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We present an exhaustive experimental and theoretical study on the shapes of the type
of jets, simple or compound, formed as a consequence of the injection of either one or
two immiscible liquids within a co-flow of another liquid whose viscosity can be chosen
so that the characteristic outer stream Reynolds number, Reo, can be varied in a wide
range of values. Our slender body theory in Gordillo et al. (2014) is extended to predict
the shapes of simple jets when Reo is such that Reo ≫ 1 and also to predict the shapes
of compound jets in the case of Reo . O(1). The validity of our theoretical results,
applicable to describe the dynamics of simple or compound jets within an outer carrier
fluid in a wide variety of practical situations, is tested using a setup where the liquids flow
from a pressurized chamber towards an extraction tube, finding a very good agreement
between the predicted and the observed shapes. Moreover, when Reo . O(1) and thanks
to the fact that the liquid jets produced using our method are highly stretched in the
downstream direction, we find that the values of the critical capillary number above which
a steady stretched jet is produced, with the capillary number defined here using the outer
stream velocity and viscosity, is well below the corresponding critical values characterizing
other similar procedures, like flow-focusing. This experimental result, which is supported
by a spatio-temporal stability analysis in which the axial gradients of the unperturbed
solution are retained in the dispersion relation, imply a substantial saving of energy and
of the volume of outer liquid necessary to generate a steady capillary jet from which
drops are regularly produced. Additionally, making use of continuity arguments and of
the fact that drops are formed as a consequence of the growth of a capillary instability, we
provide closed expressions for the drop diameters and their production frequencies when
the capillary number is above the critical one, in very good agreement with experiments.
The simple or double microemulsions generated by the capillary disintegration of the type
of simple or compound highly stretched steady jets described here, might find applications
in biotechnology, pharmacy, cosmetics or material science.

1. Introduction

The number of recent contributions aimed at describing the disintegration of liquid jets
in air is a natural consequence of the relevance of drop and fiber generation processes in
many different technological applications such as ink-jet printing, catalysis, atomization
or combustion (Basaran et al. 2013; Loscertales et al. 2004; Eggers & Villermaux 2008).
New biotechnological, pharmaceutical, medical or environmental applications demand,
however, the controlled generation of micron-sized simple or compound drops within an-
other immiscible liquid for their use as biological microreactors, as drug carriers (Barrero
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& Loscertales 2007), or as building blocks of new materials (Fernández-Nieves et al.
(2007) and Lopez-Leon et al. (2011)). In conventional emulsification methods, the un-
controlled fluctuating shear stresses created by either mechanical agitation or by the
turbulent flow of the continuous phase (Garti (1997) and Rodŕıguez-Rodŕıguez et al.
(2006)), lead to the formation of emulsions consisting of simple or compound drops with
a large size dispersion (Chong et al. 2015). New applications require, however, the gen-
eration of monodisperse simple or complex emulsions composed of drops of controllable
diameters (Shah et al. (2008) and Zarzar et al. (2015)), and it is our purpose here to
provide a detailed experimental and theoretical description on the generation of simple
and compound jets and drops within another immiscible liquid under well controlled and
realistic operating conditions.
The capability of microfluidics to produce drops of controllable size (Thorsen et al.

2001), has triggered the emergence of a myriad of different emulsification techniques
with different geometrical arrangements but based on very similar physical principles.
A few of these techniques rely on the use of electrical stresses to stretch and accelerate
a stream of a conducting liquid for its subsequent disintegration into droplets in air
(see, e.g. de la Mora (2007) and Collins et al. (2013)) and within an insulator liquid
bath (see, e.g. Loscertales et al. (2002) and Maŕın et al. (2007)). Nevertheless, most of
the new emulsification methods make use of stresses of hydrodynamical origin to force
the production of droplets in PDMS microchannels. For instance, in Garstecki et al.
(2006), monodisperse simple microemulsions are generated by means of a crossflow at
the junction of two perpendicular microchannels whereas Anna et al. (2003), reports the
generation of micron-sized drops using a two–dimensional flow-focusing type of geometry.
Simple and double monodisperse emulsions composed of drops of controllable size can
also be produced in glass capillaries, as it was originally reported by Utada et al. (2007)
and Utada et al. (2005) and, more recently, by Oh et al. (2006) and Nabavi et al. (2015).
A common feature of all the methods enumerated above is that the high production
frequencies usually needed in applications, require the production of drops in the so
called jetting regime, i.e., drops form as a result of the growth of capillary instabilities
convected downstream either simple or compound microjets flowing within an immiscible
carrier liquid (Utada et al. (2008) and Herrada et al. (2010)).
The capillary stability of a cylindrical liquid jet immersed into another immiscible

liquid, was previously studied by Tomotika (1935), whereas the stability analysis cor-
responding to the analogous case of compound liquid jets, was performed by Sanz &
Meseguer (1985) and Chauhan et al. (2000). Chauhan et al. (2000) reported the exis-
tence of two different unstable capillary modes and showed that, under a vast majority
of conditions, the growth rate of the mode for which the two interfaces grow in phase,
is larger than the corresponding growth rate of the mode where the two interfaces grow
out of phase. This finding, which was later on confirmed by means of non linear numer-
ical simulations by Suryo et al. (2006) and Vu et al. (2013), indicates that most system
conditions promote the generation of compound drops, a result in accordance with the
experimental fact that the capillary breakup of a compound jet within another immis-
cible liquid constitutes a feasible and practical method for the controlled generation of
double emulsions. Moreover, Chauhan et al. (2000) also found that the differences be-
tween the growth rates of the two different unstable modes identified, become even larger
for decreasing thicknesses of the annulus surrounding the inner jet. Interestingly enough,
Chauhan et al. (2000) also reported that, in the limit of thin liquid annuli, the com-
pound jet behaves as a single jet with the interfacial tension coefficient resulting from
the addition of the two tensions.
As it is pointed out above, many different microfluidic devices have been designed with
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the purpose of generating, in a controlled manner, simple or double microemulsions at
production frequencies exceeding 5 kHz by means of the capillary breakup of simple or
compound jets flowing into another immiscible liquid. However, the progress made on the
experimental (Hertz & Hermanrud 1983) and analytical description of the dynamics of
such type of microjets are still far from being comparable to the advances accomplished in
the analysis of the analogous case of liquid jets in air (Garćıa & Castellanos 1994; Eggers
& Dupont 1994; Guerrero et al. 2012; Rubio-Rubio et al. 2013; Ambravaneswaran et al.
2004; Driessen et al. 2014). Motivated by the potential applications of simple and double
microemulsions, in this contribution we will analyze, both from an experimental and
theoretical point of views, the dynamics of long liquid jets breaking into droplets of very
similar size within an outer stream of another immiscible liquid. More precisely, it is our
purpose here to extend the analytical framework developed in Castro-Hernández et al.
(2012) and Gordillo et al. (2014) to describe the generation and subsequent breakup of
simple jets when the Reynolds number characterizing the outer flow of liquid is much
larger than unity. We will also extend our previous slender body theory, valid in the Stokes
limit, to analyze the dynamics of compound jets under creeping flow conditions. Our
analytical results will be checked by comparing the computed shapes with those observed
experimentally in a type of setup, already described in Evangelio et al. (2015) and also
sketched in figure 1, which shares similarities with both the flow focusing and the selective
withdrawal geometries (Gañán Calvo (1998) and Cohen et al. (2001)). Our technique,
which will be termed as confined selective withdrawal, allows controlling the flow rates of
the different liquids with high precision and, most importantly, to visualize the resulting
simple or compound jet in a straightforward manner thanks to the fact that the tubes
used in our design are millimetric. Our procedure is conceptually similar to that in
Barrero & Loscertales (2007) and Maŕın et al. (2007), where two immiscible fluids issued
from two coaxial tubes are stretched by electrical stresses, being the only conceptual
difference that, in our case, electrical stresses are substituted by those of hydrodynamic
origin. We will focus on the generation of simple and compound drops arising from the
capillary breakup of surfactant-free simple or compound stretched microjets (Suryo &
Basaran (2006) and Anna (2016)).
The paper is structured as follows: in §2, we present the phenomenological description

of the jet and drop formation processes under those conditions for which the Reynolds
number characterizing the outer coflow, Reo, is either large or of order unity or smaller.
In §3, we develop a slender-body approximation to predict the steady shapes of the liquid
jets in both the high and low Reynolds number limits; in this section, a comparison with
experiments is also provided. In §4 scalings for the drop formation frequencies and drop
diameters are deduced and compared with experiments. In §5 we determine the values of
the critical capillary numbers for steady jets to be formed in the low Reynolds number
limit. The main results of the paper are summarized in §6.

