)

(c)

(d)

(e)

( f )

Figure 5. Comparison between the predicted and the observed position of the rim bordering the
expanding lamella for the case of a water droplet of radius R = 1.43 mm impacting against a glass
substrate (left, V = 3.57 m/s We = 261) or a superhydrophobic substrate (right, V = 3.58 m/s,
We = 264). The values of the dimensionless instants of time corresponding to each of the rows
in the figure are: (a) t = T (V/R) ≈ 0.5, (b) t ≈ 1.0, (c) 1.5, (d) 2.0 and (e) 2.5 and (f) 3.5.
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0.1 1 10

0.5

1

5

Figure 6. Comparison between the experimental data in Visser et al. (2015) [1] and the
theoretical results. Here, β = 1 and, like in the rest of calculations presented here, λ = 1
and χ = 0.6. WeD = 2We and ReD = 2Re because Visser et al. (2015) defined the Weber and
Reynolds numbers using the diameter instead of the drop radius.

4. Comparison with experiments

The analytical expressions of u(r, t) and h(r, t) are given by equations (3.12), so we
can now proceed to integrate the system (2.1) once the initial values for s, v and b are
specified at the instant the lamella is initially ejected. Indeed, the thin liquid film is not
formed right at the instant t = 0 when the drop first touches the substrate, but at the
ejection time te > 0 determined in Riboux & Gordillo (2014, 2017). In Riboux & Gordillo

(2014, 2017) we predicted and also verified experimentally that, if Re1/6 Oh2/3 < 0.25,
a condition which is fulfilled by all experimental conditions reported here, the ejection
time can be expressed as te = 1.05 We−2/3. Then, the system (2.1) is integrated in time
once the functions u(r, t) and h(r, t) in equation (3.12) are particularized at r = s(t)
and once the following initial conditions are imposed at t = te (Riboux & Gordillo

2015): s(te) =
√

3 te, v(te) = (1/2)
√

3/te and b(te) =
√

12 t
3/2
e /π. The results obtained

integrating the system (2.1) once the value of the free constant λ is fixed here to λ = 1, are
in remarkable agreement with experimental observations for the two types of substrates
considered here, as figures 4 and 5 show.

Figure 6 shows a comparison between theory and the measured values of s(t) in Visser
et al. (2015), who analyzed the spreading of micrometer-sized droplets impacting a solid
substrate at velocities exceeding 10 ms−1. The cases studied in Visser et al. (2015)
correspond to values of the Ohnesorge number Oh ∼ 2 × 10−2, an order of magnitude
larger than the values of Oh in figures 4-5; hence, in Visser et al. (2015), the value of the
ratio δ(t)/ha(t) is close to unity for all t. The good agreement between the theoretical
and experimental results depicted in figure 6, gives strong further support to our theory.

The integration of the sytem (2.1) could be avoided if just the maximum spreading
radius of the drop, smax, had to be predicted. Indeed, figure 7 indicates states that, very
close to the maximum spreading radius, the rim velocity is zero and also that the value
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Figure 7. (a) Calculated position of the rim for Oh = 2.9×10−3 and three values of the Weber
number. The vertical lines indicate the instant of time for which the value of the local Weber
number defined in equation (4.1) is equal to one. (b) Time evolution of the local Weber number
defined in (4.1).

of the local Weber number, defined here as

Welocal(t) = We
u2(s, t)h(s, t)

1 + β
, (4.1)

is Welocal ' 1. Therefore, the substitution into the momentum equation in (2.1) of v = 0,
of dv/dt = 0 and of the values of the functions u(r, t) and h(r, t) given in equation (3.12)
particularized at r = smax and at t = tmax, with tmax the instant of time at which
r = smax yields, to leading order, in the limits We � 1 and Re � 1, the following
equation for smax:

h0 u
2
0 + Re−1/2

(
h1 u

2
0 + 2h0u0u1

)
− (1 + β) We−1 = 0

=⇒ 9ha(xmax)− 33/4
12λx

−3/4
max

35
Re−1/2 s5/2max − (1 + β) We−1 s2max = 0 ,

(4.2)

with xmax = 3 (tmax/smax)
2

and where O(Re−1) terms have been neglected. Moreover,
in spite of the value of xmax depends on We, Re and θ, we checked that xmax lies within
a limited range of values, such that tmax > xmax, see figure 2b.

