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When a drop impacts a smooth, dry surface at a velocity above the so-called critical speed
for drop splashing, the initial liquid volume losses its integrity, fragmenting into tiny
droplets violently ejected radially outwards. Here, we make use of the model in Riboux
& Gordillo (2014), of a one-dimensional approximation for the flow in the ejected liquid
sheet and of balances of mass and momentum at the border of the sheet, to calculate
mean sizes and velocities of the ejected drops. The predictions of the model are in good
agreement with experiments.

1. Introduction

By the end of the nineteenth century and making use of high speed photography Wor-
thington (1908) pioneered the phenomenological description of very fast hydrodynamic
events, like those caused by the impact of a drop against a solid, that take place, quot-
ing Worthington, ‘in the twinkle of an eye’. Recently, helped by the advances in high
speed video imaging, a wealth of scientific papers have revealed unforeseen aspects of
drop impact, among which one could cite the critical roles played by the structure of
the solid surface Richard et al. (2002); Duez et al. (2007); Bird et al. (2013) or by the
gaseous atmosphere in promoting or inhibiting the splash Xu et al. (2005); Mandre et al.
(2009); Duchemin & Josserand (2011); Latka et al. (2012). During the past decades,
many contributions have been devoted to deduce a criterion to decipher the precise con-
ditions under which a drop hitting a solid surface either conserves its integrity after
impact or disintegrates into smaller fragments Mundo et al. (1995); Rioboo et al. (2002);
Josserand & Zaleski (2003); Xu et al. (2005); Yarin (2006); Bird et al. (2009); Mandre
et al. (2009); Duchemin & Josserand (2011); Latka et al. (2012); Kolinski et al. (2012);
Palacios et al. (2013); Driscoll et al. (2010). However, to our knowledge, the only splash
criterion compatible with all the available experimental evidences and which predicts the
splash threshold velocity with small relative errors for smooth dry surfaces, has only been
deduced recently by Riboux & Gordillo (2014). The theory proposed, which is supported
by a thorough experimental study as well as by the data published by Mundo et al.
(1995); Xu et al. (2005); Palacios et al. (2013); Stevens (2014), shows that the critical
impact velocity above which splashing occurs, takes place when the extremely thin and
fast liquid sheet, which is expelled in the direction tangent to the solid as a consequence
of the impact, is accelerated vertically up to velocities larger than those caused by the
capillary retraction of the liquid rim. The vertical accelerations imparted to the edge of
the spreading sheet, which possesses a characteristic thickness of the order of a hundredth
of the drop radius, are produced by the lift force exerted by the surrounding gaseous at-
mosphere. The lift results from the addition of the lubrication force exerted between the

† Email address for correspondence: griboux@us.es & jgordill@us.es



2 G. Riboux and J.M. Gordillo

ρ σ µ R ℓσ V ∗ Oh× 103

(kg/m3) (mN/m) (cP) (mm) (mm) (m/s) (-)

(a) 789 22.6 1.0 1.04 1.71 2.19 7.3
(b) 854 17.2 1.3 0.86 1.43 1.70 11.4
(c) 913 18.6 4.6 0.89 1.44 1.69 37.1
(d) 1000 19.5 10.0 0.90 1.41 2.01 75.3

Table 1. Physical properties of the different fluids used, drop radius, capillary length,
impact velocity for splashing and the corresponding Ohnesorge number, defined here as
Oh=

√
We/Re=µ/

√
ρRσ. (a) Ethanol, (b) Decamethyltetrasiloxane, (c) Poly(Dimethylsiloxane)

and (d) 10 cP Silicone Oil.

lamella and the substrate, which strongly depends on the mean free path between gas
molecules, and on the aerodynamic forces acting at the top part of it Riboux & Gordillo
(2014).
In this contribution we extend the theoretical results in Riboux & Gordillo (2014),

from now on R&G, to provide a detailed analysis of the drop disintegration into tiny
droplets taking place when the impact velocity is above the critical one. More precisely,
the motivation of the present study is to express the velocities as well as the radii of the
droplets ejected after the violent impact against the solid, as a function of the liquid and
gas physical properties, the initial drop radius and the impact velocity.
The paper is structured as follows: in section §2 we present the phenomenological

observations associated with the atomization of the splashing drop right after the impact,
§3 is dedicated to develop a theoretical model which is validated by comparison with the
experimental evidence in section §4, and §5 is devoted to present the conclusions.

