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A B S T R A C T   

Quantifying and rating energy flexibility in existing buildings will become increasingly important as building 
energy services become electrified. Flexibility ratings based on building design specifications have shown po
tential to complement energy performance certificates and enable the comparison between buildings. However, 
relying on physical models and standard boundary conditions could lead to a ‘flexibility gap’: a difference be
tween predicted and actual flexibility. This article investigates the incorporation of monitored data into design- 
based flexibility ratings, using an existing rating methodology and two UK case study domestic buildings. We 
firstly examine whether the current rating methodology can accept monitored data, and find it is able to apart 
from the final step of rating. We then devise two methods of calculating the metrics required for the flexibility 
rating, based not on physical models but on data. Using these methods, we examine the impact of the standard 
operational modelling assumptions on the flexibility metrics compared to using data-informed inputs, which 
highlights some discrepancies and some concepts in the flexibility rating methodology for which monitored data 
may be very difficult to obtain (e.g. recovery time). Finally, we suggest how to improve the usefulness of flex
ibility ratings by incorporating additional information based on monitored data.   

1. Introduction 

1.1. Energy flexibility ratings for buildings 

Energy Flexibility (EF) of buildings refers to the ability of buildings 
to adapt their energy consumption without adversely affecting func
tionality or occupants, for example to support load regulation in low 
voltage electricity grids [1]. Building users and the power sector can 

take advantage of this ability to react to fluctuating renewable energy 
availability and energy prices, and improve supply reliability while 
lowering carbon emissions and energy costs [1–3]. As wind and solar 
energy and the electrification of the thermal demand of buildings are 
expanding, the promotion of EF and the interaction between the 
building and the power sector is growing [4]. In this context, quantifying 
and rating the EF of buildings is becoming increasingly important, and 
EF indexes are being used addressing different focus scales such us 
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neighbourhoods [5,6], single buildings [3,7] and building technologies 
and control alternatives [7–9]. 

In order to characterize and incentivize EF in buildings, quantifica
tion and rating methods have been proposed [1–3,10]. They can be 
classified into two main approaches: one assesses the capability to 
behave flexibly, and the other EF performance. The multi-criteria eval
uation scheme for rating buildings based on the Smart Readiness Indi
cator (SRI) introduced by the European Union [10,11] belongs to the 
first group. The SRI rating scheme consists of documenting what tech
nology is present in a building to enable a flexible and energy-efficient 
operation. Based on this information, an SRI score is assigned, repre
senting the readiness of a building for such an operation. While the SRI 
scheme fosters EF in buildings, it does not assess how much flexibility is 
achievable nor whether it is achieved in practice. This approach has 
been criticized1 [2] and future versions are likely to incorporate the in- 
use performance of the building [10,12], so it will not be a focus of this 
article. 

The approach that assesses EF performance considers the building’s 
energy demand when it behaves flexibly – flexible profile – compared to 
a baseline without flexible behaviour [1–3,5,7]. In order to compare 
time-coincident profiles with identical boundary conditions (e.g. 
weather and occupancy), energy models are commonly used [2,5]. This 
approach can be applied at the operational or the design level, to 
respectively quantify and rate the EF of the building in use or according 
to design specifications [3,13]. To quantify EF, two perspectives have 
been identified in the literature [1]: one is based on quantifying the EF 
that the building can offer, and the other on quantifying the impact of 
using the EF (e.g. cost savings or CO2-reduction). In the former 
perspective, three key properties of EF are usually addressed: (i) the 
temporal flexibility; (ii) the amount of energy or power that can be 
shifted; and (iii) the associated cost of activating this flexibility [1]. In 
association with the latter perspective, the Flexibility Index (FI) and the 
Expected Flexibility Saving Index (EFSI) were proposed by Junkers et al 
[14]. These indexes are derived from a Flexibility Function (FF), which 
represents the variation of the building’s flexible profile with respect to 
the baseline, due to a response to a penalty signal (e.g. energy price or 
CO2-emissions). FI and EFSI respectively quantify the relative energy 
and cost savings of the penalty-aware profile compared to the penalty- 
unaware profile. FF is applicable to evaluate single penalty changes or 
a varying penalty. Thus, it can assess not only EF associated with a 
specific demand response (DR) event (e.g. peak shaving strategy - PSS) 
but also the dynamic change of the EF as it is being used. A potential use 
of FI and EFSI as the basis for building labelling has been foreseen [2]. 
However, a corresponding EF labelling methodology and the compati
bility with existing certification schemes are yet to be concretised. 

A method that addresses these aspects in detail was proposed by 
Arteconi et al. [3]. Their method combines quantification and rating of 
EF for assessment at the design level using physical models, and enables 
the comparison of buildings based on EF. This method is similar in na
ture to the Energy Performance Certificate (EPC) calculation method
ology, which involves the assessment of the building under design 
conditions and the comparison with the performance of a similar 
building with minimum required specifications. The methodology by 
Arteconi et al. is based on the Flexibility Performance Indicator (FPI). 
FPI is defined as a weighted articulation of the following four parameters 
addressing the above-mentioned key properties of EF: response time, 
committed power, recovery time and actual energy variation. Arteconi 
et al.’s rating method includes an EF labelling system according to EF 

classes, aiming to extend the EPC with information on EF. The assign
ment of EF classes is based on the ratio of two FPI values. One FPI value 
assesses the maximum EF that the building can offer considering design 
specifications. The other FPI value assesses the maximum EF of the same 
building but with neglected thermal mass (FPIlimit). It is assumed that 
the maximum EF is obtained when applying a PSS at the time of the year 
with most unfavourable conditions (in terms of both weather and peak 
demand in the grid). Given its combination of EF quantification and 
labelling, and its potential for complementing EPC, Arteconi et al.’s 
method will be drawn on heavily in the current article and will hence
forth be referred to as the “FPI rating method”. 

