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The relationship between the Nernst theorem and the Kelvin-Planck statement of the second law
is revisited. We put forward the fact that the exchange of entropy is uniformly vanishing as the
temperature goes to zero. The analysis of this assumption shows that is equivalent to fact that the
compensation of a Carnot engine scales with the absorbed heat so that the Nernst theorem should
be embedded in the statement of the second law.
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I. INTRODUCTION

The classical formulation of the Kelvin-Planck state-
ment of the second law reads:[1, page 89]

“it is impossible to construct an engine which
will work in a complete cycle, and produce no
effect except the raising of a weight and the
cooling of a heat-reservoir”

Some other, essentially equivalent formulations of the law
are possible —Kelvin[2], Clausius[3] and Carathéodory[4]
statements— but, for our purpose, we will refer to the for-
mulation posed above. Essentially the statement requires
the presence of another reservoir.

The development of the law needs the concept of
“working fluid”, the substance that undergoes the cyclic
process. The properties of the working fluid are usually
discarded because the initial and final state of the fluid
coincides and “it has done service only as a transmit-
ting agent in order to bring about the changes in the
surroundings”[1, page 68]. Nonetheless, the fluid must
be able to do “service” in the way required.

We will show in this work that a general property of
the matter will be restricting the ability of working fluids
to perform cycles thus restricting what the Kelvin-Planck
statement allows. We will show that, in fact, such restric-
tion follows from a comprehensive interpretation of the
statement posed above.

The general property we are speaking about is nowa-
days known as the third law of thermodynamics. The
necessity and character this law has been a matter of
discussion from the early years of 1900’s. Some chemical
problems lead Nernst[5, 6] to discover his heat theorem
which reads[6, page 85]:

“in the neighborhood of the absolute zero all
processes proceed without alteration of en-
tropy”
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The theorem —which classically does not follow from
the Kelvin-Planck statement[7, 8]— is supported by a
formidable array of experimental data. We choose this
elder —though very valuable— version for the reasons
that will be disclosed in section III but we are seeing no
particular reason for this statement to have been forgot-
ten other than it refers to properties of processes rather
than to properties of systems as it is nowadays stated[9–
13].
Nernst derived the theorem from two quite general ob-

servations. The first one is the so-called principle of
unattainability of the zero isotherm which recalls the fact
that no process can diminish the temperature of a sys-
tem to the absolute zero. The second one is the fact
that the specific heat of substances goes to zero as the
temperature goes to zero.
It should be acknowledge that Planck[1] noticed that

these observations should have lead to a “more compre-
hensive” conclusion: “as the temperature diminishes in-
definitely the entropy of a chemical homogeneous body of
finite density approaches indefinitely to a definite value,
which is independent of the pressure, the state of aggre-
gation and of the special chemical modification.” The
Planck formulation avoids that ∆S → 0 while S → −∞
as T → 0 and thus expresses that the absolute value of
the entropy is bounded in the absolute zero.
Yet, our work will be just related to the analysis of

∆S since it just deals with the analysis of the conver-
sion of heat into work. That problem is insensitive to a
translation of the value of the entropy and thus, Planck’s
formulation lies out of our scope of interest. The same
can be said about the vanishing of the specific heats.
Modern approaches and presentations of the third law

of thermodynamics usually relates it to the microscopic
properties of systems under consideration[14–18]. Some
efforts also try to clarify its macroscopic meaning[19–25].
The goal of this paper is a revision of the mathemat-

ical description of the statement of the Nernst theorem
posed above as well as its physical consequences. We will
study pure macroscopic observations in the field of low
temperature physics. In so doing no hypothesis about
the constitution of the systems under study will be con-

Typeset by REVTEX

https://doi.org/10.1088/0305-4470/36/29/303
mailto:olalla@us.es
https://orcid.org/0000-0002-3750-9113
https://ror.org/03yxnpp24


2

sidered.
Also, it is a burden of this manuscript an energetic

analysis of the consequences of the statement posed
above. To put it shortly, the simplest, most efficient en-
gine contains two processes in which entropy is altered.
This kind of processes are restricted at the neighborhood
of absolute zero by the Nernst theorem; we will proof
that such restriction will lead to a further condition that
any engine must satisfy.