2. Phenomenology

In our experimental setup, sketched in figure 1, a flow rate Qo of an outer liquid of
density ρo and viscosity µo, constituting the continuous phase, flows into a chamber
of pressure P0 larger than the atmospheric one, Pa. The fluid(s) to be dispersed enter
within the reservoir through either a cylindrical tube of inner diameter Di or through two
coaxial tubes of respective inner diameters Di and Dm. In the case of generation of simple
emulsions, the density, viscosity and the flow rate of the liquid to be dispersed will be
denoted, in what follows, as ρi, µi and Qi. Analogously, ρi,m, µi,m and Qi,m will indicate
the material properties and the flow rates of the inner(i)/middle(m) liquids contained in
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Figure 1: Sketch of the drop production device operating in the regime of interest for
applications, in which drops with very similar diameters Dd are produced. Drops are
regularly emitted from the tip of a steady and highly stretched liquid ligament attached
at the exit of the injection needle. The origin of the dimensionless coordinate x = X/L
is located at the entrance of the square duct. The imposed inner liquid flow rate is Qi

and the outer liquid flow rate is UL2.

the drops forming the double emulsion (see figure 2). The different liquids involved in the
emulsification process flow from the pressurized reservoir towards the atmosphere through
a square extraction tube of width L = 1 mm, aligned with the injection tube(s). In our
device, the distanceH separating the exit of the injection tube(s) from the entrance of the
extraction tube is not fixed, but can be varied in a range of values. In the case of simple
emulsions, the diameter Di of the injection tube is also varied in the experimental study,
but Di = 1000 µm and Dm = 1200 µm remain fixed in the case of generation of complex
emulsions. The imposed pressure difference P0−Pa fixes the mean liquid velocity U in the
square tube and also generates a pressure gradient from the exit of the injection tube(s)
towards the entrance of the extraction duct, favoring the downstream stretching of the
simple or compound liquid ligament. The outer liquid flow rate, Qo = UL2, is calculated
by measuring the volume of liquid exiting the pressurized chamber in a given interval of
time, whereas the flow rates Qi and Qm are controlled using syringe pumps. Images are
captured using a Phantom V7 high speed camera which, depending on U , is operated
between 1000 and 19000 frames per second. Table 1 shows the material properties of the
different fluids used in the experiments as well as the values of the interfacial tension
coefficients corresponding to the different liquid combinations investigated.
Due to the fact that |∆ρ|gH/(32µoU/L) ≪ 1 and |∆ρ|gH/(ρoU

2) ≪ 1 with ∆ρ =
ρi − ρo, the experimental data to be presented in this section is not affected, in a first
approximation, by buoyancy effects.
The experimental study is divided in two parts: the generation of simple emulsions

within an outer liquid stream with a characteristic Reynolds number that can be set
to values either much larger or much smaller than unity, and the generation of double
emulsions in a co-flow of a liquid stream dominated by viscosity.

2.1. Simple emulsions

Figure 3 shows the generation process of an oil in water emulsion (O/W) by means
of the capillary disintegration of a silicone oil jet of diameter 2Rj(X) flowing within a
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Figure 2: (a) Sketch illustrating the generation of simple emulsions. (b) In the case of
double emulsions, two liquids with respective flow rates Qi (inner liquid) and Qm (middle
liquid) are injected into the pressurized reservoir from a coaxial injection tube.

Liquid ρ µ
(kg/m3) (cP)

(a) Water 1000 1.0
(b) Silicone Oil 930 5
(c) Silicone Oil 930 10
(d) Silicone Oil 967 100
(e) Silicone Oil 970 1000
(f) Propylene Glycol 1036 42
(g) Glycerine (85%) + Water (15%) 1200 100
(h) Glycerine (95%) + Water (5%) 1200 400
(i) Glycerine (98%) + Water (2%) 1200 700

Table 1: Physical properties of the different liquids used in the experiments. The values
of the interfacial tension coefficients for the different combinations of immiscible liquids
used in the experimental study, are the following: Water - Silicone Oil, σ = 0.04Nm−1.
Propylene Glycol - Silicone Oil, σ = 0.01Nm−1. Glycerine + Water - Silicone Oil, σ =
0.03Nm−1. In (g), (h) and (i) mass percentages are used. The material properties of the
different liquids used in this study have been obtained from the literature.

water stream of mean velocity U (see also the sketch in figure 1). Due to the fact that
Qi ≪ U L2, the liquid jet stretches in the downstream direction and, since Rj ≪ L, the
diameters of the droplets generated, Dd, are also sensibly smaller than the width of the
extraction tube i.e., Dd ≪ L. The Reynolds and Weber numbers characterizing the outer
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flow of liquid

Reo =
ρo U L

µo
, Weo =

ρoU
2 (Qi/U)

1/2

σ
(2.1)

with (Qi/U)1/2 the characteristic diameter of the jet are, under all experimental con-
ditions of interest for applications in which the continuous phase is water, such that
Reo ∼ O(103) and Weo & O(1). Indeed, although not shown here, for values of the
Weber number below a threshold value of order unity, a long liquid jet is never formed.
Instead, unequal-sized oil droplets of diameters comparable to Di are formed at low fre-
quencies right at the injection tube, in agreement with the findings reported in Utada
et al. (2007). From the analysis of the images in figure 3a it can be inferred that, although
the overall shape of the jets formed depend on the particular values of H and Di, both
the diameter of the jet right upstream the position where it breaks into drops and Dd,
are not sensitive to geometrical modifications. Interestingly, figure 3b shows that the jet
diameter at the position where it breaks into drops and Dd, can be reduced either by
decreasing Qi while keeping U constant or by increasing U for a given value of Qi. Figure
3c shows that a two-fold increase of liquid viscosity, does not have an appreciable effect
neither on the overall shape of the jets nor on the diameters of the droplets generated.
From the images depicted in figure 3, notice that the liquid jet is not perfectly aligned
with the axis of the extraction tube. This is due to the fact that for the values of the
Reynolds number characterizing the outer liquid stream Reo ∼ 1000, the flow is prone
to develop Kelvin-Helmholtz instabilities. In addition, Reo ∼ 1000 is close to the critical
value for the laminar-turbulent transition of the flow in the extraction tube.
Figure 4 shows the generation of water in oil emulsions (W/O) by means of the capillary

disintegration of a water jet flowing within an outer stream of a silicone oil with a viscosity
of either µo = 100 cP or µo = 1000 cP and Qi ≪ U L2. Similarly to the case of O/W
emulsions illustrated in figure 3, the overall shape of the jet is sensitive to variations of
Di and H while the diameters of the droplets generated can be reduced/increased by
varying Qi and U . However, in this case, the stretched liquid jet is aligned with the axis
of the extraction tube and, moreover, the drop production process is remarkably periodic:
indeed, notice from the images in figure 4 that the diameters of the drops formed as well
as the distances between two neighboring drops, is constant for fixed values of Qi and U .
Figure 4c shows that, in the present case, the diameters of the drops and the distances
between them is sensitive to modifications of the outer liquid viscosity. The differences
observed with the process of generation of O/W emulsions depicted in figure 3 are due
to the fact that, in the case of figure 4, the characteristic Reynolds number is such that
Reo . O(1). Moreover, in this case, the outer capillary number, defined as

Cao =
µoU

σ
, (2.2)

is above a threshold value Ca∗ ∼ O(1) below which the frequency of drop production is
not constant and, consequently, the diameters of the droplets composing the emulsion,
are not uniform (Gordillo et al. 2014).

