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a b s t r a c t

In this paper we analyze ternary bicooperative games, which are a refinement of the
concept of a ternary voting game introduced by Felsenthal and Machover. Furthermore,
majority voting rules based on the difference of votes are simple bicooperative games.
First, we define the concepts of the defender and detractor swings for a player. Next, we
introduce the Banzhaf power index and the normalized Banzhaf power index. The main
result of the paper is an axiomatization of the Banzhaf power index for the class of ternary
bicooperative games. Moreover, we study ternary bicooperative games with two lists of
weights and compute the Banzhaf power index using generating functions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A cooperative game with a transferable utility is given by a finite set of players and a real-valued worth function defined
on the set of all the subsets, or coalitions, of players such that the worth of the empty set is zero. For each coalition, the
worth can be interpreted as the maximal gain or minimal cost that the players in this coalition can achieve by themselves
against the best offensive threat by the complementary coalition. Classical market games for economies with private goods
are examples of cooperative games. We say that such a game has orthogonal coalitions (see [18, Chapter 9]).
Games with non-orthogonal coalitions are games in which the worth of a coalition depends on the actions of its

complementary coalition. Clearly, social situations involving externalities and public goods are such cases. For instance,
the joint owners of a building are considering hiring a gardener to work in the common areas of their residence. The garden
is a public good. Each owner can decide to support the proposal or to veto it. However, some of themmay decide not to take
part in the decision making and would thus not necessarily be defenders or detractors of the project.
Situations of this kind may be modeled in the following manner. We consider ordered pairs of disjoint coalitions of

players. Each such pair yields a partition of the set of all players in three groups. Players in the first coalition are in favor of
the proposal, and players in the second coalition object to it. The remaining players are not convinced of its benefits, but
they have no intention of objecting to it. This leads us in a natural way into the concept of a bicooperative game introduced
by Bilbao [3].
The analysis of the distribution of power in voting systems is the main application of the concept of a simple game.

Two power indices have received the most theoretical attention as well as application to political structures. The first such
power index was proposed by Shapley and Shubik [19] and it depends on the number of permutations of the set of players
in which each player is pivotal. The second power index was introduced by Banzhaf [2] and has been used in various legal
proceedings. The Banzhaf power index depends on the number of ways in which each voter can effect a swing and the
axiomatic characterization of the Banzhaf power index makes special use of a certain number that intuitively it represents
the total power available in the game.
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A simple game allows a voter only two responses in any decision: voting ‘yes’ or ‘no’. But in most real-life decision
rules, abstention plays a key role. The simple games cannot take the possibility of abstention into account and they do not
recognize abstention as a third option. Thus, only knowing who is in favor of the proposal is not enough to describe the
situation. Simple games with abstention have been studied by Felsenthal and Machover [10] under the name of ternary
voting games. More recently, several works by Freixas [11,12] and Freixas and Zwicker [13], have been devoted to the study
of voting systems with several ordered levels of approval in the input and in the output. Chua and Huang [8] have studied
the Shapley–Shubik index for ternary voting games. An axiomatic characterization of the Shapley value for bicooperative
games was introduced by Bilbao et al. [5], by using the approach by Weber [22].
Let us briefly outline the contents of this paper. Section 2 deals with notation, definitions and the formal description of

the bicooperative games. In Section 3 we introduce ternary bicooperative games and we observe some properties of these
games. In Section 4 the notions of defender swing and detractor swing are introduced and the Banzhaf power index and
its normalization are defined for these games. We obtain an axiomatization of the Banzhaf power index in this context.
Some of these axioms are extensions of the classical axioms for the Banzhaf power index in the cooperative case. In the last
sectionwe introduce a newmodel of the voting system by using ternary bicooperative games. This model takes into account
situations in which the power of a player to block a decision is not equal to the power of this player to approve it. Finally we
compute the swings for a ternary bicooperative game with two lists of weights using generating functions.
Let S be a finite set. As it became common practice, given i ∈ S we will for simplicity write S \ i instead of S \ {i}, and

given i 6∈ S we will write S ∪ i instead of S ∪ {i}. The number of players in S is denoted by |S| or s.

2. Bicooperative games

Let N = {1, . . . , n} be a finite set and we define the set

3N = {(A, B) : A, B ⊆ N, A ∩ B = ∅} .

Grabisch and Labreuche [14] proposed a relation in 3N given by

(A, B) v (C,D)⇐⇒ A ⊆ C, B ⊇ D.

We denote by@ the relation defined bymeans of the weak strict inclusion, that is, (A, B) @ (C,D) if and only if (A ⊂ C, B ⊇
D) or (A ⊆ C, B ⊃ D). Let us consider the following ordered 3-partitions defined by

X = (A,N \ (A ∪ B) , B) and Y = (C,N \ (C ∪ D) ,D) .

For two ordered 3-partitions X, Y , Freixas and Zwicker [13, Section 2] write X 3⊆ Y to mean that either X = Y or X may be
transformed into Y by shifting 1 or more voters to higher levels of approval. Then (A, B) v (C,D)⇐⇒ X 3⊆ Y and so the
relationv coincides with the inclusion 3⊆ for 3-partitions.
The set (3N ,v) is a partially ordered set (poset) with the following properties:

1. (∅,N) is the first element: (∅,N) v (A, B) for all (A, B) ∈ 3N .
2. (N,∅) is the last element: (A, B) v (N,∅) for all (A, B) ∈ 3N .
3. Every pair of elements of 3N has a join (A, B) ∨ (C,D) = (A ∪ C, B ∩ D) and a meet (A, B) ∧ (C,D) = (A ∩ C, B ∪ D).
Moreover, (3N ,v) is a finite distributive lattice. Two pairs (A, B) and (C,D) are comparable if (A, B) v (C,D) or

(C,D) v (A, B). Otherwise, (A, B) and (C,D) are incomparable. A chain of 3N is an induced subposet of 3N in which any
two elements are comparable. In (3N ,v), all maximal chains have the same number of elements and this number is 2n+ 1.
Thus, the rank function ρ : 3N → {0, 1, . . . , 2n} can be considered such that ρ [(∅,N)] = 0 and ρ [(S, T )] = ρ [(A, B)]+ 1
if (S, T ) covers (A, B), that is, (A, B) @ (S, T ) but there is no (H, J) ∈ 3N such that (A, B) @ (H, J) @ (S, T ).
The following results were proved in [5], by using several lattice properties (see [20, Section 3.5]). These results will be

used to justify one of the axioms in the axiomatic characterization of the Banzhaf power index in Section 4.

