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Abstract  Here we focused on the co-occurrence 
pattern on regional and local scales, and on the niche 
differences of two species of congeneric beetles 
(Ochthebius quadricollis and O. lejolisii, Hydraeni-
dae) exclusive of supratidal rockpools. Abundances 
of adults and larval stages from both species and 
environmental variables were obtained in 10 pools 
from 12 localities along the Iberian Mediterranean 
coast. To determine the local co-existence pattern, we 
monthly sampled two localities in an annual cycle. On 
regional and local scales, we found negative correla-
tions between both species’ pool abundances, which 
suggest spatio-temporal segregation based on their 
different environmental responses. The OMI analysis 

detected interspecific niche differences, larger in lar-
vae than adults. The best regression models obtained 
for O. quadricollis larvae included depth, conductiv-
ity, and fine sediments as the main explanatory vari-
ables with a positive effect, and distance to sea and 
CPOM with a negative effect. For O. lejolisii larvae, 
the best models included CPOM and periphyton with 
positive effects, while pool area, depth and conduc-
tivity negatively affected. Our results suggest that 
subtle interspecific differences in ecological niches, 
mainly those related to pool hydroperiod and salinity, 
could determine spatio-temporal storage effects as the 
principal mechanisms of co-existence on local and 
regional scales.

Keywords  Co-occurrence · Regional and local 
scales · Spatio-temporal storage effects · Ochthebius · 
OMI · Regression models

Introduction

The co-existence of species in natural communities 
has historically fascinated scientists (e.g., Hutchin-
son, 1959; Amarasekare, 2003; Hart et al., 2017; Luo 
et al., 2022). Despite major theoretical developments 
in past decades, there is still very few little empirical 
research (Amarasekare, 2003; Hawlena, 2022), which 
can even be more complex and challenging when 
referring to congeneric species.
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The classic theory assumes that closely related 
taxa inhabiting a given space have a series of com-
mon traits that allow them to pass the filter imposed 
by environmental conditions, as well as some ecologi-
cal differences that enable stable co-existence (Gause, 
1934; Hutchinson, 1959; MacArthur & Levins, 1967; 
Den Boer, 1979; Chase, 2003). These differences are 
usually considered to be species’ niches (Hutchinson, 
1957). Niche differences are important for species co-
existence because they enable each species to limit its 
own growth rates more effectively than that of com-
petitors (Peterson et al., 2011). This can be achieved 
by several mechanisms, of which spatio-temporal 
storage effects are key co-existence mechanisms if 
competing species are different in terms of their envi-
ronmental responses (Tilman, 1982; Chesson, 2000). 
Thus, when species differ in their responses to abi-
otic environment variation, they should reach high 
abundances in the most favorable habitat patches by 
experiencing fierce intraspecific competition. In con-
trast, they are rare in unfavorable patches and mostly 
endure interspecific competition (Pironon et  al., 
2018). Spatio-temporal heterogeneity may also facili-
tate species co-occurrence on fine scales (Burgazzi, 
2018), but environmental data are rarely compiled 
at an adequate high resolution to empirically evalu-
ate their influence (Letten et al., 2015; Williams et al., 
2022). In observational studies, on the local scale the 
environment is usually treated as spatially homogene-
ous and co-existence is attributed to independent pro-
cesses, such as resource partitioning or the temporal 
storage effect (Letten et al., 2015).

In this context, the ecological niche analysis is 
key for understanding the co-existence of related 
species, and even conspecific populations (Husson 
et  al., 2017; Johnston et  al., 2022). Niche displace-
ment may explain how closely related species with 
co-occurrence on a regional or local scale can also 
co-exist on the microhabitat scale. These often sub-
tle niche differences are more difficult to discern in 
extreme environments, where identifying possible 
niche displacements is complicated by the wide range 
of species’ tolerance to environmental variables, such 
as temperature, desiccation or salinity (Arribas et al., 
2019; Marrone et al., 2023).

