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Abstract

The present paper introduces bicooperative games and develops some general values on the vector space of these games. First,
we define biprobabilistic values for bicooperative games and observe in detail the axioms that characterize such values. Following
the work of Weber [R.J. Weber, Probabilistic values for games, in: A.E. Roth (Ed.), The Shapley Value: Essays in Honor of Lloyd
S. Shapley Cambridge University Press, Cambridge, 1988, pp. 101–119], these axioms are sequentially introduced observing
the repercussions they have on the value expression. Moreover, compatible-order values are introduced and there is shown the
relationship between these values and efficient values such that their components are biprobabilistic values.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of cooperative games studies situations where a group of people/agents are associated to obtain a profit
as a result of their cooperation. Thus, a cooperative game is defined as a pair (N , v), where N is a finite set of
players and v : 2N

→ R is a function verifying that v(∅) = 0. For each S ∈ 2N , the worth v(S) can be interpreted
as the maximal gain or minimal cost that the players which form coalition S can achieve themselves against the
best offensive threat by the complementary coalition N \ S. Classical market games for economies with private
goods are examples of cooperative games. Hence, we can say that a cooperative game has orthogonal coalitions
(see Myerson [10, Chapter 9]).

Games with non-orthogonal coalitions are games in which the worth of a coalition S depends on the actions of
its complementary coalition N \ S. Clearly, social situations involving externalities and public goods are such cases.
For instance, we consider a group of agents with a common good which is causing them expenses or costs. In an
external or internal way, a modification (sale, buying, etc.) of this good is proposed to them. This action will suppose
a greater profit to them in the case where they all agree with the change proposed about the actual situation of the
good. Moreover, even though the patrimonial good can be divisible, we suppose that the greatest value of the selling
operation is reached if we consider all the common good.

Situations of this kind may be modeled as follows. We consider ordered pairs (S, T ), with S, T ⊆ N and S∩T = ∅.
Each pair (S, T ) yields a partition of N in three groups. Players in S are in favor of the proposal, and players in T
object to it. The remaining players in N \ (S ∪ T ) are not convinced of its benefits, but they have no intention of
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objecting to it. We model the above mentioned class of non-orthogonal situations by means of the set of all ordered
pairs of disjoint coalitions, that is, the set 3N

= {(S, T ) : S, T ⊆ N , S ∩ T = ∅} of all signed coalitions, and
define a function b : 3N

→ R. For each (S, T ) ∈ 3N , the number b(S, T ) can be interpreted as the gain (whenever
b(S, T ) > 0) or loss (whenever b(S, T ) < 0) that S can achieve when T is the opposer coalition and N \(S ∪T ) is the
neutral coalition. The pair (∅, N ) represents the situation if all the players object to the change and (N , ∅) represents
the situation where all the players wish for the change.

This is the case with multicriteria decision making when underlying scales are bipolar, i.e., a central value exists
on each scale and it is considered a neutral value. When building the model, we must then distinguish for a given
alternative criterion which have a defender value from those which have a detractor value or a neutral one. This leads
us in a natural way to the concept of a bicooperative game introduced in Bilbao [1].

Like for the cooperative case in which each coalition S ∈ 2N can be identified with a {0, 1}-vector, each signed
coalition (S, T ) ∈ 3N can be identified with the {−1, 0, 1}-vector 1(S,T ) defined, for all i ∈ N , by

1(S,T )(i) =

1 if i ∈ S,

−1 if i ∈ T,

0 otherwise.

More generally, one may imagine that each player can choose one alternative and hence bicooperative games can
be seen as a particular case of games with n players and r alternatives (for r = 3), introduced by Bolger in [2] and [3].
However, the r possible input alternatives analyzed by Bolger are not ordered and hence the lattice structures of the
domains of bicooperative games and games with n players and 3 alternatives are different. For instance, the element
(∅, ∅) is central in our structure (3N , v) and (0, 0, 0) is the least element in (3N , �), where � is the coordinatewise
order. Note that in a bicooperative game, the value 0 is central, and −1, 1 are symmetric extremes. This suggests that
bicooperative games are a symmetrization of classical cooperative games and this is the main reason for choosing
b(∅, ∅) = 0. Also it should be noted that bicooperative games with ordered finite output are a particular class of the
(3, k) hypergraphs introduced by Freixas and Zwicker in [8].

In voting games, each voter has three choices: voting for a proposal, voting against it, and abstaining. Thus, only
knowing who is in favor of the proposal is not enough for describing the situation. These games have been studied by
Felsenthal and Machover [5] under the name of ternary voting games. They generalize the standard voting games by
recognizing abstention as an option alongside yes and no votes. They are formally described by mappings u : 3N

→

{−1, 1} satisfying the following three conditions: u(N , ∅) = 1, u(∅, N ) = −1, and 1(S,T )(i) ≤ 1(S′,T ′)(i) for all
i ∈ N , implies u(S, T ) ≤ u(S′, T ′). A negative outcome, −1, is interpreted as defeat and a positive outcome, 1, as
victory, the passing of a bill. In Chua and Huang [4] the Shapley–Shubik index for ternary voting games is considered.

The proposal of Felsenthal and Machover could be refined by introducing a third output for u, which is 0, and
represents the ‘no decision’ situation. More recently, several works by Freixas [6,7] and Freixas and Zwicker [8] have
been devoted to the study of voting systems with several ordered levels of approval in the input and in the output.
In their model, the abstention is a level of input approval intermediate between yes and no votes. These authors have
generalized the ternary voting games by the definition of the so-called ( j, k) simple games. Thus, a bicooperative
simple game b : 3N

→ {−1, 0, 1} is a (3, 3) simple game such that b(∅, N ) = −1, b(∅, ∅) = 0, and b(N , ∅) = 1.
Let us briefly outline the contents of our work. In the next section, we study some properties and characteristics

of the set 3N , and introduce bicooperative games. The aim of the third section is to analyze the individual valuation
of the prospects of the players from their participation in a bicooperative game. Probabilistic values for bicooperative
games are defined and a characterization of these values is obtained. Section 4 is devoted to the study of values with
the efficiency property. In Section 5 compatible-order values are defined and we prove that they are efficient values
such that their components are biprobabilistic values.