II. LIMITATIONS TO THE DESCRIPTION OF
THE NERNST THEOREM

The classical formulation of the Nernst theorem
reads:[9] “the change in entropy associated with any
isothermal process between two states of a system in in-
ternal equilibrium vanishes in the limit of zero tempera-
ture,” which is usually translated into the mathematical
condition:

∀x1x2 ∈ D lim
T→0+

[S(T, x1)− S(T, x2)] = 0 (1)

where x is any mechanical variable such as volume, pres-
sure or magnetic field and D ⊆ R is its domain of defini-
tion.1

Landau and Lifshitz[10] showed the importance of
keeping x1, x2 fixed in (1). Otherwise, they said, if,
for instance, x1 goes to infinity, the theorem may no be
valid. Quite generally it could be said that that descrip-
tion works fine if the values of x are indeed fixed but it
comes into trouble in case one looks for double limits of
the form T → 0 and x → ∞.
An academic example of this problem is provided by

the following naive model

S(T, x) = S0+χTxg =⇒ S(T, x1)−S(T, x2) = χT (xg
1−xg

2)
(2)

with x ∈ R+. In this expression χ is a positive constant
that fits the dimensions of the model. Notice that (2)
satisfies (1) but the double limit T → 0, x → ∞ depends
on the path it is achieved. Figure 1 depicts a T − S plot
for a system satisfying (2).

The model does not fulfill the unattainability state-
ment. First, it true that for fixed x1 and x2 the zero
isotherm is unattainable[13]; this proposition is essen-
tially equivalent to (1). Yet, there is no need for so do-
ing if one wants to achieve the neighborhood of the zero
isotherm and it is also true that any isentropic path is
endless for that model as —let g > 0— by increasing
indefinitely the mechanical parameter, the temperature
is indefinitely decreasing to zero in a single step through
Txg = cte. The “unattainability” of the zero isotherm
would be a matter of practical limitations —how to get an

1 Nernst himself clothed (1) through the statement posed in sec-
tion I.[6, page 85]
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FIG. 1. T − S plot for the model (2). Iso-x lines are de-
picted. The unattainability statement and (1) are satisfied for
fixed x1 and x2. Yet an isentropic process —horizontal left
arrow— diminishes the temperature of the system arbitrarily.
Also any alteration of entropy is possible in the neighborhood
of T = 0 —vertical double arrow— provided that x would
change appropriately.

infinite x— rather than a fundamental restriction posed
by a law of nature —strictly speaking the absolute zero
is here attained asymptotically.—
Finally, the model does not accomplish for the words

given by Nernst —see section I— either. No matter how
close to zero the temperature can be any alteration of
entropy is possible provided that the mechanical variable
increases sufficiently.
The ideal gas behaves similarly to that model. A clas-

sical description of the particles leads to an entropy with
no lower bound and which does not accomplish for the
Nernst theorem. On the contrary a quantum description
of the problem leads to[10, 15, 18] (2) where x is the vol-
ume and g = 2/3 for fermions. A deep analysis of the
model shows that the quantum or classical description is
driven by the condition[10, 14]:

V

N

(
mkT

2πℏ2

)3/2

≫ 1

known as “classical limit.” Here N is the number of par-
ticles, ℏ is Dirac’s constant, m is the particle mass and
k is the Boltzmann’s constant. Thus, the competition
between T → 0 and V → ∞ is again crucial. It is likely
that these contradictions are due to the fact that inter-
actions are unavoidable at the very limit T → 0 so that
microscopically ideal models may not be reflecting the
array of data on macroscopic systems[14].
We have shown then that a model satisfying (1) —

the classical description of the Nernst theorem— does
not lead to the unattainability statement. Even worse,
it does not fit to the words given by Nernst. Thus, fur-
ther assumptions are required to a comprehensive and
accurate mathematical description of the empirical laws
observed at very low temperatures.
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III. THE NERNST THEOREM AS A UNIFORM
LIMIT