Proposition 1. The number of maximal chains of 3N is (2n)!/2n, where n = |N|.

Proposition 2. For all (A, B) ∈ 3N , the number of maximal chains of the sublattice [(∅,N), (A, B)] is (n + a − b)!/2a, where
a = |A| and b = |B|.

Proposition 3. Let (A, B), (C,D) ∈ 3N with (A, B) v (C,D). The number of maximal chains of the sublattice [(A, B), (C,D)] is
equal to the number of maximal chains of the sublattice [(D, C) , (B, A)].

Hereafter we denote by c(3N) the number of maximal chains in 3N and by c ([(A, B), (C,D)]) the number of maximal
chains in the sublattice [(A, B), (C,D)].
We model above mentioned class of non-orthogonal situations by means of the set of all ordered pairs of disjoint

coalitions, that is, the set 3N and a worth function b : 3N → R. For each (S, T ) ∈ 3N , the number b(S, T ) can be interpreted
as the gain (whenever b(S, T ) > 0) or loss (whenever b(S, T ) < 0) that S can achieve when T is the opposer coalition and
N \ (S ∪ T ) is the neutral coalition. The pair (∅,N) represents the situation if all the players object to the change and (N,∅)
represents the situation where all the players wish the change.
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Definition 1. A bicooperative game is a pair (N, b), where N a finite set of players and b : 3N → R is a function such that
b (∅,∅) = 0.

A bicooperative game b ∈ BGN is monotonic if for any (S1, T1) , (S2, T2) in 3N with (S1, T1) v (S2, T2), we have
b (S1, T1) ≤ b (S2, T2).
Grabisch and Labreuche [14,15] study the bicapacities, which coincide with our definition of monotonic bicooperative

games although both concepts were proposed independently and for different domains. A bicapacity is a function v : 3N →
R such that v (∅,∅) = 0 and A ⊆ B ⊆ N implies v (A, ·) ≤ v (B, ·) and v (·, A) ≥ v (·, B). The bicapacities can be considered
as bicooperative games if the monotonicity assumption is no required.
We denote byBGN the set of all bicooperative games on N , that is,BGN = {b : 3N → R, b(∅,∅) = 0}. With respect to

the addition and multiplication by real numbers, the setBGN is a vector space. There are some special collections of games
inBGN taking values in {−1, 0, 1}, the superior unanimity games and the inferior unanimity gameswhich are defined, for any
(S, T ) ∈ 3N , with (S, T ) 6= (∅,∅) as follows.
The superior unanimity game u(S,T ) : 3N → R is given by

u(S,T )(A, B) =
{
1 if (S, T ) v (A, B), (A, B) 6= (∅,∅) ,
0 otherwise.

The inferior unanimity game u(S,T ) : 3
N
→ R is defined by

u(S,T )(A, B) =
{
−1 if (A, B) v (S, T ), (A, B) 6= (∅,∅) ,
0 otherwise.

The relevance of these collections of games is made clear in the following result (see [6]).

Proposition 4. The collections
{
u(S,T ) : (S, T ) ∈ 3N , (S, T ) 6= (∅,∅)

}
and

{
u(S,T ) : (S, T ) ∈ 3

N , (S, T ) 6= (∅,∅)
}
are basis of

BGN . The dimension of BGN is 3n − 1.

3. Ternary bicooperative games

Similarly to the cooperative case in which each coalition S ∈ 2N can be identified with a {0, 1}-vector, each coalition
(S, T ) ∈ 3N can be identified with the {−1, 0, 1}-vector 1(S,T ) defined, for all i ∈ N , by

1(S,T ) (i) =

{1 if i ∈ S,
−1 if i ∈ T ,
0 otherwise.

In voting games, each voter has three choices: voting for a proposal, voting against it, and abstaining. Thus, only knowing
who is in favor of the proposal is not enough to describe the situation. Felsenthal and Machover [10] generalize the
standard voting games by recognizing abstention as an option alongside yes and no votes. Ternary voting games are formally
described by the mappings u : 3N → {−1, 1} satisfying the following three conditions: u(N,∅) = 1, u (∅,N) = −1,
and 1(S,T ) (i) ≤ 1(S′,T ′) (i) for all i ∈ N , implies u(S, T ) ≤ u

(
S ′, T ′

)
. A negative outcome, −1, is interpreted as a defeat

and a positive outcome, 1, as a victory, the passing of a bill. The proposal of Felsenthal and Machover could be refined
by introducing a third output for u, which is 0, and represents the ‘no decision’ situation. Thus, our definition of ternary
bicooperative game is as follows.

Definition 2. A game b ∈ BGN is called a ternary bicooperative game if it satisfies the following conditions:
1. For every bicoalition (S, T ) ∈ 3N , its worth b(S, T ) ∈ {−1, 0, 1}.
2. If (S, T ),

(
S ′, T ′

)
∈ 3N with (S, T ) v

(
S ′, T ′

)
, then b(S, T ) ≤ b

(
S ′, T ′

)
.

Freixas [11,12] and Freixas and Zwicker [13] have generalized the ternary voting games by the definition of the so-called
(j, k) simple games. In the (j, k) simple games, each individual voter expresses one of j possible levels of input support, and
the output consists of one of k possible levels of collective support. Standard simple games are (2, 2) simple games, while a
ternary bicooperative game is a (3, 3) simple game such that b(∅,N) = −1, b (∅,∅) = 0, and b (N,∅) = 1.
Let N be a set of n voters that has to choose between a pair of two alternatives x and y. Every voter i ∈ N has a preference

Ri ∈ {−1, 0, 1} over the two alternatives x and y, where Ri = 1 means that voter i prefers x to y, Ri = 0 means that voter
i is indifferent, and Ri = −1 means that voter i prefers y to x. Thus, the set of preferences is 3N . The aggregate preference
is obtained by means a social welfare function F : 3N → {−1, 0, 1} (see [17]). For instance, we can consider the following
majority rules based on the difference of votes (see [16]). Given k ∈ {0, 1, . . . , n− 1}, the Mk majority rule is the social
welfare functionMk : 3N → {−1, 0, 1}, defined by

Mk(S, T ) =

{1 if |S| − |T | > k,
−1 if |T | − |S| > k,
0 if − k ≤ |S| − |T | ≤ k.