2.2. Double emulsions

Figure 5 shows the generation of double emulsions consisting of drops containing two
immiscible liquids, the inner one is silicone oil and the middle is either propylene glycol
or a glycerine-water mixture. The middle liquid is immiscible with the continuous phase
which, in all the cases considered, is a silicone oil of viscosity µo = 1000 cP. The process
of generation of the double emulsion also resorts on the capillary breakup of a compound



Simple and double microemulsions via the capillary breakup of highly stretched liquid jets7

(c)

(a) (b)

1
 m

m

Figure 3: This figure shows the effect of varying the different parameters governing the
generation of oil in water simple emulsions (σ = 0.04Nm−1). In (a), the effect of varying
the diameter Di of the injector and of the distance H on the drop generation process, is
shown. Here, U = 0.85 m s−1, Qi = 30ml h−1, µi = 5 cP, µo = 1 cP (λi = µi/µo = 5)
and Reo = ρoUL/µo = 850. Figure (b) shows the effects of varying both U and Qi.
Here, µi = 5 cP, µo = 1 cP (λi = 5), Reo = 750 (left) and Reo = 940 (right). (c) For a
fixed value of the flow rate ratio, qi = Qi/

(
U L2

)
= 0.011, the images show the effect

of varying the inner fluid viscosity for a value of the outer Reynolds number Reo = 940.
Di = 0.45 mm in all images except at the botton of (a), where Di = 1.38 mm. H = 0.95
mm in all images except: i) at the top left image of (a), where H = 0.45 mm and ii) at
the bottom image of (a), where H = 1.1 mm.

stretched jet aligned with the axis of the extraction tube. Figure 5 shows that, in all
cases considered, the drops formed by the capillary breakup of the inner liquid in the
compound jet, are always encapsulated by the middle liquid surrounding it. The stretched
jet is formed after injecting the two liquid flow rates Qi and Qm (see figure 2) within an
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Figure 4: This figure shows the effect of varying the different parameters governing the
generation of water in oil emulsions (σ = 0.04Nm−1). In (a), the effect of varying
the diameter Di of the injector and the distance H on the drop generation process,
is shown. Here, U = 0.275 m s−1, Qi = 1ml h−1, µi = 1 cP, µo = 100 cP, (λi = 0.01)
and Reo = 2.65. Figure (b) shows the effects of varying both U and Qi. Here, µi = 1 cP,
µo = 1000 cP, (λi = 0.001), Reo = 0.045 (left) and Reo = 0.06 (right). (c) For a fixed
value of the flow rate ratio, qi = Qi/(UL2) = 0.001, the images show the effect of varying
the viscosity of the outer fluid. Here, Reo = 2.09 (left) and Reo = 0.05 (right). Di = 1.38
mm in all images except at the top images of (a), where Di = 0.45 mm. H = 1.85 mm
in all images except: i) at the top left image of (a), where H = 0.45 mm and ii) at the
top right image of (a) and at the bottom left image of (a), where H = 0.95 mm.

outer co-flow of mean velocity U verifying the conditions Qi,m ≪ U L2, Reo . O(1) and

Ca′o =
µoU

(σi + σm)
> Ca∗(λi,

Qi

U L2
) , (2.3)

with λi = µi/µo. In equation (2.3), σi refers to the interfacial tension coefficient between
the two liquids in the compound drop and σm to the corresponding value between the
middle liquid and the continuous phase liquid. Similarly to the cases of generation of
simple emulsions depicted in figures 3 and 4, the overall shape of the compound jet is
dependent on the value of H for fixed values of µi,m,o, Qi, Qm and U , but the diameter of
the compound drops generated, is not (see figure 5a). The diameter of the drops can be
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modulated, instead, by varying the different flow rates, Qi, Qm and U L2, as it is shown
in figure 5b. Figures 5c–d, where the influence of varying either µi or µm for fixed values
of µo, U , Qi and Qm is illustrated, shows that the breakup of the compound jet gives rise
to the generation of a train of uniformly-sized compound drops separated by a constant
distance, a fact evidencing that the drop formation frequency is rather constant. Figure
5c also shows that tiny satellite drops of the middle fluid with diameters dependent on
µm, are also generated.

3. Slender body theories describing the steady shapes of the liquid
ligaments

The purpose of this section is to deduce the equations predicting, in the limits Reo ≫ 1
and Reo ≪ 1, the steady shapes of the simple or compound jets visualized in figures 3-5
from which drops are produced. The different set of equations describing the downstream
evolution of the jet diameter will be based on a one-dimensional description for the flow
within the jet and on an extension of the slender body theory developed in Castro-
Hernández et al. (2012); Gordillo et al. (2014) describing the flow of the continuous
phase. The main idea behind the slender body approximation is to represent the outer
stream as the sum of an unperturbed flow field, calculated numerically using a commercial
software (ANSYS Fluent), plus the perturbation introduced in the velocity and pressure
fields by the presence of the jet. Let us point out here that the theoretical framework to
be developed in what follows is applicable to describe axisymmetric flows in which either
the inertial or the viscous terms can be neglected in the momentum equation.
As it is illustrated in figure 6, the perturbed flow field can be modeled as a continuous

distribution of sources with intensities such that the kinematic condition is satisfied at the
jet interface. Note that the unperturbed fields are calculated imposing the impermeability
condition at the injection and extraction tubes without including the jet in the numerical
simulations (see Evangelio et al. (2015) for details). As it is described in Castro-Hernández
et al. (2012) and Gordillo et al. (2014), one of the advantages of decomposing the flow
field as the addition of two fields, is the fact that the unperturbed solution depends
only on the geometry of the emulsification device. Moreover, since the interface of the
liquid jet is close to the axis of symmetry, the only influence of the unperturbed flow
field in the one-dimensional equations describing the jet radius appears only through
the functions Uxn(X,R = 0) and ∂2Uxn/∂R

2(X,R = 0). Here, Uxn denotes the axial
velocity of the outer liquid calculated numerically and the subscript n will be used in the
following to denote the functions referred to the unperturbed fields. The analysis below
will be carried out using variables which are made non-dimensional using U and L as the
characteristic velocity and length scales. From now on, lower case variables will denote
the dimensionless counterparts of the dimensional variables and, consequently,

x =
X

L
, r =

R

L
, ux,r =

Ux,r

U
, h =

H

L
, (3.1)

with the origin of the x-coordinate located at the entrance of the extraction tube (see
figure 1). The definition of the dimensionless pressure, depends on whether the outer flow
is dominated by viscous or inertial stresses. More precisely, in the limits Reo . O(1) and
Reo ≫ 1 the dimensionless pressure is respectively defined as

p =
P L

µo U
, p =

P

ρo U2
. (3.2)