The mathematical description of the statement of the
Nernst theorem posed in Sec. I is improved by consid-
ering the following hypothesis I : the isothermal exchange
of entropy is uniformly vanishing as the temperature goes
to zero:

∀ϵ > 0 ∃δ(ϵ) > 0 : T < δ ⇒ |S(T, x1)− S(T, x2)| < ϵ
(3)

The key question[26] of the “uniform convergence” is that
the same δ(ϵ) fits for any x1, x2 belonging to D. It is
straightforward that (3) matches the statement posed in
section I. We will argue that it is the best choice to ex-
press mathematically that proposition.

The Nernst theorem is classically supposed to be re-
stricting the functional dependence of isothermal ex-
change of entropy ∆S = S(T, x2) − S(T, x1) on T so
that it converges to zero at the absolute zero. The “uni-
form” condition, here presented, essentially means that
no value of x can challenge this convergence. That is,
no accidental divergence can possibly occur for a given
value of x in the neighborhood of T = 0. In this way, the
Nernst theorem would be also restricting the functional
dependence of ∆S(T, x) on x.
III.0.0.1. Rôle of x: If hypothesis I is taken into ac-

count, the mechanical variable plays no rôle in the de-
scription of the problem. That is the primary conse-
quence of the uniform convergence since given ϵ then δ is
just a property of the system under consideration regard-
less the value of x. The reader should notice that this is a
burden in the formulation of the Nernst theorem as a law
of nature which does not depends on the configuration of
the system under consideration.

In the classical description of the theorem (1) δ is a
function of ϵ, x1, x2 so the mechanical variable does play
a rôle in the description of the problem. Although this
rôle is usually discarded it is of the most importance when
considering, for instance, double limits.

III.0.0.2. Existence of inaccessible regions in a T −S
plot: Equation (3) ensures that S(T, x1) − S(T, x2) is
bounded in the neighborhood of T = 0 so that it has a
supremum:

σ(T ) = sup
x∈D

{
S(T, x1)− S(T, x2)

}
(4)

The function σ exists and is a monotonically increas-
ing function at least in the neighbourhood of T = 0.
The function depends on the thermophysical properties
of the system under consideration. What follows describe
the relevant properties of the function in that neighbour-
hood.

Now, consider a system compliant with hypothesis I
whose equilibrium state is defined by a given temperature
and a given mechanical configuration. The entropy of
this state equals S(T, x). Let us suppose that entropy is
isothermally increased, the existence of σ ensures that the

final entropy cannot exceed S(T, x)+σ. The same argu-
ment applies for a process that decrease entropy. Hence,
S(T, x) is an upper and lower bounded function of x for
a given temperature and exists the following functions:

Smax(T ) = sup
x∈D

{S(T, x)}; Smin(T ) = inf
x∈D

{S(T, x)}

(5)
Since the stability condition (∂S/∂T )x > 0 holds in

the neighborhood of T = 0 —except perhaps at T = 0—
the preceding functions are increasing functions of T so
that states of the type {T, S > Smax(T )} and {T, S <
Smin(T )} cannot exist. Hence, equilibrium states do not
fill the plane T − S and two boundaries arises from the
fulfillment of the Nernst theorem as an uniform condi-
tion.
In more detail it could be said that one of the goals

of the third law is to ensure that the entropy S has a
single value in the neighborhood of zero isotherm[9]. In
the classical formulation of the theorem, points of the
type {T = 0, S ̸= S0} are excluded[9, Figure 23.5] in a
T −S plot (these points are sketched by the symbol × in
figure 2). From a physical point of view “when a certain
point is excluded, we must demand that the same must
be true about a small region surrounding the point”[4][27,
page 236].2 On the contrary, if a neighborhood of {T =
0, S ̸= S0} could be reached, the exclusion of those —
isolated— points would be fictitious.

