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The Banzhaf index is a function determining the power or influence in the decision of 
a set of agents. The extension of this index to the family of the cooperative games is 
named Banzhaf value. The relationships of closeness among the agents should modify 
their power. Games with a priori unions study situations where the closeness relations 
among the agents are taken into account. In this model the agents are organized in an 
a priori partition where each element of the partition represents a group of agents with 
close interests or ideas. The power is determined in two steps, first as a problem among 
the unions and later, inside each one, the power of each agent is determined. Proximity 
relations extend this model considering leveled closeness among the agents. In this paper 
we analyze a version of the Banzhaf value for games with a proximity relation and we 
show the interest of this value by applying it to the allocation of the power of the political 
groups in the European Parliament.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In decision situations for committees or centers of distributed control the quantification of the power of each member 
is an important element to analyze the final position and the different treatment of each of them. Simple games are a way 
from the cooperative game theory to represent these situations and to study the power of their elements. A power index 
for simple games is a function determining the power or influence of the agents in each simple game. One of the most 
known power indices, the Banzhaf index, was introduced by Penrose [1] in 1946 and later by Banzhaf [2] in 1965. In this 
context the Banzhaf index was generalized for all cooperative game as the Banzhaf value [3]. The Banzhaf value has been 
studied in different scenarios incorporating new information over the relationships of the agents (coalition structures [4], 
communication situations [5], hierarchical relations [6], etc.). Owen [7] proposed a different model with an evident interest 
for simple games. He considered that agents are organized a priori in groups taking into account the closeness of their 
interests (ideas). So, besides the game he supposed known a partition of the set of agents in a priori unions based in the 
relations among the agents. These unions are considered as a starting point for further negotiations. This model allows to 
determine the power of the agents in a simple game taking into account the a priori unions among them. But closeness is 
usually a leveled property. For instance, political groups can be organized in a priori ideological unions. The Banzhaf value 
was studied for this model in [8]. Casajus [9] proposed another version of the Owen model considering also information 
about the internal estructure of the unions. But the Banzhaf value has not been studied for this version.
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Considering equal every ideological closeness between two political parties is actually a simplification of the situation. 
Aubin [10] and Butnariu [11] introduced fuzzy sets to describe leveled participation of the players in the coalitions (fuzzy 
coalitions). Proximity relations are reflexive and transitive fuzzy binary relations. Fernández et al. [12] introduced proximity 
relations to explain the relations among the players in a cooperative game, extending the Owen model in a natural way for 
another known value, the Shapley value. Related works are given in Meng [13] and Meng and Zhang[14], but they consider 
a game with fuzzy coalitions with a crisp system of a priori unions. Hence this model contains a different approach. Others 
analyze this kind of relations in a probabilistic way, Calvo et al. [15] or Kaniovski and Das [16], but they do not use 
the Owen model. Now, we propose to use proximity relations to study the power of an agent in a game by the Banzhaf 
value. Section 2 is dedicated to the preliminaries about cooperative games, a priori unions and fuzzy sets. In section 3 we 
introduce our Banzhaf value for games with a proximity relation among the agents and particularly the Banzhaf–Owen value 
is extended to the Casajus version of the Owen model. In section 4 we propose axioms for the proposed value extending 
known properties of the classical Banzhaf value to our fuzzy situation. Finally, last section shows an example of application 
of the model as index, analyzing the power of the political groups in the European Parliament in an ad hoc situation.

2. Preliminaries

2.1. Cooperative games

A cooperative game with transferable utility, game from now on, is a pair (N, v) where N is a finite set and v : 2N → R is 
a mapping satisfying v(∅) = 0. The elements of N are named players, the subsets of players are named coalitions and the 
mapping v is the characteristic function of the game. A simple game represents a decision situation by a cooperative game 
(N, v) where: 1) v(S) ∈ {0, 1} for every S ⊆ N , 2) v(N) = 1, and 3) v(S) ≤ v(T ) if S ⊂ T ⊆ N (monotonicity). A coalition is 
called winning if v(S) = 1 and losing v(S) = 0.

A value for games is a function ψ which determines for each game (N, v) a vector ψ(N, v) ∈ R
N interpreted as a payoff 

vector. Values for simple games are named power indices.1 In this case the payoffs mean the power or influence of the 
agents in the decision. This paper focuses on the Banzhaf value. A swing for a player i ∈ N in a simple games is a winning 
coalition S containing player i such that S \ {i} is losing. The Banzhaf index obtains the probability to get a swing among 
the coalitions containing a determined agent. Owen [3] extended this index to all the cooperative games. The Banzhaf value
is a value defined for every (N, v) ∈ G and i ∈ N as

βi(N, v) =
∑

{S⊂N:i /∈S}

1

2|N|−1
[v(S ∪ {i}) − v(S)]. (1)

2.2. Communication structures

Myerson [5] analyzed the inclusion in a game of information about the communication of the players. Let N be a finite 
set of players and LN = {{i, j} ∈ N × N : i 
= j} the set of unordered pairs of different elements in N . We use i j = {i, j}
from now on. Each undirected graph (N, L) where the set of vertices is N and the set of edges L ⊆ LN is considered 
as a communication structure. So, each L ⊆ LN is called a communication structure for N . Myerson defines a game with 
communication structure as a triple (N, v, L) where (N, v) is a game and L is a communication structure for N . A usual 
cooperative game (N, v) is identified with the game with communication structure (N, v, LN ). Let (N, v, L) be a game 
with communication structure. A coalition S ⊆ N whose vertices are connected by the links in L is called connected. The 
maximal connected coalitions correspond to the sets of vertices of the connected components of the graph (N, L) and 
we denote them as N/L. This family N/L is actually a partition of N . If S ⊆ N is a coalition then L S = {i j ∈ L : i, j ∈ S} and 
(S, v, L S) represents the restriction to S of the characteristic function of the game and the communication structure. We use 
S/L = S/L S . Given (N, v, L), Myerson introduces a new game (N, v/L) incorporating the information of the communication 
structure,

v/L(S) =
∑

T ∈S/L

v(T ) ∀S ⊆ N.

This model supposes then that non-connected coalitions do not obtain extra profits with regard to their components and 
so they are irrelevant. The Banzhaf value was extended for games with communication structure in [18]. The graph-Banzhaf 
value is a function defined by

η(N, v, L) = β (N, v/L) . (2)

1 This is a cardinal notion of power rather than other ordinal ones, see [17].
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2.3. A priori unions

A game with a priori unions [7] is a triple (N, v, P ) where (N, v) ∈ G and P = {N1, ..., Nm} is a partition of N . Players 
in Nk for each k have similar interests in the game and they bargain as a block to get a fair payoff. It is supposed that 
players are interested in the grand coalition N but considering the a priori unions as bargaining elements, so the unions 
can cooperate among them obtaining profits.2 The classical situation without a priori unions is identified with the indi-
vidual partition P ind = {{i} : i ∈ N}. The Owen model is a procedure to define values for games with a priori unions in two 
steps. Let (N, v, P ) with P = {N1, ...., Nm}. The quotient game is a game (M, v P ) with set of players M = {1, ..., m} defined 
by

v P (Q ) = v

⎛
⎝⋃

q∈Q

Nq

⎞
⎠ ,∀Q ⊆ M.