2. Experimental study

Experiments are performed using the same setup as that employed in R&G, where
spherical millimetric drops of radii R fall under the action of gravity onto a dry glass
slide which is partially wetted by the liquids of physical properties provided in table 1,
being the contact angle in all cases considered close to ∼ 20o and ν = µ/ρ will indicate
from now on the liquid kinematic viscosity. The velocity V of the drops at the instant
of impact is controlled by imposing the vertical distance between the exit of the needles
and the substrate. The impact process is recorded using two high speed cameras, placed
perpendicular to each other, and operated using two different optical magnifications and
acquisition speeds (see R&G and the Appendix for details). Water is not included as one
of the working fluids in our experimental study because the limitations in the spatial
and temporal resolutions of our high speed cameras, impede an accurate measurement
of the tiny sizes - just a few microns- and large velocities - ∼ 20 m.s−1 - of the fragments
ejected. Nonetheless, we will make use in Appendix B of the experimental results of
splashing water droplets provided in Thoroddsen et al. (2012) to give further support to
our theory.
Figure 1 shows the time sequence of events occurring right after a drop of a liquid

with viscosity µ=1 cP falls onto the solid for increasing impact velocities. For the smaller
value of V (figure 1, first column), a liquid sheet of thickness Ht ≪ R, is expelled radially
outwards and tangent to the wall with a velocity Vt ≫ V for T > Te, with Te the ejection
time in R&G and T = 0 fixed at the instant when the drop first touches the substrate



The diameters and velocities of the droplets ejected after splashing 3

V =1.28 m/s V =2.01 m/s V =2.28 m/s V =2.58 m/s
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Figure 1. Effect of V on the splashing of the drop. Each image sequence corresponds to the
instants (a) T=-1.131 ms, (b) 0.029 ms, (c) 0.03 ms, (d) 0.05 ms, (e) 0.09 ms, (f) 0.21 ms,
(g) 0.28 ms, (h) 0.319 ms, (i) 0.609 ms, (j) 0.899 ms and (k) 1.189 ms. Images c–g possess a
higher spatiotemporal resolution than the rest of the images in the same column. The temporal
resolutions of each of the high speed cameras are 10µs and 58µs respectively. The liquid is
ethanol and the radius of the drop is R=1.04 mm. The critical velocity for splashing is V ∗=2.19
m/s.

(see figure 1). When the impact speed is slightly increased (figure 1, second column),
the lamella first dewets the substrate (figure 1f , second column) to contact it again
(figure 1g, second column) as a consequence of the radial growth of the rim caused by
capillary retraction. For velocities above the critical impact speed (image sequence a–k,
third column), the edge of the liquid sheet dewets the substrate and breaks into droplets
of characteristic radii Rd. These droplets are ejected outwards at a velocity substantially
larger than that of the impact (Figures 1i–k, third and fourth columns).
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µ=1.3 cP µ=4.6 cP µ=10.0 cP

(a)
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Figure 2. Effect of the viscosity µ on the splashing of a droplet for V=2.21±0.01 m/s and
R=0.88±0.023 mm. Each image sequence correspond to the instants (a) T=-0.261 ms, (b) 0.609
ms, (c) 0.899 ms, (d) 1.189 ms, (e) 2.349 ms and (f) 2.929 ms. The temporal resolution is 58µs.

Figure 2 shows the effect of varying the liquid viscosity by keeping the impact velocity
and the drop radius at nearly constant values. The three cases illustrated correspond
to impact velocities above the splash threshold namely, V > V ∗. Figure 2 shows that
an increase in liquid viscosity retards the instant at which droplets are first ejected and
also decreases the small angle the droplets form with the substrate, suggesting that the
vertical velocity component of the droplets is far smaller than the radial one. Figures 1–2
also reveal that the fragmentation process starts through the ejection of small droplets
departing right from the rim bordering the radially expanding lamella. Thus, the disinte-
gration of the edge of the liquid sheet, takes place in a fashion similar to that described
by Villermaux & Bossa (2011) and Peters et al. (2013).

3. Modeling the drop ejection process

The first steps to describe the disintegration of the drop occurring during the initial
instants after impact, are to determine the values of: i) the ejection time Te, ii) the initial
tangential velocity of the edge of the lamella, Vt(Te) and iii) its initial thickness, Ht(Te).
For that purpose, we make use of the previous results in R&G where, choosing R, V ,
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Figure 3. Sketch of the lamella for T > Te for V > V ∗ i.e., for impact velocities above which the
lamella dewets the substrate. This figure also illustrates the definitions of the different variables
needed to describe the position of the rim as well as the region at the root of the lamella where
the liquid is decelerated by viscosity. Note that since a ∝ t1/2 and ha ∝ t3/2, ha ≪ a for t ≪ 1.
The discontinuous line, located at a distance d ∝ t3/2 ∝ ha from the jet root, limits the region
from which fluid particles feed the lamella.
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Figure 4. Experimental values of the critical impact velocities V ∗ for different values of the
Ohnesorge number. The legend indicates the different fluids listed in table 1. Continuous lines
indicate the results of the model presented in R&G.

R/V , ρ V 2 as characteristic scales of length, velocity, time and pressure, with ρ the liquid
density and lower-case letters denoting dimensionless variables, it is shown that:
i. The radius of the circular area indicated in figures 1 and 3 evolves in time as a =

√
3 t.