2. The formal framework

Let N = {1, . . . , n} be a finite set and let 3N
= {(A, B) : A, B ⊆ N , A ∩ B = ∅}. Grabisch and Labreuche [9]

proposed a relation in 3N given by

(A, B) v (C, D) ⇐⇒ A ⊆ C, B ⊇ D.

We denote by the symbol @ the relation defined by means of the strict inclusion, that is, (A, B) @ (C, D) if and only
if A ⊂ C, B ⊃ D. Let us consider the following ordered 3-partitions defined by
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X = (A, N \ (A ∪ B), B) and Y = (C, N \ (C ∪ D), D).

Then (A, B) v (C, D) ⇐⇒ X3
⊆ Y and hence the relation v coincides with the inclusion 3

⊆ for 3-partitions given
by Freixas and Zwicker [8, Section 2].

The set (3N , v) is a partially ordered set (poset) with the following properties:

1. (∅, N ) is the first element: (∅, N ) v (A, B) for all (A, B) ∈ 3N .

2. (N , ∅) is the last element: (A, B) v (N , ∅) for all (A, B) ∈ 3N .

3. Every pair {(A, B), (C, D)} of elements of 3N has a join

(A, B) ∨ (C, D) = (A ∪ C, B ∩ D),

and a meet

(A, B) ∧ (C, D) = (A ∩ C, B ∪ D).

Moreover, (3N , v) is a finite distributive lattice. Two pairs (A, B) and (C, D) are comparable if (A, B) v (C, D)

or (C, D) v (A, B); otherwise, (A, B) and (C, D) are incomparable. A chain of 3N is an induced subposet of 3N in
which any two elements are comparable. In (3N , v), all maximal chains have the same number of elements and this
number is 2n + 1. Thus, there can be considered the rank function ρ : 3N

→ {0, 1, . . . , 2n} such that ρ[(∅, N )] = 0
and ρ[(S, T )] = ρ[(A, B)] + 1 if (S, T ) covers (A, B) (i.e., if (A, B) @ (S, T ) and there exists no (H, J ) ∈ 3N such
that (A, B) @ (H, J ) @ (S, T )).

A join-irreducible element is an element of a lattice which cannot be represented as a join of elements distinct from
itself. For example, the sets

∅, {1}, {2}, {1, 2}, {2, 3}, {1, 2, 3},

ordered by inclusion, form a distributive lattice L . The join-irreducible elements of L are ∅, {1}, {2} and {2, 3}. For
the distributive lattice 3N , let P denote the set of all nonzero ∨-irreducible elements. Then P is the disjoint union
C1 + C2 + · · · + Cn of the chains

Ci = {(∅, N \ {i}), (i, N \ {i})}, 1 ≤ i ≤ n.

An order ideal of P is a subset I of P such that if x ∈ I and y ≤ x , then y ∈ I . The set of all order ideals of P ,
ordered by inclusion, is the distributive lattice J (P), where the lattice operations ∨ and ∧ are just the ordinary union
and intersection respectively. The fundamental theorem for finite distributive lattices (see [11, Theorem 3.4.1]) states
that the map ϕ : 3N

→ J (P) given by

(A, B)
ϕ
7→{(X, Y ) ∈ P : (X, Y ) v (A, B)}

is an isomorphism.

Example. Let N = {1, 2}. Then P = {(∅, {1}), (∅, {2}), ({2}, {1}), ({1}, {2})} is the disjoint union of the chains
(∅, {1}) @ ({2}, {1}) and (∅, {2}) @ ({1}, {2}). We will define a = (∅, {1}), b = ({2}, {1}), c = (∅, {2}), d =

({1}, {2}), and hence

J (P) = {∅, {a}, {c}, {a, c}, {a, b}, {c, d}, {a, b, c}, {a, c, d}, {a, b, c, d}}
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Proposition 1. The number of maximal chains of the lattice (3N , v) is (2n)!/2n .

Proof. The number of maximal chains of 3N is equal to the number of maximal chains of J (P) and this number is also
equal to the number of extensions e(P) of P to a total order (see Stanley [11, Section 3.5]). Since P = C1 +· · ·+Cn ,
where the chain Ci satisfies |Ci | = 2 for 1 ≤ i ≤ n, we can apply the enumeration of lattice paths method from
Stanley [11, Example 3.5.4], and obtain

e(P) =

(
2n

2, . . . , 2

)
=

(2n)!

2n . �

Taking into account the above framework, we introduce bicooperative games.

Definition 1. A bicooperative game is a pair (N , b), where N = {1, . . . , n} is a finite set of n ≥ 2 players, (3N , v) is
a finite distributive lattice and b : 3N

→ R is a function satisfying b(∅, ∅) = 0.

The set of all bicooperative games with a fixed set of players N is denoted by BGN . With respect to addition
of games and multiplication of games by real numbers, the set BGN is a real vector space. There are three special
collections of games in BGN taking values in {−1, 0, 1}: the identity games, the superior unanimity games and the
inferior unanimity games which are defined, for any (S, T ) ∈ 3N such that (S, T ) 6= (∅, ∅) as follows.

The identity game δ(S,T ) : 3N
→ R is defined by

δ(S,T )(A, B) =

{
1 if (A, B) = (S, T ),

0 otherwise.

The superior unanimity game u(S,T ) : 3N
→ R is given by

u(S,T )(A, B) =

{
1 if (S, T ) v (A, B) 6= (∅, ∅),

0 otherwise.

The inferior unanimity game u(S,T ) : 3N
→ R is defined by

u(S,T )(A, B) =

{
−1 if (∅, ∅) 6= (A, B) v (S, T ),

0 otherwise.

The following result is straightforward and therefore the proof will be omitted.

Proposition 2. The dimension of the vector space BGN is 3n
−1 and the sets of games {δ(S,T ) : (S, T ) ∈ 3N , (S, T ) 6=

(∅, ∅)}, {u(S,T ) : (S, T ) ∈ 3N , (S, T ) 6= (∅, ∅)} and {u(S,T ) : (S, T ) ∈ 3N , (S, T ) 6= (∅, ∅)} are the basis of BGN .