Let k ∈ M . For each S ⊂ Nk the partition P S of N \ (Nk \ S) is to replace Nk with S . Given a classical value for games 
ψ1, we define a game over each union (Nk, vk) as vk(S) = ψ1

k

(
M, v P S

)
, ∀S ⊆ Nk . Finally we solve the game in every 

union using another value ψ2. So, for each player i ∈ N if k(i) is such that i ∈ Nk(i) then the value is �i(N, v, P ) =
ψ2

i

(
Nk(i), vk(i)

)
. Owen [8] defined an extension of the Banzhaf value, named Banzhaf–Owen value and denoted as βow , 

in the sense that βow (N, v, P ind) = β(N, v). This extension uses the Owen model with ψ1 = ψ2 = β , namely for every 
i ∈ N

βow
i (N, v, P ) = βi(Nk(i), vk(i)) and vk(S) = βk(Nk, v P S ), ∀S ⊆ Nk. (3)

Casajus [9] proposed a variation of the Owen problem. He considers a partition in a priori unions for the agents, but also 
information about the bilateral relations which defined the unions. These internal relationships introduce an asymmetry 
among the players inside a union. In order to represent these situations he used a graph (N, L), as in [5], but now the 
connected components N/L are the unions and the links inside each component are the bilateral relations determining 
each union. Hence Casajus uses a value ψ2 for games with communication structure in the second step in the Owen model 
taking into account the asymmetry inside the unions. Each triple (N, v, L) is named now game with a cooperation structure.3

But there is no literature about the Banzhaf value for the Casajus version.

2.4. Fuzzy sets and proximity relations

A fuzzy set of a finite set N is a function τ : N → [0, 1]. The support of τ is the set supp(τ ) = {i ∈ N : τ (i) 
= 0}. The image 
of τ is the ordered set of the non-null images of the function, im(τ ) = {

λ1 < · · · < λp
}= {λ ∈ (0, 1] : ∃i ∈ N, τ (i) = λ}. For 

each t ∈ (0, 1] the t-cut of the fuzzy set τ is [τ ]t = {i ∈ N : τ (i) ≥ t}. A (signed) capacity over N is a set function f : 2N →R

satisfying that f (∅) = 0, namely a game. The (signed) Choquet integral [20,21] of τ ∈ [0, 1]N with respect to a capacity f is 
defined by

∫
τ df =

p∑
k=1

(
λk − λk−1

)
f
([τ ]λk

)
, (4)

where im (τ ) = {
λ1 < · · · < λp

}
and λ0 = 0. The following properties of the Choquet integral are known:

(C1)
∫

eS df = f (S), for all S ⊆ N , and eS(i) = 1 if i ∈ S and eS (i) = 0 otherwise.
(C2)

∫
tτ df = t

∫
τ df , for all t ∈ [0,1].

(C3)
∫

τ d (a1 f1 + a2 f2) = a1
∫

τ df1 + a2
∫

τ df2, when a1, a2 ∈ R.
(C4)

∫
τ df = a 

∨
i∈N τ (i) if f ([τ ]t) = a for all t ∈ (0, 1].

(C5)
∫

τS df ′ = ∫
τ df if S ⊆ N satisfies f ([τ ]t) = f ′([τ ]t ∩ S) for all t ∈ (0, 1].

(C6)
∫

τ df =∑p
q=1(tk − tk−1) f ([τ ]tk ) for all set im(τ ) ⊆ {t1 < · · · < tp} ⊂ (0, 1] and t0 = 0.

A bilateral fuzzy relation over N , see [22], is a function ρ : N × N → [0, 1] satisfying the condition ρ(i, j) ≤ ρ(i, i) ∧
ρ( j, j). A proximity relation over N , is a fuzzy relation ρ satisfying the properties: (Reflexivity) ρ(i, i) = 1 for all i ∈ N , and 
(Symmetry) ρ(i, j) = ρ( j, i) for all i, j ∈ N . If S ⊆ N then the proximity relation ρ restricted to S is ρS , a new proximity 
relation over S with ρS (i, j) = ρ(i, j) for all i, j ∈ S . A proximity relation ρ over N can be also seen as fuzzy sets over the 
set L

N = LN ∪ {{ii} : i ∈ N} with 1 ∈ im(ρ) and {{ii} : i ∈ N} ⊆ [ρ]1. So, we will use ρ(i j) instead ρ(i, j). Every cooperation 
structure L ∈ LN can be seen as a crisp proximity relation (adding the vertices), moreover the cuts of a proximity relation 

2 This idea is different in the communication model of Myerson, see the previous section.
3 Actually (N, v, L) is a game communication structure but seen in another way.
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Fig. 1. Fuzzy graph representing a proximity relation.

are cooperation structures. Each set function f over LN will be identified to a signed capacity with the same letter f over 
L

N
defined for all A ⊆ L

N
by

f (A) =
{

f (L), if A = L ∪ {{ii} : i ∈ N}
0, otherwise.

3. A Banzhaf value for games with a proximity relation

Fernández et al. [12] studied the Shapley value with proximity relations. The goal of this paper is to define a Banzhaf 
value for games with a proximity relation among the agents.

Definition 1. A game with a proximity relation is a triple (N, v, ρ) where (N, v) is a game and ρ is a proximity relation 
over N .

Suppose a game (N, v). Think first about a crisp relation L as in Casajus [9]. If i j ∈ L then we understand that player j
is close to i. If i j, jk ∈ L and ik /∈ L then j is close to i and close to k but in different sense because i is not close to k. We 
suppose then that j works as a valid intermediary between i and k, moderating the position of all of them and forming a 
union. Now, we consider a proximity relation ρ . For each pair of agents i, j number ρ(i j) means the level of closeness of the 
interests or ideas between both of them. This closeness ρ(i j) is also the cohesion level or confidential level of the coalition 
{i, j}. For three players i, j, k ∈ N we take ρ(i j) ∧ ρ( jk) as the maximal confidential level of coalition {i, j, k} taking into 
account the moderation power of j. We can define unions in this context fixing a level of cohesion. So, if we take t0 ∈ (0, 1]
(we think that this is the minimal reasonable level to get a union) then S is a union if the proximity relation connects S at 
this level t0 and S is maximal in this sense. For each t ∈ (0, 1] the cut [ρ]t represents a cooperation structure in the Casajus 
sense and it explains the situation in order of increasing the required level of relation to consider a union.