When assessing and rating EF at the design level, the outdoor con
ditions, DR regime and target internal temperatures are set to standard 
values [3], which can differ from values in existing buildings during 
operation. In addition, using models allows controlling conditions and 
testing out different flexibility strategies. However, even though cali
bration using measured data may improve their accuracy [5,15–17], 
models do not reproduce with complete precision the actual load profile 
of an energy system under real operating conditions. Nevertheless, for 
existing buildings where monitored flexible profiles are available, 
models are implemented to predict their corresponding baselines [2,5]. 
There is little work assessing EF of buildings under real operation [5], 
and there are no examples of assessing EF of existing buildings at the 
operational level without models. Moreover, there are no examples 
comparing EF rating at design and operational level using monitored 
data. The implications of this is that it is not known whether flexibility 
ratings realistically capture the EF a building actually provides. This is 
the research gap addressed in this paper, which contributes with the use 
of monitored data to bring the EF rating closer to the level of EF achieved 
in practice, and thus to improve the usefulness of the rating system. 
Before doing so, we consider below the possible errors introduced when 
monitored data is not used. 

1.2. The energy flexibility gap 

Rating EF of buildings using models without incorporating actual 
performance data is likely to lead to a flexibility gap (EF Gap) – a dif
ference between the EF achieved in the model (and used as the basis of 
the rating) and achievable in practice. Although to our knowledge no 
studies have previously demonstrated this discrepancy, it is an analo
gous concept to the energy performance gap, which has been well 
studied and documented [18,19], and refers to the difference between 
predicted and actual energy use. Predicted energy use is in many 
countries the basis for an energy rating such as the EPC, yet there are 
multiple reasons why the building may perform differently to what has 
been predicted. These can be grouped into design, construction and 
operation related factors [18]. 

In the same way, EF Gap can be defined as follows: 

EF Gap = Expected EF − Actual EF (1) 

In Equation (Eq.) 1, the Expected EF is that estimated applying 
design specifications. In contrast, the Actual EF is calculated using 
monitored data of the building in operation. The difference between 
them is here termed the EF Gap. The EF Gap could in theory be positive 
or negative and, like the energy performance gap, could be contributed 
to by a wide range of factors. For example, the design and as-built 
thermal mass could differ in their ability to store and discharge heat, 
or the electric heating system may in practice have more or less op
portunity to charge a hot water store each day than anticipated in the 
system design. 

The existence of the energy performance gap and, as a result, the 
discrepancy in information given to a building owner or user on an EPC, 
has led to a move in some countries towards more data-driven ap
proaches to rating energy performance [19–22]. The problem with ap
proaches based purely on data is that it renders comparison between 
buildings unfair: this is because occupancy and weather differ between 

1 The expert group working on Energy Flexibility, IEA EPB Annex 67, sum
marised the problem as, “…there is a need for an approach that takes in to 
account the dynamic behaviour of buildings rather than a static counting and 
rating of control devices as proposed by the SRI study” [2]. This is because 
heating flexibility often relies on dynamic phenomena such as charging and 
discharging of building thermal mass. 
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buildings and strongly influence energy performance, which for 
example can lead to a building with low design energy efficiency 
consuming less energy than a more efficient building. It is therefore 
acknowledged that the ideal way to rate buildings is to combine data 
(which reports real performance) with modelling (which standardises 
for weather and occupancy and renders buildings comparable) [23,24]. 
In this study, we explore combining data and modelling to create 
effective EF ratings while tackling the EF Gap. 

1.3. Aim of this study 

EF ratings could be used by a number of stakeholders to compare 
buildings to one another, prioritise buildings for interventions, or give 
building users an idea of the revenues available from participating in DR 
programs [25]. Clearly, it is beneficial to give as realistic a picture as 
possible of the achievable flexibility. For unoccupied or non-built 
buildings, an EF rating is only possible using physical models and 
design specifications. However, existing buildings may have monitored 
data available. Therefore, the purpose of this study is to investigate the 
incorporation of monitored data into EF rating. 

We introduce the novel concept of the EF Gap and explore, using two 
case studies, how suitable the FPI rating method is for use with moni
tored data. Combining monitored data and modelling, we also evaluate 
the EF Gap between the Expected EF and the Actual EF using existing EF 
metrics. EF Gap is a new concept, and we do not attempt to quantify it in 
full comparing different types of models (physical and data-driven 
models) nor addressing construction related factors (e.g. deviation be
tween building component specifications designed and actually built). 
Instead, we focus on the discrepancy between Expected EF and Actual EF 
associated with operational factors: for example climate, DR strategies 
and durations, and how electric heating systems work in practice. 

Moreover, we test out a novel method to select recorded baselines 
from historical data in order to quantify Actual EF in combination with 
monitored flexible profiles. As predicted baselines are not completely 
accurate and recorded baselines capture the real performance of the 
monitored system, we explore how acceptable using the latter is, despite 
not being time-coincident with the flexible profile. Rather than opti
mising and validating the method, a preliminary assessment is con
ducted to evaluate whether this data-only approach is as a viable 
alternative to using models, so it can be further studied in future works. 

Finally, we explore how the Expected EF can be modified to bring it 
closer to the Actual EF and demonstrate how using monitored data 
within the EF rating can improve the usefulness of the result for different 
stakeholders. 

1.4. Research questions 

The following research questions are addressed:  

1) Are existing EF metrics in the FPI rating method suitable for assessing 
EF using monitored data?  

2) What is the difference between Expected EF and Actual EF when 
calculated using monitored data, and how does this contribute to
wards explaining the EF Gap?  

3) How can data best be incorporated into EF ratings? 

1.5. Paper structure 

The rest of this paper is structured as follows. Section 2 presents the 
methods used in this study. This includes the case studies and monitored 
data, the indicators selected to rate EF, and the modelling resources used 
as a support. Section 3 presents the results, which are discussed in 
Section 4. Finally, Section 5 summarises the conclusions. 

2. Methods 

2.1. Case studies and monitored data 

The case studies of this investigation are two real occupied houses 
located in England. This location has a heating dominated climate that 
belongs to the class Cfb (C: Temperate; f: Without dry season; b: Warm 
summer) according to the Köppen-Geiger classification [26]. The 
households were recruited as part of a wider study of the social and 
technical implications of DR [9,27]. 