3. Biprobabilistic values

A value on BGN is a mapping Φ : BGN
→ Rn that associates with each game b ∈ BGN a vector

(Φ1(b), . . . ,Φn(b)) ∈ Rn , where the real number Φi (b) represents the payoff to player i in the game b. The mapping
Φi : BGN

→ R is the value for player i ∈ N on BGN . This value represents an individual assessment for i of his or
her expectations from playing bicooperative games. From now on, we will write S ∪ i and S \ i instead of S ∪ {i} and
S \ {i} respectively.

Definition 2. A value Φi for player i on BGN is a biprobabilistic value if there exist two collections of real numbers
{pi

(S,T ) : (S, T ) ∈ 3N\i
} and {pi

(S,T )
: (S, T ) ∈ 3N\i

} satisfying pi
(S,T ) ≥ 0, pi

(S,T )
≥ 0,

∑
(S,T )∈3N\i pi

(S,T ) = 1,∑
(S,T )∈3N\i pi

(S,T )
= 1 such that

Φi (b) =

∑
(S,T )∈3N\i

[
pi

(S,T )(b(S ∪ i, T ) − b(S, T )) + pi
(S,T )

(b(S, T ) − b(S, T ∪ i))
]

for every game b ∈ BGN .
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Observe that in a biprobabilistic value Φi , player i estimates his/her participation in the game evaluating his/her
marginal contributions b(S ∪ i, T )−b(S, T ), whenever i joins coalition S ⊆ N \ i , and his/her marginal contributions
b(S, T ) − b(S, T ∪ i), whenever i leaves coalition T ∪ i , where T ⊆ N \ i . If pi

(S,T ) is the subjective probability

that player i joins S and pi
(S,T )

is the subjective probability that player i leaves T ∪ i , then Φi (b) is his/her expected
payoff for player i in the game b.

We will follow the work of Weber [12] to obtain an axiomatic development of biprobabilistic values for
bicooperative games. First, we consider the linearity property.

Linearity axiom: Φi satisfies Φi (αb + βw) = αΦi (b) + βΦi (w), for all α, β ∈ R, and b, w ∈ BGN .

Theorem 3. Let Φi be a value for player i on BGN which satisfies the linearity axiom. Then there is a unique set of
real numbers {ai

(S,T ) : (S, T ) ∈ 3N , (S, T ) 6= (∅, ∅)} such that

Φi (b) =

∑
{(S,T )∈3N :(S,T )6=(∅,∅)}

ai
(S,T )b(S, T ),

for every b ∈ BGN .

Proof. The collection of identity games is a basis of BGN , and each game b ∈ BGN can be written as

b =

∑
{(S,T )∈3N :(S,T )6=(∅,∅)}

b(S, T )δ(S,T ).

By the linearity axiom

Φi (b) =

∑
{(S,T )∈3N :(S,T )6=(∅,∅)}

Φi (δ(S,T ))b(S, T ).

Finally, we may write ai
(S,T ) = Φi (δ(S,T )) for all (S, T ) 6= (∅, ∅). �

Next we introduce the concept of dummy player, understanding that player i is a dummy player when his/her
contributions to signed coalitions (S ∪ i, T ) formed with his/her incorporation to S and his/her contributions to signed
coalitions (S, T ) formed with his/her desertion of T ∪ i coincide exactly with his/her individual contributions.

Definition 3. A player i ∈ N is a dummy in b ∈ BGN if, for every (S, T ) ∈ 3N\i , it holds that

b(S ∪ i, T ) − b(S, T ) = b({i}, ∅) and b(S, T ) − b(S, T ∪ i) = −b(∅, {i}).

Note that if i is a dummy player in b ∈ BGN , then

b(S ∪ i, T ) − b(S, T ∪ i) = b({i}, ∅) − b(∅, {i}), for all (S, T ) ∈ 3N\i .

Next, a specific game is defined and some properties for dummy players in certain games are given. These
properties are a direct consequence of Definition 3 and will be used in the proof of Theorem 5.

Let i ∈ N and (A, B) ∈ 3N\i . The game wi
(A,B) : 3N

→ R is defined as follows:

wi
(A,B)(S, T ) =


wi

(A,B)(S \ i, T ) if i ∈ S,

wi
(A,B)(S, T \ i) if i ∈ T,

1 if i 6∈ S ∪ T, (∅, ∅) 6= (S, T ) v (A, B),

0 otherwise,

for (S, T ) ∈ 3N .

Proposition 4. For all i ∈ N, it holds that:

(1) Player i is dummy in the superior unanimity game u({i},N\i).

(2) Player i is dummy in the inferior unanimity game u(N\i,{i}).

(3) Player i is dummy in wi
(A,B) for every (A, B) ∈ 3N\i .
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Player i is a dummy in b ∈ BGN if he/she has no meaningful strategic role in the game, since his/her contributions
to the coalitions formed with his/her incorporation or desertion coincide. Therefore, the value that this player should
expect in the game b must exactly be the sum of his/her marginal contributions. This consideration justifies the
introduction of the following axiom.
Dummy axiom: If i ∈ N is dummy in b ∈ BGN , then Φi (b) = b({i}, ∅) − b(∅, {i}).

In the following result, we can observe that if we add the dummy axiom to the linearity axiom, then the value for
player i can be expressed as a linear combination of his/her marginal contributions.

Theorem 5. Let Φi be a value for player i on BGN which satisfies the linearity and dummy axioms. Then there exist
two collections of real numbers {pi

(S,T ) : (S, T ) ∈ 3N\i
} and {pi

(S,T )
: (S, T ) ∈ 3N\i

} such that for any b ∈ BGN ,

Φi (b) =

∑
(S,T )∈3N\i

[
pi

(S,T )(b(S ∪ i, T ) − b(S, T )) + pi
(S,T )

(b(S, T ) − b(S, T ∪ i))
]
,

where
∑

(S,T )∈3N\i pi
(S,T ) = 1 and

∑
(S,T )∈3N\i pi

(S,T )
= 1.