Thus, the plot T − S (see figure 2) consists in the re-
gion I of allowed values of {T, S}, and the forbidden re-
gion II. The existence of region II is a goal of hypothesis
I. The boundaries —which may or may not be physically
accessible— does not coincide with the axis T = 0. In
Figure 2 and in the preceding discussion we have make
use of the Planck hypothesis for the purpose of clarity.
The same argument would apply if S0 comes down to
−∞ and, simultaneously, ∆S is vanishing.

The following issue is known, however hypothesis I en-
riches and clarifies its meaning.

III.0.0.3. Processes that come to an end (unattain-
ability statement): Let us consider the isentropic pro-
cess S = Σ0 starting at some temperature so that
Smin < Σ0 < Smax. The process will go on until the
temperature T1 defined by Smax(T1) = Σ0 is attained.
That temperature is non zero.

Here we may decrease the entropy of the system
isothermally until the condition Σ1 = Σ0 − σ(T1) =
Smin(T1) is achieved. At that point, an isentropic process
will cool the system down to the temperature T2 defined
by Smax(T2) = Σ1.

2 Carathédory is here speaking about the adiabatic inaccessibility
and he is preparing his celebrated Axiom II. It is noteworthy
that the Axiom literally states that “(. . . ) there exist states
that cannot be approached arbitrarily close by adiabatic process”
instead of bare phrase “states that are inaccessible by adiabatic
process.” The concept “arbitrarily close” or “neighborhood” will
play a leading rôle in the following discussion.
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FIG. 2. The T −S plot and the Nernst theorem. The symbol
× represents the points classically excluded by the theorem[9,
Figure 23.5]. A more comprehensive analysis of the theorem
reveals that there exist a region I whose points represents
equilibrium states, and a region II which does not do so. The
cycle 1-2-3-4-1 is an engine consisting in two isotherms 1-2
and 3-4, and two processes, 2-3 and 4-1, which differ just in
a shift of entropy S′ = S + Λ. Area 1-2-3-4-1 is equal to
Λ[T − σ−1(Λ)] as in a Carnot engine. The essential of this
picture is valid even if S0 → −∞ while ∆S → 0

The endless staircase process that goes to the absolute
zero is then defined.

III.0.0.4. Vanishing of the thermal expansions coeffi-
cients The thermal coefficients are related to the deriva-
tive (∂S/∂x)T through Maxwell’s relations[9]. From (3)
it is derived the vanishing of such derivative since:

lim
T→0

(
∂S

∂x

)
T

= lim
T→0

lim
x′→x

S(T, x′)− S(T, x)

x′ − x
∀x ∈ D

If this double limit exists, it can be computed in
whichever order. By taking first T → 0 and invoking
(3) one has, of necessity[9]:

lim
T→0

(
∂S

∂x

)
T

= 0 ∀x ∈ D (6)

Unlike properties a and b —being mathematical
propositions,— it should be pointed out that properties
c and d are trends[6, 9] amply confirmed by experiment
providing a support for the hypothesis. Yet, the most
important consequence of the hypothesis relates it to the
problem of the conversion of heat into work and will be
considered in detail in the following section.

IV. THE NERNST THEOREM AND THE
CONTINUOUS PRODUCTION OF WORK

In the preceding section we have shown that the Nernst
theorem forces the existence of forbidden regions in a
T − S plot. We now derive consequences taking in mind
that the uniformity condition introduced in the preceding
section makes x play no rôle in the problem.
Let us now consider the following question: we wish

to build up an engine which produces mechanical work
W by using a given working fluid that draws a given
amount of heat Q from a reservoir of a given temperature
T , which is the minimal amount of heat Q′

min that is to
be taken up to the cold reservoir? 3

The classical reading of the Kelvin-Planck statement
would just say that the heat taken up at the cold reser-
voir —hereafter called “compensation”— must be non-
zero Q′ ̸= 0. It then seems that so long as this state-
ment is concerned, a negligible Q′ would suffice. Thus,
Q′