For T < Te namely, before the lamella is ejected, a(t) indicates the radius of the wetted
area (figure 1). For T > Te, a is the distance between the drop axis of symmetry and
the radial position where the root of the lamella is located; therefore, a < rt, with rt the
radial position of the rim (see figure 3).
ii. The tangential velocity at which the lamella is initially ejected is vt(te) ≃ ȧ(te) =

1/2
√

3/te.

iii. The thickness of the edge of the lamella at the instant of ejection is ht ≃
√
12t

3/2
e /π.

iv. Since vt = ȧ at t = te namely, that the wetted area and the tip of the lamella
advance at the same speed, and due to the fact that the lamella can only be ejected if
its tip advances faster than the radius of the wetted area, te is calculated through

c1 Re−1 t−1/2
e +Re−2 Oh−2 = ä h2

t = c2t3/2e , (3.1)

which expresses that the ejection time is the instant at which the deceleration of the
edge of the lamella coincides with the deceleration of the wetted area, ä. In equation
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(3.1), Re = ρ V R/µ and Oh = µ/
√
ρRσ denote, respectively, the impact Reynolds and

Ohnesorge numbers, σ is the interfacial tension coefficient and c1 ≃
√
3/2 and c2 = 1.2

are constants adjusted experimentally. In R&G it was also shown that the ejection time
given by equation (3.1) possess the following high-Oh and low-Oh limits, respectively
given by te = 2Re−1/2 and te ∝ Re−4/3Oh−4/3.
Moreover, in R&G it is shown that, once the sheet is ejected, its edge experiences a

vertical lift force per unit length ℓ

ℓ = Kl µg Vt +Ku ρg V
2
t Ht (3.2)

which results from the addition of the lubrication force exerted by the gas in the wedge
region located between the advancing lamella and the substrate, Klµg Vt, and the suction
force exerted by the gas at the top part of it,Ku ρg V

2
t Ht. Here, the subscript g represents

gas quantities, Ku ≃ 0.3 is a constant determined numerically and the expression

Kl ≃ −(6/ tan2(α)) [ln (19.2λ/Ht)− ln (1 + 19.2λ/Ht)] , (3.3)

with λ denoting the mean free path of gas molecules, is deduced using lubrication theory
once it is assumed that the front part of the lamella can be approximated to a wedge
of constant angle α ∼ 60◦ while it is in contact with the substrate. Let us point out
here that α refers here to the angle the advancing front forms with the substrate at the
instant of ejection te (see R&G for details) and, thus, α is not related with the angle at
which drops are ejected. Indeed, the ejected droplets form an angle with the substrate
which can be approximated by the ratio between their vertical and horizontal velocity
components.
Thus, the force balance projected in the vertical direction, ρH2

t V̇v ∝ ℓ, with ℓ given
by (3.2), provides the vertical velocity at which the lamella is initially expelled, namely,

Vv(Te) = Cv

√
ℓ/ (ρHt) . (3.4)

As it is shown by R&G, the good agreement with their own experimental data as well as
with those in Mundo et al. (1995); Palacios et al. (2013); Xu et al. (2005); Stevens (2014),
indicates that the critical impact velocity V ∗ above which the drop disintegrates into
droplets, results from imposing that the vertical velocity (3.4) is such that Vv/Vr ∼ O(1),
a condition resulting in

√
ℓ/(2σ) ≃ 0.14, with Vr =

√
2σ/ρHt the capillary retraction

velocity (Taylor 1959; Culick 1960). Figure 4, which shows the comparison between the
splash threshold velocity V ∗ predicted by

√
ℓ/(2σ) ≃ 0.14 with ℓ given by equation (3.2)

and that measured experimentally for each of the four fluids listed in table 1, give further
support to our results in R&G. From now on, we will focus only on the description of
the drop fragmentation process for values of the velocity ratio V/V ∗ > 1.
So far, the theory in R&G has been tested for impact velocities below or equal to the

critical speed, so it is first necessary to check whether the theory is equally applicable to
calculate the initial values of Vv(Te) and Vt(Te) for V > V ∗. We will show below that
there exists a very good agreement between experiments and the theoretical values and
thus, the next step in our purpose to determine the velocities and sizes of the fragments
ejected from the rim, is to describe the liquid flow within the lamella formed for t > te
and extending from r = a(t) to r = rt > a (see figure 3).
In R&G it is also shown that, when viscous effects are neglected, the thickness of the

lamella and the liquid velocity at a =
√
3 t i.e., at the radial position where the root of

the lamella is located, are respectively given by

ha =

√
12

3π
t3/2 and va =

√
3/t , (3.5)
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being these equations valid for a . 1, namely, t . 1/3. However, in a real fluid, a boundary
layer of dimensional thickness ∆ ∼