Proof. Let i ∈ N . Then,

Φi (b) =

∑
(S,T )∈3N

ai
(S,T )b(S, T )

=

∑
(S,T )∈3N\i

ai
(S,T )b(S, T ) +

∑
{(S,T )∈3N :i∈S}

ai
(S,T )b(S, T ) +

∑
{(S,T )∈3N :i∈T }

ai
(S,T )b(S, T )

=

∑
{(S,T )∈3N\i :(S,T )6=(∅,∅)}

ai
(S,T )b(S, T ) +

∑
(S,T )∈3N\i

ai
(S∪i,T )b(S ∪ i, T ) +

∑
(S,T )∈3N\i

ai
(S,T ∪i)b(S, T ∪ i)

=

∑
{(S,T )∈3N\i :(S,T )6=(∅,∅)}

[
ai
(S,T )b(S, T ) + ai

(S∪i,T )b(S ∪ i, T ) + ai
(S,T ∪i)b(S, T ∪ i)

]
+ ai

({i},∅)b({i}, ∅) + ai
(∅,{i})b(∅, {i}).

Let us consider the collection of games wi
(A,B) : 3N

→ R, with (A, B) ∈ 3N\i . Since player i is a dummy in wi
(A,B)

for each (A, B) ∈ 3N\i it follows that Φi (w
i
(A,B)) = 0 by the dummy axiom. If we apply the above equality to wi

(A,B)

we get ∑
{(S,T )∈3N\i :(∅,∅)6=(S,T )v(A,B)}

(ai
(S,T ) + ai

(S∪i,T ) + ai
(S,T ∪i)) = 0.

We prove by induction on ρ[(S, T )] (the rank of the signed coalitions) that for all (S, T ) ∈ 3N\i with (S, T ) 6=

(∅, ∅), it holds that ai
(S,T ) + ai

(S∪i,T ) + ai
(S,T ∪i) = 0. First note that the first element in (3N\i , v) is (∅, N \ i) so that

ρ[(∅, N \ i)] = 0. We compute∑
{(S,T )∈3N\i :(S,T )v(∅,N\i)}

(ai
(S,T ) + ai

(S∪i,T ) + ai
(S,T ∪i)) = ai

(∅,N\i) + ai
({i},N\i) + ai

(∅,N ) = 0.

Now assume the property for (H, J ) ∈ 3N\i with ρ[(H, J )] ≤ k − 1 and suppose that (S, T ) ∈ 3N\i has
ρ[(S, T )] = k. Then

Φi (w
i
(S,T )) =

∑
{(H,J )∈3N\i :(∅,∅)6=(H,J )v(S,T )}

(ai
(H,J ) + ai

(H∪i,J ) + ai
(H,J∪i))

= ai
(S,T ) + ai

(S∪i,T ) + ai
(S,T ∪i) +

∑
{(H,J )∈3N\i :(∅,∅)6=(H,J )@(S,T )}

(ai
(H,J ) + ai

(H∪i,J ) + ai
(H,J∪i))

= ai
(S,T ) + ai

(S∪i,T ) + ai
(S,T ∪i) = 0,

where the second equality follows from the induction hypothesis, and the third from the dummy axiom. Now, for each
(S, T ) ∈ 3N\i define

pi
(∅,∅) = ai

({i},∅), pi
(∅,∅)

= −ai
(∅,{i}), pi

(S,T ) = ai
(S∪i,T ), pi

(S,T )
= −ai

(S,T ∪i).
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Then we compute

Φi (b) =

∑
(S,T )∈3N\i

[
(pi

(S,T )
− pi

(S,T ))b(S, T ) + pi
(S,T )b(S ∪ i, T ) − pi

(S,T )
b(S, T ∪ i)

]
=

∑
(S,T )∈3N\i

[
pi

(S,T )(b(S ∪ i, T ) − b(S, T )) + pi
(S,T )

(b(S, T ) − b(S, T ∪ i))
]
.

By Proposition 4 we have that player i is dummy in game u({i},N\i), and hence∑
(S,T )∈3N\i

pi
(S,T ) =

∑
(S,T )∈3N\i

ai
(S∪i,T ) =

∑
{(S,T )∈3N :i∈S}

ai
(S,T )

=

∑
{(S,T )∈3N :i∈S}

Φi (δ(S,T )) = Φi

 ∑
{(S,T )∈3N :i∈S}

δ(S,T )


= Φi (u({i},N\i)) = u({i},N\i)({i}, ∅) − u({i},N\i)(∅, {i}) = 1.

Since player i is dummy in game u(N\i,{i}), we obtain∑
(S,T )∈3N\i

pi
(S,T )

=

∑
(S,T )∈3N\i

−ai
(S,T ∪i) =

∑
{(S,T )∈3N :i∈T }

−ai
(S,T )

=

∑
{(S,T )∈3N :i∈T }

−Φi (δ(S,T )) = Φi

 ∑
{(S,T )∈3N :i∈T }

−δ(S,T )


= Φi (u(N\i,{i})) = u(N\i,{i})({i}, ∅) − u(N\i,{i})(∅, {i}) = 1. �

Definition 4. The game b ∈ BGN is monotonic if

(A, B) v (C, D) ⇒ b(A, B) ≤ b(C, D).

Monotonicity axiom. If b ∈ BGN is monotonic then Φi (b) ≥ 0.

If we introduce this new axiom in the hypothesis of the above theorem, we can prove that the coefficients pi
(S,T )

and pi
(S,T ) are non-negative.

Theorem 6. Let Φi be a value for player i on BGN defined by

Φi (b) =

∑
(S,T )∈3N\i

[
pi

(S,T )(b(S ∪ i, T ) − b(S, T )) + pi
(S,T )

(b(S, T ) − b(S, T ∪ i))
]
,

for every game b ∈ BGN . If Φi satisfies the monotonicity axiom then pi
(S,T ) ≥ 0 and pi

(S,T )
≥ 0 for all (S, T ) ∈ 3N\i .