In the following, the dimensionless outer velocity and pressure fields will be respectively
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Figure 5: This figure shows the effect of varying the different parameters governing the
generation of double emulsions. In (a), the effect of varying the distance of the injector to
the extraction tube is depicted in the case of the middle fluid is Propylene Glycol and both
the inner liquid and continuous phase are Silicone Oils. Therefore, σi,m = 0.01Nm−1 with
σi the interfacial tension coefficient between the inner and the middle fluid and σm the
interfacial tension coefficient between the middle fluid and the continuous phase. Here,
µi = 10 cP, µm = 42 cP, µo = 1000 cP, U = 0.02 m s−1,Qi = 0.5ml h−1,Qm = 0.5ml h−1

and, consequently, q = (Qi +Qm)/(U L2) = 0.014 and Reo = 0.02. Figure (b) shows the
effects of varying both the outer fluid velocity and the total flow rate Q = Qi+Qm on the
generation of compound drops. In this case, the middle liquid is Propylene Glycol and
both the inner and the continuous phase are different Silicone Oils: σi,m = 0.01Nm−1,
µi = 5 cP, µm = 42 cP, µo = 1000 cP, Reo = 0.015 (left) and Reo = 0.02 (right). Figure
(c) shows the effect of varying the middle liquid viscosity on the generation of compound
drops. In this case, the middle liquid is the mixture of Glycerine+Water in two different
proportions, while the inner liquid as well as the continuous phase are Silicone Oils of
viscosities µi = 10 cP and µo = 1000 cP respectively. σi,m = 0.03Nm−1. Left, U = 0.045
m s−1, Qi = 1ml h−1, Qm = 2ml h−1, λi = 0.01, λm = µm/µo = 0.1, Reo = 0.043. Right,
U = 0.045 m s−1, Qi = 2ml h−1, Qm = 1ml h−1, λi = 0.01, λm = 0.4, Reo = 0.043. In
these experiments, the ratio q = (Qi + Qm)/(U L2) is kept constant. Figure (d) shows
the effect of varying the inner fluid viscosity on the generation of compound drops. In
this case, the middle liquid is Propylene Glycol, µm = 42 cP and the inner and the
continuous phase liquids are Silicone Oils. The outer fluid viscosity is kept constant to
µo = 1000 cP; therefore, λm = 0.042 and σi,m = 0.01Nm−1. Left, U = 0.014 m s−1,
Qi = 0.3ml h−1, Qm = 0.3ml h−1, µi = 5 cP, λi = 5 × 10−3, Reo = 0.013. Right:
U = 0.025 m s−1,Qi = 0.5ml h−1, Qm = 0.5ml h−1, µi = 10 cP, λi = 10−2, Reo = 0.024.
In these experiments, the ratio q = (Qi + Qm)/(U L2) is kept constant. H = 1.75 mm
in all cases except at the left image in (a), where H = 0.9 mm. In all cases, Di = 1 mm
and Dm = 1.2 mm.
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Figure 6: Sketch showing that the outer flow field (a) can be decomposed as the addition of
two fields: the unperturbed flow field (b), which is calculated numerically using ANSYS
Fluent and the perturbed flow field (c) associated with the presence of the jet. The
perturbed velocity field can be quantified as a continuous line of sources of intensity
S(X) located at the axis of symmetry.

expressed as

uo = un + u′ = [uxn(x, r) + u′
x] ex + [urn(x, r) + u′

r] er , po = pn + p′ , (3.3)

with u′ and p′ such that |u′| ≪ un and p′ ≪ pn indicating the perturbed velocity and
pressure fields. Next, the analytical expression of the outer velocity field in the near axis
region, which is where the jet is located, will be deduced. Note first that the Taylor series
expansion of the unperturbed velocity field around r = 0 yields,

un = uxn(x, r)ex + urn(x, r)er ≃
[
uxn(x, r = 0) +

1

2

∂2uxn(x, r)

∂r2
(x, r = 0)r2

]
ex + urner =

=
[
ux(x) + f(x)r2

]
ex + urn(x, r)er ,

(3.4)

with ux(x) = uxn(x, r = 0) and f(x) = 1/2 ∂2uxn/∂r
2(x, r = 0). Now, making use of the

continuity equation in cylindrical coordinates, ∂uxn/∂x+ (1/r)∂(r urn)/∂r = 0,

1

r

∂ (r urn)

∂r
= −∂uxn

∂x
= −d ux

d x
− r2

d2 f

d x2
⇒ urn = −r

2

d ux

d x
− r3

4

d f

d x
. (3.5)

Consequently, the equation for the near-axis outer velocity field (3.4) can be expressed
as

un(x, r) =
[
ux(x) + f(x)r2

]
ex +

[
−r

2

dux

dx
(x)− r3

4

df

dx
(x)

]
er . (3.6)

Since, in the limit Reo ≫ 1, the axial component of the outer velocity field for r ≪ 1 can
be approximated to a plug flow, setting f = 0 in equation (3.6), yields

un(x, r) = ux(x)ex +

[
−r

2

d ux

d x
(x)

]
er . (3.7)

As it was pointed out in Castro-Hernández et al. (2012); Gordillo et al. (2014), the per-
turbed velocity field can be approximated to that generated by a continuous distribution
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of sources of intensity s(x̄), namely,

u′
x(x, r) =

1

2

∫ l∞

−h

s(x)(x− x)[
(x− x)

2
+ r2

]3/2 dx , (3.8)

u′
r(x, r) =

1

2

∫ l∞

−h

s(x)r[
(x− x)

2
+ r2

]3/2 dx. (3.9)

The integral in equation (3.9) was calculated in Castro-Hernández et al. (2012); Gordillo
et al. (2014) as u′

r(x, r) ≃ s(x)/r, which is a fairly good approximation to the exact
value of u′

r in equation (3.9) for all values of x, except in the region close to the injector,
x ≃ −h. To improve the agreement between the predicted shapes of the jets and those
observed experimentally, the integral (3.9) is approximated here as

u′
r(x, r) ≃ −s(x)

2r

[
x− l∞√

(x− l∞)2 + r2
− x+ h√

(x+ h)2 + r2

]
, (3.10)

which is in excellent agreement with the exact value of the integral in equation (3.9) for
all values of x.
We checked that equations (3.8)-(3.10) become independent of l∞ for sufficiently high

values of this parameter and, consequently, here we have set l∞ = 10. Let us point
out that, while the main contribution of the integral (3.9) was expressed analytically in
(Castro-Hernández et al. (2012) and Gordillo et al. (2014)), in this contribution, the axial
and the radial components of the perturbed velocity field will be calculated numerically
or using the more accurate expression (3.10) respectively. Note now that, making use of
the expression for u′

r(x, r = rj) given in equation (3.10), the intensity of the sources can
be expressed as a function of the jet radius rj(x) by means of the kinematic condition at
the jet interface,

drj(x)

dx
=

urn(x, r = rj(x)) + u′
r(x, r = rj(x))

uxn(x, r = rj(x)) + u′
x(x, r = rj(x))

≃ urn(x, r = rj(x)) + u′
r(x, r = rj(x))

uxn(x, r = rj(x))
⇒

⇒ u′
r(x, r = rj(x)) = uxn(x, r = rj(x))

drj(x)

dx
− urn(x, r = rj(x)) =

=
[
ux(x) + f(x)r2j

] drj(x)
dx

+
rj
2

dux(x)

dx
+

r3j
4

df

dx
(x) .

(3.11)

Making use of equations (3.10)-(3.11) it can be concluded that

s(x) = −2

[
ux(x) + f(x)r2j

]
rj

drj(x)
dx +

r2j
2

dux(x)
dx +

r4j
4

df
dx (x)[

x−l∞√
(x−l∞)2+r2j

− x+h√
(x+h)2+r2j

] . (3.12)

Next, we will make use of the results expressed by (3.8)-(3.11) to deduce the equations
describing the downstream evolution of the simple and compound jets in the cases Reo ≪
1 and Reo ≫ 1.