√
ν Tr =

√
νR/V (ha/va)

1/2, with Tr ∼ R/V ha/va
the characteristic residence time of fluid particles entering the lamella, develops in the
region r ≃

√
3t. Indeed, from equation (6) in the Supplementary Material in R&G, it

can be deduced that, in the frame of reference moving at V ȧ, there exists a stagnation
point in the flow at a dimensionless distance d from the root of the lamella such that√
ad−1/2 ∼ ȧ ⇒ d ∝ t3/2 ∝ ha ≪

√
3t (see figures 1 and 3). Note that ∆ is the width

of a boundary layer developing in a region of dimensionless width similar to the only
relevant length scale characterizing this spatial region, i.e., the height of the root of
the lamella. The effect of the viscous shear force per unit length exerted in this region,
namely, Fτ = ρV 2Rfτ ∼ µV R/∆ va ha, is to decrease the liquid velocity from va down
to v+a (see figure 3) and to increase the height of the lamella from ha up to h+

a with
the expressions of va and ha given in (3.5). To relate the downstream quantities v+a and
h+
a with their corresponding upstream values, we make use of integral balances of mass

and momentum applied at the shaded region of figure 3, yielding ha va = h+
a v+a and

ha v
2
a − fτ = h+

a (v+a )
2
. Therefore, equations

v+a = va

(
1−

√
2/
√
Re va ha

)
, h+

a = ha

(
1−

√
2/
√

Re va ha

)−1

, (3.6)

constitute the initial conditions to be used next to predict the spatiotemporal evolution
of the lamella, with

√
2 a fixed proportionality constant and va and ha given in equation

(3.5). In equation (3.6), the viscous deceleration term is of order ∼ O(0.1) for the liquid
with the smallest viscosity and ∼ 0.5 for the liquid with µ = 10 cP.
To describe the dynamics of the portion of the liquid sheet extending from r ≃ a(t)

up to the radial position where the rim is located, namely, r = rt, we make use of the
fact that the viscous shear stresses can be neglected in this region because the liquid
is no longer in contact with the substrate (see the sketch in figure 3 and the images d
and e in figure 1, third and last columns). Additionally, since the local Weber number

characterizing the flow within the sheet is such that We (v+a )
2
ha ≫ 1, with We =

Re2 Oh2 the Weber number, the gradients of capillary pressure are negligible and, thus,
the momentum equation within the lamella reduces to

Du

Dt
= 0 , (3.7)

with u(r, t) denoting the liquid velocity inside the lamella and D/Dt ≡ ∂/∂ t + u∂/∂r
the material derivative. Equation (3.7) states that fluid particles conserve their velocities
for

√
3t . r < rt(t) i.e., up to the radial position rt(t) where the rim is located. The

equation for the thickness of the liquid sheet h(r, t) in the region
√
3t . r < rt(t), is

deduced making use of the mass balance, to yield

∂ (rh)

∂t
+

∂ (rhu)

∂ r
= 0 ⇒ D ln (rh)

D t
= −∂ u

∂ r
. (3.8)

Equations (3.7)–(3.8) representing the ballistic motion of fluid particles along the lamella,
are solved subjected to the initial conditions u(r =

√
3t, t) = v+a and h(r =

√
3t, t) = h+

a ,
with v+a and h+

a given in equation (3.6). Notice that, since ha ≪
√
3t, we impose the

boundary condition at r = a(t) and neglect the width of the region ∼ O(ha) where
the boundary layer develops. To find the solution of the system (3.7)–(3.8), we used a
Lagrangian numerical method which is quite similar to that described in Gekle & Gordillo
(2010).
The radial and vertical positions of the edge of the lamella, rt(t) and zt(t) respectively,

as well as its thickness, ht(t), are deduced applying the integral balances of mass and
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momentum at the rim (Taylor 1959),

π

4

dh2
t

dt
= [u(rt)− vt]h(rt) ,

drt
dt

= vt ,

π h2
t

4

dvt
dt

= [u(rt)− vt]
2
h(rt)− 2We−1 .

(3.9)

In equations (3.9), the geometry of the rim has been approximated to that of a torus
of minor radius ht(t)/2. Moreover, the smallness of the angle the spray forms with the
substrate, suggests to approximate the projection of the capillary force per unit length
in the direction tangent to the wall by ≃ 2σ and, as a consequence of the smallness
of the ratio ρg/ρ, air drag is neglected with respect to the flux of momentum entering
the lamella. Equations in (3.9) need to be complemented with the force balance in the
vertical direction