Proof. For (S, T ) ∈ 3N\i with |S| ≥ |T |, consider the game ζ
i
(S,T ) : 3N

→ R given by

ζ
i
(S,T )(A, B) =

ζ
i
(S,T )(A, B \ i) if i ∈ B,

1 if (S, T ) @ (A, B),

0 otherwise,

and for every (S, T ) ∈ 3N\i with |S| < |T |, the game ζ
i
(S,T ) : 3N

→ R is defined by

ζ
i
(S,T )(A, B) =

ζ
i
(S,T )(A \ i, B) if i ∈ A, (A \ i, B) 6= (S, T ),

−1 if (S, T ) w (A, B),

0 otherwise.
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The game ζ
i
(S,T ) is monotonic, and hence Φi (ζ

i
(S,T )) ≥ 0. We easily find that Φi (ζ

i
(S,T )) = pi

(S,T ), and then

pi
(S,T ) ≥ 0 for every (S, T ) ∈ 3N\i . Similarly, for each (S, T ) ∈ 3N\i with |S| > |T |, we consider the game

ζ i
(S,T )

: 3N
→ R given by

ζ i
(S,T )

(A, B) =


ζ i

(S,T )
(A, B \ i) if i ∈ B, (A, B \ i) 6= (S, T ),

1 if (S, T ) v (A, B),

0 otherwise,

and for every (S, T ) ∈ 3N\i with |S| ≤ |T |, the game ζ i
(S,T )

: 3N
→ R is defined by

ζ i
(S,T )

(A, B) =


ζ i

(S,T )
(A \ i, B) if i ∈ A,

−1 if (S, T ) A (A, B),

0 otherwise.

The game ζ i
(S,T )

is monotonic, and hence Φi (ζ
i
(S,T )

) ≥ 0. Since Φi (ζ
i
(S,T )

) = pi
(S,T )

, we obtain pi
(S,T )

≥ 0 for

every (S, T ) ∈ 3N\i . �

It is easy to check that every biprobabilistic value satisfies linearity, dummy and monotonicity axioms. Therefore,
we obtain the following characterization of biprobabilistic values from the combination of the above results.

Theorem 7. Let Φi be a value for player i on BGN . The value Φi is a biprobabilistic value if and only if Φi satisfies
the linearity, dummy and monotonicity axioms.

4. Efficient values

In a cooperative game v : 2N
→ R, it is assumed that all players decide to cooperate among themselves and form

the grand coalition N . This leads to the problem of distributing the amount v(N ) among them. In this case, a value ϕ

is efficient if∑
i∈N

ϕi (v) = v(N ).

In this section, we study the class of values Φ : BGN
→ Rn that provide an equitable distribution of the total

saving among the players. Since in a bicooperative game b : 3N
→ R, the amount b(∅, N ) is the cost (or expense)

incurred when all the players object to a proposal and b(N , ∅) is the gain obtained when all players are in its favor,
then the net profit is given by b(N , ∅) − b(∅, N ). Note that for monotonic games the cost b(∅, N ) ≤ 0 and hence
b(N , ∅) − b(∅, N ) ≥ b(N , ∅). From this perspective, an efficient value must satisfy the following axiom.
Efficiency axiom. Let Φ : BGN

→ Rn be a value. For every b ∈ BGN , it holds that∑
i∈N

Φi (b) = b(N , ∅) − b(∅, N ).

The following theorem characterizes the values which are efficient.

Theorem 8. Let Φ = (Φ1, . . . ,Φn) be a value on BGN , defined by

Φi (b) =

∑
(S,T )∈3N\i

[
pi

(S,T )(b(S ∪ i, T ) − b(S, T )) + pi
(S,T )

(b(S, T ) − b(S, T ∪ i))
]
,

for every game b and for all i ∈ N. Then Φ satisfies the efficiency axiom if and only if it holds that∑
i∈N

pi
(N\i,∅) = 1,∑

i∈N

pi
(∅,N\i)

= 1,

∑
i∈S

pi
(S\i,T ) −

∑
i∈T

pi
(S,T \i)

=

∑
i 6∈S∪T

(
pi

(S,T ) − pi
(S,T )

)
,

for all (S, T ) ∈ 3N , with (S, T ) 6∈ {(∅, ∅), (∅, N ), (N , ∅)}.
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Proof. Let b ∈ BGN . Then∑
i∈N

Φi (b) =

∑
i∈N

∑
(S,T )∈3N\i

[
pi

(S,T )(b(S ∪ i, T ) − b(S, T )) + pi
(S,T )

(b(S, T ) − b(S, T ∪ i))
]

=

∑
i∈N

∑
(S,T )∈3N\i

[
pi

(S,T )b(S ∪ i, T ) − pi
(S,T )

b(S, T ∪ i) +

(
pi

(S,T )
− pi

(S,T )

)
b(S, T )

]

=

∑
(S,T )∈3N

b(S, T )

[∑
i∈S

pi
(S\i,T ) −

∑
i∈T

pi
(S,T \i)

+

∑
i 6∈S∪T

(
pi

(S,T )
− pi

(S,T )

)]

=

∑
(S,T )6∈{(∅,N ),(N ,∅)}

b(S, T )

[∑
i∈S

pi
(S\i,T ) −

∑
i∈T

pi
(S,T \i)

+

∑
i 6∈S∪T

(
pi

(S,T )
− pi

(S,T )

)]
+ b(N , ∅)

∑
i∈N

pi
(N\i,∅) − b(∅, N )

∑
i∈N

pi
(∅,N\i)

.

If the coefficients satisfy the relations of the theorem, then Φ satisfies the efficiency axiom.
Conversely, fix (S, T ) ∈ 3N such that (S, T ) 6= (∅, ∅). Applying the above equality to the identity game δ(S,T ), we

have

∑
i∈N

Φi (δ(S,T )) =


∑
i∈N

pi
(N\i,∅) if (S, T ) = (N , ∅),

−

∑
i∈N

pi
(∅,N\i)

if (S, T ) = (∅, N ),

and ∑
i∈N

Φi (δ(S,T )) =

∑
i∈S

pi
(S\i,T ) −

∑
i∈T

pi
(S,T \i)

+

∑
i 6∈S∪T

(
pi

(S,T )
− pi

(S,T )

)
,

otherwise. Thus, if Φ satisfies the efficiency axiom, the relations for the coefficients are true. �

A particular case of an efficient value whose i-th component satisfies the linearity, dummy and monotonicity
axioms is the value Φi (b) defined, for b ∈ BGN , as

Φi (b) =

∑
S⊆N\i

s!(n − s − 1)!

n!
[b(S ∪ i, N \ (S ∪ i)) − b(S, N \ S)].