It is easy to check thatMk is a ternary bicooperative game for any k ∈ {0, 1, . . . , n− 1}.
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Note in particular thatM0 is the majority rule defined byM0(S, T ) = sgn (|S| − |T |), where sgn (x) is the standard sign-
function for real numbers x with sgn (x) = 1 for x > 0, sgn (x) = −1 for x < 0, and sgn (x) = 0 for x = 0. Notice also that
for k = n− 1 we obtain the unanimous rule defined byMn−1(N,∅) = 1,Mn−1 (∅,N) = −1, andMn−1(S, T ) = 0 otherwise.
We denote by T BGN the class of all ternary bicooperative games and define the internal operation meet and join by
(b1 ∨ b2)(S, T ) = max {b1(S, T ), b2(S, T )} ,
(b1 ∧ b2)(S, T ) = min {b1(S, T ), b2(S, T )} .

It is easy to check that (b1 ∨ b2)+ (b1 ∧ b2) = b1 + b2.
In a ternary bicooperative game, a bicoalition (S, T ) ∈ 3N is a defender bicoalition if b(S, T ) = 1, and a bicoalition

(S, T ) ∈ 3N is a detractor bicoalition if b(S, T ) = −1. We denote by WD the set of all defender bicoalitions and by WD
the set of all detractor bicoalitions. We say that a bicoalition (S, T ) is a minimal defender if it is a defender, and there does
not exist any defender bicoalition contained in (S, T ). A bicoalition (S, T ) is amaximal detractor if it is a detractor, and there
does not exist any detractor bicoalition such that (S, T ) is contained in it.
Wedenote byMWD the set of allminimal defender bicoalitions. In general, if there exists at least one defender bicoalition,

we write
MWD

= {(S1, T1) , . . . , (Sr , Tr)} ,
where r ≥ 1. We denote by MWD the set of all maximal detractor bicoalitions. If there exists at least one detractor
bicoalition, we write

MWD =
{(
S ′1, T

′

1

)
, . . . , (S ′k, T

′

k)
}

where k ≥ 1. Note that it could beMWD
= ∅ orMWD = ∅, but both sets are empty only if the bicooperative game is the

null game.
In the following result we establish a decomposition of each b ∈ T BGN in terms of the inferior and superior unanimity

bicooperative games corresponding to the maximal detractor and minimal defender bicoalitions.
Notice that the collections

{
u(S,T ) : (S, T ) ∈ 3N , (S, T ) 6= (∅,∅)

}
and

{
u(S,T ) : (S, T ) ∈ 3

N , (S, T ) 6= (∅,∅)
}
include non

monotonic bicooperative games. Notice also that if (S, T ) ∈MWD and (S ′, T ′) ∈MWD, then u(S,T ) and u(S′,T ′) aremonotonic
games.

Proposition 5. Let b ∈ T BGN such that MWD
= {(S1, T1) , . . . , (Sr , Tr)} andMWD =

{(
S ′1, T

′

1

)
, . . . ,

(
S ′k, T

′

k

)}
are the sets

of minimal defender and maximal detractor bicoalitions. Then b can be written as b = v + v′, where

v = u(S1,T1) ∨ · · · ∨ u(Sr ,Tr ) and v′ = u(S′1,T ′1) ∧ · · · ∧ u(S′k,T ′k).

Proof. Let b ∈ T BGN satisfying the hypothesis. We consider the following three cases:
1. Let (S, T ) ∈ 3N such that b(S, T ) = −1. Since b is monotonic, (Sl, Tl) 6v (S, T ) for all (Sl, Tl) ∈ MWD, and hence
u(Sl,Tl)(S, T ) = 0 for all 1 ≤ l ≤ r . From the definition of v it follows that

v(S, T ) =
(
u(S1,T1) ∨ · · · ∨ u(Sr ,Tr )

)
(S, T )

= max
{
u(S1,T1)(S, T ), . . . , u(Sr ,Tr )(S, T )

}
= 0.

Since (S, T ) ∈ 3N is a detractor bicoalition, there exists (S ′j , T
′

j ) ∈MWDwith (S, T ) v
(
S ′j , T

′

j

)
, andhenceu(

S′j ,T
′
j

)(S, T ) = −1.
Then

v′(S, T ) =
(
u(S′1,T ′1) ∧ · · · ∧ u(S′k,T ′k)

)
(S, T )

= min
{
u(S′1,T ′1)(S, T ), . . . , u(S′k,T ′k)(S, T )

}
= −1.

2. Let (S, T ) ∈ 3N such that b(S, T ) = 0. Since b is monotonic, we have that (Sl, Tl) 6v (S, T ) for all 1 ≤ l ≤ r , and also that
(S, T ) 6v

(
S ′j , T

′

j

)
for all 1 ≤ j ≤ k. Hence u(Sl,Tl)(S, T ) = 0 for all 1 ≤ l ≤ r , and u

(
S′j ,T
′
j

)(S, T ) = 0 for all 1 ≤ j ≤ k. Then
v(S, T ) =

(
u(S1,T1) ∨ · · · ∨ u(Sr ,Tr )

)
(S, T ) = 0,

v′(S, T ) =
(
u(S′1,T ′1) ∧ · · · ∧ u(S′k,T ′k)

)
(S, T ) = 0.

3. Let (S, T ) ∈ 3N such that b(S, T ) = 1. Since (S, T ) ∈ 3N is a defender bicoalition, there exists (Sl, Tl) ∈ MWD such that
(Sl, Tl) v (S, T ), and hence u(Sl,Tl)(S, T ) = 1. Since b is monotonic, this implies (S, T ) 6v

(
S ′j , T

′

j

)
and hence u(

S′j ,T
′
j

)(S, T ) = 0
for all 1 ≤ j ≤ k. Then

v(S, T ) =
(
u(S1,T1) ∨ · · · ∨ u(Sr ,Tr )

)
(S, T ) = 1,

v′(S, T ) = u(S′1,T ′1) ∧ · · · ∧ u(S′k,T ′k)(S, T ) = 0.