π h2
t

4

dvv
dt

= −2We−1 zt
rt

+
1

2

ρg
ρ

Cl v
2
t ht with

dzt
dt

= vv , (3.10)

where the projection of the capillary force per unit length in the direction normal to
the wall, has been approximated by ≃ 2σzt/rt and the lift coefficient has been taken
as a constant, Cl = 1. We assume that the influx of vertical momentum into the rim is
negligible and, to simplify the model as much as possible, we do not take into account
the dependence of Cl neither with the angle of incidence nor with the Reynolds number
because our description does not retain the orientation of the tip of the lamella with
respect to the surrounding atmosphere. Since, as it will be shown below, the theory in
R&G is also valid to describe the ejection of the lamella for impact velocities above the
critical one, equations (3.9)–(3.10) are solved subjected to the following initial conditions

rt =
√
3 te , zt = 0 , ht =

√
12 t3/2e /π ,

vt = 1/2
√
3/te , vv = 2

√
ℓ/ (ρHt V 2) ,

(3.11)

where te is calculated using equation (3.1) for µ <10 cP and te = 2Re−1/2 for µ =10 cP.
The final step to complete our theory is to model the breakup time tb, i.e, the time at

which drops are ejected from the edge of the lamella. In Lhuissier & Villermaux (2011);
Agbaglah et al. (2013); Peters et al. (2013) and references therein, it is clearly shown that
the droplets composing the spray result from the amplification of Rayleigh–Taylor and
capillary instabilities developing in the azimuthal direction Thoroddsen et al. (2012). The
growth rates of these instabilities, however, are highly attenuated as a consequence of
simultaneous growth of the rim thickness. Thus, drops will only be ejected when the time
characterizing the radial growth of the rim, Th = (1/Ht dHt/dT )

−1
, is substantially larger

than either the capillary time Tc =
(
ρH3

t /8σ
)1/2

or the viscous time Tv = µHt/σ. In
the present case, since the local Ohnesorge number is such that Tv/Tc = µ/

√
ρHt σ ≪ 1,

the growth of perturbations will be controlled by the capillary instead of by the vis-
cous time. Figure 5 shows the time evolution of Tc/Th(t) =

√
We/8

(
h1/2

)
dh/dt,

calculated through equations (3.7)–(3.10) and solved subjected to the initial condi-
tions (3.6) and (3.11) for the different experimental conditions investigated. The func-
tion Tc/Th(t), reaches a constant value ∼ 0.075 for times T ≈ Tb, with Tb such that
d/dT [Tc/Th](T = Tb) = 0. In our model, we assume that drops will be ejected pre-
cisely at tb. This choice for tb is justified taking into account the following facts (Eggers
& Villermaux (2008)): i) the characteristic time of growth of a capillary instability is
∼ 3Tc, ii) Rayleigh’s stability analysis of capillary perturbations reveal that the dimen-
sionless wavenumber k with a fastest growth rate is k = πHt/λ ≃ 0.7, with λ indicating
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the wavelength of the perturbation, which is kept constant in time and iii) the growth
of capillary instabilities is inhibited for k > 1. Therefore, in order for capillary corru-
gations with characteristic initial wavenumbers k = 0.7 to be amplified up to the point
that drops are ejected from the rim, it is necessary that, in a time 3Tc, the variation of
the dimensionless wave number is such that ∆k < 0.3. This condition is equivalent to
dHt/dT×3Tc . 0.3Ht ⇒ Tc/Th . 0.1, a value which is very close and slightly larger than
the minimum value of Tc/Th, ∼ 0.075. Note from figure 5 that our criterion to choose
the instant of drop ejection, is consistent with the previous arguments. However, the way
Tb is calculated is nothing but a plausible assumption: indeed, in a real experiment, the
breakup time will strongly depend on the initial amplitude of azimuthal perturbations.
Moreover, the determination of Tb from very flat curves as those in figure 5 may result
in a non negligible uncertainty in the determination of the breakup time.

Moreover, since Tc ≪ Tb, drops will be ejected slightly after Tb is reached. Thus, we
neglect the contribution of Tc and assume that drops will be ejected right at Tb, with
their velocities and sizes determined from the solution of equations (3.7)–(3.10) subjected
to the initial conditions (3.6) and (3.11) particularized at the instant tb=Tb V/R. Let us
point out that, in our description, we assume that the mean diameters of the first drops
ejected can be approximated to the thickness of the rim at t = tb. The reason behind
this approximation is the following: the volume of liquid contained in the rim of diameter
h(tb) along a distance in the azimuthal direction equivalent to that of the most unstable
capillary wavelength (≃ 4.5h(tb)) would give rise to the ejection of a droplet with a
diameter ≃ 1.9ht(tb). However, only a fraction of this volume will be ejected as a droplet;
in fact, the simulations in Agbaglah et al. (2013) and the experiments in Thoroddsen
et al. (2012) show that the diameter of the drops ejected is rather similar to that of the
diameter of the rim, being this the reason why, in our model, we identify the diameter
of the drops with that of the rim at t = tb.