Coastal habitats are among the most dynamic on 
Earth given their simultaneous exposure to terrestrial, 
oceanic and atmospheric processes (Parvizi et  al., 
2022). Of them, the intertidal zone has a long history 

of ecological study, particularly the vertical zonation 
phenomenon and how it is modified by exposure to 
tidal and wave actions (see the review in Hawkins 
et  al., 2020). A vast variety of field and laboratory 
experimental studies has been conducted to explore 
the role of physical and biological factors, including 
competition, predation and behavior, in setting dis-
tribution patterns, as well as causes, including how 
organisms respond to the environmental stressors 
associated with emersion periods, such as desicca-
tion and temperature (e.g., Southward, 1958; Foster, 
1971). In these habitats, the co-existence of closely 
related species can be common (e.g., Boaventura 
et al., 2002; Conde-Padín et al., 2007; Stickle et al., 
2017; Casal et al., 2018; Blakeslee et al., 2021; Vec-
chioni et al., 2021), where the upper end of a species 
vertical distribution is principally determined by not 
only its abiotic stress tolerance to emersion tempera-
ture and desiccation (Connell, 1970, 1972; Wolcott, 
1973; Menge & Sutherland, 1987), but also by biotic 
interactions at the lower end of the species range 
(Paine, 1966, 1969; Wethey, 1984; Somero, 2002).

Compared to intertidal zones, the co-existence of 
related species in supratidal zones has been studied 
much less (Villastrigo et al., 2022). Supratidal rock-
pools are recognized as one of the most challeng-
ing living environments worldwide (Fig. 1C), char-
acterized by harsh rapidly changing environmental 
conditions (Brandes et  al., 2015; Sabatelli et  al., 
2016, 2021; Parvizi et al., 2022), especially on the 
Mediterranean coast (Izquierdo & Mikolajewicz, 
2019). These pools are subjected to intense salinity 
fluctuations due to the combined effect of marine 
(splash, waves) and terrestrial water inputs (Telesh 
et al., 2013; Vinagre et al., 2015), which determine 
an extremely variable hydroperiod. During rain-
ing seasons, rockpools can be flooded from days to 
several months, sometimes by severe storms, and 
they also undergo continuous evaporation and des-
iccation, especially in summer. This leads to not 
only the formation of extremely hypersaline pools 
(Brandes et al., 2015), with concentrations exceed-
ing 200 g  l−1 (Mirón-Gatón et al., 2022b), but also 
to drastic changes in habitat availability. Besides, 
marine rockpools undergo marked temperature fluc-
tuations on seasonal and daily scales (Mirón-Gatón 
et al., 2022a) due to intense solar radiation in areas 
that lack emergent or rooted vegetation. In pools, 
a biofilm can develop on the rock substrate and 
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filamentous algae as primary producers, and large 
deposits of Posidonia oceanica (L.) Delile leaf 
remains and fine sediment can accumulate. Thus, 
supratidal rocky coasts constitute a fragmented and 
highly heterogeneous area with conditions varying 
along the gradient of distance to sea; from more 
constant conditions in pools near the coastline, 
but strongly exposed to waves and changes in sea 
level, to more distant temporary pools with vast 
environmental variation. These fluctuating extreme 
conditions constrain species from being able to 
live in such habitats, which results in communi-
ties with poor species richness that consist mainly 
of Mollusca and Crustacea of marine origin, and 
Diptera and Coleoptera of continental origin (Mar-
galef, 1949). Coleopterans of the genus Ochthebius 
Leach, 1815 (Family Hydraenidae) are the predomi-
nant macroinvertebrate to inhabit coastal supratidal 
rockpools in many parts of the world, and congener 
species of Ochthebius from two evolutionary line-
ages (Cobalius and Ochthebius subgenera) in the 

same localities, and even in the same pools, are fre-
quently found (Villastrigo et al., 2022).