Therefore, we could further simplify equation (4.2) if xmax is approximated by a
constant value which we fix here to xmax = 2, for which 9ha(xmax) ' 0.45 (see equation

(7.20) in the Appendix) and 33/4(12x
−3/4
max )/35 ' 0.45. Therefore, equation (4.2) can be

written as

(1 + β) We−1 s2max + 0.45λRe−1/2 s5/2max − 0.45 = 0 , (4.3)

which resembles the equation for smax deduced in Wildeman et al. (2016) using energetic
arguments. Let us point out here that equations (4.2)- (4.3) express the same type of
balance as that found in the study of Savart sheets: the momentum flux is compensated
with the interfacial tension forces at the maximum spreading radius (Taylor 1959;
Gordillo et al. 2014).

Figures 8(a)–(b) show that our prediction for smax calculated using equation (4.3)
compares very favourably with published experimental data, providing further support
to our theoretical approach. Another evidence showing the robustness of our analysis is
given next. Indeed, a direct comparison of our theoretical result in (4.3) with the equation
for the maximum spreading radius in Laan et al. (2014), which in our variables can be
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Figure 8. (a) Comparison between the experimental data in [1] Clanet et al. (2004), [2] Tsai
et al. (2011), [3] Antonini et al. (2012), [4] Quintero et al. (2018), [5] Tran et al. (2012), and
the maximum spreading radius calculated solving the algebraic equation (4.3) -continuous lines-
(b) Comparison between the experimental data and theory in [6] Wildeman et al. (2016) (thin
black lines), [7] Stow et al. (1981) and [8] Visser et al. (2015) and the maximum spreading radius
calculated theoretically solving the algebraic equation (4.3) -thick lines-. The results have been
obtained for the same values of β as in [6] Wildeman et al. (2016), β = 1.

written as

sLaanmax = Re1/521/5
P 1/2

1 + P 1/2
= Re1/5f̄(P ) (4.4)

being P = WeRe−2/5, can be easily made once we express smax as

smax = Re1/5 f , (4.5)

and substitute (4.5) into equation (4.3), which yields the following expression for f(P ),

(1 + β)P−1f2 + 0.45λf5/2 − 0.45 = 0 . (4.6)

Figure 9, where the functions f̄(P ) and f(P ) defined respectively in equations (4.4) and
(4.6) are compared, show that our theoretical result for f(P ) calculated solving equation
(4.6) is very close to the Padè approximant given in Laan et al. (2014). However, figure
9 also shows that smax calculated using (4.3) is in better agreement with experiments
than the prediction in Laan et al. (2014) for the case of Leidenfrost droplets, λ = 0 (Tran
et al. 2012; Wildeman et al. 2016).

5. Conclusions

In this contribution we have presented a model which is not only able to predict,
in a self-consistent way, the maximum spreading diameter of drops impacting a solid
wall, but also the time evolution of the position and of the thickness of the rim. Our
theory also provides the averaged velocity field and the thickness of the thin film region
located upstream the rim for arbitrary values of the advancing contact angle and of the
Reynolds and Weber numbers whenever Re � 1 and We � 1. The good agreement of
our predictions with the experimental observations indicates that our results could also
be used to determine the time evolution of the diameters and of the sizes of the droplets
ejected for drop impact velocities beyond the splashing threshold (Riboux & Gordillo
2015; Quintero et al. 2018).



A theory on the spreading of impacting droplets 13

100 101 102

P

100

f

(a)

Laan et al. (2014)

Eq. (4.6), β = 0

10 100 1000

We

5

10

smax

(b)

[1]

Laan et al. (2014)
Laan et al. (2014) - Theory

Eq. (4.3), λ = 1, β = 0

Eq. (4.3), λ = 0, β = 1

Figure 9. (a) Comparison between the Padè approximant in Laan et al. (2014) and the function
f(P ) predicted by our theoretical result in equation (4.6). (b) smax calculated using (4.3) and

the equation in Laan et al. (2014), smax = 21/5We1/2 for the case of Leidenfrost droplets, λ = 0.
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7. Appendix

The radial position and the thickness of the rim, indicated here using the time
dependent variables s(t) and b(t) [see figures 1 and 2], can be calculated from the following
balances of mass and momentum at the rim (Taylor 1959; Culick 1960)

α
π

4

db2

dt
=

∫ h(s,t)

0

ū(s, z, t) d z − v h(s, t) ,
ds

dt
= v ,

α
π b2

4

dv

dt
=

∫ h(s,t)