Figure 6, which shows the comparison of the measured ejection time with the value of
tb calculated as d/dt

[
h1/2dh/dt

]
(t = tb) = 0, being tb marked with a circle in figure 5

for each of the four fluids investigated and for different impact velocities, validates our
approach.

4. Comparison between observations and the model

Figures 7–8 show the horizontal (vt) and vertical (vv) velocity components of the tip
of the lamella at the instant of ejection, te, and also at the breakup time, tb, for each of
the four fluids investigated. The tangential and vertical velocities at te are respectively
calculated through vt(te) = ȧ(te) = 1/2

√
3 te and equation (3.4), with Cv = 2 and te

determined either using equation (3.1) for µ <10 cP or by means of the high Oh limit
te = 2Re−1/2 for µ =10 cP. The results shown in figures 7–8 imply that the theoretical
description of the ejection of the lamella in R&G, can be indeed extended to describe
the drop fragmentation process for impact velocities above the critical one, namely, for
V > V ∗. Moreover observe that, for a given fluid, vt(te) ≫ vv(te), a fact indicating
that the trajectory of the edge of the lamella forms a small angle with the substrate,
in accordance with the experimental evidences of figures 1 and 2. This observation is
more clearly depicted in figures 9–10, where the measured radial (rt) and vertical (zt)
positions of the edge of the lamella are compared with our predictions. Note that the
agreement is remarkable for each of the four fluids investigated and also that, as it was
anticipated above, zt ≪ rt. Moreover, the trajectories of the tip of the lamella in figures
9–10, represented up to t = 0.4 > 1/3, are calculated consistently with the range of
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Figure 5. Calculated ratio Tc/Th =
√

We/8
(
h1/2

)
dh/dt for different impact velocities and

the different liquids considered in the experimental study: (a) Ethanol, (b) Decamethyltetrasilox-
ane, (c) Poly(Dimethylsiloxane) and (d) 10 cP Silicone Oil. The circles (◦) indicate the instants
tb=Tb V/R at which the model predicts when the droplets are ejected. Each of the curves in the
figure start at te.

1 1.1 1.2 1.3 1.4
0

0.5

1

1.5

2

2.5

Tb V

R

(a)

1 1.1 1.2 1.3 1.4
0

0.5

1

1.5

2

2.5

(b)

1 1.1 1.2 1.3 1.4
0

2

4

6

8

Tb V

R

V/V ∗

(c)

1 1.1 1.2 1.3 1.4
0

2

4

6

8

V/V ∗

(d)

Figure 6. Comparison of the predicted breakup time tb with the experimental one for (a)
Ethanol, (b) Decamethyltetrasiloxane, (c) Poly(Dimethylsiloxane) and (d) 10 cP Silicone Oil.
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Figure 7. Tangential velocity of the lamella for impact velocities larger than the critical one,
V ∗, at the ejection time t = te (•) and at the break-up instant t = tb (◦). (a) Ethanol, (b)
Decamethyltetrasiloxane, (c) Poly(Dimethylsiloxane) and (d) 10 cP Silicone Oil, with lines in-
dicating the results of the model.

validity of equations (3.5). Indeed, figure 11 shows that the fluid particles entering the
rim at the instant t, were ejected from the root of the jet at ta < 1/3.
Figures 7–8 also reveal that, while vt(te) increases slightly with V/V ∗, vv(te) remains

practically unchanged within the range of impact velocities investigated. Also, note from
figures 7–8 that both vt(te) and vv(te) decrease when increasing the liquid viscosity.
Observe that all the experimental measurements at te are captured by our theory not
only qualitatively, but also quantitatively.
But, the main purpose of our model is to predict the horizontal and vertical veloc-

ity components as well as the diameters of the droplets formed at the edge of the
lamella. Figures 7–8 show that, as a consequence of the capillary deceleration of the
rim, vt(te) > vt(tb) and that vv(te) > vv(tb) with the velocities at tb calculated solving
the system of equations (3.7)–(3.10) subjected to the initial values predicted by our the-
ory i.e., equations (3.6) and (3.11). The agreement of our theory with the experimental
measurements is quantitative for the all the fluids listed in table 1 except for the liquid
with the largest viscosity.
The reason for the discrepancies with the liquid of µ = 10 cP is probably related to

the fact that the breakup time in this case is so large that ta > 1/3, thus exceeding the
limit of validity of equations 3.5 (see figure 11). Therefore, for ta > 1/3, the equations in
(3.5) should be substituted, for instance, by analogous expressions like those in Eggers
et al. (2010). This step is beyond the scope of this study which, as it has been shown
above, very well captures the sizes and velocities of the drops ejected in the cases of low
viscosity liquids.
In spite of the fact that the model is unable to accurately predict the velocities of the

fragments ejected for µ=10 cP, it is noteworthy that our approach predicts quantitatively



12 G. Riboux and J.M. Gordillo

1 1.1 1.2 1.3 1.4
0

0.2

0.4

0.6

0.8

1

Vv

V

(a)