Suppose for instance a committee formed by five members N = {1, 2, 3, 4, 5} such that the a priori bilateral relations 
among them are well known. Obviously these relationships are not the same and we level them using a proximity relation 
ρ(12) = ρ(13) = ρ(45) = 0.7, ρ(23) = 0.4, ρ(34) = 0.2 and ρ(i j) = 0 otherwise. We represent the proximity relation ρ by a 
graph with leveled links (see Fig. 1) with ρ . Link i j is not in the graph if ρ(i j) = 0. The decision in the committee is taken 
using a simple game (N, u{2,3,4}) where u{2,3,4}(S) = 1 if S ⊇ {2, 3, 4} and u{2,3,4}(S) = 0 otherwise.4

In our example the cuts (Fig. 2) show that if t ∈ (0, 0.2] all the agents form a union but they are asymmetric because 
of their positions in the graph, if t ∈ (0.2, 0.4] we get a situation with two a priori unions in the Owen sense because the 
graphs are complete, if t ∈ (0.4, 0.7] the cooperation structure follows the Casajus version because there is an asymmetry 
into one of the unions, and finally if t ∈ (0.7, 1] then there are not any a priori unions because we have the individual 
partition P ind . A union is obtained if there is a level such that this coalition is a component in the corresponding cut.

The model in [12] considers a value for games with a priori unions in the Casajus version and the Choquet integral of 
the proximity relation using this value. But the Banzhaf value in this context has not been studied at the moment. So, first 
we introduce a Banzhaf value for games with cooperation structure using the Owen model (3) with the graph Banzhaf (2).

Definition 2. Let (N, v, L) be a game with L ⊆ LN where N/L = {N1, ..., Nm} and M = {1, ..., m}. If S ⊆ Nk for any k ∈ M
then vk(S) = βk

(
M, v(N/L)S

)
. The graph Banzhaf–Owen value for each player i ∈ Nk is βco

i (N, v, L) = ηi
(
Nk, vk, LNk

)
.

Remarks. The proposed graph solution is consistent with the other Banzhaf values in this way. Only from the definitions:

• If L S = L S for all union S ∈ N/L, namely each component is complete, then βco(N, v, L) = βow(N, v, N/L).
• Particularly βco(N, v, ∅) = β(N, v). Observe that L = ∅ corresponds to P ind .

The graph Banzhaf–Owen value in Definition 2 determines for each player a set function over LN . So, if i ∈ N then

βco
i (N, v)(L) = βco

i (N, v, L). (5)

4 Game (N, uT ) with T ⊆ N a non-empty coalition represents the simple game where all the winning coalitions are those containing T . It is known as 
unanimity game.



196 J.R. Fernández et al. / International Journal of Approximate Reasoning 88 (2017) 192–208
Fig. 2. Cuts of a proximity relation.

Now, we can define our Banzhaf value for games with a proximity relation. We use a Choquet integral (4) of the proximity 
relation with regard to the above signed capacity.

Definition 3. Let (N, v, ρ) be a game with a proximity relation. The prox-Banzhaf value for each agent i ∈ N is defined 
by

Bi(N, v,ρ) =
∫

ρ dβco
i (N, v).

The prox-Banzhaf value meets the purpose of being a Banzhaf value in the sense that it coincides with the classical value 
when we do not have any a priori relation among the players. We denote as ρ = 0 the trivial proximity relation satisfying 
0(i j) = 0 if i 
= j and also 0(ii) = 1. This proximity relation represents the classical situation without a priori unions among 
the players.

Proposition 1. The prox-Banzhaf value satisfies B(N, v, 0) = β(N, v).

Proof. We know that βco verifies that βco(N, v, ∅) = β(N, v). Hence as all the cuts of the trivial proximity relation 0 satisfy 
[0]t = ∅ we get that βco

i (N, v)([0]t) = βi(N, v) for all t ∈ (0, 1]. Property (C4) of the Choquet integral and the fact 1 ∈ im(ρ)

imply

Bi(N, v,0) =
∫

0 dβco
i (N, v) = βi(N, v). �

Suppose our example in Fig. 1 with the game u{2,3,4} . When t ∈ (0, 0.2] the graph is connected and u{2,3,4}/[ρ]0.2 =
u{2,3,4} , thus

βco(N, u{2,3,4}, [ρ]0.2) = η(N, u{2,3,4}, [ρ]0.2) = β(N, u{2,3,4}) =
(

0,
1

4
,

1

4
,

1

4
,0

)
.

If t ∈ (0.2, 0.4] then we use the Banzhaf–Owen value with a priori unions. There are two unions M = {a = {1, 2, 3}, b =
{4, 5}}, and va = 1

2
u{2,3} , vb = 1

2
u{4} . βco coincides with the Banzhaf value of the above games in each group,

βco(N, u{2,3,4}, [ρ]0.4) = βow(N, u{2,3,4}, N/[ρ]0.4) =
(

0,
1

4
,

1

4
,

1

2
,0

)
.

If t ∈ (0.4, 0.7] we have the same unions M = {a, b} but now player 1 is necessary to get a winning coalition. So, va/L =
1

2
u{1,2,3} and

βco(N, u{2,3,4}, [ρ]0.7) =
(

1
,

1
,

1
,

1
,0

)
.

8 8 8 2
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Finally, if t ∈ (0.7, 1] we obtain the usual case and also

βco(N, u{2,3,4}, [ρ]1) = β(N, u{2,3,4}) =
(

0,
1

4
,

1

4
,

1

4
,0

)
.

The prox-Banzhaf value in this situation is

B(N, u{2,3,4},ρ) = 0.2

(
0,

1

4
,

1

4
,

1

4
,0

)
+ 0.2

(
0,

1

4
,

1

4
,

1

2
,0

)

+ 0.3

(
1

8
,

1

8
,

1

8
,

1

2
,0

)
+ 0.3

(
0,

1

4
,

1

4
,

1

4
,0

)
=
(

3

80
,

17

80
,

17

80
,

30

80
,0

)
.

4. Axioms for the prox-Banzhaf value

The authors in [12] introduced the following scaling operations over proximity relations. Let ρ be a proximity relation 
over N . If a, b ∈ [0, 1] with a < b then ρb

a is the interval scaling of ρ , a new proximity relation over N defined by

ρb
a (i j) =

⎧⎪⎨
⎪⎩

1, if ρ(i j) ≥ b
ρ(i j) − a

b − a
, if ρ(i j) ∈ (a,b)

0, if ρ(i j) ≤ a.

(6)

Let a, b ∈ [0, 1] be numbers with a < b and a 
= 0 or b 
= 1. The dual interval scaling of ρ is a new proximity relation over N
given by

ρb
a(i j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ(i j) + a − b

1 + a − b
, if ρ(i j) ≥ b

a

1 + a − b
, if ρ(i j) ∈ (a,b)

ρ(i j)

1 + a − b
, if ρ(i j) ≤ a.

(7)

Remarks. 1) If b ∈ im(ρ) with b < 1 then |im(ρb
a )| < |im(ρ)|.

2) If b ∈ im(ρ) with b < 1 and a ∈ im(ρ) ∪ {0} then |im(ρb
a)| < |im(ρ)|.

3) If a = 0 and b = 1 then the dual interval scaling is defined by ρ1
0(i j) = 1 if ρ(i j) = 1 and ρ1

0(i j) = 0 otherwise.
The above scalings allow us to allocate the Choquet integral in particular intervals. This idea is explained in the next 

lemma. As we said before (see subsection 2.4 in preliminaries) each cut of a proximity relation is identified with a particular 
element of L

N
.