min = 0+ —ie arbitrarily close to zero but non-zero—.
The answer is independent from Q, T and the working
fluid and comes from the fact we feel free to place a two-
reservoir engine in a T −S plot since no other restriction
happens to be.
A machine having Q′

min = 0+ would result in an effi-
ciency η = W/Q as close to unity as desired. This most
efficient engine has never been built up; we will now put
forward the fact that this is due to fundamental proper-
ties of matter despite of practical limitations to achieve
such engine.
As a general rule, σ is nonzero for nonzero tempera-

tures and from (3) and (4) one gets:

∀ϵ > 0 ∃δ(ϵ) > 0 : T < δ =⇒ σ(T ) < ϵ (7)

That is, limT→0+ σ(T ) = 0.
In (7) there is no need to call for absolute value delim-

iters since both T and σ are positive magnitudes. From
(7) and the preceding argument the existence of the in-
verse function σ−1(Λ) is straightforward. In fact, the
inverse function is nothing else but a suitable represen-
tation for the parameter δ(ϵ). The inverse function gives
the temperature at which the width in entropy of the ac-
cessible states equals Λ. That temperature also depends
on the thermophysical properties of the system under
consideration.
Now, let us consider again the question posed at the be-

ginning of this section but now consider that the Kelvin-
Planck statement and the Nernst theorem, as stated in
section I, apply. Hence, the restrictions posed in sec-
tion III, shown in figure 2, are valid. The working fluid

3 This question inspects the behaviour ofW —orQ′— once the hot
reservoir and the absorbed heat are fixed. It is also customary to
inspect the behaviour of W once the hot and cold reservoirs are
fixed. This problem is related to the concept of irreversibility[10]
and lies out of the scope of the following discussion.



5

is undergoing a cycle that is extracting an amount of en-
tropy Λ = Q/T from the hot reservoir. For so doing, it
is necessary that Λ < σ(T ).
Now, the entropy should be being deposited into the

cold reservoir which would receive an amount of heat Q′.
To achieve the maximum efficiency, the temperature of
the cold reservoir must be the coldest temperature able
to exchange with the working fluid that amount of en-
tropy. Following the preceding paragraphs, that minimal
temperature is given by σ−1(Λ) which is a property of
the fluid under consideration. Thus,

∀Q ̸= 0, T ̸= 0 :
Q

T
= Λ < σ(T )

=⇒ ∃σ−1(Λ) : Q′ ≥ Λ× σ−1(Λ) = Q′
min (8)

This most efficient engine is depicted in figure 2 by the
cycle 1−2−3−4−1 which consists of two isotherm and
two processes that differ in a shift of entropy; exchanges
of energy and entropy in 2− 3 cancel with those of 4− 1
so the reservoirs needed for these two processes play no
rôle in the problem.4 The performance of work equals to
Wmax = Λ×

[
T − σ−1(Λ)

]
.

It is very noticeable that the value of Q′
min is now a

function of the parameters of the problem: Q, T and the
working fluid which enters through σ−1. Moreover, the
minimal compensation is a function of the exchange of
entropy Λ.

Though the particular value of Q′
min depends on the

thermophysical properties of the working fluid it is a
quite noteworthy fact that, as a general rule, Q′

min is
never arbitrarily close to zero for a given Λ since, accord-
ing to the Nernst theorem, σ−1 is not arbitrarily close to
zero either (see figure 2).