Therefore, the decomposition b = v + v′ is proved. �
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4. Banzhaf power index for ternary bicooperative games

A value onBGN is a functionΨ : BGN → Rn, which associates to each bicooperative game b a vector (Ψ1(b), . . . ,Ψn(b))
which represents the ‘a priori’ value that every player has in the game b. The value

∑
i∈N Ψi(b) represents the total power

available in the game. In order to define a reasonable value for ternary bicooperative games, we consider that a player
i estimates his participation in game b, evaluating his marginal contributions b(S ∪ i, T ) − b(S, T ) in those bicoalitions
(S ∪ i, T ) that are formed from (S, T )when i joins S, and also his marginal contributions b(S, T )− b(S, T ∪ i) in those (S, T )
that are formed when i leaves T ∪ i. The possible values of the sum of these marginal contributions lead us to define the
concepts of a defender swing and a detractor swing.
Let i ∈ N . We say that a bicoalition (S, T ) ∈ 3N\i is a defender swing for player i if b (S ∪ i, T ) = 1 and b (S, T ∪ i) 6= 1, and

we say that a bicoalition (S, T ) ∈ 3N\i is a detractor swing for player i if b (S, T ∪ i) = −1 and b(S∪ i, T ) 6= −1. In both cases,
the sum of the marginal contributions b(S ∪ i, T )− b(S, T ) and b(S, T )− b(S, T ∪ i) is greater that or equal to 1. Note that a
bicoalition (S, T ) ∈ 3N\i can be a defender swing and a detractor swing for a player i. In this case b(S∪ i, T )−b(S, T ∪ i) = 2.
We denote by ηi(b) the number of defender swings for player i and by ηi(b) to the number of detractor swings for player

i. Let ηi(b) = ηi(b)+ ηi(b) be the number of swings for player i and let η(b) =
∑
i∈N ηi(b).

Now, we define the collections

W
D
(i) =

{
(S, T ) ∈ WD

: i ∈ S
}
, WD (i) =

{
(S, T ) ∈ WD

: i ∈ T
}
,

WD (i) = {(S, T ) ∈ WD : i ∈ S} , WD (i) = {(S, T ) ∈ WD : i ∈ T } .

The following result provides an expression of the swings for a player in terms of the following sets of defender and
detractor bicoalitions.

Proposition 6. If b ∈ T BGN and i ∈ N, then

ηi(b) =
∣∣∣WD

(i)
∣∣∣− ∣∣WD (i)

∣∣ and η
i
(b) =

∣∣WD (i)
∣∣− ∣∣WD (i)

∣∣ .
Proof. For every b ∈ T BGN , we obtain

ηi(b) =
∣∣(S, T ) ∈ 3N\i : b(S ∪ i, T ) = 1 and b (S, T ∪ i) 6= 1∣∣

=
∣∣(S, T ) ∈ WD

: i ∈ S
∣∣− ∣∣(S, T ) ∈ WD

: i ∈ T
∣∣

=

∣∣∣WD
(i)
∣∣∣− ∣∣WD (i)

∣∣ .
By the same argument

η
i
(b) =

∣∣(S, T ) ∈ 3N\i : b (S, T ∪ i) = −1 and b (S ∪ i, T ) 6= −1∣∣
= |(S, T ) ∈ WD : i ∈ T | − |(S, T ) ∈ WD : i ∈ S|
=
∣∣WD (i)

∣∣− ∣∣WD (i)
∣∣ .

The proof is now completed. �

Since the principal interest in these numbers, ηi(b), ηi(b), lies in their ratios rather than their magnitudes, we can define
two Banzhaf power indices. The first of them consists of a normalization to add up to 1.

Definition 3. The normalized Banzhaf power index for the ternary bicooperative game b ∈ T BGN is given, for each i ∈ N ,
by

βi(b) =
ηi(b)
η(b)

.

If we now consider, for each player i ∈ N , the number of all bicoalitions (S, T ) ∈ 3N\i which can be defender swings or
detractor swings for the player, we can introduce another Banzhaf power index for a ternary bicooperative game.

Definition 4. The probabilistic Banzhaf power index for the ternary bicooperative game b ∈ T BGN is given, for each i ∈ N ,
by

β ′i (b) =
1
3n−1

ηi(b).

In Bilbao et al. [6], the biprobabilistic values are introduced. A biprobabilistic value for a player i ∈ N is defined by

ϕi(b) =
∑

(S,T )∈3N\i

[
pi(S,T ) (b(S ∪ i, T )− b(S, T ))+ p

i
(S,T )

(b(S, T )− b (S, T ∪ i))
]
,
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where for every (S, T ), the coefficient pi(S,T ) can be interpreted as the probability that player i joins S and p
i
(S,T )

as the
probability that player i leaves T ∪ i. Therefore, ϕi(b) is the value that player i can expect in the game b. If we suppose that all
the probabilities are equal, then pi(S,T ) = p

i
(S,T )
= 1/3n−1, the probabilistic Banzhaf power index for a ternary bicooperative

game is obtained.

Theorem 1. The Banzhaf power index for the ternary bicooperative game b ∈ T BGN satisfies

β ′i (b) =
1
3n−1

∑
(S,T )∈3N\i

[b(S ∪ i, T )− b (S, T ∪ i)] .

Proof. Let b ∈ T BGN . By using Proposition 6 we obtain

β ′i (b) =
1
3n−1

ηi(b)

=
1
3n−1

(
ηi(b)+ ηi(b)

)
=

1
3n−1

(∣∣∣WD
(i)
∣∣∣− ∣∣WD (i)

∣∣+ ∣∣WD (i)
∣∣− ∣∣WD (i)

∣∣)
=

1
3n−1

(∣∣∣WD
(i)
∣∣∣− ∣∣WD (i)

∣∣)− 1
3n−1

(∣∣WD (i)
∣∣− ∣∣WD (i)

∣∣)
=

1
3n−1

∑
(S,T )∈3N\i

b(S ∪ i, T )−
1
3n−1

∑
(S,T )∈3N\i

b (S, T ∪ i)

=
1
3n−1

∑
(S,T )∈3N\i

[b(S ∪ i, T )− b (S, T ∪ i)] . �

In order to give an axiomatic characterization of these power indices, let us introduce a set of axioms for a value
Ψ : BGN → Rn and we will obtain a characterization of the vector of swings (ηi(b))i∈N by using the method provided
by Dubey and Shapley [9]. First, we introduce the concept of a null player as follows.

Definition 5. A player i ∈ N is a null player in the bicooperative game b ∈ BGN if b(S ∪ i, T ) − b (S, T ∪ i) = 0 for all
(S, T ) ∈ 3N\i.