3.1. Equations for rj(x) and ri(x) in the limit Reo ≪ 1

First of all let us point out that, since the perturbed velocity field given by equations
(3.8)-(3.10) can be expressed as a function of a velocity potential, the pressure gradient
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associated with u′ is zero in the Stokes limit (Gordillo et al. 2014). Therefore, in the near
axis region r ≪ 1, the pressure gradient of the outer flow field can be expressed as

∂po
∂x

(x, r) =
∂pn
∂x

=
d2ux

dx2
+ r2

d2f

dx2
+ 4f , (3.13)

where use of the momentum equation in the limit Reo → 0 has been made (see Gordillo
et al. (2014) for details). In the case of simple jets, the equation for rj is deduced making
use of the continuity equation (Gordillo et al. 2014),

qi =
Qi

UL2
=
[
ux(x) + f(x)r2j (x)

]
πr2j (x)−

πr4j (x)

8λi

dpi(x)

dx
. (3.14)

In (3.14), the pressure gradient is calculated from the normal stress balance at the jet
interface which, in the limit µo ≫ µi, reads

dpi
d x

(x, r = rj(x)) =
d pn
d x

(x, r = rj(x))+
d

d x

[
χ

Cao
− 2

(
∂urn

∂r
(r = rj) +

∂u′
r

∂r
(r = rj)

)]
.

(3.15)
In equation (3.15), ∂urn/∂r(r = rj) = −1/2d ux/d x− 3/4r2jd f/d x,

χ = ∇ · n =
1

rj(1 + ṙ2j )
1/2

− r̈j
(1 + ṙ2j )

3/2
, (3.16)

and dots denote derivatives with respect to x. From now on, we will use indistinctly either
d/dx or a dot to indicate a derivative with respect to x. Therefore, the substitution of
equation (3.13) into (3.15) yields

dpi
dx

(x, r = rj(x)) =
1

Ca

dχ

dx
+2

d2u

dx2
+4f +3rj

drj
dx

df

dx
+ +

5

2
r2j

d2f

dx2
− 2

d

dx

(
∂u′

r

∂r
(r = rj)

)
(3.17)

and once d pi/d x is expressed as a function of rj(x), ux and f , the jet radius is calculated
solving the equation

qi =
[
ux(x) + f(x)r2j (x)

]
πr2j (x)−

πr4j (x)

8λi

[
1

Ca

dχ

dx
+ 2

d2u

dx2
+ 4f + 3rj

drj
dx

df

dx
+

+
5

2
r2j

d2f

dx2
− 2

d

dx

(
∂u′

r

∂r
(r = rj)

)] (3.18)

where

∂ u′
r

∂ r
(x, rj) =

s(x)

2

 (x−l∞)3

r2j
+ 2(x− l∞)[

(x− l∞)2 + r2j
] 3

2

−
(x+h)3

r2j
+ 2(x+ h)[

(x+ h)2 + r2j
] 3

2

 , (3.19)

is deduced making use of equation (3.10).
Given the functions ux(x) and f(x) characterizing a specific geometrical arrangement

(see figure 7), the shape of the jet is calculated iteratively: a Newton-Raphson method is
used to satisfy equation (3.18) at discrete collocation points, following a procedure which
is quite similar to that described in Gordillo et al. (2014), being the main difference
that equation (3.19) needs to be evaluated at the collocation points once the intensity
of the sources s(x) is calculated as a function of rj by means of equation (3.12). The
only boundary condition that needs to be imposed to the system of equations is rj(x =
−h) = Di/(2L) since the second condition is substituted by the discretized version of the



14 A. Evangelio, F. Campo-Cortés and J.M. Gordillo

−1 0 1 2
x

 

Reo = 10
−6

Reo = 10
−3

Reo = 1

(a)

−1 0 1 2
x

 

Reo = 10
−6

Reo = 10
−3

Reo = 1

(b)

Figure 7: Numerically calculated functions ux and f in the Stokes limit for the particular
case H/L = 0.97 and D/L = 0.45.

differential equation particularized at the very last node of the numerical domain (see
Gordillo et al. (2014)).

In the analogous case of compound jets, the equations describing the positions of the
inner and outer interfaces, ri(x) and rj(x) respectively (see the sketch in figure 2), are
also deduced making use of the continuity equation for each of the two immiscible fluids
in the jet, namely,

qi =
Qi

U L2
=
[
ux(x) + f(x)r2j (x)

]
πr2i (x)−

πr4i (x)

8λi

dpi(x)

dx
, (3.20)

and

qm =
Qm

U L2
=
[
ux(x) + f(x)r2j (x)

]
π
(
rj(x)

2 − r2i (x)
)
. (3.21)

The validity of neglecting the contribution of the term proportional to the pressure
gradient in equation (3.21), will be checked a posteriori, when the results of the model
are compared with the experimental observations. Following the previous derivation, the
only remaining step to deduce the differential equations for ri and rj is to express the
pressure gradient d pi/dx as a function of rj . This is done making use of the normal stress
balance at the inner interface which, in the limit µm ≫ µi reads,

pi(x, r = ri(x)) = pm(x, r = ri(x)) +
χi

Cai
+ λm

[
u̇x(x) + 2rj(x)ṙj(x)f(x) + r2j (x)ḟ(x)

]
,

(3.22)
with λm = µm/µo and

χi =
1

ri(1 + ṙ2i )
1/2

− r̈i
(1 + ṙ2i )

3/2
. (3.23)

In equation (3.22), the expression for the term proportional to λm has been deduced
consistently with a plug flow-type of velocity field for the middle liquid of the form,

um(x, r) =
[
ux(x) + f(x)r2j (x)

]
ex − r

2

[
u̇x(x) + 2rj(x)ṙj(x)f(x) + r2j (x)ḟ

]
er (3.24)

where use of the continuity equation has been made. In (3.22), the pressure pm is deduced
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from the normal stress balance at the outer interface which, in the limit µo ≫ µm reads,

pm(x, r = rj(x)) = po(x, r = rj(x)) +
χ

Cam
− 2

[
∂urn

∂r
(r = rj) +

∂u′
r

∂r
(r = rj)

]
, (3.25)

with χ given in equation (3.16).
Therefore, taking the x-derivative of equations (3.22) and (3.25), with ṗo given in

equation (3.13) yields,

ṗi(x, r = ri(x)) =
χ̇

Cam
+ 2üx + 4f + 3rj ṙj ḟ +

5

2
r2j f̈ − 2

d

dx

(
∂u′

r

∂r
(r = rj)

)
+

+
χ̇i

Cai
+ λm

[
üx + 2ṙ2jf + 2rj r̈jf + 4rj ṙj ḟ + r2j f̈

]
,

(3.26)

with Cam = µoU/σm and Cai = µoU/σi.
The substitution of equation (3.26) into (3.20) provides with the system of equations

(3.20)-(3.21) for the two unknowns ri and rj , which needs to be complemented with the
pair of equations (3.12) and (3.19) expressing s(x) and ∂u′

r/∂r(r = rj) as a function of
rj . The only boundary conditions that need to be imposed to the system of equations
are ri(x = −h) = Di/(2L) and rj(x = −h) = Dm/(2L). Both ri(x) and rj(x) are also
calculated using a Newton-Raphson method: after a few iterations, the method converges
and the pair of equations (3.20)-(3.21) are satisfied at discrete collocations points.
The excellent agreement between the observed and the calculated shapes exhibited

in figures 8-9 confirms that the slender body theories developed in this section are a
powerful tool to predict the shapes of simple and compound jets flowing within another
immiscible liquid in realistic experimental situations. Let us point out that the reason
why the model works so well in the vicinity of the injection tube, where the jet interface
is not close to the axis of symmetry is thanks to the fact that the solution is dominated
by the boundary condition at x = −h. Moreover, in this region, the dynamical effects of
the outer stream are irrelevant, as well as the effect of the precise shape of the velocity
profile at the exit of the injection tube.