1 1.1 1.2 1.3 1.4
0

0.2

0.4

0.6

0.8

1

(b)

1 1.1 1.2 1.3 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

Vv

V

V/V ∗

(c)

1 1.1 1.2 1.3 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

V/V ∗

(d)

Figure 8. Vertical velocity of the lamella for impact velocities larger than the critical one, V ∗ at
the ejection time t = te (•) and at the break-up instant t = tb (◦). (a) Ethanol, (b) Decamethyl-
tetrasiloxane, (c) Poly(Dimethylsiloxane) and (d) 10 cP Silicone Oil with lines indicating the
results of the model.

the sizes of the first drops ejected from the rim, as figure 12 shows. Finally, as a further
test for our theory, we have compared in figure 16 of Appendix B, the predictions of
our model with the experimental results in Thoroddsen et al. (2012), who studied the
velocities and sizes of the fragments ejected after the impact of high speed water droplets,
finding good agreement. The evidence in Appendix B indicates that the model presented
here is useful not only to quantify the ejection of the fastest fragments generated after
drop splashing at tb, but also to describe the continuous drop disintegration process
taking place for larger times.

5. Concluding remarks

In this contribution we present a model to predict the size and velocities of the frag-
ments ejected after a drop impacts a smooth wall at a velocity above the critical speed
described in Riboux & Gordillo (2014), also extending and providing further support to
our theory in R&G. The present description can be summarized as follows: fluid particles
conserve the tangential velocity given in equation (3.6), V +

a , they possess downstream
a narrow region of typical length ∼ Ha located where the drop meets the substrate,
≃

√
3RV T . Downstream the region of length ∼ Ha in which the fluid is decelerated by

viscous friction, the sheet is no longer in contact with the substrate and, therefore, the
radial velocities of fluid particles are conserved up to the radial position where the rim
is located. The rim itself is accelerated radially outwards as a consequence of the influx
of momentum transported by fluid particles ejected from ≃

√
3RV T and is decelerated

due to the action of the capillary forces. The rim, of initial thickness Ht(Te) ≪ R, also
translates in the direction perpendicular to the wall thanks to the initial vertical velocity
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Figure 9. Horizontal position of the edge of the lamella as function of time. Each figure corre-
sponds to the different fluids listed in table 1 with (a) Ethanol V/V ∗ = 1.15, (b) Decamethyl-
tetrasiloxane V/V ∗ = 1.20, (c) Poly(Dimethylsiloxane) V/V ∗ = 1.24 and (d) 10 cP Silicone Oil
V/V ∗ = 1.00. Continuous lines indicate the results of the model.
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Figure 10. Vertical position of the edge of the lamella as function of time. Each figure corre-
sponds to the different fluids listed in table 1 with (a) Ethanol V/V ∗ = 1.15, (b) Decamethyl-
tetrasiloxane V/V ∗ = 1.20, (c) Poly(Dimethylsiloxane) V/V ∗ = 1.24 and (d) 10 cP Silicone Oil
V/V ∗ = 1.00. Continuous lines indicate the results of the model.
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Figure 12. Comparison of the predicted radius of the first droplets ejected with the experiments
for (a) Ethanol, (b) Decamethyltetrasiloxane, (c) Poly(Dimethylsiloxane) and (d) 10 cP Silicone
Oil.

initially imparted by the lift force per unit length, ℓ, given in equation (3.2) as well as
by the lift force 1/2ρg V

2
t HtCl; capillarity contributes to decelerate the rim vertically.

Finally, droplets are ejected because the development of capillary and Rayleigh–Taylor
instabilities, favor the generation of corrugations of increasing amplitude which give rise
to the formation and ejection of drops at the instant when the ratio Th/Tc is large enough.
Here we have characterized this instant Tb as that for which Tc/Th reaches a minimum,
with Tc/Th ≃ 0.075. Here, Th and Tc denote the characteristic times of growth of the rim
thickness and of capillary instabilities, respectively. The diameters of the drops are close
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X

Z

Figure 13. Image showing the vertical grid lines used to predict the velocity of the first
ejected droplets.

to the diameter of the rim at Tb and their velocities are approximately equal to the rim
velocity at this instant.
Let us point out here that these results are valid for the case of smooth and partially

wetting solids with a static contact angle ∼ 20o. We would like to extend the theory in
R&G for a wider range of static contact angles and also, for rough surfaces.
This work has been supported by the Spanish MINECO under Project DPI2011-28356-

C03-01, partly financed through European funds.