The physical characteristics and configuration of the houses and 
their heating systems are summarized in Table 1. The houses have 
contrasting constructions. House A (HA), over 100 years old, is mostly 
uninsulated but has thick solid walls and thus far higher exposed ther
mal mass. House B (HB) is a recently built, well insulated (although not 
to Passive House standard) home with cavity wall insulation separating 
the internal blockwork from the external brickwork, meaning the latter 
does not contribute to the effective thermal mass of the dwelling. The 
heat demand of these two dwellings is very different, as indicated by the 
heat pump (HP) sizing. 

A set of monitored time series data was collected from each house 
over the winter of 2020/21. During the monitoring period, the houses 
were both occupied and both had electric HPs as their sole source of 
space heating. The monitoring took place during the COVID-19 
pandemic; lockdowns may have led to higher internal heat gains from 
occupants being at home more than usual but space heating timing was 
not affected by the pandemic in these homes since they were continu
ously heated except for when DR events were occurring. Air tempera
tures were recorded every 10 min in all the rooms and in one location 
outdoors. HP electricity consumption was needed at higher resolution to 
see the behaviour of the HP and was recorded every 5 min in HA and 1 
min in HB in line with the logging resources available. 

For the purposes of this study, each household had programmed their 
heating system to operate according to two different daily regimes, as 
described in Table 2 and illustrated in Fig. 1. On the one hand, on 

Table 1 
Characteristics and configuration of case studies.  

Characteristics House A House B 

Location Bristol, South West England Bedfordshire, East England 
House type End terrace Detached 
House age 1905 2011 
Floor area 231 m2 153 m2 
Thermal mass (Wall construction) High (30 cm solid walls) Medium (Cavity insulated walls) 
Building fabric efficiency (Details) Medium (Uninsulated walls; insulated loft and ground 

floor; some airtightness improvements) 
High (Well insulated) 

Heat pump type Ground to water, inverter control Air to water, inverter control 
Heat pump size 15 kWth 

6 kWe 

8 kWth 

3 kWe 

Heat emitters Radiators Radiators 
Buffer tank size 90 L 45 L  
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‘demand response days’ (DR-days) the space heating was programmed 
to vary in order to generate flexible energy demand profiles. On the 
other hand, on ‘baseline days’ (BL-days) the space heating was operated 
continuously (except for a night set-back in HB). The BL-days and DR- 
days did not occur simultaneously across the two cases: HB imple
mented BL-days on Fridays and Sundays and DR-days every other day, 
whereas HA implemented DR-days for a period 76 days, and then BL- 
days for 41 days. 

Table 2 also shows that the use of real occupied houses introduced 
complexity in multiple ways. The heating systems in both houses is used 
not only for space heating but also for domestic hot water (DHW). 
Therefore, the HP’s load profile is affected in the period scheduled for 
DHW, during which the heat production may vary from day to day 
depending on specific user needs (both homes had a hot water tank, 
which took 1–2 h for the HP to charge). Furthermore, each house pre
sents a different level and schedule of setpoint temperatures, according 
to the internal conditions desired by the occupants. In addition, the 
occupant in HB adjusted the main thermostat several weeks into the 
data collection period, as the household perceived that the house felt 
too warm, resulting in the need to treat the periods before and after the 
adjustment separately in the analysis. These periods are named HB1 and 
HB2. The occupant in HB also implemented a temperature setback at 
night, which affects the demand profiles. Moreover, in both houses a 
PSS was implemented between 4 pm and 7 pm, coinciding with the 
period of high electricity price of the supplier’s tariff, and the period of 
highest peak demand in the UK [28]. In HA the space heating setpoint 
temperature was lowered, and in HB the HP compressor was switched 
off. Nonetheless, the occupant in HA additionally combined the PSS 
with preheating prior to 4 pm. This was to try to ensure thermal comfort 
during the peak-shaving period. The occupant in HA also set after the 
PSS a gradual recovery in to steps of the original setpoint temperature 
prior to the preheating. This was in case some days had high energy 
prices in the hour 7–8 pm. All these differences are accounted for in the 
analysis; they result from the way the occupants wanted to run their 
homes as well as the type of DR they were prepared to do for the pur
poses of this study. Ideally, all settings would have been identical be
tween the two homes but the inability to dictate all settings was one 
limitation of working with occupied homes. 

2.2. Quantification of Expected EF and Actual EF 

To quantify EF we apply the standard method described in the 
introduction, which involves comparing a flexible load profile with a 
corresponding baseline. We cover the quantification at the design and 
operational level, considering them as the Expected EF and Actual EF, 
respectively. 

We use the FPI rating method and its underlying EF parameters (tres, 
Ṗres, trec and EDR) as the EF metrics (see Section 2.3). For each metric, we 
calculate corresponding values for Expected EF and Actual EF, consid
ering the variant matrix described in Table 3. We support the calcula
tion process with two energy models (one model per case-study house). 
Each model is used for the quantification of both the Expected EF and 
Actual EF of the corresponding house. The implemented models are 
data-driven models (see Section 2.4). We train and calibrate the models 
using measured data to help improve outcome accuracy, which we 
evaluate by means of the Root Mean Square Error (RMSE) and a residual 
analysis including Auto-Correlation Function (ACF), Partial ACF and 
Cumulative Periodogram (see Section 2.4.2). 

To quantify the metrics for the ‘maximum’ Expected EF, we apply 
the calculation settings specified in the FPI rating method for calcu
lating the ‘maximum’ EF level according to design specifications [3] 
(see Table 5). Thus, for each case study we make use of the data-driven 
models to generate the flexible and baseline profiles for the worst-case 
day (the one in the year with lowest mean outdoor dry-bulb tempera
ture; we exclude the cooling period). The climatic profiles of the worst- Ta

bl
e 

2 
O

pe
ra

tio
n 

se
tt

in
g 

du
ri

ng
 m

on
ito

ri
ng

. D
R-

da
ys

: d
em

an
d 

re
sp

on
se

 d
ay

s.
 B

L-
da

ys
: b

as
el

in
e 

da
ys

.  