3.2. Equation for rj(x) in the limit Reo ≫ 1

Contrarily to the low Reynolds number case considered above, the pressure gradient
created by the perturbed velocity field is different from zero when Reo ≫ 1. Indeed, in
the near axis region, where urn ≃ −r/2u̇x since f = 0 in a plug type of flow, Bernoulli’s
equation reads, neglecting the higher order contribution u′2

x ≪ uxu
′
x,

p∞ = po(x) +
1

2
uo · uo ≃ po +

1

2

[
u2
x + 2uxu

′
x +

(
r2/4

)
u̇2
x

]
(3.27)

with ux the unperturbed velocity in the limit Reo ≫ 1 at r = 0 calculated numerically
(see figure 10) using ANSYS Fluent. Consequently, at the jet interface r = rj(x),

ṗo = −
[
uxu̇x + u̇xu

′
x + uxu̇

′
x +

(
r2j/4

)
u̇xüx

]
, (3.28)

with u′
x calculated using equation (3.8). The expression for the intensity of the sources

deduced from the kinematic boundary condition yields, in the plug flow case f = 0,

s(x) = −2
ux(x)rj

drj(x)
dx +

r2j
2

dux(x)
dx[

x−l∞√
(x−l∞)2+r2j

− x+h√
(x+h)2+r2j

] . (3.29)

In the high Reynolds number limit, the continuity equation for the flow of liquid within
the jet reads qi = Qi/UL2 = πur2j and, therefore, the one dimensional momentum
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(a) (b) (c)

Figure 8: Simple jets: comparison between the predicted and the observed shapes in the
case of λi = 10−2 for different geometrical arrangements. In (a), Cao = 1.04, Reo = 3.92,
Qi = 0.5ml h−1, U = 0.206m s−1. In (b), Cao = 1.04, Reo = 3.92, Qi = 0.5ml h−1,
U = 0.21m s−1. In (c), Cao = 1.04, Reo = 3.92, Qi = 0.5ml h−1, U = 0.21m s−1. Notice
that the agreement is excellent in spite of Reo ∼ O(1). The agreement is equally good
for the cases in which Reo ≪ 1.

(a) (b) (c)

Figure 9: Compound jets: comparison between the predicted and the observed shapes for
different values of the control parameters when the middle fluid is Propylene Glycol and
the outer fluid viscosity is µo = 1000 cP. In (a), λm = 0.042, λi = 0.005, Ca′o = µoU/(σi+
σm) = 0.7, Reo = 0.027, Qi = 0.1ml h−1, Qm = 0.1ml h−1, U = 0.014m s−1. In (b),
λm = 0.04, λi = 0.005, Ca′o = 0.7, Reo = 0.027, Qi = 0.3ml h−1, Qm = 0.3ml h−1,
U = 0.014m s−1. In (c), λm = 0.04, λi = 0.01, Ca′o = 1.79, Reo = 0.067, Qi = 1ml h−1,
Qm = 1ml h−1, U = 0.035m s−1.
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Figure 10: Numerically calculated function ux in the high Reynolds number limit for the
particular case H/L = 0.97 and D/L = 0.45.

equation deduced in Eggers & Dupont (1994) provides with the following equation for
rj(x):

−2q2i ṙj
π2r5j

= −ρo
ρi

[
ṗo +

σ

ρo U2 L
χ̇

]
− 6qi

πReo
λi

r̈jrj − ṙ2j
r4j

ρo
ρi

(3.30)

which is solved together with equations (3.8), (3.16), (3.28) and (3.29) using a Newton-
Raphson method. The only boundary condition that needs to be imposed to the system
of equations is rj(x = −h) = Di/(2L).
Figure 11 also shows an excellent agreement between the calculated and the experimen-

tal shapes, a fact which gives support to the high Reynolds number slender body theory
for capillary flows which, up to our knowledge, has been developed here for the first time.
Let us point out that the the slight deviations observed in figure 11 are associated to the
lateral oscillations of the jet triggered by Kelvin-Helmholtz instabilities.

4. Scaling the drop diameters and the drop formation frequencies

Assuming that the drop emission process is periodic, the frequency of drop formation f
can be calculated as the ratio between the velocity at which the tip of the jet is convected
downstream the region where drops are emitted, divided by a length ℓ0, namely,

f =
2U

ℓ0
for Reo . O(1) and f =

U

ℓ0
for Reo ≫ 1 . (4.1)

Notice that, in marked contrast with the process of bubble generation, in which the
fragmentation of the gas ligament is forced by the pressure gradient of the outer flow
(see Evangelio et al. (2015) for details), drops are created in this case as a consequence
of the growth of a capillary instability. Consequently, ℓ0 in equation (4.1) represents the
length of the liquid cylinder for which capillary instabilities grow faster. The reason for
the factor 2 multiplying U in equation (4.1), is due to the fact that the maximum velocity
of a Poisueille velocity profile, which is reached where the jet is located i.e, at the axis
of symmetry, is twice the mean velocity.
Denoting by Q the total flow rate of the liquids to be dispersed, i.e., Q = Qi in the

case of generation of simple emulsions and Q = Qi+Qm in the case of double emulsions,
continuity demands that

πD3
d

6
f = Q , (4.2)
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(a) (b) (c)

Figure 11: Comparison between the predicted and the observed shapes of steady liquid
jets in the case of generation of oil drops in water, for which Reo ≫ 1 and σ = 0.04
Nm−1. In all the cases, λi = 5. In (a), Qi = 40ml h−1, U = 0.75m s−1, Reo = 755. In
(b), Qi = 20ml h−1, U = 0.75m s−1, Reo = 755. In (c), Qi = 50ml h−1, U = 0.85m s−1,
Reo = 850.

with Dd the outer diameter of the drop. Therefore, making use of equations (4.1)-(4.2),

Dd

L
=

[
3ℓ0/L

π
q

]1/3
for Reo . O(1) and

Dd

L
=

[
6ℓ0/L

π
q

]1/3
for Reo ≫ 1

(4.3)
with q = Q/(U L2). Since, in the high Reynolds number case, continuity demands that
ℓ0/L ∝ q1/2, equations (4.1)-(4.3) yield f ∝ U/(Lq1/2) and Dd/L ∝ q1/2, being these
scalings confirmed in figure 12 where, however, a significant dispersion in the experimental
data is observed with respect to the expected trends. The dispersion depicted in figure 12
can be attributed to the lateral fluctuations experienced by the jets in the experiments
of the type shown in figure 3, where Reo ∼ 103 is high enough for Kelvin-Helmholtz
non axisymmetric instabilities to develop and, moreover, these values of the Reynolds
number are also near the threshold for which the flow in the extraction tube experiences
a laminar-turbulent transition.
In contrast, the production frequency of simple and compound drops is rather constant
in the low Reynolds number case. This is due to the fact that the highly stretched liquid
jets depicted in figures 4-5 are steady upstream the location where the drop production
process takes place. Therefore, in the present case, it is worth calculating the wavelength
of maximum amplification of capillary waves. For that purpose, we will make use of the
dispersion relation,

D(ω, k) = −iω

(
2 +

k2

4λi

)
+ ik

[
2ux∞ + f∞r2j∞

(
4− 2

λi

)]
− k2

8λi Ca
+

+ i k3

(
ux∞

4λi
+

f∞r2j∞
4λi

)
+

k4

8λi Ca
= 0 ,

(4.4)

deduced in Gordillo et al. (2014) and in the Appendix for cylindrical jets and which,
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Figure 12: This figure shows that the diameters (a) and the frequencies (b) of the oil drops
formed in water (Reo ≫ 1), follow the expected scalings Dd ∝ Lq1/2 and f ∝ U/(Lq1/2)
respectively. However, notice that the experimental data is rather dispersed with respect
to the predicted trends.