The universal resemblance of (8) allow to outline the
plot Λ −Q′ (see figure 3). Notice that in the context of
the classical reading of the Kelvin-Planck statement that
plot would have no restriction other than the exclusion of
the points of the type {Λ ̸= 0, Q′ = 0}, those points are
shown in that figure by the symbol ×. Now, if we take
into account the Nernst theorem it is clear that points of
the type {Λ, Q′ < Q′

min(Λ)} should be excluded as well.
That points define a region whose boundary is given by
(8); the analogy between the regions I and II, and the
boundary of figure 2 and those of figure 3 is immediate.
From the Nernst theorem it is easily probed that Q′

min

goes to zero with zero slope as Λ goes to zero. Sum-
marizing the meaning of figure 3 it should be stressed
that the Nernst theorem is excluding a region around
those points actually excluded by the classical reading of

4 It would be possible to decrease Q′ by considering the cycle 1−
2− 3− 5− 4− 1 —see figure 2— because entropy will be being
deposited to colder reservoirs, but the condition of two reservoirs
is broken. However, in that case, the compensation is equally
expressed by σ′′Λ where σ′′ is an unknown temperature ranging
between T5 and T4 = σ−1(Q/T ). The essential of the following
discussion also applies to this compensation.
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FIG. 3. Plot of Λ − Q′ for a given working fluid. A point
of region I, say a, represents a set of engines each having the
same Q′ and Λ and the same temperature of the cold reser-
voir: the slope of the straight line. The thick line —which
depends on the working fluid— represents (8) and comes to
{0, 0} with zero slope. For the working fluid under consid-
eration, it is impossible to built up an engine that enters in
region II. The symbol × represents the restriction posed by
the classical reading of the Kelvin-Planck.

the Kelvin-Planck statement. That is in agreement with
Carathéodory’s argument posed in section III.
The limit Λ → 0+ is the unique possibility to get

Q′
min → 0+. In that case, taking T as a bounded, con-

stant parameter, it is clear that Q will be vanishing as
well and, as an ultimate consequence W will be also van-
ishing. Hence:

Q′ → 0+ =⇒ W → 0+ (9)

This proposition contains the essence of the Nernst the-
orem. Its dramatic meaning is best viewed noticing that
Q′ → 0+ and η → 1− are equivalent. It then means that
as the most efficient engine is achieved, the delivery of
work is decreasing to zero.
It should be pointed out once again that in the preced-

ing discussion x does not play any rôle and it is in this
sense that the restrictions figure 3 and (9) are universal.
That feature comes from the property of uniformity. On
the contrary, if the Nernst theorem is just considered as
a limit —without the requirement of uniformity,— then
(9) and figure 3 would be just valid for transitions be-
tween two given values of x —see [9, Figure 23.9][23].—
Therefore, (1) does not lead to any proper restriction, as
the boundary of figure 3 will come arbitrarily close to the
restriction posed by the classical reading of the Kelvin-
Planck statement provided that we consider the appro-
priate values for x1 and x2. Hence, the improvement of
an engine would be a matter of practical limitations if
(1) were valid.5

5 If the working fluid behaves like (2), the engine could always be
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reading of the Kelvin-Planck statement. In this last case,
Q′

min is given by (8).

V. THE NERNST THEOREM AND THE
STATEMENT OF THE SECOND LAW

Section IV clearly shows that the Nernst theorem is re-
stricting the conversion of heat into work in a way which
is independent from the mechanical configuration of the
system. It should be desirable to link it to the Kelvin-
Planck statement of the second law.

One of the most important results of section IV is the
leading rôle played by Q′, the compensation, in the prob-
lem of the conversion of heat into work. That importance
comes from the fact that its minimum value is universally
expressed by (8).

From an historical point of view, the rôle of the cold
reservoir was the key of the second law. The first known
statement of the law, due to Kelvin[2], stated that it
is impossible to built up an engine that both produces
work and cools the coldest of the available reservoirs, no
matter what happens to hotter reservoirs (see figure 4).

Planck simplified the statement by noticing that it is
impossible to built up an engine that performs work by
cooling just one reservoir[1]. In that sense, a cold reser-
voir is to be heated —compensation— in some amount
(see figure 4). Yet he put forward no word about the
“size” of the compensation so that one hopes it might be
negligible: that is the “classical” reading of the statement
that has prevailed from the beginning of the statement.