Note that, for any bicooperative game b ∈ BGN , this value is the Shapley value corresponding to the cooperative
game (N , v), where v : 2N

→ R is defined by v(A) = b(A, N \ A) if A 6= ∅, and v(∅) = 0. This value is not
satisfactory for any bicooperative game in the sense that it only considers the contributions to signed coalitions in
which all players take part. Moreover, there are an infinity of different bicooperative games which give rise to the
same cooperative game.

5. Compatible-order values

We now consider values which result from a common perception for all players. It is assumed that all of them
estimate that (N , ∅) is formed as a sequential process where in each step a different player is incorporated into the
first coalition or a different player leaves the second one. These sequential processes are obtained considering the
different chains from (∅, N ) to (N , ∅). In each one of these processes, a player can evaluate his/her contribution when
he/she is incorporated to a coalition S or his/her contribution when he/she leaves a coalition T . This can be reflected
in the vectors of Rn called superior marginal worth vectors and inferior marginal worth vectors. With the aim of
formalizing this idea, we introduce the following notation.

Given N = {1, . . . , n}, let N = {−n, . . . ,−1, 1, . . . , n}. For each (S, T ) ∈ 3N we define the set (S, T ) =

S ∪ {−i : i ∈ N \ T } ⊆ N . Note that this correspondence is one to one. For instance, (∅, N ) = ∅ and (N , ∅) = N .
Since S ∩ T = ∅ ⇔ S ⊆ N \ T we see that i ∈ (S, T ) and i > 0 imply −i ∈ (S, T ).
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In the lattice (3N , v), we consider the set of all maximal chains going from (∅, N ) to (N , ∅) and denote this set by
Θ(3N ). Let θ ∈ Θ(3N ) be the maximal chain

(∅, N ) @ (S1, T1) @ · · · @ (S j , T j ) @ · · · @ (S2n−1, T2n−1) @ (N , ∅),

and we obtain the associated chain of sets

∅ ⊂ {i1} ⊂ · · · ⊂ {i1, . . . , i j } ⊂ · · · ⊂ {i1, . . . , i2n−1} ⊂ N

where {i1, . . . , i j } = (S j , T j ) for j = 1, . . . , 2n. We define the vector θ(i j ) = (i1, . . . , i j ), where the last component
i j ∈ N satisfies the following property: if i j > 0 then player i j ∈ S j and i j 6∈ S j−1, that is, i j is the last player
who joins S j and if i j < 0, then player −i j 6∈ T j and −i j ∈ T j−1, that is, −i j is the last player who leaves T j−1.
Equivalently, the elements in θ(i j ) = (i1, i2, . . . , i j ) are written following the order of incorporation or desertion in
the chain θ (depending on the sign of each ik). Therefore, we obtain an equivalence between maximal chains and
vectors θ = (i1, . . . , i2n). For example, let N = {1, 2, 3} and let θ be the maximal chain

(∅, N ) @ (∅, {1, 3}) @ ({2}, {1, 3}) @ ({2}, {1}) @ ({2}, ∅) @ ({2, 3}, ∅) @ (N , ∅).

Its associated chain of sets is given by

∅ ⊂ {−2} ⊂ {−2, 2} ⊂ {−2, 2, −3} ⊂ {−2, 2, −3, −1} ⊂ {−2, 2, −3, −1, 3} ⊂ N .

Thus, we can represent the maximal chain by the vector θ = (−2, 2, −3, −1, 3, 1). If θ(i j ) = (i1, . . . , i j ) we
define α[θ(i j )] = (S j , T j ) such that (S j , T j ) = {i1, . . . , i j }. In particular, α[θ(i2n)] = (N , ∅) and α[θ(i1) \ i1] =

(∅, N ).

Definition 5. Let θ ∈ Θ(3N ) and b ∈ BGN . The vectors mθ (b), Mθ (b) ∈ Rn , with

mθ
i (b) = b(α[θ(−i)]) − b(α[θ(−i) \ −i]), Mθ

i (b) = b(α[θ(i)]) − b(α[θ(i) \ i]),

for i ∈ N , are the inferior and superior marginal worth vectors with respect to θ , respectively. The marginal worth
vector with respect to θ is given by aθ (b) ∈ Rn where

aθ
i (b) = mθ

i (b) + Mθ
i (b), for all i ∈ N .

Proposition 9. For any b ∈ BGN and θ ∈ Θ(3N ) it holds that∑
i∈N

aθ
i (b) = b(N , ∅) − b(∅, N ).

Proof. Let b ∈ BGN and θ ∈ Θ(3N ). Then∑
i∈N

aθ
i (b) =

∑
i∈N

b(α[θ(−i)]) − b(α[θ(−i) \ −i]) + b(α[θ(i)]) − b(α[θ(i) \ i])

=

2n∑
j=1

[b(α[θ(i j )]) − b(α[θ(i j ) \ i j ])] = b(N , ∅) − b(∅, N ). �

Definition 6. A compatible-order value on BGN is a value Ψ = (Ψ1, . . . ,Ψn) such that there exists a collection
{pθ : θ ∈ Θ(3N )} satisfying pθ ≥ 0,

∑
θ∈Θ(3N ) pθ = 1 and

Ψi (b) =

∑
θ∈Θ(3N )

pθaθ
i (b),

for all i ∈ N and all b ∈ BGN .

A compatible-order value is a value where each player evaluates his/her marginal contributions in the processes
of formation of (N , ∅) with a common perception of the probability of these processes. The relation between the
compatible-order values and the values that satisfy the efficiency axiom is stated in the following theorems.
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Theorem 10. Let Ψ = (Ψ1, . . . ,Ψn) be a compatible-order value on BGN . Then Ψ satisfies the efficiency axiom and
each component of Ψ is a biprobabilistic value.