Lemma 2. (Fernández et al. [12]) Let ρ be a proximity relation over N. For every pair of numbers a, b ∈ [0, 1] with a < b and for every 
set function f over LN it holds∫

ρ df = (b − a)

∫
ρb

a df + (1 + a − b)

∫
ρb

a df .

We propose an axiomatization based on classical axioms of the Banzhaf values (for its different versions). The fuzzy 
information is included into the axioms by the scaling because we can focus on the interval where the axiom is satisfied. 
Let � be a value determining a payoff vector for each game with a proximity relation.

It is known that the Banzhaf value satisfies the dummy player axiom (see for instance Casajus [23]). Player i is dummy
in a game (N, v) if v(S ∪ {i}) − v(S) = v({i}) for all S ⊆ N \ {i}. The dummy player axiom guarantees the payoff v({i}) for 
a dummy player i. This fact changes if there is asymmetry into the component containing the dummy player. An isolated 
player in a proximity relation ρ is a player i satisfying ρ(i j) = 0 for all j ∈ N \ {i}.

Dummy isolated player. If i ∈ N is a dummy player in a game (N, v) and i is isolated in a proximity relation ρ then �i(N, v, ρ) =
v({i}).

Next three axioms introduce the delegation or merging situation for proximity relations, classical also in the Banzhaf 
value (see for instance [23]). Let (N, v) be a game. The amalgamation of players i, j ∈ N consists of taking the activity of 
both of them as only one, delegating j to i. The delegation game is (N \{ j}, vij) with vij(S) = v(S ∪{ j}) if i ∈ S , vij(S) = v(S)
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Fig. 3. Amalgamation in a proximity relation.

otherwise. Let ρ be a proximity relation over N and i, j ∈ N different players with5 ρ(i j) = 1. The proximity relation changes 
with the amalgamation, ρ i j is a new proximity relation over N \ { j} given by (see Fig. 3)

ρ i j(kl) =
{

ρ(kl), if k, l 
= i
ρ(ki) ∨ ρ(kj), otherwise.

(8)

Next axiom says that the payoff obtained by both of the players in the game is the same that the payoff obtained by the 
proxy of them while this is possible (until their relation level) plus the payoff of both of them for the rest of the levels.

Fuzzy amalgamation. Let (N, v, ρ) be a game with a proximity relation. If i, j ∈ N are different players with ρ(i j) > 0 then

�i(N, v,ρ) + � j(N, v,ρ) = ρ(i j)�i

(
N \ { j}, vij,

(
ρ

ρ(i, j)
0

)i j
)

+ (1 − ρ(i j))
[
�i

(
N, v,ρ

ρ(i j)
0

)
+ � j

(
N, v,ρ

ρ(i j)
0

)]
.

If im(ρ) = {1} then ρ is identified with a cooperation structure L, and the axiom says for every pair of connected players 
i, j ∈ N with i j ∈ L,

�i(N, v, L) + � j(N, v, L) = �i

(
N \ { j}, vij, Li j

)
. (9)

The amalgamation property is extended also to the isolated players. When two players are isolated one can delegate to 
the other.

Isolated amalgamation. Let (N, v, ρ) be a game with a proximity relation. If i, j ∈ N are different isolated players then

�i(N, v,ρ) + � j(N, v,ρ) = �i

(
N \ { j}, vij,ρ i j

)
.

Players in the group involved in the amalgamation of i, j different to them should not change their payoffs while this 
situation is working. This fact is the goal of the next axiom, which was introduced for the Banzhaf–Owen value by Amer et 
al. [24]. Let i, j, l ∈ N be three different players. Number

r{i, j,l} =
∨

{∃T ∈N/[ρ]t ; i, j,l∈T }
t

represents the maximal level such that this triple of players are in the same group.

Fuzzy amalgamation neutrality. If (N, v, ρ) is a game with a proximity relation and i, j different players with ρ(i j) > 0 then for all 
l 
= i, j with r{i, j,l} < ρ(i j)

�l(N, v,ρ) = (
ρ(i j) − r{i, j,l}

)
�l

(
N \ { j}, vij,

(
ρ

ρ(i j)
r{i, j,l}

)i j
)

+ (
1 + r{i, j,l} − ρ(i j)

)
�l

(
N, v,ρ

ρ(i j)
r{i, j,l}

)
.

If im(ρ) = {1} then ρ is identified with a cooperation structure L and the axiom says �l(N, v, L) = �l
(
N \ { j}, vij, Li j

)
.

Modified fairness was introduced in [9] as a modification of the classical axiom of fairness [5]. Suppose a crisp situation, 
namely a cooperation structure L, and i j ∈ L. Let S ∈ N/L such that i j ∈ L S . Fairness is not an option because the number of 
components can change. If we delete i j then we denote by Si

i j, S
j
i j the components in which S is divided containing i and 

j respectively (they can be the same). Moreover, let Ni
i j = (N \ S) ∪ Si

i j and N j
i j = (N \ S) ∪ S j

i j . Casajus proposed that the 

5 It is possible to define amalgamation when the level of closeness between the players is not 1 but we will not need it.
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difference between the payoffs with and without the link of both of the involved players is the same if we do not consider 
the action of the new union without each player. Namely, we obtain fairness if we delete the new component with the 
other player if it exists (otherwise it coincides with fairness)

�i(N, v, L) − �i(Ni
i j, v, LNi

i j
\ {i j}) = � j(N, v, L) − � j(N j

i j, v, L
N j

i j
\ {i j}). (10)

We extended the modified fairness to a fuzzy situation given by a proximity relation in [12]. In this case, we take into 
account the mere reduction of the relation between two players. So we have to consider that this reduction of level only 
concerns to the interval between the reduced level and the original one. Let ρ be a proximity relation over a set of players N
with im(ρ) = {λ1 < · · · < λm} and λ0 = 0. Consider i, j ∈ N two different players with ρ(i j) = λk > 0 and let ρ∗(i j) = λk−1. 
If ρ is a proximity relation6 and ρ(i j) = 1 then ρ−i j denotes a new proximity relation with ρ−i j(i j) = 0 and ρ−i j = ρ

otherwise. The proximity relation 
(
ρ

ρ(i j)
ρ(i j)−t

)
−i j

in the following axiom focuses on the relation in the interval where the 

closeness of i j is reduced. All the cuts of 
(
ρ

ρ(i j)
ρ(i j)−t

)
−i j

use the same Ni
i j and N j

i j if t ∈ (0,ρ(i j) − ρ∗(i j)] because ρρ(i j)
ρ(i j)−t is 

crisp.

Modified fuzzy fairness Let (N, v, ρ) be a game with a proximity relation and i, j ∈ N with ρ(i j) > 0. For each t ∈ (0,ρ(i j) − ρ∗(i j)]
it holds

�i(N, v,ρ) − � j(N, v,ρ) = (1 − t)
[
�i

(
N, v,ρ

ρ(i j)
ρ(i j)−t

)
− � j

(
N, v,ρ

ρ(i j)
ρ(i j)−t

)]

+ t

[
�i

(
Ni

i j, v,

((
ρ

ρ(i j)
ρ(i j)−t

)
−i j

)
Ni

i j

)
− � j

(
N j

i j, v,

((
ρ

ρ(i j)
ρ(i j)−t

)
−i j

)
N j

i j

)]
.