Our study focused on two representative species of 
these true rockpool Ochthebius lineages: O. (Ochthe-
bius) quadricollis Mulsant, 1844 and O. (Cobalius) 
lejolisii Mulsant & Rey, 1861 (see habitus in Fig. 1A, 
B). Both species show partial sympatry on the Medi-
terranean coast of the Iberian Peninsula (Fig. 2A) and 
constitute an excellent model system to investigate 
co-existence mechanisms in closely related species on 
spatio-temporal scales. Previous studies have found 
different, but overlapping, responses to temperature 
(Mirón-Gatón et  al., 2022a) and salinity between the 
adult and young life stages of these Ochthebius spe-
cies (Mirón-Gatón et  al., 2022b). Additionally, dif-
ferences in their abundance and life cycle duration 
throughout the year (Velasco et al., 2022) point out that 
spatio-temporal storage effects are two of the principal 
co-existence mechanisms in these species. Yet despite 
recent advances, information on their habitat specific-
ity is still scarce. Overall, this study aims to: (i) analyze 

Fig. 1   Adult and larval 
habitus of Ochthebius 
quadricollis (A) and O. 
lejolisii (B), and rockpools 
habitat representative of the 
sampled stations (C)



474	 Hydrobiologia (2024) 851:471–485

1 3
Vol:. (1234567890)

the spatio-temporal occurrence patterns of the two 
above-mentioned congeneric Ochthebius species; (ii) 
estimate and compare the environmental niche of these 
species’ adult and larval stages by considering that the 
larval niche describes the optimum conditions under 
which reproduction and population growth are maxi-
mized; (iii) determine the environmental variables that 
drive their distribution and abundance patterns. We 
hypothesized niches differentiation between the stud-
ied Ochthebius species that, albeit subtle, allows their 

spatio-temporal segregation to result in stable co-exist-
ence on local and regional scales.

Methods

Study species

Ochthebius quadricollis and O. lejolisii have an 
eastern Atlantic and western/central Mediterranean 

Fig. 2   Current known species distribution (A) and sampling locations along the Mediterranean rocky coast of Spain (B). In yellow, 
locations sampled monthly from October 2018 to September 2019 (details in the main text)



475Hydrobiologia (2024) 851:471–485	

1 3
Vol.: (0123456789)

distribution. O. quadricollis has a wider distribu-
tion in the western Mediterranean, while O. lejolisii 
is more commonly found on the Atlantic coast, but 
extends to the south Iberian Mediterranean coast 
where both species frequently co-occur, and even 
occasionally appear with another third Ochthebius 
species (O. subinteger Mulsant & Rey, 1861 or O. 
evae Villastrigo, Hernando, Millan & Ribera, 2020) 
(Villastrigo et  al., 2022). Adults of both species are 
small organisms (about 2  mm), macropterous with 
weak flight ability that enables them to cover short 
distances between nearby pools (Hase, 1926; Jac-
quin, 1956). O. quadricollis adults are generally 
more active than those of O. lejolisii, and the latter 
are often found buried under the sediment of drying 
pools (Mirón-Gatón et  al., 2022a, b). Both species’ 
breeding period lasts for most of the year and presents 
a temporal overlap, mainly in spring and autumn. 
Both species are fast-growing organisms with multi-
voltine cycles and overlapped cohorts. They complete 
at least three (O. lejolisii) or four generations per year 
(O. quadricollis) on the Spanish SE Mediterranean 
coast (Velasco et al., 2022).

Field sampling and life stage identifications

In order to analyze both species’ spatial co-occur-
rence patterns in the study area (regional scale), 12 
Iberian Mediterranean coast localities were selected 
(Fig.  2B) that covered localities and pools with a 
wide range of environmental conditions (Table  S1). 
In each locality, 10 pools were randomly sampled by 
following a distance gradient to the sea level during 
the more favorable reproductive seasons for both spe-
cies (autumn, November 2018 or spring, May 2019). 
To determine their abundance patterns, 5  min were 
spent per pool to collect adult and larval stages with 
soft entomological forceps and brushes. We previ-
ously measured several physico-chemical variables 
per pool (distance to sea, area, length, width, depth, 
temperature, conductivity, fine sediment cover) and 
biological variables (periphyton and coarse particu-
late organic matter -CPOM- cover) as potential food 
resources (Table  S1). To analyze the temporal co-
existence patterns on the local scale, the same sam-
pling protocol was monthly repeated from October 
2018 to September 2019 in two sampling localities: 
“Cala Reona” (Cartagena, Murcia) and “Cala de las 
Pulgas” (Águilas, Murcia) (yellow spots, Fig.  2B). 