Furthermore, if the Nernst theorem is taken into ac-
count through hypothesis I, we get the ultimate restric-
tion: a minimal compensation is given by the properties
of the working fluid and the exchange of entropy (see
(8) and figure 4): wish you to transform a finite amount
of heat into work, you must certainly pay a tax —a

improved by getting arbitrarily large values of x.

compensation—, namely the tax is not becoming finite-
less at your willing. The emphasized proposition is an
informal statement for (9).
The reader should notice that, in fact, (9) is something

else than the bare statement of the Nernst theorem since
it also recalls the Kelvin-Planck statement. It is the dome
that crowns the leitmotif of the principles of thermody-
namics by putting forward the ultimate restriction on Q′.
In fact, if the relation were clothed in a negative way the
reader would have found a statement very much like any
of the second law: it precludes delivering a finite work
without a finite compensation.

VI. FROM THE KELVIN-PLANCK
STATEMENT TO THE NERNST THEOREM

The preceding sections analyzed the Nernst theorem
through the hypothesis I putting forward its close relation
to the problem of the conversion of heat into work. Here
we want to do the reverse trip: starting at the Kelvin-
Planck statement, upon which assumptions is hypothesis
I derived?
In our opinion the classical reading of the Kelvin-

Planck statement could be said to be “crude” in the
sense that the cause —heat absorbed from the hot
reservoir— and the unavoidable effect —the minimal
compensation— has been being taking as uncoupled since
the early stage of thermodynamics. A more comprehen-
sive reading of the statement of the second law would
have lead to some coupling between the Wmax or Q′

min

and Q since a finiteless absorbed heat is necessary to get
a finiteless compensation —see (8) and figure 2.— We
put now forward the fact that this hypothesis —labeled
hypothesis II— suffice for the Nernst theorem:

the compensation of a Carnot engine ap-
proaches indefinitely zero only if the heat ab-
sorbed from the reservoir is vanishing

The significance of the hypothesis would be revealed
by the conclusions that it draws, however the reader
should not conclude that hypothesis II is additional to
the Kelvin-Planck statement since it is embedded in its
words. The point is the meaning of the word “effect”
that appears in the statement. One can get explicitly
hypothesis II by changing “effect” by “finite effect” in
the statement so that any “finite” absorbed heat neces-
sarily leads to a “finite” compensation. But, in fact, any
effect is actually finite so that the modification would be
a pleonasm.
The fact that the hypothesis leads to the Nernst theo-

rem is surprisingly straightforward. Notice that the com-
pensation of an engine equals Q′ = T ′ × Λ where T ′ is
the temperature of the cold reservoir and Λ the exchange
of entropy. That magnitude becomes zero (1) if T ′ goes
to zero regardless Λ or (2) if Λ goes to zero regardless
T ′. The hypothesis excludes option (1) that is, it ex-
cludes any alteration of entropy in the neighbourhood of
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the absolute zero. Hence, the Nernst theorem as stated in
section I and as analyzed in section III comes of necessity.

It is then concluded that hypothesis I and II are equiv-
alent propositions so that the Nernst theorem ultimately
follows from a comprehensive reading of the Kelvin-
Planck statement through hypothesis II.6 This propo-
sition is valid as far as systems suitable to be working
fluids of engines are being considered.

VII. DISCUSSION AND CONCLUSION

In 1909 Carathéodory[4], following a suggestion by
Born, successfully translated the classical statements of
the second law —which deal with the problem of produc-
tion of work— into a statement which refers to physical
properties of an isolated system. This work introduces
the reverse trip for the Nernst theorem. The theorem
has been supposed to deal with the properties of systems
in the neighborhood of T → 0; the study here presented
(see section IV, specially (8) and (9)) relates the theorem
back to the problem of production of work. The theorem
will be expressing an universal property of the continuous
production of work.