We prove now that our value satisfies all the axioms described in the above subsection.

Theorem 3. The prox-Banzhaf value satisfies dummy isolated player, fuzzy amalgamation, isolated amalgamation, fuzzy amalgamation 
neutrality and modified fuzzy fairness.

Proof. Suppose always L ⊆ LN with N/L = {N1, ..., Nm} and M = {1, ..., m}. Let also ρ be a proximity relation.
Dummy isolated player. Let i ∈ N be a dummy player in v and i isolated in L. We take N1 = {i}. Remember that the Banzhaf 
value satisfies the dummy player property [23]. Besides set 1 is a dummy player for game v N/L , in fact we have for each 
Q ⊆ M \ {1}

v N/L(Q ∪ {1}) − v N/L(Q ) = v

⎛
⎝⋃

q∈Q

Nq ∪ {i}
⎞
⎠− v

⎛
⎝⋃

q∈Q

Nq

⎞
⎠= v({i}) = v(N/L){i}({1}).

Therefore v1({i}) = β1(M, v N/L) = v N/L({1}) = v({i}). The graph Banzhaf value satisfies isolated player [19], if i is isolated 
(dummy or not) in L then ηi(N, v, L) = v({i}), thus

βco
i (N, v, L) = ηi(N1, v1, LN1) = v1({i}) = v({i}).

Now suppose ρ a proximity relation and our dummy player i isolated in ρ . We have {i} ∈ N/[ρ]t for all t ∈ (0, 1], so 
βco

i (N, v)([ρ]t) = v({i}) for each t ∈ (0, 1]. Using (C4) we get Bi(N, v, ρ) = v({i}).
Fuzzy amalgamation. Let i j ∈ L with i, j ∈ N1. We will prove the claim

βco
i (N, v, L) + βco

j (N, v, L) = βco
i

(
N \ { j}, vij, Li j

)
.

The graph Banzhaf value satisfies amalgamation [19] for two players in a link, thus

βco
i (N, v, L) + βco

j (N, v, L) = ηi
(
N1, v1, LN1

)+ η j
(
N1, v1, LN1

)
= ηi

(
N1 \ { j}, (v1)

i j ,
(
LN1

)i j
)

.

On the other hand, βco
i

(
N \ { j}, vij, Li j

) = ηi

(
(N \ { j})1,

(
vij
)

1 ,
(
Li j
)

N1

)
. Since i, j ∈ N1, then (N \ { j})1 = N1 \ { j} and (

LN1

)i j = (
Li j
)

N1
. Observe that the amalgamation of two players i, j connected by a link does not change the number 

of components of the graph. Namely, if we merge i, j ∈ N1 we have (N \ { j})/Li j = {N1 \ { j}, N2, . . . , Nm}. We will see that 

6 It is also possible to define this operation when the level is not 1.
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(v1)
i j = (

vij
)

1. For any T ⊆ N1 \ { j} we have that (v1)
i j(T ) = v1 (T ∪ { j}) if i ∈ T and (v1)

i j(T ) = v1(T ) = if i /∈ T . So, 
Definition 2 implies

(v1)
i j (T ) =

{
β1
(
M, v(N/L)T ∪{ j}

)
, if i ∈ T

β1
(
M, v(N/L)T

)
, if i /∈ T .

Moreover, for all T ⊆ N1 \ { j}, 
(

vij
)

1 (T ) = β1

(
M,
(

vij
)(N\{ j}/Li j)T

)
. We distinguish two cases:

1) If i ∈ T , we prove the equality 
(

vij
)(N\{ j}/Li j)T = v(N/L)T ∪{ j} . Let Q ⊆ M . If 1 /∈ Q it holds vij

(⋃
q∈Q Nq

)
= v 

(⋃
q∈Q Nq

)
, 

and if 1 ∈ Q then

vij

⎛
⎝T ∪

⋃
q∈Q \{1}

Nq

⎞
⎠= v

⎛
⎝T ∪ { j} ∪

⋃
q∈Q \{1}

Nq

⎞
⎠ .

Thus

(
vij
)(N\{ j}/Li j)T

(Q ) =
⎧⎨
⎩

v
(⋃

q∈Q Nq

)
, if 1 /∈ Q

v
(

T ∪ { j} ∪⋃q∈Q \{1} Nq

)
, if 1 ∈ Q

⎫⎬
⎭= v(N/L)T ∪{ j}(Q ).

2) If i /∈ T , we prove the equality 
(

vij
)(N\{ j}/Li j)T = v(N/L)T . Let Q ⊆ M , then if 1 /∈ Q it holds vij

(⋃
q∈Q Nq

)
= v 

(⋃
q∈Q Nq

)
, 

and if 1 ∈ Q we get

vij

⎛
⎝T ∪

⎛
⎝ ⋃

q∈Q \{1}
Nq

⎞
⎠
⎞
⎠= v

⎛
⎝T ∪

⎛
⎝ ⋃

q∈Q \{1}
Nq

⎞
⎠
⎞
⎠ .

Thus

(
vij
)(N\{ j}/Li j)T

(Q ) =
⎧⎨
⎩

v
(⋃

q∈Q Nq

)
, if 1 /∈ Q ,

v
(

T ∪
(⋃

q∈Q \{1} Nq

))
, if 1 ∈ Q

⎫⎬
⎭= v(N/L)T (Q ).

Therefore the claim is true. Now let ρ be a proximity relation and ρ(i j) = t > 0. Lemma 2 implies

Bi(N, v,ρ) + B j(N, v,ρ) = t

∫
ρt

0 d(βco
i (N, v) + βco

j (N, v))

+ (1 − t)
[

Bi
(
N, v,ρt

0

)+ B j
(
N, v,ρt

0

)]
.

We denote im 
(
ρt

0

)= {λ1 < · · · < λm}. By the claim we have

∫
ρt

0 d(βco
i (N, v) + βco

j (N, v)) =
m∑

k=1

(
λk − λk−1

) [
βco

i

(
N, v,

[
ρt

0

]
λk

)
+ βco

j

(
N, v,

[
ρt

0

]
λk

)]

=
m∑

k=1

(
λk − λk−1

)
βco

i

(
N \ { j}, vij,

([
ρt

0

]
λk

)i j
)

.

Obviously im(ρ i j) ⊆ im(ρ) thus we can write using (C6)

Bi(Nij, vij, (ρt
0)

i j) =
m∑

k=1

(
λk − λk−1

)
βco

i

(
Nij, vij,

[
(ρt

0)
i j
]
λk

)
.