Ca
se

 d
ay

s 
Sp

ac
e 

he
at

in
g 

se
tp

oi
nt

 a
nd

 s
ch

ed
ul

e 
D

H
W

 h
ea

tin
g 

sc
he

du
le

 
M

on
ito

ri
ng

 d
at

es
 

W
ee

kd
ay

s 
W

ee
ke

nd
 d

ay
s 

To
ta

l d
ay

s 

H
ou

se
 A

 (
H

A
) 

D
R-

da
ys

 
20

 ◦
C 

00
:0

0-
11

:0
0 

21
 ◦

C 
11

:0
0-

16
:0

0 
15

 ◦
C 

16
:0

0-
19

:0
0 

19
 ◦

C 
19

:0
0-

20
:0

0 
20

 ◦
C 

20
:0

0-
00

:0
0 

01
:0

0–
03

:0
0 

M
on

–S
un

 
04

/1
1/

20
20

–1
8/

01
/2

02
1 

54
 

22
 

76
 

BL
-d

ay
s 

20
 ◦

C 
Co

ns
ta

nt
ly

 
01

:0
0–

03
:0

0 
M

on
–S

un
 

19
/0

1/
20

20
–2

8/
02

/2
02

1 
29

 
12

 
41

 

H
ou

se
 B

, b
ef

or
e 

us
er

 a
dj

us
tm

en
t o

f t
he

rm
os

ta
t (

H
B1

) 
D

R-
da

ys
 

18
 ◦

C 
00

:0
0-

05
:0

0 
22

 ◦
C 

05
:0

0-
16

:0
0 

O
FF

 
16

:0
0-

19
:0

0 
22

 ◦
C 

19
:0

0-
00

:0
0 

 
21

:0
0–

22
:0

0 
M

on
, T

hu
, S

at
 

18
/1

1/
20

20
–0

5/
12

/2
02

0 
10

 
3 

13
 

BL
-d

ay
s 

18
 ◦

C 
00

:0
0-

05
:0

0 
22

 ◦
C 

05
:0

0-
00

:0
0 

21
:0

0–
22

:0
0 

Fr
i, 

Su
n 

18
/1

1/
20

20
–0

5/
12

/2
02

0 
3 

2 
5 

H
ou

se
 B

, a
fte

r 
us

er
 a

dj
us

tm
en

t o
f t

he
rm

os
ta

t (
H

B2
) 

D
R-

da
ys

 
18

 ◦
C 

00
:0

0-
05

:0
0 

21
.5

 ◦
C 

05
:0

0-
16

:0
0 

O
FF

 
16

:0
0-

19
:0

0 
21

.5
 ◦

C 
19

:0
0-

00
:0

0 
 

21
:0

0–
22

:0
0 

M
on

, T
hu

, S
at

 
06

/1
2/

20
20

–2
6/

01
/2

02
1 

30
 

7 
37

 

BL
 -d

ay
s 

18
 ◦

C 
00

:0
0-

05
:0

0 
21

.5
 ◦

C 
05

:0
0-

00
:0

0 
21

:0
0–

22
:0

0 
Fr

i, 
Su

n 
06

/1
2/

20
20

–2
6/

01
/2

02
1 

7 
8 

15
  

M. de-Borja-Torrejon et al.                                                                                                                                                                                                                   



Energy & Buildings 311 (2024) 114141

5

case days for each location are extracted from typical meteorological 
year (TMY) weather profiles obtained using Meteonorm V.7 [29]. 

For the Actual EF, we perform two sets of calculations. On the one 
hand, we use as the flexible profile the monitored time series of each DR- 
day and use the simulation models to generate the baselines. This is 
referred to as model-based Actual EF. On the other hand, we explore an 
alternative way to quantify the Actual EF without the need to use 
models. This is referred to as data-only Actual EF. For this, we test out a 
new method to identify a suitable baseline within the profiles of the 
monitored BL-days for each monitored DR-day profile. This method is 
based on searching for similar meteorological conditions and dis
tinguishing between weekdays (WD) and weekend days (WE) (see Sec
tion 2.5). 

After obtaining the results of the quantification process, we evaluate 
the EF Gap. To do so, we represent the values of the calculated metrics 
using scatter plots and analyse the discrepancies between the results for 
the ‘maximum’ Expected EF at the design level and the values of Actual 
EF at the operational level, considering the definition of EF Gap as set 
out in Eq. (1). In this analysis, we pay attention to the effect of several 
aspects on the results: the numerical method for quantifying the EF 
metrics; applying monitored data in the quantification; different set
points; consideration of the preheating phase in HA in addition to PSS as 
the DR event; and using data-only baselines instead of model-based 
ones. In addition, aiming at exploring options to contribute to a more 
robust characterisation of the Expected EF and to limit the EF Gap, we 
group the metric values of Actual EF by clusters of days according to the 
daily outdoor temperature, and present the results in form of boxplots. 
Then, we try out characterizing the Expected EF using the mean values 
of each cluster as a range of Expected EF values instead of a single 
‘maximum’ Expected EF value. Finally, for these two alternatives, we 
complete the evaluation of the EF Gap by analysing Mean Absolute Error 
(MAE) between the Expected EF values and the associated Actual EF as 
defined in Eq. (2) (EFGapMAE). For the Expected EF resulting from a 
cluster mean value, the Actual EF values considered in the equations are 
those from the days belonging to the cluster. In contrast, for the case of a 
single ‘maximum’ Expected EF value all calculated results for Actual EF 
are used. In addition, we evaluate the potential for improving EF Gap 
when considering the range of Expected EF by taking into account the 
relative difference of each cluster’s EFGapMAE compared to the EFGapMAE 
obtained considering the ‘maximum’ Expected EF. 

EF GapMAE =
1
n

⋅
∑n

i=1
|Expected EF − Actual EFi| (2)  

2.3. Flexibility performance indicator (FPI) 

As introduced above, the FPI created in Arteconi et al.’s rating 
method [3] consists of a weighted articulation of four parameters: 
response time (tres), committed power (Ṗres), recovery time (trec) and 
energy managed (EDR). These are defined below and graphically 

represented in Fig. 2: 
Response time (tres) [h]: Time that the DR strategy lasts. In the 

calculation of the ‘maximum’ Expected EF in the FPI rating method, the 
response time corresponds to the time necessary to the internal tem
perature to reach the limit of the comfort band after switching off the 
thermal system. 

Committed power (Ṗres) [kWe]: Integral of the differences between 
the HP baseline power demand and the HP power demand during the DR 
strategy divided by the response time. 