The reader may ask which assumptions makes the
Nernst theorem independent from the Kelvin-Planck and
which does not do so. The goal of the second law of
thermodynamics is to restrict the continuous production
of work putting forward the existence of a fundamental
asymmetry: work is dissipated into heat but the reverse is
not true. The goal enters by a statement which expresses,
in words, a restriction. We have shown in this paper
that the degree of restriction matters and gets influence
in the properties of systems. The classical reading of
the Kelvin-Planck statement assumes just that the com-
pensation is nonzero. Upon this assumption the general
properties of systems in the neighborhood of T = 0 needs
to be summarized as an independent law. Yet, a compre-
hensive reading of the statement through the cautious hy-
pothesis II presented in section VI leads to some of these
general properties: the unattainability statement and the
vanishing of the expansion coefficients. We should again
recall that the formulation here presented is insensitive
to whether or not specific heats come to zero as the tem-
perature comes to zero.

The new reading of the statement overcomes the em-
barrassing fact that W must differ from Q —to what
extend?— by stating that they must do so in a measur-
able quantity which also depends on the working fluid
which does play a rôle in the problem. The speech of
Carathéodory quoted in section III again makes the sense

6 Thus the second law ensures that the entropy goes to a value
which does not depend on x at the absolute zero. Its pre-
cise value, or whether this value is finite or infinite —Planck’s
formulation— is alien to this description since the second law
just concerns variations of entropy.

in this discussion: if the condition W = Q is excluded,
W = Q− should have been excluded as well.7

Any exception to the hypothesis would result in a fail-
ure of the consequences iii and iv quoted in section III
that is: (a) an experiment that would allow to increase
1/T indefinitely, (b) an experiment that would allow
to decrease entropy indefinitely, or (c) a substance that
would have non zero thermal expansion coefficients.8

It is out of the scope of this paper to describe the
microscopic relevance of the hypothesis, that is to deter-
mine which kind of Hamiltonians —interactions— would
lead to uniformly vanishing ∆S as well as their symmetry
properties. Well-known models —specially ideal gases—
do not satisfy the hypothesis here presented. However
the reader should not consider them as an “exception”
to the hypothesis since the hypothesis are grounded on
experimental macroscopic basis and not on the analysis
of microscopic models.
The relation between interactionless models and the

Nernst theorem has been recently suggested[14, 17] and
it seems that the rôle of interactions can not be neglected
in real systems at sufficiently low temperatures. The sug-
gestion comes from the analysis of the independent spin
system. That model does not satisfies the Nernst theo-
rem since the ground state is degenerate. Yet, indepen-
dent spin systems does not happen in nature since real
solids always exhibits magnetic correlation and ordering
at sufficiently low temperatures. The resulting ordering
—usually a macroscopic new phase, either ferromagnetic
or antiferromagnetic— would satisfy the Nernst theorem.
Quite the same analysis can be made on free particle

systems. The reader should notice that the classical ideal
gas allow to envision a process of the type (a) and (b),
moreover it satisfies (c) in contradiction with the Nernst
theorem. On its own, quantum ideal gases[10] gets van-
ishing thermal expansion coefficients and precludes ex-
periment of the type (b) since entropy is necessarily a low
bounded function. Yet, the quantum model still allows
to envision type (a) experiments which do not happen
to be in nature and which do preclude the meaning of
the Nernst theorem. Of course in real systems “order-
ing” does always occur and the settlement of condensed
phases seems unavoidable.
It is then likely that interactionless models —either

kinetic, magnetic or whichever— do not accurately de-
scribe the properties of real systems at sufficiently low
temperatures since interactions can not be neglected.

7 We are presenting an analogy between the words by
Carathéodory and the results of this work. It is not our will-
ing to state that the former derives from the latter or conversely.
It is a sort of coincidence that both problems speak about the
same law of nature.

8 The reader should notice that the unattainability of the zero
isotherm does not guarantee the Nernst theorem. The model
S(T, x) = χ log T × (x + a)/(x + b) with χ, a ̸= b > 0, x ∈ R+

provides a mathematical example of system which precludes ex-
periments (a) and (b) but fails to obey the Nernst theorem.
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