Both species co-occur in these two localities, but dif-
fer in terms of their abundance, with O. quadricollis 
being dominant at Cala Reona and O. lejolisii at Cala 
de las Pulgas.

A total of 1275 specimens of Ochthebius quadri-
collis and 782 of O. lejolisii were collected in the field 
(see more details in Table  S1). They were stored in 
96% EtOH and transported to the laboratory in small 
hermetically sealed boats. In the laboratory, species 
were morphologically identified under a Leica M165 
C stereo microscope. Species’ larval stages were 
identified by the shape of the head oviruptor teeth in 
the first instar and by chaetotaxy for the remaining 
instars (see Delgado & Soler, 1995, 1997 for details).

Data analysis

We applied three approaches to investigate the spa-
tio-temporal co-existence and storage mechanisms 
between the two Ochthebius species, and to charac-
terize their environmental niches. We firstly applied 
Spearman’s correlation test to explore the spatial co-
occurrence of the total abundance for both species, 
as well as adult and larval abundances separately, 
by considering both species’ abundance data in each 
sampled locality and their abundance in each pool. 
Subsequently on the local scale, we compared the 
time changes of the abundance data in the two inten-
sively sampled localities (Cala Reona and Cala de 
las Pulgas) and tested their temporal correlation by 
considering locality and the pool monthly abundance 
data.

Considering all the pools sampled in the studied 
localities (see Fig. 2B), we applied an outlying mean 
index (OMI) analysis (Dolédec et al., 2000) to char-
acterize the environmental niche of adult and larval 
stages separately by its niche position (NP), niche 
marginality (NM) and niche breadth (NB). The OMI 
analysis is a well-suited ordination technique to cal-
culate niche metrics and to identify the most influ-
ential environmental factors for community structure 
and organization. NP was estimated as the species 
score of the first two ordination axis (Table S2). NM 
refers to the distance between the mean habitat condi-
tions used by species and the mean habitat conditions 
of the study area. NB, also named tolerance in OMI, 
measures the amplitude of each species’ distribution 
along the sampled environmental gradients (Dolé-
dec et  al., 2000). The OMI analysis also identifies 
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the variables that best differentiate the environmen-
tal niches of the studied species. A permutation test 
(Monte-Carlo tests with 1000 permutations) was 
applied to check the significance of the OMI analysis 
by indicating if species marginality was significantly 
higher than expected by chance. The OMI analysis 
was performed using the ‘ade4’ package (Dray & 
Dufour, 2007) with the R software, version 4.2.0 (R 
Development Core Team, 2022).

Finally, to determine the environmental variables 
driving the abundance patterns of adults and larval 
stages in both species, zero-inflated Poisson (ZIP) 
regression models were applied because our data 
included a high proportion of zeros (Lambert, 1992; 
Agarwal et  al., 2002) (preliminary models using 
Poisson and negative binomial distributions per-
formed poorly). Modeling was done by the R package 
‘glmmTMB’ (Brooks et  al., 2017). All the models 
included the fixed effects of environmental variables 
and a single random effect to account for dependence 
among samplings within the same locality. Before 
modeling, we performed single non parametric cor-
relation tests (Spearman rank) to explore the rela-
tions among variables using the ‘cor’ function of R 
and ‘pairs.panels’ of the ‘psych’ package (Revelle, 
2022) to select non redundant variables (Fig. S1). 
The explanatory variables were transformed (loga-
rithmic or square root transformation in each case) 
and standardized to adequately compare and esti-
mate their effect sizes. Finally, we followed a multi-
model approach (Burnham & Anderson, 2002) with 
the ‘MuMIn’ R package (Bartoń, 2022) to identify 
the best fit models and to assess the relative impor-
tance of predictors. Model selection was conducted 
by fitting all the possible models and using Akaike’s 
Information Criterion adjusted for small sample sizes 
(AICc). We identified the best model based on AICc 
and calculated the relative importance of each pre-
dictor variable by summing the AICc weights across 
all the models in the set of the most likely models 
(ΔAICc < 2).