Ṗres =
1

tres

∫ tres

0

(
ṖREF − ṖDR

)
dt (3)  

Recovery time (trec) [h]: Duration of the recovery period, consisting on 
the time that it takes after the DR strategy until the internal comfort 
conditions are restored as in the baseline. 

Actual energy variation (EDR) [kWhe]: Difference in energy use 

Table 3 
Overview of calculated variants of Expected EF and Actual EF.  

Variant Description / Main role in the study 

Model-based maximum 
Expected EF 

Maximum Expected EF as in Table 5, calculated using 
flexible and baseline profiles predicted by the 
implemented data-driven models / Principal reference 
value of the Expected EF to evaluate EF Gap. 

Model-based maximum 
Expected EF* 

A variant of model-based maximum Expected EF, using 
the actual setpoint temperature of the case studies 
instead of the predefined standard value in the FPI 
rating method / To support the comparison with the 
Actual EF values while addressing the impact of the 
setpoint temperature on the results. 

Expected EF range A set of reference values derived from model-based 
Actual EF results proposed to complement the 
representation of the Expected EF / Alternatives for 
complementing the characterisation of the Expected EF 
to bring it closer to the Actual EF. 

Model-based Actual EF Actual EF as in Table 5, but exclusively taking into 
account PSS as the DR strategy as in the maximum 
Expected EF. It is calculated using monitored flexible 
profiles and baseline profiles predicted by the 
implemented data-driven models / Evaluation of the 
use of the FPI rating method with monitored data and 
of the discrepancies between the Expected◦EF under 
design conditions and the Actual◦EF under operational 
conditions. 

Model-based Actual EF* A variant of model-based Actual EF, calculated using 
the settings as in Table 5 / Evaluation of the 
discrepancies between Expected EF and Actual EF 
derived from applying the standard DR setting in the 
FPI rating method compared to DR in practice. 

Data-only Actual EF A variant of model-based Actual EF, using the defined 
data-only approach to select baselines instead of the 
implemented data-driven models to predict baselines / 
Evaluation of the potential for assessing Actual EF 
using only data instead of building models.  

Fig. 1. Graphical representation of heating schedules. DR-days: demand response days. BL-days: baseline days. HA: house A. HB1: house B, before user adjustment of 
thermostat. HB2: house B, after user adjustment of thermostat. DHW: domestic hot water. Tset: setpoint temperature. 
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between the baseline and the DR profiles during the whole DR event (DR 
strategy plus recovery period). 

EDR =

∫ tDR

0

(
ṖREF − ṖDR

)
dt (4) 

With: 

tDR = tres + trec (5)  

Flexibility Performance Indicator (FPI) [-]: Dimensionless weighted 
average of response time, committed power, recovery time and actual 
energy variation. 

FPI =
1
4

(
p1 • t*res + p2 • Ṗ*

res − p3 • t*rec + p4 • ηDR

)
(6) 

With: 

t*res = tres/24 (7)  

Ṗ*
res =

⃒
⃒
⃒Ṗres

⃒
⃒
⃒

/

Ṗrated, with Ṗrated as the HP design power (8)  

t*rec = trec/24 (9)  

ηDR =

⎧
⎪⎪⎨

⎪⎪⎩

EDR
∫ tDR

0

(
ṖREF

)
dt

0 if EDR < 0 in PSS

(10) 

p1 = 60, p2 = 20, p3 = 10, p4 = 10 
According to the method’s creators, the first two parameters are 

more relevant to the grid side while the other two parameters are of 
more interest for the consumer side. Their weighting factors are 
respectively 60, 20, 10 and 10, having (tres) the highest impact on the 
resulting FPI value; the weights were assigned by Arteconi et al. by 
observing the results of large numbers of simulations [3]. 

2.4. Model-based approach to creating baselines with data 

In existing buildings, monitoring systems normally measure only one 
of the flexible or baseline profiles at a time [2]. Thus, modelling is 

commonly applied to generate baselines when assessing EF [5]. Models 
can be detailed physical models (white-box), simplified physical models 
(grey-box) or data-driven models (black-box) [5,30]. In this study, we 
lack of key information in order to be able to create plausible physical 
models of the houses (e.g. actual U value and air tightness of the building 
envelope). We could have gathered more information, made some as
sumptions and tried to validate the model using the monitored data. 
Nonetheless, data-driven models are emerging as a suitable alternative 
for an extensive deployment of EF and the interaction with the grid 
[30–32]. This lies in their simplicity with regard to preparation and 
adaptability to other buildings, in contrast to physical models. In addi
tion, we aim to explore the combination of data with modelling to enrich 
EF rating and closing the EF Gap. Therefore, in this study we use data- 
driven models which incorporate our monitored data, based on the 
definition below. 

2.5. Mathematical description of the model 

The energy model of each house is built following the methodology 
demonstrated by Mor et al. [33], which consists of the combination of 
two autoregressive models with exogenous variables (ARX). Owing to 
their autoregressive impulse responses, these kind of models enable 
balancing effectiveness and simplicity while capturing system dynamics 
[33]. The first ARX in each house’s model captures the dynamics 
affecting the heating system’s operation (supply-side ARX) and predicts 
the HP’s electric consumption (Qe) – see Eq. (11). The second model 
captures the dynamics influencing the thermal behaviour of the building 
(demand-side ARX) and predicts indoor temperature (Ti) – see Eq. (15). 
These ARX models are first trained separately using the monitored data 
and then articulated through a model coupler. This coupling mechanism 
plays a pivotal role in simulating the dynamic interplay between the 
performance of the heating system and the temperature states in the 
building. Thus, the model coupler ensures the interaction between the 
individual ARX models, enabling them to generate interconnected pre
dictions based on a specific setpoint temperature. More specifically, the 
coupled models jointly predict the electricity consumption of the HP 
based on the indoor temperature’s state, while simultaneously fore
casting the indoor temperature’s evolution considering the anticipated 
system operation. We use the predicted time series of the coupled ARX 
models to define the baselines for the quantification of the EF metrics. 