Proof. Let {pθ : θ ∈ Θ(3N )} be the collection of coefficients such that

Ψi (b) =

∑
θ∈Θ(3N )

pθaθ
i (b) =

∑
θ∈Θ(3N )

pθ [m
θ
i (b) + Mθ

i (b)]

=

∑
θ∈Θ(3N )

pθ [b(α[θ(−i)]) − b(α[θ(−i) \ −i])] +

∑
θ∈Θ(3N )

pθ [b(α[θ(i)]) − b(α[θ(i) \ i])],

for all i ∈ N and all b ∈ BGN . If θ runs over all maximal chains in Θ(3N ), the sets α[θ(i) \ i] determine all signed
coalitions (S, T ) ∈ 3N\i in which i is incorporated in the order and the sets α[θ(−i)] determine all signed coalitions
(S, T ) ∈ 3N\i in which player i has just left the preceding signed coalition in the order. Thus, the above expression
can be written as

Ψi (b) =

∑
(S,T )∈3N\i

 ∑
{θ∈Θ(3N ):α[θ(i)\i]=(S,T )}

pθ

 [b(α[θ(i)]) − b(α[θ(i) \ i])]

+

 ∑
{θ∈Θ(3N ):α[θ(−i)]=(S,T )}

pθ

 [b(α[θ(−i)]) − b(α[θ(−i) \ −i])]

 .

Now for each (S, T ) ∈ 3N\i define

pi
(S,T ) =

∑
{θ∈Θ(3N ):α[θ(i)\i]=(S,T )}

pθ ,

pi
(S,T )

=

∑
{θ∈Θ(3N ):α[θ(−i)]=(S,T )}

pθ .

Then pi
(S,T ) ≥ 0 and pi

(S,T )
≥ 0. We claim that∑

(S,T )∈3N\i

pi
(S,T ) = 1 and

∑
(S,T )∈3N\i

pi
(S,T )

= 1.

To prove the claim, fix i and select all (S, T ) ∈ 3N\i in which player i joins S. Thus we must obtain all chains
θ ∈ Θ(3N ) and hence

∑
(S,T )∈3N\i

 ∑
{θ∈Θ(3N ):α[θ(i)\i]=(S,T )}

pθ

 =

∑
θ∈Θ(3N )

pθ = 1.

Similarly, we show that
∑

(S,T )∈3N\i pi
(S,T )

= 1. It follows that Ψi is a biprobabilistic value for all i ∈ N . Next, we

show that Ψ is efficient. For every b ∈ BGN we have∑
i∈N

Ψi (b) =

∑
i∈N

∑
θ∈Θ(3N )

pθaθ
i (b) =

∑
θ∈Θ(3N )

pθ

[∑
i∈N

(mθ
i (b) + Mθ

i (b))

]
=

∑
θ∈Θ(3N )

pθ [b(N , ∅) − b(∅, N )] = b(N , ∅) − b(∅, N ). �

Theorem 11. Let Φ = (Φ1, . . . ,Φn) be a value on BGN that satisfies the efficiency axiom and such that each
component of Φ is a biprobabilistic value. Then Φ is a compatible-order value.

Proof. By hypothesis, for all b ∈ BGN and all i ∈ N , we have

Φi (b) =

∑
(S,T )∈3N\i

[
pi

(S,T )(b(S ∪ i, T ) − b(S, T )) + pi
(S,T )

(b(S, T ) − b(S, T ∪ i))
]
.
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For each (S, T ) ∈ 3N , define

A(S, T ) =

∑
j 6∈S∪T

p j
(S,T ) +

∑
j∈T

p j
(S,T \ j)

,

that is, A(S, T ) is the sum of the probabilities of all players that can join S in (S, T ) and the probabilities of all players
that can leave T in (S, T ). For i ∈ N and (S, T ) ∈ 3N\i , define

A(i, (S, T )) =


pi

(S,T )

A(S, T )
if A(S, T ) 6= 0,

0 otherwise,

and for all (S, T ) ∈ 3N such that i ∈ T , define

A(−i, (S, T )) =


pi

(S,T \i)

A(S, T )
if A(S, T ) 6= 0,

0 otherwise.

Note that A(i, (S, T )) is the quotient between the assigned probability for player i from his/her union to S in (S, T )

and the sum of probabilities A(S, T ). In A(−i, (S, T )) we consider the quotient between the assigned probability for
player i from his/her desertion from T in (S, T ) and the sum of the probabilities A(S, T ).

For θ = (i1, i2, . . . , i2n) ∈ Θ(3N ), define the product

pθ = A(i1, α[θ(i1) \ i1])A(i2, α[θ(i2) \ i2]) · · · A(i2n, α[θ(i2n) \ i2n]).

Since i1 < 0 the first factor is equal to

A(i1, (∅, N )) =

p−i1
(∅,N\−i1)∑

j∈N
p j

(∅,N\ j)

= p−i1
(∅,N\−i1)

,

where the last equality follows from the efficiency axiom (see Theorem 8). Since i2n > 0 the last factor is

A(i2n, (N \ i2n, ∅)) =

pi2n
(N\i2n ,∅)

pi2n
(N\i2n ,∅)

= 1.

The collection {pθ : θ ∈ Θ(3N )} satisfies that all pθ ≥ 0, and∑
θ∈Θ(3N )

pθ =

∑
{i1∈N :i1<0}

∑
{i2 6∈{i1}:α[θ(i2)]∈3N }

· · ·

∑
i2n 6∈{i1,...,i2n−1}

p(i1,...,i2n)

=

∑
i∈N

pi
(∅,N\i)

= 1.