Results

Abundance correlations

Both species co-occurred in 9 of the 12 sampled 
localities, with O. quadricollis dominating in 6 

localities and O. lejolisii in 3 (Table S1). Positive cor-
relations were generally observed between the adult 
and larval stage abundances of each species (Fig. 3). 
On the regional scale, by considering the abundance 
in each locality as the sum of the species abundances 
in the set of sampled pools, there were no signifi-
cant correlations between both species (Fig.  3A). 
However, the pool larval abundance of O. quadri-
collis correlated negatively with the total and adult 
abundances of O. lejolisii (Spearman’s ρ − 0.23 and 
ρ − 0.24, both P-value < 0.05, respectively, Fig.  3B), 
but there was no significant correlation between both 
species’ total abundance.

On the local scale, by taking both the whole local-
ity and the individual pools data, at Cala Reona the 
monthly total abundance of O. quadricollis correlated 
negatively with the larvae abundance of O. lejolisii 
(Spearman’s ρ − 0.63 P-value < 0.05, Fig.  3C and 
ρ − 0.25 P-value < 0.01, Fig.  3D, respectively). The 
total abundance of O. quadricollis tended to increase 
during the studied annual period, while the abun-
dance of O. lejolisii decreased, especially in summer 
(Fig. 4A). However, at Cala de las Pulgas, where O. 
lejolisii was the dominant species, its monthly total 
abundance in the set of pools, and the abundance of 
the larval and adult stages separately, did not cor-
relate with those of O. quadricollis (Figs.  3E, 4B). 
When considering pool abundances, significant posi-
tive correlations appeared between species, and for 
both the total and adult stages (Spearman’s ρ 0.3 and 
ρ 0.4, both P-value < 0.001, respectively, Fig. 3F).

Environmental niches

The OMI analysis revealed that the first two axes 
accounted for 92.2% of species’ environmental varia-
tion, with 70.6% explained by the first axis and 21.5% 
by the second. Although there was a significant 
overlap between the O. quadricollis larval and adult 
niches (Fig. 5A), larvae were less tolerant (narrower 
NB) and showed more marginality (NM) than adults 
(Fig. 5B). Their environmental niches were positively 
related to pool area, depth and CPOM (Fig. 5A). Both 
O. lejolisii larvae and adults had wider niches than O. 
quadricollis, and the larval stage presented greater 
marginality (Fig. 5A, B). Moreover, the niches of O. 
lejolisii larvae and adults were closely related to the 
cover of fine sediment and periphyton and distance to 
sea (Fig. 5A).
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Environmental variables driving abundance patterns

The best models, obtained with AICc < 2 (Table S3), 
for the abundance of O. quadricollis adults and lar-
vae included conductivity, CPOM, depth and distance 
to sea as the principal explanatory variables. For O. 
lejolisii, only two models were selected for larvae 
and adults. Both models also included temperature 
and CPOM, but with a different relative importance 
for larvae and adults. The deviances explained by the 

best models (Tables 1, 2) were generally low, except 
for the O. lejolisii larvae (54.2%).

According to the results of the best model for O. 
quadricollis (Table  1) and the relative importance 
of the selected variables obtained from the subset of 
models (Table S3), adults’ abundance increased with 
distance to sea of the pool and CPOM cover, while 
these variables had the inverse effect on larvae abun-
dance. Conductivity also had an important and differ-
ent effect on the abundance of both larvae and adults, 

Fig. 3   Spearman’s correla-
tion coefficients among the 
abundances of adults, larvae 
and the total of Ochthebius 
quadricollis and O. lejolisii 
on the regional scale when 
considering total abun-
dance at the locality (A) 
and pool (B) levels in all 
the sampled locations. 
Correlation coefficients 
on the local scale obtained 
between species/stages 
when considering monthly 
abundances at the local and 
pool levels for Cala Reona 
(C and D, respectively) and 
Cala de las Pulgas (E and 
F, respectively). Legend: 
Q Total abundance of O. 
quadricollis; QA Abun-
dance of O. quadricollis 
adults; QL Abundance of 
O. quadricollis larvae; 
L Total abundance of O. 
lejolisii; LA Abundance 
of O. lejolisii adults; LL 
Abundance of O. lejolisii 
larvae. Levels of signifi-
cance: *(P-value < 0.05), 
**(P-value < 0.01), 
***(P-value < 0.001). 
Spearman’s correlation 
coefficients range from − 1 
to + 1
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and was positive in larvae and negative in adults. 
Pool depth was another important factor to affect lar-
vae abundance, and had a higher value in the deepest 
pool. However, for O. lejolisii (Table 2), pool depth 
had a negative effect on both the larval and adult 
stages, as did pool area on larvae. Conductivity only 
negatively affected larvae abundance, while tempera-
ture and fine sediment cover positively affected adults 
abundance. Both O. lejolisii larvae and adults were 
positively related to CPOM cover, whereas periphy-
ton was negatively related to adults abundance and 
positively with larvae.