0

[ū(s, z, t)− v]
2
d z − (1 + β) We−1 − fτ ,

 (7.1)

with z the coordinate perpendicular to the wall, fτ the viscous friction at the wall
and ū(r, z, t) and h(r, t) in equations (7.1) the radial velocity and the thickness of the
thin film -the lamella- which extends along the spatio-temporal region located in between
the impacting drop and the rim, namely,

√
3t 6 r 6 s(t) (see figures 1 and 2). We will

show next that, to solve the system of equation (7.1), it will suffice to know the values
of the heigh of the lamella particularized at r = s(t) and also the averaged value of the
radial velocity at r = s(t). Indeed, notice first that, for a given velocity field ū(r, z, t), the
mass balance applied to a portion of the lamella of height h(r, t), width dr and angular
extension dη yields

∂ (rh)

∂ t
+

∂

∂ r

(
r

∫ h

0

ū(r, z, t) d z

)
= 0 . (7.2)

Defining the averaged velocity u(r, t) as

u(r, t)h(r, t) =

∫ h

0

ū(r, z, t) d z , (7.3)
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the mass balance (7.2) reads

∂ (rh)

∂ t
+

∂

∂ r
(ruh) = 0 . (7.4)

The application of the momentum balance to the same differential portion of the lamella
yields

∂

∂ t
(ruh) +

∂

∂ r

(
r

∫ h

0

ū2(r, z, t) d z

)
= −rτw

Re
, (7.5)

where we have taken into account that the lamella is slender and, hence, presure gradients
can be neglected; in equation (7.5) τw indicates the dimensionless shear stress at the wall.
Since the integral form of the momentum equation (7.5) is not strongly dependent on the
specific form of the boundary layer-type of velocity profile (see the discussion on pages
319-320 in Batchelor (1967) about the integral method to analyze boundary layers firstly
introduced by von Kármán), for simplicity we assume here that

ū(r, z, t) = w0(r, t)− w0 F (z) with F (z) = 1− z/δ for z 6 δ and F (z) = 0 if z > δ ,
(7.6)

being δ the boundary layer thickness. Making use of equation (7.6) and of the fact that∫ h

0

F (z) dz = δ/2 and

∫ h

0

F 2(z) dz = δ/3 , (7.7)

equation (7.3) yields

u(r, t)h(r, t) =

∫ h

0

ū(r, z, t) d z = w0(r, t)h(r, t) (1− δ/(2h))⇒ w0 =
u

1− δ/(2h)
. (7.8)

Therefore, using equations (7.6) and (7.8), the momentum flux can be expressed as∫ h

0

ūū dz = u2 h+
u2 h

(1− δ/(2h))
2

[
δ

3h
−
(
δ

2h

)2
]

(7.9)

and, consequently, equation (7.5) can be written as

∂

∂ t
(ruh) +

∂

∂ r

(
ru2 h

)
= −rτw

Re
− ∂

∂ r

(
r u2 h

(1− δ/(2h))
2

[
δ

3h
−
(
δ

2h

)2
])

. (7.10)

Using equations (7.6) and (7.8), the dimensionless shear stress at the wall can be
expressed as

τw =
w0

δ
=

u

δ(1− δ/(2h))
(7.11)

and hence, making use of the continuity equation (7.4), the momentum equation (7.10)
can be written as

∂ u

∂ t
+ u

∂ u

∂ r
= − u

hRe δ (1− δ/(2h))
− 1

r h

∂

∂ r

(
r u2 h

(1− δ/(2h))
2

[
δ

3h
−
(
δ

2h

)2
])

.

(7.12)

Let us point out that in the limit δ/h� 1 the boundary layer thickness does not depend
on r but, interestingly, there are two different algebraic expressions for δ(t). Indeed, for
t ≈ te � 1, with te ∝We−2/3 the instant of time at which the liquid sheet is first ejected,
the lamella is fed by the fluid coming from a local region surrounding the root of the
lamella; in this case, δ(t) ∝ tRe−1/2 (Riboux & Gordillo 2014, 2015, 2017). However, for
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Figure 10. (a) Representation of the function G defined in equation (7.14) as a function of the
ratio δ/h. (b) The polynomial P (x) in equation (7.20) (black line) matches the time evolution of

the height of the lamella calculated at r =
√

3x using the Boundary Integral Method described
in Riboux & Gordillo (2016). The function ha(x) does not depend neither on Re nor on We for
We� 1. Here, We = 300.

larger times, the fluid entering the liquid sheet comes from a stagnation-point type of
flow and, in this case, δ ∝