Thus {pθ : θ ∈ Θ(3N )} is a finite probability distribution. Let Ψ be the compatible-order value associated with
this probability distribution, that is,

Ψi (b) =

∑
θ∈Θ(3N )

pθaθ
i (b) =

∑
θ∈Θ(3N )

pθ [m
θ
i (b) + Mθ

i (b)],

for all i ∈ N and b ∈ BGN . Then for all i ∈ N we have

Ψi (b) =

∑
(S,T )∈3N\i

 ∑
{θ∈Θ(3N ):α[θ(i)\i]=(S,T )}

pθ

 [b(α[θ(i)]) − b(α[θ(i) \ i])]

+

 ∑
{θ∈Θ(3N ):α[θ(−i)]=(S,T )}

pθ

 [b(α[θ(−i)]) − b(α[θ(−i) \ −i])]

 .
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To prove that Φi = Ψi we only need to show that the coefficients satisfy

pi
(S,T ) =

∑
{θ∈Θ(3N ): α[θ(i)\i]=(S,T )}

pθ ,

pi
(S,T )

=

∑
{θ∈Θ(3N ) : α[θ(−i)]=(S,T )}

pθ ,

for every (S, T ) ∈ 3N\i .

We next prove the first equality. The second one is similarly obtained. Let (S, T ) ∈ 3N\i with |S| = s and
|T | = t . Then we consider a chain θ1 = (i1, . . . , ik), where k = s + n − t , from (∅, N ) to (S, T ) and a chain
θ2 = (ik+2, . . . , i2n) from (S ∪ i, T ) to (N , ∅). These chains can be concatenated with i to make a maximal chain
θ = (i1, . . . , ik, i, ik+2, . . . , i2n).

Now we compute∑
{θ :α[θ(i)\i]=(S,T )}

pθ =

∑
ik∈(S,T )

∑
ik−1∈(S,T )\{ik }

· · ·

∑
i1∈(S,T )\{ik ,...,i2}

∑
ik+2 6∈(S∪i,T )

· · ·

∑
i2n 6∈(S∪i,T )∪{ik+2,...,i2n−1}

p(i1,...,ik ,i,ik+2,...,i2n)

= A(i, (S, T ))
∑

ik∈(S,T )

A(ik, (S, T ) \ {ik})

· · ·

∑
i1∈(S,T )\{ik ,...,i2}

p−i1
(∅,N\−i1)

· · ·

∑
ik+2 6∈(S∪i,T )

A(ik+2, (S ∪ i, T ))

· · ·

∑
i2n 6∈(S∪i,T )∪{ik+2,...,i2n−1}

A(i2n, (S ∪ i, T ) ∪ {ik+2, . . . , i2n−1}),

where ik ∈ (S, T ) if ik ∈ S or −ik 6∈ T and (S, T ) \ {ik} = (S \ ik, T ) if ik > 0 and (S, T ) \ {ik} = (S, T ∪ −ik) if
ik < 0. Also, (S ∪ i, T ) ∪ {ik+2} = (S ∪ i ∪ ik+2, T ) if ik+2 > 0 and (S ∪ i, T \ −ik+2) otherwise.

First we prove that the last 2n − k −1 sums each, in turn, have value 1. Indeed, if Hp = (S ∪ i, T )∪{ik+2, . . . , i p},

k + 2 ≤ p ≤ 2n − 1 and Hk+1 = (S ∪ i, T ), then∑
{i p 6∈(S∪i,T )∪{ik+2,...,i p−1}}

A(i p, (S ∪ i, T ) ∪ {ik+2, . . . , i p−1})

=

∑
{i p 6∈Hp−1:Hp−1∪{i p}∈3N , i p>0}

A(i p, Hp−1) +

∑
{i p 6∈Hp−1:Hp−1∪{i p}∈3N , i p<0}

A(i p, Hp−1)

=

∑
{i p 6∈Hp−1:Hp−1∪{i p}∈3N , i p>0}

p
i p
Hp−1

A(Hp−1)
+

∑
{i p 6∈Hp−1:Hp−1∪{i p}∈3N , i p<0}

p
−i p
Hp−1∪{i p}

A(Hp−1)
,

and this expression is equal to 1 since A(Hp−1) is given by

A(Hp−1) =

∑
{ j 6∈Hp−1:Hp−1∪{ j}∈3N , j>0}

p j
Hp−1

+

∑
{ j 6∈Hp−1:Hp−1∪{ j}∈3N , j<0}

p− j
Hp−1∪{ j}

.

If we now consider the first k+1 sums, we see that each numerator of one factor is equal to the previous denominator
by the efficiency axiom. Indeed, if we define L p = (S, T ) \ {ik, . . . , i p}, where 2 ≤ p ≤ k, and Lk+1 = (S, T ), we
claim that

A(i, (S, T ))
∑

{ik∈Lk+1:Lk+1\{ik }∈3N }

A(ik, Lk) · · ·

∑
i1∈L2

p−i1
L2

=
pi

(S,T )∑
j 6∈S∪T

p j
(S,T ) +

∑
j∈T

p j
(S,T \ j)

∑
{ik∈Lk+1:Lk+1\{ik }∈3N }

A(ik, Lk) · · ·

∑
i1∈L2

p−i1
L2

= pi
(S,T ).
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Note that the numerator of each term
∑

i p−1∈L p
A(i p−1, L p−1) is given by∑

{ j∈L p : j>0}

p j
L p\{ j} +

∑
{ j∈L p : j<0}

p− j
L p

,

and it is preceded by a factor with denominator

A(L p) =

∑
{ j 6∈L p :L p∪{ j}∈3N , j>0}

p j
L p

+

∑
{ j 6∈L p :L p∪{ j}∈3N , j<0}

p− j
L p∪{ j}

.

Since these expressions are equal, applying the equations of Theorem 8, the entire expression simplifies to pi
(S,T ).

�

Note that a particular case of compatible-order value is the value Φ = (Φ1, . . . ,Φn) on BGN , with the same
probability for all possible maximal chains, that is,

pθ =
1

|Θ(3N )|
=

2n

(2n)!
=

1
n!(2n − 1)!!

.

This value is an extension of the Shapley value for bicooperative games. Thus, we introduce the following definition.

Definition 7. Let b ∈ BGN . The Shapley value for the bicooperative game b is given by

Φi (b) =
1

n!(2n − 1)!!

∑
θ∈Θ(3N )

pθaθ
i (b),

for each i ∈ N .
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