Discussion

Our field study reports, for the first time, quantita-
tive pieces of evidence for spatio-temporal storage 

co-existence mechanisms in O. quadricollis and O. 
lejolisii, two water beetle inhabitants from western 
Mediterranean supratidal rockpools. Our results sup-
port the hypothesis that there were differences in the 
environmental niche of the two congeneric species 
that allowed their co-existence in highly dynamic 
and heterogenous systems like supratidal rockpools. 
For each species, it also found some differences in 
the environmental niche between the larval and adult 
stages with larval niches describing the optimum 
conditions under which reproduction and population 
growth is maximized and by showing larger inter-
specific differences than adult niches. O. lejolisii 
larvae had the widest NB (i.e., tolerant organisms 
that can maintain fitness over a broader range of 
abiotic conditions), but the highest NM, which also 
occurred in less common habitats in the sampling 
area, such as the less saline and ephemeral pools. The 

Fig. 4   Variation in the 
monthly abundances of 
Ochthebius quadricollis and 
O. lejolisii at Cala Reona 
(A) and Cala de las Pulgas 
(B), with trend lines and 
95% confidence intervals
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Fig. 5   A Two-dimensional 
plot of the OMI analysis 
representing the position of 
the environmental niches 
(elipses) of Ochthebius 
quadricollis and O. lejolisii 
according to their life 
stages. Black points repre-
sent sampled pools from all 
the localities. B The NM 
of the Ochthebius species/
stages vs. the NB (toler-
ance) of both species/stages
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O. quadricollis larvae, with low marginality and NB 
values, occurred in common habitats in the sampling 
area.

Species co-existence in most animal communi-
ties is likely to result from multiple mechanisms 
(Amarasekare, 2003). With the Ochthebius species 
from supratidal rockpools, spatio-temporal storages 
appeared to be particularly important, similarly to 
what has been observed in continental zooplanktons 
like copepods, cladocerans and rotifers (Brendonck 
& De Meester, 2003; Montero-Pau et  al., 2011) and 
intertidal species (Connell, 1983; Olabarria et  al., 
2001; Ysebaert & Herman, 2002; Benedetti-Cecchi, 
2003). The negative abundance correlations found 
between species (Fig.  3B–D) point out spatio-tem-
poral segregation on the local scale based on differ-
ent environmental responses and habitat suitability, 
which varied spatially along the gradient of distance 
to sea and throughout the year. However, different 
species co-existence patterns were observed between 
localities, where one species dominated in abundance 

over another, which can be related to the availability 
of suitable habitats for each species. At Cala Reona, 
where O. quadricollis dominates, pools with its high 
abundances displayed lower O. lejolisii abundances 
(Fig. 3C, D). At Cala de las Pulgas, where O. lejolisii 
dominates, both species abundances were positively 
correlated (Fig.  3F). In the former, O. quadricollis 
was favored by very high habitat availability on the 
rocky coastal platform, and can respond with a high 
population growth rate throughout the year and obtain 
higher abundances. However, due to the narrower 
supratidal zone at Cala de las Pulgas, the presence of 
smaller shallower temporary pools is common, which 
provide a more favorable habitat for O. lejolisii than 
for O. quadricollis. Nonetheless the overall lower 
availability of suitable habitats for both species may 
limit their population sizes.