If we prove the equality 
[
(ρt

0)
i j
]

r = ([
ρt

0

]
r

)i j
for all r ∈ (0, 1] then the proof is finished. The links in both sets without 

player i are the same because the amalgamation does not affect. So, let ik ∈ [(ρt
0)

i j
]

r . We have ρt
0(ik) ∨ ρt

0( jk) ≥ r and then 
one of them, for instance ik satisfies ρt

0(ik) ≥ r. But then ik ∈ [ρt
0]r and ik ∈ ([ρt

0

]
r

)i j . The other inclusion follows in the 
same way.
Isolated amalgamation. Take two players i, j ∈ N who are isolated in L. Consider N1 = {i} and N2 = { j}. Following the proof 
of dummy isolated player and using that Banzhaf value satisfies amalgamation [25] for any pair of players, we get
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βco
i (N, v, L) + βco

j (N, v, L) = ηi
(
N1, v1, LN1

)+ η j
(
N2, v2, LN2

)
= v1({i}) + v2({ j}) = β1(M, v N/L) + β2(M, v N/L)

= β1

(
M \ {2},

(
v N/L

)12
)

.

We see that for each Q ⊆ M \ {2}
(

v N/L
)12

(Q ) =
⎧⎨
⎩

v
(⋃

q∈Q Nq

)
, if 1 /∈ Q ,

v
(⋃

q∈Q \{1} Nq ∪ {i, j}
)

, if 1 ∈ Q

⎫⎬
⎭

=
(

vij
)N\{ j}/Li j

(Q ).

Hence β1

(
M \ {2}, (v N/L

)12
)

= β1

(
M \ {2}, (vij

)N\{ j}/Li j
)

= βco
i

(
N \ { j}, vij, Li j

)
. Let i, j be isolated in ρ now. As they 

are isolated we have im(ρ i j) = im(ρ) and [ρ i j]t = ([ρ]t)
i j for all t ∈ (0, 1]. So, as the signed capacities verifies that 

βi(N, v)(L) + β j(N, v)(L) = βi(N \ { j}, vij)(Li j) then

Bi(N, v,ρ) + B j(N, v,ρ) = Bi(N \ { j}, vij,ρ i j).

Fuzzy amalgamation neutrality. We take a cooperation structure L with N/L = {N1, N2, ...., Nm}. Suppose the merging of 
i, j ∈ N1 and l /∈ N1. We see the claim

βco
l

(
N \ { j}, vij, Li j

)
= βco

l (N, v, L).

If l ∈ N2 (or any component different to N1) then we have βco
l (N, v, L) = ηl

(
N2, v2, LN2

)
and also

βco
l

(
N \ { j}, vij, Li j

)
= ηl

(
(N \ { j})2 ,

(
vij
)

2
,
(

Li j
)

N2

)

= ηl

(
N2,

(
vij
)

2
, LN2

)
,

where the last equality comes from the fact that i j /∈ N2 and then the amalgamation takes place out of the component N2. 

So if we see that 
(

vij
)

2 = v2 we have the desired equality. Let R ⊆ N2. By definition, 
(

vij
)

2 (R) = β2

(
M,
(

vij
)(N\{ j}/Li j

)
R

)

and v2(R) = β2
(
M, v(N/L)R

)
. The equality that we need to prove is 

(
vij
)(N\{ j}/Li j

)
R = v(N/L)R . Let Q ⊆ M with M = {1, ..., m}. 

We determine the equality in four cases for Q :
1) If 2 /∈ Q and 1 ∈ Q . As i, j ∈ N1 we obtain that

(
vij
)(N\{ j}/Li j

)
R
(Q ) = vij

⎛
⎝⋃

q∈Q

Nq

⎞
⎠= v

⎛
⎝ ⋃

q∈Q \{1}
Nq ∪ N1

⎞
⎠= v(N/L)R (Q ).

2) If 1, 2 /∈ Q . We get

(
vij
)(N\{ j}/Li j

)
R
(Q ) = vij

⎛
⎝⋃

q∈Q

Nq

⎞
⎠= v

⎛
⎝⋃

q∈Q

Nq

⎞
⎠= v(N/L)R (Q ).

3) If 2 ∈ Q and 1 /∈ Q . In this situation,

(
vij
)(N\{ j}/Li j

)
R
(Q ) = vij

⎛
⎝ ⋃

q∈Q \{2}
Nq ∪ R

⎞
⎠= v

⎛
⎝ ⋃

q∈Q \{2}
Nq ∪ R

⎞
⎠= v(N/L)R (Q ).

4) If 1, 2 ∈ Q . Both modifications of the games are working and then

(
vij
)(N\{ j}/Li j

)
R
(Q ) = vij

⎛
⎝ ⋃

q∈Q \{1,2}
Nq ∪ (Nk)

i j ∪ R

⎞
⎠

= v

⎛
⎝ ⋃

q∈Q \{1,2}
Nq ∪ Nk ∪ R

⎞
⎠= v(N/L)R (Q ).

In all cases the games coincide, therefore the claim is true.
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Let i, j, l ∈ N, ρ(i j) > 0 and l ∈ N\{i, j}, r{i, j,l} < ρ(i j). Using Lemma 2 again with numbers ρ(i j), r{i, j,l} we have

Bl(N, v,ρ) = (
ρ(i j) − r{i, j,l}

) ∫
ρ

ρ(i j)
r{i, j,l} dβco

l (N, v) + (
1 + r{i, j,l} − ρ(i j)

) ∫
ρ

ρ(i j)
r{i, j,l} dβco

l (N, v)

= (
ρ(i j) − r{i, j,l}

)
Bl

(
N, v,ρ

ρ(i j)
r{i, j,l}

)
+ (

1 + r{i, j,l} − ρ(i j)
)

Bl

(
N, v,ρ

ρ(i j)
r{i, j,l}

)
.

We have to prove that Bl

(
N, v,ρ

ρ(i j)
r{i, j,l}

)
= Bl

(
Nij, vij,

(
ρ

ρ(i j)
r{i, j,l}

)i j
)

. Obviously, im 
(
(ρ

ρ(i j)
r{i, j,l})

i j
)

⊆ im 
(
ρ

ρ(i j)
r{i, j,l}

)
, therefore if 

im 
(
ρ

ρ(i j)
r{i, j,l}

)
= {λ1 < λ2 < · · · < λm} we can write by (C6) and the claim

Bl

(
Nij, vij,

(
ρ

ρ(i j)
r{i, j,l}

)i j
)

=
m∑

k=1

(λk − λk−1)β
co
l

(
Nij, vij,

[(
ρ

ρ(i j)
r{i, j,l}

)i j
]

λk

)

=
m∑

k=1

(λk − λk−1)β
co
l

(
N, v,

[
ρ

ρ(i j)
r{i, j,l}

]
λk

)
= Bl(N, v,ρ

ρ(i j)
r{i, j,l}).