Fig. 2. Graphical schema representing energy flexibility parameters associated with the Flexibility Performance Indicator. tres: response time. trec: recovery time. tDR: 
total duration of the demand response event. ṖREF : power demand of the heat pump in the baseline case. ṖDR: power demand of the heat pump in de demand response 
case. Ṗres: committed power. EDR: actual energy variation. TsetREF : setpoint temperature in the baseline case. TsetDR: setpoint temperature in the demand response 
case. TintDR: indoor temperature in the demand response case. 
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The coupled ARX models were implemented in R using the open 
source library biggr [34]. Models of this kind have been previously 
applied to existing buildings [5,33]. They can be deployed in big data 
environments [35] to communicate via the cloud with the local moni
toring system in real buildings [33]. This enables updates of the models 
and EF metrics, with a frequency determined by changes in data patterns 
or system dynamics. Periodic updates could allow for optimisation to
wards user behaviour and climate variations, while other updates could 
target adjustments to changes such as new homeowners or building 
renovation. 

The mathematical description of the supply-side ARX model is given 
in Eq. (11). This model uses the setpoint temperature (Ts), the indoor 
temperature (Ti) and the outdoor temperature (Te) as the input vari
ables. In the case of the indoor and setpoint temperature features, an 
interaction is considered based on the HP’s operation status (SHP). 
Furthermore, the outdoor temperature is subtracted from a fixed refer
ence temperature to build a heating degree factor (Ψ) and help to model 
non-linearities between electricity consumption and weather 
conditions. 

γ(B)Qe
t = βa(B)Ts*

t + βb(B)Ti*
t + βc(B)Ψt + εt (11) 

With: 

Ts*
t =

(
Ts

t × SHP
t

)
(12)  

Ti*
t =

(
Ti

t × SHP
t

)
(13)  

Ψt =
(
25 − Te

t

)
(14) 

γ(B),βa(B),βb(B),βc(B): Autoregressive terms. 
Qe: Electricity consumption of HP. 
Ts: Setpoint temperature. 
Ti: Indoor temperature. 
SHP: Operation status of the HP (0: off, 1: on). 
Ψt : Heating degree factor. 
Te: Outdoor temperature. 
The mathematical description of the demand-side ARX model is 

given in Eq. (15). This model uses the outdoor temperature (Te), HP’s 
electric consumption (Qe) and solar elevation (Iel) as the input variables. 
Conceptually, it can be considered as a thermal model of the house. To 
ensure system simplicity and scalability in the methodology, the coef
ficient of performance is used to connect the power inputs, despite the 
heat input generated by the HP being the ideal consideration. Multiple 
interactions between the electricity consumption (Qe) and other input 
variables are considered to assess this coefficient of performance: Qe*

t , He
t 

and Hh
t . The respective input variables included in these interactions are 

the HP’s operation status (SHP), the heating degree factor (Ψ), and the 
solar elevation (Iel). By incorporating these three input features, the 
coefficient of performance indirectly models the behaviour of the HP. It 
is worth noting that solar elevation is used instead of solar radiation due 
to the limited availability of local solar radiation data. By employing the 
sun position instead of radiation, the methodology remains scalable 
while considering the effect of solar gains. 

ϕ(B)Ti
t = ωa(B)Qe*

t +ωb(B)Te
t +ωc(B)Iel

t +ωd(B)He
t +ωe(B)Hh

t + εt (15) 

With: 

Qe*
t =

(
Qe

t × SHP
t

)
(16)  

He
t =

(
Qe*

t × Ψt
)

(17)  

Hh
t =

(
Qe*

t × Iel
t

)
(18)  

Ψt =
(
25 − Te

t

)
(19) 

ϕ(B),ωa(B),ωb(B),ωc(B),ωd(B),ωe(B): Autoregressive terms. 
Ti: Indoor temperature. 
Qe: Electricity consumption of the HP. 
Te: Outdoor temperature. 
Iel: Solar elevation 
SHP: Operation status of the HP (0: off, 1: on). 
Ψt: Heating degree factor. 
The following equation defines the autoregressive terms of the ARX 

models: 

f (B) = 1+ f1B1 +⋯+ fnBn (20) 

With: 

n: Number of lags, or order, of the backward shift operator B, defined 
as in Eq. (21) 

Bkyt = yt− k (21) 

Where: 

y: Considered variable (e.g. the indoor temperature in the case of 
ϕ(B)). 

2.6. Model validation and accuracy assessment 

The models were trained using a sub-set of the monitored data 
(training data). The supply-side and the demand-side ARX models were 
trained separately, using the training data corresponding to their 
respective input and output variables (see Section 2.4.1). After the 
training, a different data sub-set (testing data) was used to evaluate the 
accuracy of the ARX models both separately and coupled. For this, the 
testing data associated with the input variables of the models were 
applied to generate predicted time series of HP’s electricity consumption 
and indoor temperature. These time series were then compared to the 
monitored ones in the training data using the RMSE. Prior to the accu
racy assessment the residuals of the models’ predictions were analysed 
for validation. 

The residual analysis of the ARX models (see Appendix A) shows that 
the residuals follow a Gaussian distribution and are not auto-correlated. 
Thus, the models achieve the white noise conditions, indicating that 
they are successfully trained and can be considered as valid. Moreover, 
the performance accuracy of the models is satisfactory. Table 4 sum
marizes the RMSE (average of all tested days) of the time series pre
dicted by the individual demand-side and supply-side models and the 
combined model. However, these values reveal that the accuracy related 
to energy consumption improves when the time series are evaluated at 
hourly resolution compared to a 10-minute resolution. This highlights 
the challenge of reproducing the actual dynamic profile of HP operation. 

The trained models perform well when predicting the behaviour of 
the houses for days with daily temperature similar to the ones of the 
monitored days. Nonetheless, among the monitored data used to train 
the model, there is not information about the performance of the HP for 
days as cold as the one selected for assessing the ‘maximum’ Expected 
EF. Consequently, we identified that the models had difficulties in 

Table 4 
RMSE of timeseries predicted by the energy models (average of all tested days).  