in spite of its simplicity, is able to reproduce the results obtained using the much more
involved dispersion relation due to Tomotika (1935). In (4.4) k is a real number and
denotes the wavenumber -made dimensionless using the characteristic length Rj∞-, ω is
the complex frequency -made dimensionless using U and Rj∞ as characteristic scales for
the velocity and length respectively-, ux∞ = 2, f∞ = −8 are the asymptotic values of
the functions in figure 7 and rj∞ is the solution of the continuity equation,

qi =
[
ux∞ + f∞r2j∞

]
πr2j∞ −

πr4j∞
2λi

f∞ , (4.5)

which is deduced setting to zero all the x-derivatives in equation (3.14). Equation (4.5)
will also be used in the case of generation of double emulsions: indeed, the meaning that
the flow rate ratio qi instead of q appears in equation (4.5), is due to the fact that the
capillary breakup of the inner jet triggers the fragmentation of the compound jet. In
equation (4.4), Ca = Ca′o = µoU/(σi+σm) in the case of double emulsions i.e., from the
point of view of the stability analysis, a compound jet can be viewed as a simple jet with
an effective interfacial tension coefficient σ = σi+σm whereas, in the case of simple jets,
Ca = Cao.
The dispersion relation (4.4) is used to calculate the wavelength of maximum amplifi-

cation of capillary disturbances as,

ℓ0
L

=
2π

kmax
rj∞ (4.6)

with kmax(Ca, λi) ∈ ℜ indicating the wavenumber maximizing the imaginary part of the
complex frequency ω in D(ω, k) = 0.
Once ℓ0/L is known from the solution of equations (4.4)-(4.6), both f and Dd are

calculated making use of equations (4.1) and (4.3). The results obtained, depicted in
figures 13-14, are in excellent agreement with the experimental measurements. Note also
that the dispersion of the experimental data with respect to the expected trends is quite
narrow, a fact confirming the periodicity of the drop emission process suggested in figures
4-5.
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Figure 13: Case of simple emulsions. This figure shows that the diameters (a) and the
frequencies (b) of the simple emulsions generated when Reo . O(1), follow the expected
scalings given in equations (4.3) and (4.1) respectively, with ℓo/L calculated by means
of equation (4.6) and kmax deduced using (4.4). Notice that, in contrast with the high
Reynolds number case, the dispersion of the experimental data with respect to the ex-
pected scaling is small.
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Figure 14: Case of double emulsions. This figure shows that the diameters (a) and the
frequencies (b) of the double emulsions generated when Reo . O(1), follow the expected
scalings given in equations (4.3) and (4.1) respectively, with ℓo/L calculated by means
of equation (4.6) and kmax deduced using (4.4). Notice that, in contrast with the high
Reynolds number case, the dispersion of the experimental data with respect to the ex-
pected scaling is small. In this case, the capillary number is defined using an ’effective’
interfacial tension coefficient, σ = σi + σm.

5. Stability Analysis in the limit of small Reynolds numbers

Now, it remains to answer the following question: which is the critical capillary num-
ber Ca∗(λi, qi) above which simple or compound drops are periodically produced as a
consequence of the capillary breakup of highly stretched steady jets like those depicted in
figures 4-5? It has been reported in Gañán Calvo & Riesco-Chueca (2006); Gañán Calvo
et al. (2006, 2007); Gañán Calvo (2008) that the dependence of the critical capillary
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Figure 15: Figures (a)-(b) show the experimental shapes of simple jets for two values of
the viscosity ratio. Figure (c) shows the experimental values of the capillary numbers for
which simple or compound drops are generated as a consequence of the capillary breakup
of highly stretched steady capillary jets. In the case of simple emulsions, Cao = µoU/σ
and for double emulsions, Ca′o = µoU/(σi + σm). Observe that, in our experiments,
the minimum values of the capillary numbers above which steady jets and, therefore,
droplets with a low size dispersion are produced, is well below the critical capillary
number Ca∗ calculated under the parallel flow assumption (dispersion relation (4.4),

Ca∗ ≃ 0.139λ
−1/2
i ). However, if the x-dependent terms expressing that the unperturbed

jet diameter decreases downstream are included in the analysis (dispersion relation 5.1),
the agreement between observations and the predictions improves notably as x lies within
the realistic values depicted in figures (a)-(b). Dashed lines represent the values of the
critical capillary number calculated using the dispersion relation (5.1) for fixed values of
x. All the results shown correspond to a value of the flow rate ratio qi = 10−3. The values
of the critical capillary number, however, are insensitive to variations of qi for qi ≪ 1.
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number with the viscosity ratio is of the form Ca∗ = 0.139λ
−1/2
i in the type of flows gen-

erated in flow-focusing devices. This result is obtained by solving the pair of equations
DT (ω, k) = 0 and ∂DT /∂k = 0 corresponding to Im(ω) = 0, with DT (ω, k) the dis-
persion relation given in equations (1)-(4) of Gañán Calvo, Herrada & Garstecki (2006),
which is a generalization of the already rather involved dispersion relation given in equa-
tions (34)-(35) of Tomotika (1935). Motivated by this finding, we compare in figure 15 the
values of the critical capillary numbers measured experimentally with the ones obtained
solving the system D(ω, k) = 0 and ∂D/∂k(ω, k) = 0 corresponding to Im(ω) = 0, with
D(ω, k) ̸= DT (ω, k) the much simpler dispersion relation given in equation (4.4) -see the
Appendix and Gordillo et al. (2014) for details-. Our calculations also provide with a

value for the critical capillary number Ca∗ ≃ 0.139λ
−1/2
i (curve Tomotika in figure 15),

independent of qi for qi ≪ 1 in a much more straightforward way than that followed in
Gañán Calvo & Riesco-Chueca (2006); Gañán Calvo et al. (2006, 2007); Gañán Calvo
(2008); Herrada et al. (2010), but do not reproduce the experimental observations. The
reason behind this discrepancy is associated with the fact that the dispersion relation
(4.4) has been deduced assuming that the jet is cylindrical, in marked contrast with the
experimental evidence depicted in figures 4-5 and 15a-b, where it is shown that drops
are produced from the breakup of capillary jets experiencing a strong stretching in the
downstream direction. In Gordillo et al. (2014), we described a new stabilization mech-
anism which is only present in converging capillary jets, i.e., in jets such that ṙj(x) < 0
and also found that the values of the critical capillary number for the flow to be globally
stable, namely, for steady jets to be produced, are smaller than in the case of cylindri-
cal jets. Moreover, in order to circumvent solving the equations for the global stability
analysis, we also suggested in Gordillo et al. (2014) that the higher stability exhibited by
stretched capillary jets could be qualitatively explained and quantified, in a first approx-
imation and thanks to the fact that the unperturbed flow is slender i.e., drj0/dx(x) ≪ 1
with rj0(x) the unperturbed jet radius, by performing a local spatio-temporal stability
analysis using the dispersion relation (see the Appendix for details)

D′(ω, k, x) = −iω

(
2 +

k2

4λi
− ik

ṙj0
2λi

)
+ ik

[
2ux + fr2j0
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)
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]
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[
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8λi Ca
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r3j0ḟ
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(
7

4λi
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)]
+

+ i k3

(
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4λi
+

fr2j0
4λi

− 5ṙj0
8Caλi

)
+

k4

8λi Ca
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(5.1)

with

β(x) = 2
d

dx
(ux rj0) +

ṙ2j0 + r̈j0rj0

4λiCa
+ 4r3j0ḟ −

2r3j0ḟ

λi
+ fr2j0ṙj0

(
12− 6

λi

)
. (5.2)