√
tRe−1/2 (Roisman 2009; Eggers et al. 2010). Since the time

interval during which δ ∝ tRe−1/2 is t ∼ te � 1 namely, much smaller than the time
characterizing the drop spreading proccess, the equation for δ(t) used here is δ =

√
t/Re

(Roisman 2009; Eggers et al. 2010). Therefore, since the lamella is slender, ∂h/∂r � 1,
equation (7.12) can be written as

∂ u

∂ t
+ u

∂ u

∂ r
= − u

hRe δ

[
1

1− δ/(2h)
+

1

(1− δ/(2h))
2

(
1

3
− 1

4

δ

h

)(
ut

r
+ 2t

∂ u

∂r

)]
(7.13)

In the frictionless case, u = r/t (Roisman 2009; Eggers et al. 2010) and hence, the
right-hand side of equation (7.13) verifies, for δ =

√
t/Re

1

1− δ/(2h)
+

1

(1− δ/(2h))
2

(
1

3
− 1

4

δ

h

)(
ut

r
+ 2t

∂ u

∂r

)
' G(δ/h) =

1

1− δ/(2h)
+

+
1

(1− δ/(2h))
2

(
1− 3

4

δ

h

)
' 2 ,

(7.14)

where the function G(δ/h) defined in equation (7.14) and plotted in figure 10a, is rather
insensitive to the ratio δ/h. Therefore, the momentum equation (7.12) can be written as

∂ u

∂ t
+ u

∂ u

∂ r
= − λu

hRe δ
= − λu

h
√
Re t

, (7.15)

with λ a constant that will take into account: i) the prefactor multiplying the ratio√
t/Re, ii) the type of velocity profile used to describe the flow field within the boundary

layer and iii) the deviations from the assumption made here that δ =
√
t/Re, a result

which is only valid in the boundary layer approach for a flow field outside the boundary
layer of the form u = r/t (Roisman 2009; Eggers et al. 2010). It will be shown in the
main text the experimental results can be reproduced for a value of the constant λ = 1.

The solution of the system of partial differential equations describing both the height
of the lamella h(r, t) and the averaged velocity u(r, t), given by equations (7.4) and (7.15),

∂(rh)

∂t
+ u

∂(rh)

∂r
= −rh∂u

∂r
and

∂ u

∂ t
+ u

∂ u

∂ r
= −λ u

h
√

Re t
, (7.16)
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particularized at r = s(t), permit to integrate the system (7.1) in time.
Indeed, notice that equation (7.9) can be accurately approximated as∫ h

0

ūū dz = u2 h+
u2 h

(1− δ/(2h))
2

δ

3h
, (7.17)

and also that the force exerted by the wall on the rim, fτ (see equation 7.1) is given by

fτ =
w2

0δ

3
+ γ We−1 Cav =

u2 h

(1− δ/(2h))
2

δ

3h
+ γ We−1 Ca v (7.18)

with γ ∼ O(1). Indeed, the flux of momentum entering into the drop through the
boundary layer, w2

0δ/3, does not contribute to accelerate the rim because the fraction
of the momentum injected closer to the solid is decelerated by the wall. The second
term at the right of equation (7.18) is the integral of the viscous shear forces at the wall
∼ Re−1v/b along a region of width ∼ b. Then, taking into account the definition of the
mean velocity in (7.3), the system of equations (7.1) can be written as

α
π

4

db2

dt
= [u(s, t)− v]h(s, t) ,

ds

dt
= v ,

α
π b2

4

dv

dt
= [u(s, t)− v]

2
h(s, t)− (1 + β) We−1 − γ We−1 Ca v ,

 (7.19)

We will limit ourselves here to discuss the cases for which Ca � 1 and hence, the last
term in (7.19), will be neglected.

Let us finally point out that, in the potential flow case, the thickness of the liquid
film at the boundary separating the drop and lamella regions i.e., at r =

√
3x, can be

accurately calculated as ha(x) = P (x), with

P (x) =

9∑
i=0

pi x
i

with p0 = 3.95812707× 10−4, p1 = 1.22669850× 10−1,

p2 = −1.04054024× 10−1, p3 = 4.37229580× 10−2,

p4 = −1.09184802× 10−2, p5 = 1.70579418× 10−3

p6 = −1.67926979× 10−4, p7 = 1.01063551× 10−5,

p8 = −3.39290090× 10−7 p9 = 4.86535897× 10−9 ,

(7.20)

see figure 10b.
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