For the successful colonization of organisms in 
supratidal zones, two types of physiological adap-
tation are required under harsh selective pressure 
(Zhang et al., 2016): (1) strong desiccation resistance, 

Table 1   Results of the 
ZIP models for Ochthebius 
quadricollis 

The coefficients of the 
provided variables are those 
of the best model in each 
case, and their deviance 
is explained. The relative 
importance of variables 
was calculated from the 
weights referring to the 
variables that were selected 
in the subset of models with 
AICc < 2 (Table S3)

O. quadricollis Adults (Deviance explained = 10.84%) Larvae (Deviance 
explained = 14.26%)

Variables Coefficients Importance Coefficients Importance

Distance to sea 0.26349 1.00  − 0.34250 0.94
Area 0.17 0.17000 0.45
Depth 0.59 0.35621 1.00
Temperature 0.44
 Conductivity  − 0.11091 0.86 0.47254 1.00
 Fine sediment 0.11 0.59503 0.67
 Periphyton  − 0.12421 1.00 0.32
 CPOM 0.29952 1.00  − 0.47749 1.00

Table 2   Results of the 
ZIP models for Ochthebius 
lejolisii 

The coefficients of the 
provided variables are those 
of the best model in each 
case, and their deviance 
is explained. The relative 
importance of the variables 
was calculated from the 
weights referring to the 
variables that were selected 
in the subset of models with 
AICc < 2 (Table S3)

O. lejolisii Adults (Deviance explained = 16.89%) Larvae (Deviance 
explained = 54.2%)

Variables Coefficients Importance Coefficients Importance

Distance to sea 0.31819 1.00
Area 0.33  − 0.50896 1.00
Depth  − 0.12125 1.00  − 0.30956 1.00
Temperature 1.32823 1.00 0.28
Conductivity  − 0.66403 1.00
Fine sediment 0.35034 1.00
Periphyton  − 0.25760 1.00 0.43533 1.00
CPOM 0.25343 1.00 0.87163 1.00
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which is facilitated by improved water retention; (2) 
efficient osmoregulation ability when exposed to 
fluctuating salinity. The differential susceptibility of 
organisms and populations to environmental stress 
influences the outcome of biological interactions and 
the structure of communities (Arnér, 1997). In our 
case, the most limiting factor for both studied spe-
cies was water availability, determined principally 
by pool surface and depth, its proximity to the sea 
and the precipitation that fluctuates over time, which 
alter species’ responses. O. quadricollis preferentially 
occupies larger deeper pools with a long hydroperiod 
near the sea, while O. lejolisii prefers smaller shal-
lower pools located further away from the coastline 
that often dry out, which is consistent with their dif-
ferent physiological tolerance to desiccation (Mirón-
Gatón et al., 2022b). Salinity is another crucial envi-
ronmental factor that determines habitat suitability 
and the distribution of organisms in supratidal rock-
pools (McAllen & Taylor, 2001; Zhang et al., 2016). 
In our study, conductivity had a significant, but het-
erogeneous, effect on the abundance of both species’ 
adult and larval stages. Although both species are 
euryhalines and may withstand extreme salinity fluc-
tuations, the abundance of the O. quadricollis larvae 
increased with conductivity, while the abundance of 
O. lejolisii larvae seemed to be disadvantaged. How-
ever, recent laboratory experiments have shown that 
O. lejolisii has greater physiological tolerance to 
salinity than O. quadricollis, and both species’ larvae 
and eggs are more tolerant than adults (Mirón-Gatón 
et al., 2022b). The discordance between the observed 
saline niches and their fundamental niches was prob-
ably due to the combined effect of salinity and other 
environmental stressors, such as water availability 
and temperature. The two co-existing species also dif-
fered in terms of their temperature tolerance (Mirón-
Gatón et al., 2022a): O. quadricollis was more toler-
ant to heat, while O. lejolisii better withstood cold 
temperatures. While oviposition and larval develop-
ment in O. quadricollis were limited to winter, they 
did not seem to be limited by low temperatures in O. 
lejolisii (Velasco et  al., 2022). However in summer, 
high temperatures (up to 38.5°C) and the drying out 
of shallow pools, mainly those located far from the 
coastline, diminished the abundance of both O. lejol-
isii larvae and adults in the study area. This species 
can resist extreme salinity and temperature condi-
tions in dry pools by hiding as larvae or adults under 