In (5.1)-(5.2), rj0(x), ux(x), f(x), ω(x) = ΩRj0(x)/U and k(x) = KRj0(x), are slowly
varying functions of x, with Ω and K the dimensional frequency and wavenumber re-
spectively. Notice that D′(ω, k, x & O(1)) → D(ω, k) since u̇x(x & O(1)) → 0, ṙj0(x &
O(1)) → 0 and ḟ(x & O(1)) → 0.
In figure 15 we have calculated Ca∗(λi, qi) for fixed values of x by finding the values

of the critical capillary number in the dispersion relation (5.1) for given values of λi and
qi i.e., by solving the system D′(ω, k, x) = 0 and ∂D′/∂k(ω, k, x) = 0 corresponding to
Im(ω) = 0. The result, depicted in figure 15, shows that the effect of decreasing the value
of x in equations (5.1)-(5.2) (which is equivalent to increase the value of |ṙj0| and therefore
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decrease the slenderness of the flow) is to decrease the value of the critical capillary
number with respect to that predicted by the dispersion relation (4.4) corresponding to
the case of purely cylindrical jets. Interestingly enough, the results obtained using the
range of values of x for which drops are emitted from the tip of the jets (see figure 15a-b),
are in good agreement with the experimental observations. Let us emphasize here that,
as it was shown in Gordillo et al. (2014), the higher stability exhibited by the types of
stretched jets described here is not associated with the term representing the stretching
of the fluid elements, 2rj0u̇x, which is well known to promote the stabilization of the flow
(Eggers & Villermaux 2008).
Thanks to the strong stretching experienced by the simple or compound capillary

jets generated using the confined selective withdrawal geometry presented in Evangelio
et al. (2015), the critical capillary number above which drops are regularly produced as
a consequence of the capillary breakup of a steady jet, is below the corresponding values
characterizing other methodologies, like flow focusing (Gañán Calvo & Riesco-Chueca
2006; Gañán Calvo et al. 2006, 2007; Gañán Calvo 2008; Herrada et al. 2010). Therefore,
thanks to the fact that the jets produced here are less slender than the jets created using
other technologies, the confined selective withdrawal method possesses the advantage of
producing simple or compound drops in a controllable way for comparatively small values
of the outer capillary number, with the subsequent saving of energy and of outer liquid.

6. Conclusions

In this contribution, we have presented a practical method for the generation of simple
or double emulsions, based on the capillary breakup of highly stretched capillary jets.
These jets are produced when either a liquid or a couple of them are injected from either
a nozzle or a coaxial nozzle within a coflow of another liquid flowing from a pressurized
reservoir towards a long extraction tube. The emulsions generated in such a way are
composed of uniformly-sized micro droplets if the Reynolds number characterizing the
flow of the continuous phase, Reo, is of order unity or smaller and the capillary number is
above a critical value Ca∗ of order unity. Under these conditions, our theoretical analysis
provides with analytical expressions for the drop generation frequencies, f , and for the
diameters of the drops produced, Dd. The equations for f and Dd are expressed as a
function of the width of the extraction tube L, the mean velocity of the outer liquid in
the extraction tube U , and of the following dimensionless parameters: the viscosity ratio
λi = µi/µo, with µi and µo the viscosities of the inner and outer fluids respectively, the
capillary number Ca = µoU/σ, with σ the interfacial tension coefficient, and the flow
rate ratio qi = Qi/(U L2), with Qi the flow rate of the inner fluid. In the case of double
emulsions, the parameter σ = σi+σm in the definition of Ca, represents the addition of σi,
which is the interfacial tension coefficient between the inner and the middle fluids and σm,
which is the corresponding coefficient between the middle fluid and the continuous phase.
The outer diameters of the drops composing the double emulsions are also dependent on
the parameter q = Q/(U L2), with Q the sum of the flow rates of the inner and middle
fluids. The equations provided for f and Dd are valid whenever Ca > Ca∗(λi, qi), with
Ca∗ ≃ Ca∗(λi) in the limit qi ≪ 1. This fact indicates that uniformly sized droplets with
arbitrary small diameters can be produced using this methodology. This is so because,
under these circumstances, the analysis predicts that the simple or compound capillary
jets are globally stable namely, steady, at the entrance of the extraction tube and, in
addition, our results indicate that the drop formation frequencies are those for which
the capillary instabilities in the cylindrical portion of the jet, grow faster. The values
of Ca∗ above which a steady jet is formed, namely, the flow is globally stable, are well
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predicted by a local spatio-temporal stability analysis, but only when the leading order
terms expressing that the unperturbed solution varies downstream, are included in the
analysis. In agreement with the experimental observations, our theory reveals that the
highly stretched capillary jets generated using the present design are more stable than
the slightly convergent cylindrical jets generated using other methodologies. This is the
reason behind the fact that the critical capillary numbers above which stable jets are
produced in the confined selective withdrawal geometry, are smaller than in the flow
focusing one, a geometry for which it has been reported that the dependence of the

critical capillary number with the viscosity ratio is of the form Ca∗ = 0.139λ
−1/2
i (Gañán

Calvo & Riesco-Chueca 2006; Gañán Calvo et al. 2006, 2007; Gañán Calvo 2008).

Moreover, since the analytical description of capillary jets surrounded by another liquid
is still far from being comparable to the advances accomplished in the analysis of the
analogous case of liquid jets in air, we have also provided a theoretical framework, based
on a slender body approach, to describe the steady shapes of axisymmetric simple or
compound jets flowing within an immiscible liquid in the limits Reo ≫ 1 and Reo . O(1).
Our theory is in excellent agreement with experimental observations.

This work has been supported by the Spanish MINECO under Project DPI2014-59292-
C3-2-P, partly financed through European funds. The authors are grateful to Prof. Ignacio
González Loscertales for providing us with a coaxial injection tube.

Appendix A. Local stability analysis of steady jets at low values of
the Reynolds number

The dispersion relation to be deduced in what follows is built up starting from the
unsteady continuity equation

∂r2j
∂t

+
∂

∂ x

[(
ux + fr2j

)
r2j −

r4j
8λi

∂pi
∂x

]
= 0 , (A 1)

which needs to be solved together with the kinematic condition at the jet interface, which
differs from equation (3.11) in that, in this case, unsteady terms need to be retained:

u′
r =

∂rj
∂t

+
[
ux(x) + f(x)r2j

] drj(x)
dx

+
rj
2

dux(x)

dx
+

r3j
4

df

dx
(x) . (A 2)

In equations (A 1)-(A 2), the dimensionless time is related to its dimensional counterpart
as t = TU/L.

Since the local stability analysis will be performed in a portion of the jet which is
far from the nozzle, where the flow is slender, i.e., where drj0/dx ≪ 1, the perturbed
radial velocity field created by the presence of the jet is approximated here, following the
explanation given after equation (3.9), as

u′
r ≃ s(x, t)

r
⇒ ∂u′

r

∂r
(r = rj) = −u′

r

rj
. (A 3)

Introducing equations (A 2)-(A 3) into (3.17) and substituting the resulting expression
into the unsteady mass conservation equation (A 1), yields the following dimensionless



Simple and double microemulsions via the capillary breakup of highly stretched liquid jets25

partial differential equation for rj(x, t),
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(A 4)

Assuming that the wavelength of the perturbation is much smaller than the length
along which the steady jet radius experiences variations of its same order of magnitude,
with this condition clearly verified for x & O(1), we look for traveling-wave solutions to
equation (A 4), of the form

rj = rj0(x) + ei(k̄x−ω̄ t)rj1 (A 5)

with rj0 the unperturbed jet radius. In equation (A 5), k̄ = KL and ω̄ = ΩL/U indicate,
respectively, the dimensionless counterparts of the dimensional wavenumber, K, and of
the dimensional frequency, Ω. Once the ansatz (A 5) is introduced into equation (A 4),
and retaining only linear terms in rj1 in the resulting expression yields,
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with

β(x) = 2
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dx
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4λiCa
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In (A 6) the local dimensionless variables ω(x) = ω̄rj0(x) ∼ O(1) and k = k̄ rj0(x) ∼
O(1), have been defined. To deduce the dispersion relation (A 6) we have retained only
order unity terms as well as the leading order non parallel terms, i.e., those with an
order of magnitude ∼ O(ṙj0(x)) ≪ 1. The interest reader is directed to the Appendix of
Gordillo et al. (2014) for further algebraic details.
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Gañán Calvo, A.M., Herrada, M. & Garstecki, P. 2006 Bubbling in unbounded coflowing

liquids. Phys. Rev. Lett. 96, 124504.
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