House Time series 
resolution 

Supply-side 
model 

Demand-side 
model 

Coupled model 
(demand-side and 
supply-side) 

Qe[kWe] Ti[◦C] Qe[kWe] Ti[◦C] 

HA 10-minute  0.057  0.369  0.156  0.355 
hourly  0.028  0.371  0.068  0.356 

HB 10-minute  0.055  0.583  0.083  0.601 
hourly  0.042  0.588  0.070  0.608  
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predicting the response for those days. After the DR strategy, the models 
were able to generate a peak in the heat production by the HP, but only 
punctually, and during the rest of the recovery time, the HP did not 
perform at high loads, as it is expected, when the indoor temperature lies 
far below a given setpoint temperature. For this reason, we included a 
condition (booster) in the coupled model, which helps generate a pre
diction with high heat production while the difference between the in
door temperature and the objective setpoint temperature is greater than 
1 K. This enabled us to obtain more reliable predictions of the HP’s load 
profile for the design EF assessment. 

2.7. Data-only approach to creating baselines 

In contrast to a model-based prediction of baselines for a DR flexible 
profile, in this section we consider the alternative possibility of directly 
selecting a baseline profile from the profiles monitored in the BL-days. For 
this purpose, we assume that, on days with similar meteorological con
ditions and day type (WD or WE), the houses’ energy demand present a 
similar magnitude and profile as well. Thus, we explore a method to select 
a baseline for each DR-day based on the similarity of their outdoor tem
perature and day type. We exclude other meteorological parameters, such 
as solar radiation, as a simplification. Similarity between temperature 
profiles is measured using three statistical indicators: Normalized Mean 
Bias Error (NMBE), Coefficient of Variance of the Root Mean Squared 
Error (CV(RMSE)) and total Goodness of Fit (GOF) [36]. To identify and 
select the baseline, the ASHRAE criterion for validation of simulation 
models is used as a reference: − 10 % ≤NMBE ≤ 10 %, CV(RMSE) ≤ 30 % 
[37]. The selected baseline corresponds, therefore, to the BL-day that 
meets this criterion and offers a better GOF (the lowest value). 

To analyse the performance of the data-only approach with respect 
to the model-based approach, we directly compare their respective 
calculated sets of Actual EF values by calculating the NMBE and the CV 
(RMSE) between them. In addition, we quantify the EF GapMAE (Eq. (2) 
associated with each set of values considering the ‘maximum’ Expected 
EF and, then, evaluate the relative difference of the data-only EF GapMAE 
compared to the model-based EF GapMAE. This analysis is carried out for 
each EF metric and considering only DR-days for which both data-only 
and model-based results are available. 

3. Results 

The results are presented as follows. Since it was found that the as
sumptions used in the ‘maximum’ Expected EF were different from the 
real conditions inside and outside the building, we firstly give these 
differences (Section 3.1), which then give context to the rest of the 
results. Following this, we present the EF metrics underlying the FPI 
rating, using the standard operational assumptions as well as data- 
informed parameters, and including model-based and data-only base
lines (Sections 3.2 to 3.4). Finally, we summarise the effect of different 
assumptions on the EF Gap (Section 3.5). 

3.1. Differences between settings for ‘maximum’ Expected EF and Actual 
EF 

Table 5 describes the differences for ‘maximum’ Expected EF and 
Actual EF. In addition to these differences, the FPI rating method in
cludes the above mentioned assignment of an EF class to the building, by 
comparing the building’s FPI to the FPI of the building with neglected 
thermal mass (FPIlimit). Physical models allow manipulating the thermal 
capacity specifications of the modelled building in order to calculate 
FPIlimit. Data-driven models, on the other hand, cannot be adjusted to 
calculate FPIlimit as the effect of the thermal mass is implicit in their 
training data and, consequently, they cannot neglect this effect. As we 
use data-driven models in our study, we do not quantify FPIlimit and rate 
the EF class of the houses according to the labelling scale proposed by 
Arteconi et al. [3], but we exclusively quantify their FPI. 

Table 5 
Differences between settings for ‘maximum’ Expected EF and Actual EF.  

Aspect ‘maximum’ 
Expected EF 
(Arteconi et al.  
[3]) 

Actual EF 

House A House B 

Heating 
system base 
setpoint 
temperature 

22 ◦C 20 ◦C 22 ◦C (before user 
adjustment of 
thermostat) 
21.5 ◦C (after user 
adjustment of 
thermostat) 

Heating 
thermal 
comfort 
range 

20–22 ◦C, set in 
accordance with 
Fanger’s Thermal 
Comfort 

18–25 ◦C, assumed 
in accordance with 
norm EN 16798–1 
for an indoor 
climate category 
III (An acceptable, 
moderate level of 
expectation. 
Typical for 
existing buildings) 

20–25 ◦C, assumed 
in accordance with 
norm EN 16798–1 
for an indoor climate 
category II (Normal 
level of expectation. 
Recommended for 
new and renovated 
buildings) 

Weather 
conditions 

Day of the year 
with lowest 
average outdoor 
temperature 
(extracted from a 
TRY) 

Monitored DR- 
days 

Monitored DR-days 

DR strategy Only peak 
shaving: thermal 
system switch-off 
without 
preheating and 
switch-on 
afterwards with 
setpoint 
temperature as in 
the base case. 

Preheating, peak 
shaving and two- 
step reactivation: 
1 K increment of 
setpoint 
temperature 
before reduction to 
15 ◦C and gradual 
recovery of base 
setpoint 
temperature 
afterwards by 
setting it to 19 ◦C 
and finally 
increasing it by 1 
K. 

As in Arteconi et al.  
[3] 

DR starting 
time 

Worst scenario of 
peak electricity 
demand 

Oriented to the 
worst scenario of 
peak electricity 
demand (4–7 pm  
[28]): 11am when 
considering 
preheating as a 
part of the DR or 4 
pm if only peak 
shaving is 
considered. 

Oriented to the worst 
scenario of peak 
electricity demand 
(4–7 pm [28]): 4 pm. 

Response time Not pre-set: 
determine by the 
time that it takes 
until the indoor 
temperature 
reaches the limit 
of the base 
comfort band after 
initiating the 
peak-shaving 
strategy (2 ◦C 
variation) 

Pre-defined: 5 h 
preheating (11am- 
16 pm) + 3 h 
switch-off (16–19 
pm) 

Predefined: 3 h 
switch-off (16–19 
pm) 

Recovery time Not pre-set: 
determined by the 
time that it takes 
until the indoor 
temperature 
recovers the base 
setpoint 
temperature level 
after the peak- 
shaving strategy. 