Modified fuzzy fairness. Consider L a graph over N with N/L = {N1, ..., Nm}. Let i j ∈ L and suppose i, j ∈ N1. We denote 

Ni
i j/(LNi

i j
\ {i j}) = {(N1)i , N2, ..., Nm}. Although the quotient game depends on the graph we get v

(
Ni

i j/L
Ni

i j
\{i j}

)
S = v(N/L)S for 

each S ⊆ (N1)i . The graph Banzhaf satisfies decomposability [19], namely the payoff of each player in a game can be cal-
culated by components. Also the graph Banzhaf satisfies fairness [19], for all i j ∈ L we have ηi(N, v, L) − ηi(N, v, L \ {i j}) =
η j(N, v, L) − η j(N, v, L \ {i j}). So,

βco
i (N, v, L) − βco

i

(
Ni

i j, v, LNi
i j

\ {i j}
)

= ηi
(
N1, v1, LN1

)− ηi
(
(N1)i, v1, L(N1)i \ {i j})

= ηi
(
N1, v1, LN1

)− ηi
(
N1, v1, LN1 \ {i j})

= η j
(
N1, v1, LN1

)− η j
(
N1, v1, LN1 \ {i j})

= βco
j (N, v, L) − βco

j

(
N j

i j, v, L
N j

i j
\ {i j}

)
.

We consider ρ a proximity relation with ρ(i j) > 0 and t ∈ (0, ρ(i j) − ρ∗(i j)]. Using Lemma 2 for numbers ρ(i j) − t, ρ(i j)
and property (C3),

Bi(N, v,ρ) − B j(N, v,ρ) = (1 − t)
[

Bi

(
N, v,ρ

ρ(i j)
ρ(i j)−t

)
− B j

(
N, v,ρ

ρ(i j)
ρ(i j)−t

)]
+ t

∫
ρ

ρ(i j)
ρ(i j)−t d[βco

i (N, v) − βco
j (N, v)].

As t ∈ (0, ρ(i j) − ρ∗(i j)] then it holds im 
(
ρ

ρ(i j)
ρ(i j)−t

)
= {1} and 

[
ρ

ρ(i j)
ρ(i j)−t

]
1
= [ρ]ρ(i j) , thus

βco
i (N, v)

([
ρ

ρ(i j)
ρ(i j)−t

]
1

)
− βco

j (N, v)
([

ρ
ρ(i j)
ρ(i j)−t

]
1

)
= βco

i

(
Ni

i j, v
)(([

ρ
ρ(i j)
ρ(i j)−t

]
1

)
Ni

i j

\ {i j}
)

− βco
j

(
N j

i j, v
)(([

ρ
ρ(i j)
ρ(i j)−t

]
1

)
N j

i j

\ {i j}
)

.

Hence, we obtain by (C3) and (C5),∫
ρ

ρ(i j)
ρ(i j)−t d[βco

i (N, v) − βco
j (N, v)] =

∫ ((
ρ

ρ(i j)
ρ(i j)−t

)
−i j

)
Ni

i j

dβco
i

(
Ni

i j, v
)

−
∫ ((

ρ
ρ(i j)
ρ(i j)−t

)
−i j

)
N j

i j

dβco
j

(
N j

i j, v
)

= Bi

(
Ni

i j, v,

((
ρ

ρ(i j)
ρ(i j)−t

)
−i j

)
Ni

i j

)

− B j

(
N j

i j, v,

((
ρ

ρ(i j)
ρ(i j)−t

)
−i j

)
N j

i j

)
. �
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5. The main result

Now we prove that our value is the only one satisfying the axioms. Our proof uses a characterization of the Banzhaf 
value obtained by Casajus [23]. He got the uniqueness of the classical value only with two axioms: dummy player and 
amalgamation. The proof uses the dummy player property and the amalgamation of all the pairs of players. Hence following 
exactly the same proof of Proposition 1.2 in [23] we propose the next lemma in our context.

Lemma 4. (Casajus [23]) All the values for games with proximity relation satisfying dummy isolated player and fuzzy isolated amal-
gamation coincide on the family of games (N, v, 0), namely they coincide on the classical games.

The characterization theorem is the next one.

Theorem 5. The prox-Banzhaf value is the only value for games with a proximity relation among the players satisfying dummy isolated 
player, fuzzy amalgamation, isolated amalgamation, fuzzy amalgamation neutrality and modified fuzzy fairness.

Proof. Theorem 3 showed that the prox-Banzhaf value satisfies all the proposed axioms. It remains to prove the uniqueness.
Let �1, �2 be two different values for games with a proximity relation that satisfy all the axioms. We will prove that 

for all (N, v, ρ) it holds �1(N, v, ρ) = �2(N, v, ρ). If |N| = 1 then the equality is always true from the dummy isolated 
player property. Consider that for all sets of players with cardinality less than n the equality is true and take N with 
|N| = n.

Suppose |im(ρ)| = 1. Then im(ρ) = {1} and ρ is identified with a cooperation structure L. We will use now an induction 
on |L|. If L = ∅, namely ρ = 0, then the values are equal from Lemma 4. Consider true the equality if |L| < d. Let |L| = d. 
There is at least one component S ∈ N/L with one or more links. If i, j ∈ Nk with i j ∈ L then for all l /∈ Nk we apply fuzzy 
amalgamation neutrality (in the crisp version) to get

�1
l (N, v, L) = �1

l

(
N \ { j}, vij, Li j

)
= �2

l

(
N \ { j}, vij, Li j

)
= �2

l (N, v, L),

where the second equality comes because 
∣∣Li j

∣∣< d. Moreover, for every link i j ∈ L with i, j ∈ Nk , the modified fuzzy fairness 
axiom (the crisp version (9)) implies

�1
i (N, v, L) − �1

j (N, v, L) = �1
i

(
Ni

i j, v, LNi
i j

\ {i j}
)

− �1
j

(
N j

i j, v, L
N j

i j
\ {i j}

)

= �2
i

(
Ni

i j, v, LNi
i j

\ {i j}
)

− �2
j

(
N j

i j, v, L
N j

i j
\ {i j}

)
= �2

i (N, v, L) − �2
j (N, v, L),

where |LNi
i j

\ {i j}|, |L
N j

i j
\ {i j}| < d. Applying fuzzy amalgamation (the crisp version (10)) we have

�1
i (N, v, L) + �1

j (N, v, L) = �1
i

(
N \ { j}, vij, Li j

)
= �2

i

(
N \ { j}, vij, Li j

)
= �2

i (N, v, L) + �2
j (N, v, L).

Adding this equality and the previous one we obtain �1
i (N, v, L) = �2

i (N, v, L).
Suppose true the equality of the indices when |im(ρ)| < k. Let (N, v, ρ) with |im(ρ)| = k > 1. Let i, j ∈ N with 

ρ(i j) = t ∈ (0, 1). By fuzzy amalgamation we obtain again

�1
i (N, v,ρ) + �1

j (N, v,ρ) = t�1
i

(
N \ { j}, vij,

(
ρt

0

)i j
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i (N, v,ρ) + �2
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because |N \ { j}| < n and |im(ρt
0)| < k. Also if r = t − ρ∗(i j), where ρ∗(i j) is the level in ρ just before ρ(i j),

�1
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using modified fuzzy fairness and because 
∣∣∣∣im

(((
ρt

t−r

)
−i j

)
Ni

i j

)∣∣∣∣ , ∣∣im (
ρt

t−r

)∣∣ < k. Adding up this equality with the above 

one we have that

�1
i (N, v,ρ) = �2

i (N, v,ρ),

for all i ∈ N with another j 
= i such that ρ(i j) > 0. Finally, let l ∈ N such that ρ(lh) = 0 for any h 
= l. This player l satis-
fies that {l} ∈ N/[ρ]r for all r ∈ (0, 1]. Taking i, j with ρ(i j) = t > 0 we have r{i, j,l} = 0. Hence, using fuzzy amalgamation 
neutrality