Appendix A. Detection of the ejected droplets

The axisymmetry of the drop ejection process, which is recorded in a focus plane per-
pendicular to the solid substrate, suggests to divide each of the images composing the
experimental video sequence in two symmetrical parts with respect to the line perpen-
dicular to the point where the drop first touches the substrate, X = 0 (see figure 13).
The image processing algorithm developed here follows in time the position of the fastest
droplets ejected in each of the sides (X ≶ 0) and also provides their equivalent radii. For
that purpose, the algorithm computes first the time evolution of the variance of the grey
intensity at each of the vertical lines composing the Eulerian meshgrid depicted in figure
13. Due to the fact that the disintegration process does not take place in a preferential
azimuthal direction, the analysis of the experimental information obtained at the focus
plane is enough to describe the full drop ejection process. Figure 14(a) reveals that there
exists an instant, marked with a circle, for which the variance of the grey level of each of
the vertical lines experiences an abrupt change in time. Since this is precisely the instant
at which the fastest drop reaches a fixed horizontal distance from the impact point, the
slope of the line depicted in figure 14(b) (in pixels/s) is proportional to the horizontal
velocity of the first drop ejected in the focus plane. This velocity is used to estimate
the horizontal position of the first ejected drop, and this information is used to define a
box that encloses the drop and moves at the predicted horizontal velocity. The position
(Xd,Zd) of the barycenter of the drop as well as its area A are obtained using the image
processing toolbox of Matlab. The horizontal and vertical velocity components of the
first ejected drop are then accurately calculated as Vt = dXd/dT and Vv = dZd/dT ,
whereas the equivalent radius is Rd =

√
A/π, as shown in figure 15.

Appendix B. Predictions of the model with the experimental results
in Thoroddsen et al. (2012)

The limitations in the spatiotemporal resolution of our experimental setup prevented us
from studying the details of the disintegration of splashing water droplets. Consequently,
our experimental study does not cover a significative variation of the interfacial tension
coefficient. Thus, to further validate our model, we make use in figure 16 of the exper-
imental data in Thoroddsen et al. (2012), where the velocities of the fragments ejected
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Figure 14. (a) Evolution of the variance of the grey intensity as function of the image sequence
for each of the different vertical lines used in the predictor step. The black marker point indicates
the instant at which the fastest droplet crosses a given vertical line. (b) Horizontal position of
the black marker point in (a) as function of time. (c) Detection of the droplet position and the
droplet area by means of box moving at the predicted horizontal velocity.
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Figure 15. Droplet equivalent radius (a). Vertical (b) and horizontal (c) velocity components
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represents the horizontal velocity calculated in the predictor detection process, see figure 14(b).
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Figure 16. (a) Comparison between the experimental velocity of the droplets ejected as a
function of their diameter provided in figure 5a of Thoroddsen et al. (2012) and the predicted
velocity of the fragments, V v+a , plotted as a function of Rh+

a ≃ 2Rd, with v+a and h+
a given in

(3.5)–(3.6). (b) Comparison between the velocity of the fragments ejected as a function of the
time after impact given in figure 5b of Thoroddsen et al. (2012) and the predicted velocity, V v+a ,
given in equation (3.6). The fluid used by Thoroddsen et al. (2012) is water and the Reynolds
number based on the drop radius is Re ≈ 1.45 × 104. The ejection time calculated through
equation (3.1) using the experimental parameters in Thoroddsen et al. (2012) is Te ≃ 7 µs, in
agreement with the experimental observations.

after the splashing of a water droplet of diameter ∼ 5.5 mm impacting onto a smooth
substrate at a velocity V≃5 m.s−1, are represented as a function of both their sizes and
the time after impact. The high impact speed of the drops analyzed in Thoroddsen et al.
(2012), inhibits the formation of a long lamella; in fact, the fragments are ejected slightly
downstream the root of the jet i.e., drops are ejected from rt ≃ a(t). Therefore, in order
to compare with these experimental results, figure 16a represents the values of V v+a as a
function of Rh+

a and in figure 16b, we plot V v+a as a function of the time after impact,
with v+a and h+

a calculated using equations (3.5)–(3.6) for times t > te, with te given by
equation (3.1). Figure 16 shows that our model is able to faithfully capture the ejection
time as well as the velocities and sizes of the drops ejected for times slightly above te.
Indeed, note that the fragmentation process for times closer to te, are affected by the
phase of oscillation of the impacting droplets, which are deformed away from the spher-
ical shape due to air resistance Thoroddsen et al. (2012), a fact explaining the slight
deviation of the prediction for times below 15 µs. Moreover, Thoroddsen et al. (2012),
reports the value of the ejection time for impacting droplets with values of the Reynolds
and Weber numbers based on R, Re = 9900 and We = 490, Te ∼ 10 µs, a value that
possesses an uncertainty of ≃ 1µs since the acquisition frequency is 5 × 105 frames per
second. The value of the ejection time calculated using equation (3.1) is Te ≃ 12 µs. All
these evidences suggest that the model presented here is useful not only to quantify the
ejection of the fastest fragments generated after drop splashing at tb, but also to describe
the continuous drop disintegration process taking place for larger times.
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