Proposition 7. Let (S, T ) ∈ 3N be such that (S, T ) 6= (∅,∅). Then
1. Every player i ∈ T is a null player in the bicooperative game u(S,T ).
2. Every player i ∈ S is a null player in the bicooperative game u(S,T ).
Proof. 1. First note that if i ∈ T then i 6∈ S. Thus,

S ⊆ A ∪ i and T ⊇ B⇐⇒ S ⊆ A and T ⊇ B ∪ i,

and hence u(S,T )(A ∪ i, B) = u(S,T ) (A, B ∪ i) for all (A, B) ∈ 3N\i.
2. Since i ∈ S implies i 6∈ T , we have

A ∪ i ⊆ S and B ⊇ T ⇐⇒ A ⊆ S and B ∪ i ⊇ T .

Then clearly u(S,T )(A ∪ i, B) = u(S,T ) (A, B ∪ i) for all (A, B) ∈ 3
N\i. �

Axiom 1 (Null Player). If i ∈ N is a null player in b ∈ BGN , then Ψi(b) = 0.

Axiom 2 (Total Swings). If b ∈ T BGN , then
∑
i∈N Ψi(b) = η(b).

Axiom 3 (Transfer Property). For any b, w ∈ T BGN , we have that Ψ (b)+ Ψ (w) = Ψ (b ∨ w)+ Ψ (b ∧ w).

Axiom 4 (Simple Additivity). For any b ∈ T BGN such that b = v + v′, where v =
∨
(S,T )∈MWD u(S,T ) and v

′
=∧

(S,T )∈MWD
u(S,T ), we have that Ψ (b) = Ψ (v)+ Ψ (v

′).

Axiom 5 (Structural Property). For all j ∈ S, i 6∈ S ∪ T and k ∈ T ,

Ψj
(
u(S,T )

)
Ψi
(
u(S,T )

) = c ([(∅,N), (S \ j, T )])
c ([(∅,N), (S, T ∪ i)])

,

Ψk
(
u(S,T )

)
Ψi
(
u(S,T )

) = c ([(S, T \ k) , (N,∅)])
c ([(S ∪ i, T ), (N,∅)])

.
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Taking into account that Proposition 2 implies that

c ([(∅,N), (S \ j, T )]) =
(n+ s− t − 1)!

2s−1
,

c ([(∅,N), (S, T ∪ i)]) =
(n+ s− t − 1)!

2s
,

then Axiom 5 can be written as follows.

Axiom 5. For all j ∈ S, i 6∈ S ∪ T and k ∈ T ,

Ψj
(
u(S,T )

)
= 2Ψi

(
u(S,T )

)
,

Ψk
(
u(S,T )

)
= 2Ψi

(
u(S,T )

)
.

The interpretation of Axiom 5 is as follows. First of all, note that the bicoalitions (S \ j, T ) and (S, T ∪ i)where j ∈ S and
i 6∈ S ∪ T have the same rank ρ [(S \ j, T )] = ρ [(S, T ∪ i)] = n + s − t − 1 (see Fig. 1). However, the number of maximal
chains in the sublattice [(∅,N) , (S \ j, T )] is not the same as the number of maximal chains in [(∅,N), (S, T ∪ i)].
Hence, beginning from the bicoalition (∅,N), the probability of formation of the bicoalition (S, T ) when player j joins

(S \ j, T ) is the double of the probability when player i leaves (S, T ∪ i) because the number of maximal chains in
[(∅,N) , (S \ j, T )] is the double of the number of chains in [(∅,N), (S, T ∪ i)]. In analogous form, if we consider (S, T \ k)
with k ∈ T and (S ∪ i, T ) which have the same rank, the number of maximal chains in [(S, T \ k) , (N,∅)] is the double of
the number of maximal chains in [(S ∪ i, T ) , (N,∅)]. Therefore, the probability of the formation of (S, T ) beginning from
(S, T \ k)when player k joins T must be distinct from the probability when player i leaves (S ∪ i, T ).
Taking into account these considerations, the values that one player must obtain in the unanimity games must be

proportional to the number of maximal chains in the corresponding sublattices. A similar axiom has been used in the
axiomatic characterization of the Shapley value for bicooperative games (see [5]).

Theorem 2. There is a unique function Ψ : T BGN → Rn that satisfies the Axioms 1–5. Moreover, Ψ (b) = (ηi(b))i∈N for all
b ∈ T BGN .

Proof. Let (S, T ) ∈ 3N be such that (S, T ) 6= (∅,∅). Then Proposition 7 implies that every k ∈ T is a null player in game
u(S,T ), and every j ∈ S is a null player in game u(S,T ). Axiom 1 implies that Ψk(u(S,T )) = 0 and Ψj(u(S,T )) = 0 for all k ∈ T and
j ∈ S. Applying Axiom 2, we have that

η
(
u(S,T )

)
=

∑
i∈N

Ψi(u(S,T )) =
∑
i∈N\T

Ψi(u(S,T ))

=

∑
j∈S

Ψj(u(S,T ))+
∑

l∈N\(T∪S)

Ψl(u(S,T )),

η
(
u(S,T )

)
=

∑
i∈N

Ψi(u(S,T )) =
∑
i∈N\S

Ψi(u(S,T ))

=

∑
k∈T

Ψk(u(S,T ))+
∑

l∈N\(T∪S)

Ψl(u(S,T )).

By using Axiom 5, we obtain

Ψj(u(S,T )) = 2Ψl(u(S,T )) and Ψk(u(S,T )) = 2Ψl(u(S,T )),

for all j ∈ S, l 6∈ S ∪ T , and k ∈ T . As a consequence of the above equations,

η
(
u(S,T )

)
= 2sΨl(u(S,T ))+ (n− s− t)Ψl(u(S,T ))
= (n+ s− t)Ψl(u(S,T )),

η
(
u(S,T )

)
= 2tΨl(u(S,T ))+ (n− s− t)Ψl(u(S,T ))
= (n+ t − s)Ψl(u(S,T )),

for all l 6∈ S ∪ T . Hence we obtain

Ψi(u(S,T )) =


0 if i ∈ T ,
η
(
u(S,T )

)
n+ s− t

if i 6∈ S ∪ T ,

2η
(
u(S,T )

)
n+ s− t

if i ∈ S
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Fig. 1. Axiom 5.

and also

Ψi(u(S,T )) =


0 if i ∈ S,
η
(
u(S,T )

)
n+ t − s

if i 6∈ S ∪ T ,

2η
(
u(S,T )

)
n+ t − s

if i ∈ T .