sediment or in rock crevices (Villastrigo et al., 2022). 
This observational information was concordant with 
the significant relation found between the abundance 
of O. lejolisii adults and the fine sediment cover. This 
behavior response allows adults and larvae to resist 
until pools are refilled with autumn rains, and it acti-
vates development and reproduction. Furthermore, 
the production of resistant desiccation eggs in O. 
lejolisii (Mirón-Gatón et al., 2022b) could ensure sta-
ble co-existence on large temporal scales, like those 
that occur in zooplankton (e.g., Daphnia) by allowing 
species to remain inactive under harsh environmental 
conditions and a buffered population growth, which 
increases when the abiotic environment is favorable 
(Amarasekare, 2003). In contrast O. quadricollis can 
maintain as an active population and can successfully 
reproduce in summer in pools near the sea that remain 
flooded (Velasco et  al., 2022). Therefore, the stable 
co-existence of both congeneric species via temporal 
storage is achieved with buffered population growth 
(Chesson, 2000, 2003, 2018). Populations of both 
species showed inverse fluctuations throughout the 
year due to their differential response to spatio-tem-
poral habitat availability variation. As a result, each 
species was more active and abundant at different 
times of the year (O. lejolisii in winter and O. quad-
ricollis in summer), which led to a narrower temporal 
overlap and, consequently, decreased the intensity of 
the interspecific competition between them. Dimin-
ishing population growth when the abiotic environ-
ment is unfavorable is offset by increasing population 
growth when the abiotic environment is favorable. 
In addition, mechanisms that are not entirely based 
on niche differentiation, such as differences in life 
cycle, likely interact with niches in the observed co-
existence patterns. Under laboratory conditions, and 
at constant optimal temperature (20ºC) and salinity 
(35  g.l−1), O. quadricollis showed a shorter overall 
life cycle and more successful egg hatching than O. 
lejolisii (Velasco et  al., 2022), which conferred O. 
quadricollis more demographic success.

On the regional scale, both species could co-exist 
via a spatial storage effect combined with dispersal 
(see Amarasekare, 2003 for more examples) because 
interspecific niche differences ensure that species 
have favorable locations in the landscape, where they 
experience relatively little interspecific competition. 
Regional co-existence is facilitated by the number of 
pools in a patchy environment (Ranta, 1982). Classic 
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studies of species co-existence of Daphnia and corix-
ids (Hemiptera) in Baltic coastal rockpools suggest 
that frequent local extinctions and random coloniza-
tions of empty pools maintain the regional co-exist-
ence pattern, even when the local co-existence in the 
same pool would be unlikely due to resource competi-
tion (Vepsäläinen, 1978; Ranta, 1979, 1982; Pajunen, 
1979a, b, 1982; Hanski & Ranta, 1983; Bengtsson, 
1988). Our results do not provide clear evidence for 
resource partitioning between species, but this co-
existence mechanism may not be important because 
they are similar sizes and probably exploit common 
resources. Although the diets of both species have 
not yet been studied, Hydraenidae species gener-
ally feed on periphyton, filamentous algae and veg-
etal detritus mixed with mineral particles (Perkins, 
1980; Jäch et al., 2016; Valladares et al., 2018). The 
models obtained in our study showed positive rela-
tions between the abundance of O. lejolisii larvae 
with periphyton and CPOM, and the abundance of 
the adults of both species with CPOM. Interestingly, 
plants/macroalgal waste, such as Posidonia leaf 
remains, are colonized by microorganisms and can 
serve as an important food resource because they can 
also be used by these species as substrate on which to 
lay eggs.

Conclusions

Our field study reports, for the first time, quantitative 
pieces of evidence for spatio-temporal storage co-
existence mechanisms in O. quadricollis and O. lejol-
isii, two water beetles that inhabit western Mediter-
ranean supratidal rockpools. Our results suggest that 
subtle interspecific differences in ecological niches, 
principally based on their differential responses to 
hydroperiod and salinity related to pool size and dis-
tance to sea, play an important role in both species’ 
co-existence on local and regional scales. Further 
studies into biotic interactions, dispersal ability and 
metapopulation dynamics will help to complete and 
gain a better understanding of the complex dynamics 
of these interesting ecosystems and their fauna.
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