�1
l (N, v,ρ) = t�1

l

(
N \ { j}, vij,

(
ρt

0

)i j
)

+ (1 − t)�1
l

(
N, v,ρt

0

)
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(
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(
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l

(
N, v,ρt

0

)= �2
l (N, v,ρ),

because |N \ { j}| < n and |im(ρt
0)| < k. �

Remark. The Banzhaf–Owen value (3) coincides with our prox-Banzhaf one when we use a crisp proximity relation with a 
graph where all the components are complete. Amer et al. [24] characterized the Banzhaf–Owen value by six axioms. They 
used dummy player property for all the players (our axiom is weaker), amalgamation for all the players in the same union 
(equivalent to our fuzzy amalgamation) and amalgamation neutrality (equivalent in this situation to our fuzzy amalgamation 
neutrality). They used also symmetry within the unions. This axiom is not feasible in our context because of the asymmetry 
of the players in a proximity relation. Myerson [5] introduced fairness as an axiom substituting symmetry, and later Casajus 
[9] proposed modified fairness as a modification of fairness for cooperation structures. Hence modified fuzzy fairness is the 
natural extension of symmetry to these situations. Amer et al. added two more axioms: additivity and many null players. 
We have reduced the number of axioms to five using amalgamation for isolated players. So, it is not strange to use five 
axioms, moreover our axiomatization reduced in one the axiomatization of the Banzhaf–Owen value.

6. Application: the power of the political groups in the European Parliament

In this section we illustrate the calculation of the value studied in this work as index and its application. The Treaties 
of Maastricht (1992) and Lisbon (2009) regulate the functions of the European Parliament in a context of the co-decision 
procedure with the Council of the European Union. The European Parliament pretends to be the ideologic representation 
of the European citizens, but currently the channel of voting is the set of national political parties in each member state. 
Hence, the relations among these groups are partial because of the national and the ideologic interests. Our interest is only 
to show the application of the model, so we take any legislature. In the seventh legislature there were seven political groups 
in the European Parliament plus the non-attached seats. So, we consider in our example the following groups corresponding 
to 2012: 1. European People’s Party (Christian Democrats) 265 members, 2. Progressive Alliance of Socialists and Democrats, 
183 members. 3. Alliance of Liberals and Democrats for Europe, 84 members. 4. European Conservatives and Reformists, 
55 members. 5. Greens/European Free Alliance, 55 members. 6. European United Left – Nordic Green Left, 35 members. 7. 
Europe of Freedom and Democracy, 29 members. 8. Non-attached Members, 29 members.

Fig. 4. The EP proximity relation.
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We consider the game of the political representation of the groups in the European Parliament in 2012 with 735 seats 
and a quota of 368. We can represent the voting situation in the committee by a simple game over N = {1,2,3,4,5,6,7,8}, 
called the EP-game, which is represented by v(S) = 1 if the sum of the number of seats of the groups in S is greater or 
equal to 368, and v(S) = 0 otherwise. The fuzzy graph in Fig. 4 is a proximity relation ρ over N , where ρ(i j) is interpreted 
as the level of coincidence between groups i and j. It can be measured, for instance, by assigning a value in [0, 1] to each 
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Table 1
Graph Banzhaf–Owen values of the graphs in the cuts of the EP proximity relation.

g1 g2 g3 g4 g5 g6 g7

1 0.632813 0.632813 0.640625 0.625 0.5 0.734375 0.734375
2 0.367188 0.367188 0.359375 0.375 0. 0.125 0.265625
3 0.320313 0.320313 0.328125 0.3125 0.3125 0.125 0.234375
4 0.117188 0.117188 0.109375 0.125 0.1875 0.140625 0.140625
5 0.0859375 0.859375 0.078125 0.0625 0. 0.125 0.140625
6 0.0390625 0.0390625 0.03125 0.03125 0. 0.0625 0.078125
7 0.0859375 0.0859375 0.078125 0.09375 0.0625 0.0625 0.078125
8 0.0859375 0.0859375 0. 0. 0. 0.0625 0.078125

Table 2
Comparative of Banzhaf indices (I).

Players Groups Votes β(N, v) βco(N, v, gγ ) B(N, v, γ )

1 PPE 265 0.734375 0.632813 0.635938
2 S&D 183 0.265625 0.367188 0.25
3 ADLE 84 0.234375 0.320313 0.28125
4 CRE 55 0.140625 0.117188 0.139063
5 Greens-ALE 55 0.140625 0.085938 0.078125
6 GUE/NGL 35 0.078125 0.039063 0.0390625
7 EDF 29 0.078125 0.085938 0.078125
8 NI 29 0.078125 0.085938 0.0390625

aspect of the ideology, for example, economy, immigration policies, etc., with the condition that the sum of the values of all 
issues considered is 1. Then, ρ(i j) = 1 if both groups have the same ideology in all issues.

The prox-Banzhaf index (our value for simple games) is defined in terms of the Choquet integral and the graph Banzhaf–
Owen value. The procedure to compute the index is the following: 1) we get the cuts of the proximity relation, 2) we get 
the graph Banzhaf–Owen value for the corresponding graph in each level, and 3) we calculate the index using the Choquet 
integral. Fig. 4 also shows the cuts of the EP proximity relation. Now we have to obtain for each cut βco . We can see in 
Table 1 the graph Banzhaf–Owen values (Definition 2) of the cuts of the EP proximity relation.

Using the Choquet integral we obtain our index. In Table 2 we compare the index with the classical Banzhaf index and 
the graph Banzhaf–Owen index. Observe that if we do not consider levels, namely we take the crisp version of the graph, it 
is connected and the graph Banzhaf–Owen value given in Definition 2 coincides with the graph Banzhaf value. We denote 
as gγ the crisp version of the EP proximity relation.

We can see how the aggregation of information changes the power of the groups (see Figs. 5 and 6). For instance group 
2 has greater power than group 3 with the crisp indices but they exchange their position with the fuzzy index.

7. Conclusions

The Banzhaf value is one of the best methods to determine the power of the different elements in a decision sys-
tem. The a priori bilateral relations among the agents modify their payoffs but usually these relations are not equal. 
Proximity relations allow to level the closeness among the agents. We have defined a Banzhaf value using the infor-
mation of a proximity relation and we have provided the value with an axiomatization. The construction is consistent 
with the related crisp definitions. Consider im(ρ) = {1}. In that case ρ is identified with a cooperation structure L and 
B(N, v, ρ) = βco(N, v, L). If L is connected then B(N, v, ρ) = η(N, v, L). If for each S ∈ N/L it holds L S = L S (it is complete) 

Fig. 5. Comparative of Banzhaf indices (II).
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Fig. 6. Comparative of Banzhaf indices (III).

then B(N, v, ρ) = βow(N, v, N/L). If L = LN then B(N, v, ρ) = β(N, v). Finally we have showed the interest of the index 
through an example.
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