Each ternary bicooperative game b ∈ T BGN has a finite number of minimal defender bicoalitions MWD
=

{(S1, T1) , . . . , (Sr , Tr)} and a finite number of maximal detractor bicoalitions MWD = {(S ′1, T
′

1), . . . , (S
′

k, T
′

k)}. Since
Proposition 5 provides us a decomposition b = v + v′, where

v = u(S1,T1) ∨ · · · ∨ u(Sr ,Tr ) and v′ = u(S′1,T ′1) ∧ · · · ∧ u(S′k,T ′k).

Axiom 4 implies that

Ψ (b) = Ψ (v)+ Ψ
(
v′
)

= Ψ

 ∨
(Sj,Tj)∈MWD

u(Sj,Tj)

+ Ψ

 ∧
(
S′j ,T
′
j

)
∈MWD

u(
S′j ,T
′
j

)

 .

If we consider the game v and apply Axiom 3,

Ψ (v) = Ψ
(
u(S1,T1)

)
+ Ψ

(
u(S2,T2) ∨ · · · ∨ u(Sr ,Tr )

)
− Ψ

(
u(S1,T1) ∧

(
u(S2,T2) ∨ · · · ∨ u(Sr ,Tr )

))
.

Each game that appears in the secondmember is a gamewith fewerminimal defender bicoalitions than v. So,we canperform
an induction on the number of minimal defender bicoalitions and it follows thatΨ (v) is uniquely determined. By using the
same Axiom 3,

Ψ
(
v′
)
= Ψ

(
u(S′1,T ′1)

)
+ Ψ

(
u(S′2,T ′2) ∧ · · · ∧ u(S′k,T ′k)

)
− Ψ

(
u(S′1,T ′1) ∨

(
u(S′2,T ′2) ∧ · · · ∧ u(S′k,T ′k)

))
.

Each game that appears in the second member is a game with fewer maximal detractor bicoalitions than v′. So, we can
perform an induction on the number of maximal detractor bicoalitions and it follows that Ψ

(
v′
)
is uniquely determined. If

b is the null game, that is b(S, T ) = 0 for all (S, T ) ∈ 3N , then all the players are null players and hence Ψi(b) = 0 for all
i ∈ N .
We have proved the uniqueness and we must establish the existence. Thus, is suffices to check directly that the vector

Ψ (b) = (ηi(b))i∈N satisfies the five axioms. Since

ηi(b) =
∑

(S,T )∈3N\i
[b(S ∪ i, T )− b (S, T ∪ i)] ,
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for all i ∈ N , it follows that (ηi(b))i∈N satisfies Axioms 1–4. Let (S, T ) ∈ 3N be such that (S, T ) 6= (∅,∅) and let i 6∈ S ∪ T .
Then

ηi
(
u(S,T )

)
=

∑
(A,B)∈3N\i

[
u(S,T )(A ∪ i, B)− u(S,T ) (A, B ∪ i)

]
=

∑
(A,B)∈3N\i

u(S,T )(A ∪ i, B),

since i 6∈ T implies B ∪ i 6⊆ T . Notice also that i 6∈ S implies S ⊆ A ∪ i⇔ S ⊆ A, and hence

ηi
(
u(S,T )

)
=
∣∣{(A, B) ∈ 3N\i : A ⊇ S and B ⊆ T}∣∣ = 2n−s+t .

If we choose j ∈ S we have j 6∈ T and therefore

ηj
(
u(S,T )

)
=

∑
(A,B)∈3N\j

[
u(S,T )(A ∪ j, B)− u(S,T ) (A, B ∪ j)

]
=

∑
(A,B)∈3N\j

u(S,T )(A ∪ j, B).

Since j ∈ S implies S ⊆ A ∪ j⇔ S \ j ⊆ A, we obtain

ηj
(
u(S,T )

)
=
∣∣{(A, B) ∈ 3N\i : A ⊇ S \ j and B ⊆ T}∣∣ = 2n−s+1+t .

Therefore, ηj
(
u(S,T )

)
= 2ηi

(
u(S,T )

)
for all j ∈ S and i 6∈ S ∪ T , which implies that (ηi(b))i∈N satisfies the first equation of

Axiom 5. The second equation ηk
(
u(S,T )

)
= 2ηi

(
u(S,T )

)
for all k ∈ T and i 6∈ S ∪ T , is proved analogously. �

5. The Banzhaf power index for bicooperative games with two lists of weights

A weighted voting game is defined on a finite set N of players, which can be people, companies, political parties or
countries. Each player i ∈ N has a number of votes wi > 0, so each coalition of players S ⊆ N , has the sum of votes of
its components w(S) =

∑
i∈S wi. Fixed a quota q to take decisions, a coalition S is winning if w(S) ≥ q, and is losing if

w(S) < q. As there are exactly two possibilities for each coalition of players, a weighted voting game is modeled with the
simple game v : 2N → {0, 1}, defined by

v(S) =
{
1, ifw(S) ≥ q,
0, otherwise.

Consequently, a weighted voting game is represented by the following scheme v ≡ [q;w1, . . . , wn]. The power of a
player is an ‘a priori’ measure of his/her influencing capacity, based on computing the capacity of each player to participate
in winning coalitions. There are two well-known power indices, the Banzhaf index [2] and the Shapley–Shubik index [19].
Both of them give a more precise measure of the power of a player that the number of votes assigned to each player.
Another aspect to be mentioned in a weighted voting game is the following: How can we measure the power of a player

to block a decision? The answer to this question is that the power of a player to block a decision is the same as the one player
has in order to approve it. So, these above indices measure both the capacity of a player to adopt a proposal and to block it
(see [9,21]).
However, we can concur that the power of a player to block a decision is not equal to the power of this player to approve

it. Fixed the quota q to take decisions and the quota m to block decisions, these situations can be represented by a ternary
bicooperative game b : 3N → {−1, 0, 1}, defined by

b(S, T ) =

{1, ifw(S) ≥ q and p(T ) < m
−1, ifw(S) < q and p(T ) ≥ m
0, otherwise

(1)

where each player i ∈ N has a number of voteswi > 0 in order to approve a decision and a number of votes pi > 0 in order
to block it and 0 < q ≤ w (N) , 0 < m ≤ p (N). It is represented by the scheme b ≡ [[q;w1, . . . , wn] , [m; p1, . . . , pn]] and
is called bi-weighted ternary bicooperative game.
It is easy to check that the following ternary bicooperative game, for k > 0,

b(S, T ) =

{1, ifw(S)− w(T ) > k
−1, ifw(S)− w(T ) < k
0, otherwise

and hence, the majority rule in [16] is the bicooperative game (1).
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Table 1
Weights and worths.

(S, T ) (w(S), p(T )) b(S, T )

(∅, {123}) (0, 10) −1
(∅, {12}) (0, 5) 0
(∅, {13}) (0, 7) −1
(∅, {23}) (0, 8) −1
(∅, {3}) (0, 5) 0
(∅, {2}) (0, 3) 0
(∅, {1}) (0, 1) 0
({1}, {23}) (6, 8) −1
({2}, {13}) (1, 7) −1
({3}, {12}) (4, 5) 0
({1}, {3}) (6, 5) 0
({1}, {2}) (6, 3) 0
({2}, {3}) (1, 5) 0
({2}, {1}) (1, 2) 0
({3}, {2}) (4, 3) 0
({3}, {1}) (4, 2) 0
({1},∅) (6, 0) 0
({2},∅) (1, 0) 0
({3},∅) (4, 0) 0
({12}, {3}) (7, 5) 0
({23}, {1}) (5, 2) 0
({13}, {2}) (10, 3) 1
({12},∅) (7, 0) 0
({23},∅) (5, 0) 0
({13},∅) (10, 0) 1
({123},∅) (11, 0) 1

Table 2
Defender and detractor swings.

Player Defender swings Detractor swings

1 (3, 2), (3,∅), (23,∅) (∅, 3), (2, 3)
2 (∅, 3), (1, 3)
3 (1, 2), (1,∅), (12,∅) (1, 2), (2, 1), (∅, 1), (∅, 2), (∅, 12)

Table 3
Number of swings.

Player ηi(b) η
i
(b) ηi(b)

1 3 2 5
2 0 2 2
3 3 5 8

Example 1. Let us consider the bi-weighted ternary bicooperative game given by b ≡ [[8; 6, 1, 4] , [6; 2, 3, 5]], that is, for
each (S, T ) ∈ 3N ,

b(S, T ) =

{1, ifw(S) ≥ 8 and p(T ) < 6
−1, ifw(S) < 8 and p(T ) ≥ 6
0, otherwise.

We compute the normalized Banzhaf index. First we determine the weights and worths for b in Table 1.
As a consequence of the data given by Table 1, we obtain the detractor swings and defender swings for each player i (see

Table 2).
The number of swings for each player is displayed in Table 3.
The data of Table 3 implies that the total number of swings is η(b) =

∑
i∈N ηi(b) = 15. Thus, the normalized Banzhaf

index is

β(b) =
(
5
15
,
2
15
,
8
15

)
.

Note that if we consider the indices

β(b) =

 ηi(b)∑
i∈N
ηi(b)


i∈N

and β(b) =

 η
i
(b)∑

i∈N
ηi(b)


i∈N

,
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the power of the players for approving a decision or blocking it is given by

β(b) =
(
3
15
, 0,

2
15

)
and β(b) =

(
2
15
,
2
15
,
5
15

)
.

The following result allows to compute the number of detractor swings and the number defender swings for each player
without calculating the values of the bicoalitions. In the following expressions, if w (N \ i) < q or p(N \ i) < m, for some
i ∈ N , then the corresponding sum is not considered.

Proposition 8. Let b ≡ [[q;w1, . . . , wn] , [m; p1, . . . , pn]] be a bi-weighted ternary bicooperative game. Then, the number of
defender swings and the number of detractor swings are given by

ηi(b) =
w(N\i)∑
k=q−wi

m−1∑
r=0

bikr −
w(N\i)∑
k=q

m−1∑
r=0

bikr ,

η
i
(b) =

q−1∑
k=0

p(N\i)∑
r=m−pi

bikr −
q−1∑
k=0

p(N\i)∑
r=m

bikr ,

where bikr is the number of bicoalitions (S, T ) such that i 6∈ S ∪ T withw(S) = k and p(T ) = r.

Proof. First of all, consider the set of bicoalitions (S, T ) in which player i 6∈ S∪T such thatw (S) ≥ q−wi and p (T ) ≤ m−1.
The cardinal of this set is given by

si1 =
w(N\i)∑
k=q−wi

m−1∑
r=0

bikr .

Since w(S ∪ i) ≥ q and p (T ) < m, this number si1 coincides with the cardinal of the set of all bicoalitions (S, T ) ∈ 3
N\i

such that b(S ∪ i, T ) = 1. On the other hand, inside this set, consider the subset of bicoalitions (S, T ) where the presence
of player i in S is not necessary for approving the decision. The cardinal of this subset is equal to the number of bicoalitions
(S, T ) ∈ 3N\i such thatw (S) ≥ q and p (T ) ≤ m− 1, that is,

si2 =
w(N\i)∑
k=q−wi

m−1∑
r=0

bikr .

To obtain the number of defender swings, it suffices to compute si1 − s
i
2.

In analogous form, the number of detractor swings can be obtained from the set of bicoalitions (S, T ) in which player
i 6∈ S ∪ T such that b (S, T ∪ i) = −1 and inside of this set, the subset of bicoalitions (S, T )where the presence of player i in
T is not necessary for blocking the decision. �

In Example 1, the application of Proposition 8 results

η1(b) =
5∑
k=2

5∑
r=0

b1kr = 3,

η
1
(b) =

7∑
k=0

8∑
r=4

b1kr −
7∑
k=0

8∑
r=6

b1kr = 3− 1 = 2,

η2(b) =
10∑
k=7

3∑
r=0

b2kr −
10∑
k=8

3∑
r=0

b2kr = 1− 1 = 0,

η
2
(b) =

7∑
k=0

7∑
r=4

b2kr −
7∑
k=0

7∑
r=6

b2kr = 3− 1 = 2,

η3(b) =
7∑
k=4

5∑
r=0

b3kr = 3,

η
3
(b) =

7∑
k=0

5∑
r=1

b3kr = 5.

Now, we focus on computing the Banzhaf index of the bi-weighted ternary bicooperative game by using generating
functions.
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Themost useful method for counting the number f (n) of elements of finite sets Sn where n ∈ N, is to obtain its generating
function F (x) =

∑
n≥0 f (n) x

n. These functions have been used for computing the number of swings in cooperative games
(see [7,4,1]). We use generating functions of two variables to compute the numbers

{
bikr
}
k,r≥0, for every player i ∈ N .

Proposition 9. Let b ≡ [[q;w1, . . . , wn] , [m; p1, . . . , pn]] be a bi-weighted ternary bicooperative game. Then, for i ∈ N, the
generating function of numbers {bikr}k≥0, r≥0, where b

i
kr is the number of bicoalitions (S, T ) such that i 6∈ S ∪ T with w(S) = k

and p(T ) = r is given by

Bi(x, y) =
n∏

j=1, j6=i

(
1+ xwj + ypj

)
.

Proof. Let b ≡ [[q;w1, . . . , wn] , [m; p1, . . . , pn]] be a bi-weighted ternary bicooperative game. Consider the function

B(x, y) =
n∏
j=1

(
1+ xwj + ypj

)
.

Expanding the above expression, it holds that

B(x, y) =
n∏
j=1

(
1+ xwj + ypj

)
=

∑
S,T⊆N,T⊆N\S

(
x
∑
i∈S
wi
)(
y
∑
l∈T
pl
)

=

∑
(S,T )∈3N

xw(S)yp(T )

=

w(N)∑
k=0

p(N)∑
r=0

bkr xkyr .

Hence, B(x, y) is a generating function for computing the numbers {bkr}k≥0, r≥0 where each bkr is the number of bicoalitions
(S, T ) ∈ 3N such that w(S) = k and p(T ) = r . Finally, to obtain the numbers {bikr}k≥0, r≥0, it suffices to remove the factor
(1+ xwi + ypi) in the function B(x, y) obtaining the generating function Bi(x, y). �

In Example 1, we have that

B1(x, y) =
(
1+ x1 + y3

) (
1+ x4 + y5

)
= 1+ x+ x4 + y3 + x5 + y5 + y8 + xy5 + x4y3,

B2(x, y) =
(
1+ x6 + y2

) (
1+ x4 + y5

)
= 1+ y2 + x4 + x6 + y5 + y7 + x10 + x4y2 + x6y5,

B3(x, y) =
(
1+ x6 + y2

) (
1+ x1 + y3

)
= 1+ x+ y2 + y3 + x6 + y5 + x7 + xy2 + x6y3,

and it is easy to check that the numbers of swings (ηi(b))i∈N and (ηi(b))i∈N are obtained using these functions.

Example 2. Consider an state with a regional structure, where a committee is made up of representatives of n regions and
they have a number of votes proportional to its population, {w1, . . . , wn}. When a proposal was put to a vote, it would be
approved if the sum of favorable votes exceeding a quota q and the sum of opposed members is less than a quotam. In the
case that the number of votes is less than the quota q, and the number ofmembers against the proposal is greater thanm, the
proposal would be rejected; otherwise, the proposal would be deferred for consideration again at the reunion committee.
This voting system can be modeled by the bicooperative game b ≡ [[q;w1, . . . , wn] , [m; p1, . . . , pn]], where {w1, . . . , wn}
represents the number of votes of each region and p1 = · · · = pn = 1.
If we consider the 19 autonomous communities of Spain andwe apply the population data in 2008, we have the following

bicooperative game:

b ≡
[
[501; 178, 159, 136, 109, 60, 55, 47, 45, 44, 31, 29, 24, 23, 23, 13, 13, 7, 2, 2],

[10; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
.

The population data, number of votes and the Banzhaf power index for each community are given in Table 4.
The algorithm to compute the number of swings and Banzhaf power indices, written in theMathematica 7.0 computer

system, with the package Combinatorica, is the following:
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Table 4
The Banzhaf power of the Spanish communities.

Communities Population Votes Banzhaf power

1 Andalucía 8202220 178 0.132148
2 Cataluña 7364078 159 0.117892
3 Comunidad de Madrid 6271638 136 0.101758
4 Comunidad deValencia 5029601 109 0.085071
5 Galicia 2784169 60 0.054824
6 Castilla y León 2557330 55 0.052130
7 Pais Vasco 2157112 47 0.047572
8 Canarias 2075968 45 0.046532
9 Castilla La Mancha 2043100 44 0.045978
10 Región de Murcia 1426109 31 0.039087
11 Aragón 1326918 29 0.038148
12 Extremadura 1097744 24 0.035381
13 Principado de Asturias 1080138 23 0.034750
14 Baleares 1072844 23 0.034750
15 Navarra 620377 13 0.029704
16 Cantabria 582138 13 0.029704
17 La Rioja 317501 7 0.026578
18 Ceuta 77389 2 0.023996
19 Melilla 71448 2 0.023996

banzhafBicoG[weights_List, pop_List] := Times @@ (1+xˆweights+yˆpop)
swingDefender[i_,weights_List,pop_List,q_Integer,m_Integer]:=
Module[{poly,coefi,delwe,delpo,s1,s2,sw,sp},
delwe=Delete[weights,i];
delpo=Delete[pop,i];
poly=banzhafBicoG[delwe,delpo];
sw=Apply[Plus,delwe]+1;
sp=Apply[Plus,delpo]+1;
coefi=CoefficientList[poly,{x,y}]/.{}->Table[0,{sp}];
s1=Apply[Plus,Flatten[coefi[[
Range[Max[1,q-weights[[i]]+1],sw],
Range[1,Min[sp,m]]]]]];
s2=If[((q+1)>sw),0,Apply[Plus,
Flatten[coefi[[Range[q+1,sw],Range[1,Min[sp,m]]]]]]];
s1-s2]
swingDetractor[i_, weights_List, pop_List, q_Integer, m_Integer] :=
Module[{poly, coefi, s1, s2, delwe, delpo, sw, sp},
delwe = Delete[weights, i];
delpo = Delete[pop, i];
poly = banzhafBicoG[delwe, delpo];
sw = Apply[Plus, delwe]+1;
sp = Apply[Plus, delpo]+1;
coefi = CoefficientList[poly, {x, y}] /. {} ->Table[0, {sp}];
s1 = Apply[Plus,
Flatten[coefi[[Range[1, Min[sw, q]],
Range[Max[1, m - pop[[i]]+1], sp]]]]];
s2 = If[((m+1)>sp), 0,
Apply[Plus, Flatten[coefi[[Range[1, Min[sw, q]], Range[m+1, sp]]]]]];
s1 - s2]
banzhafBicoPower[weights_List,pop_List,q_,m_]:=
#/(Plus @@ #)& @Table[
swingDefender[i,weights,pop,q,m]+swingDetractor[i,weights,pop,q,m],
{i,Length[weights]}]

The Banzhaf power indices displayed in Table 4 are obtained as follows:

votes= {178,159,136,109,60,55,47,45,44,31,29,24,23,23,13,13,7,2,2};
members=Table[1,{19}];
banzhafBicoPower[votes,members,501,10]//N
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