Not pre-set but 
influenced by the 
DHW schedule (1- 
3am). 

Not pre-set but 
influenced by the 
DHW schedule 
(21–22 pm) and 
limited by the 
programmed night 
set-back (0-5am)  

M. de-Borja-Torrejon et al.                                                                                                                                                                                                                   



Energy & Buildings 311 (2024) 114141

9

3.2. House A and B considering only PSS 

Fig. 3 depicts the results obtained making use of the energy models 
and considering exclusively the PSS DR strategy. In the matrix of sub
plots, the rows correspond to the calculated indexes. From left to right, 
the three first columns correspond to the specific values for the three 
cases HA, HB1 and HB2, represented by means of scatter plots, where 
single index values are plotted according to daily mean outdoor tem
perature. In the fourth column, the three cases are represented together 
and the single values are combined into boxplots in order to facilitate the 
comparison and analysis of results. Each subplot contains the model- 
based Actual EF values obtained for all the monitored DR-days and 
values for both ‘maximum’ Expected EF and ‘maximum’ Expected EF*. 
The former is calculated applying the standard setting from Table 5, in 
which a base setpoint temperature of 22 ◦C is specified. In the latter, the 
standard settings are also implemented but using the base setpoint 

temperatures of the houses for the BL-days (Ts*): 20 ◦C, 22 ◦C and 21.5 
◦C for HA, HB1 and HB2, respectively. 

The results in Fig. 3 show that the response time (tres) associated with 
the PSS remains constant at 3 h in each house for the Actual EF at all DR- 
days, as predefined by the operating schedules. This value of 3 h is very 
close to the response time obtained for ‘maximum’ Expected EF. 
Therefore, in these case studies, the impact on a certain EF Gap when 
looking at the resulting FPI values is low despite the differences in terms 
of calculation settings and the higher weight of tres compared to the other 
parameters. Furthermore, tres is higher in ‘maximum’ Expected EF* than 
in the ‘maximum’ Expected EF. This is probably due to the fact that, 
when applying the 2 ◦C reduction in the Expected EF*, the indoor 
temperature is to be reduced to a lower level (e.g. 18 ◦C in HA) 
compared to the Expected EF (20 ◦C). As the indoor temperature in the 
Expected EF* is closer to the outside temperature, the heat losses are 
smaller and the rate at which the inside temperature decreases is slower 

Fig. 3. Results for Expected EF and Actual EF of the indicator FPI and its associated parameters (tres, Ṗres, trec and EDR), using energy models and exclusively 
considering PSS as the DR strategy. Model-based ‘maximum’ Expected EF: calculation for the day of the year of lowest average temperature and with 22 ◦C as the 
base setpoint temperature. Model-based ‘maximum’ Expected EF*: same as before but using Ts* (base setpoint temperature in BL-days) as the reference. Model-based 
Actual EF: calculation for each monitored DR-day. HA: house A. HB1: house B, before user adjustment of thermostat. HB2: house B, after user adjustment 
of thermostat. 
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than in the Expected EF. 
With regard to the committed power (Ṗres), there is a negative linear 

correlation between this metric and the outdoor temperature in all three 
cases. The values in HA are generally higher with an associated 
‘maximum’ Expected EF value of 2 kWe, compared to 1.3 kWe in HB. 
This is due to the lower energy efficiency of HA and higher heated floor 
area and the correspondingly higher sizing of its HP compared to HB, 
which results in a higher electrical load being deactivated when the HP 
is switched off. In HA the committed power approaches zero at higher 
outdoor temperature values in contrast to HB. This is also due to the 
lower energy efficiency of HA compared to HB, which might result in HB 
having lower heating demand than HA or even no heating demand at all 
on days with outdoor temperature values above 10 ◦C. The committed 
power values for Expected EF and Expected EF* are well related to those 
for Actual EF, following the linearity of the correlation. The values for 
Expected EF and EF* in the case of HB2 are practically identical, indi
cating that the 0.5 ◦C difference between the setpoints of these param
eters have almost no impact on the results of this case study. This can 
also be due to the higher energy efficiency of HB. On the contrary, in the 
case of HA a larger difference is observed, with values of almost 2kWe for 
Expected EF and about 1.7 kWe for Expected EF*. This indicates that the 
lower the setpoint temperature, the lower the committed power. This is 
logical considering that the thermal demand and setpoint temperature 
are positively related. In general, the results for committed power 
clearly show a potential EF Gap associated with this parameter that is 
more pronounced the bigger the difference between the daily outdoor 
temperature of the DR-day and of the “worst-case” day. 

In terms of recovery time (trec), in HA two bands of constant values 
are obtained around 1 h and 16 h. In addition, several intermediate 
values with an upward linear trend and negative slope are observed in 
the direction of the value associated with the Expected EF. The Expected 
EF* value is around 20 h, confirming the negative upward trend of the 
intermediate values of Actual EF between the 1 and 16 h range observed 
in the graph. 

The constant bands of values indicate difficulties in quantifying this 
metric in HA when real building operation data is used. Thus, the values 
of trec in HA around one hour are due to two factors. Firstly, the indoor 
temperature at the beginning of the PSS strategy is, due to preheating, 
higher than the setpoint temperature programmed after 7 pm in the 
baseline. Consequently, even though the indoor temperature drops after 
starting the PSS, it does not have to increase very much before it meets 
the value of the baseline setpoint, rendering trec very low. Secondly, the 
indoor temperature in the houses during real operation does not remain 
constant at the level of the setpoint temperature. On the contrary, the 
indoor temperature fluctuates around the value of the setpoint level due 
to the actual operation of the HP itself, which consists of cycles of 
compressor operation. As a result, sometimes the indoor temperature at 
the baseline is lower than the setpoint and the indoor temperature in the 
flexible profile reaches the baseline temperature earlier, after receiving 
the power peak implemented by the HP at the end of the DR strategy to 
adjust to the new setpoint (see Fig. 5). 

Regarding the higher values of trec around 16 h in HA, these derive 
from the DR-day heating schedule being set to end the PSS at 7p.m. and 
start preheating at 11 a.m. the following day. This results in a maximum 
possible recovery period of 16 h. However, the fact that trec for Expected 
EF* is also around 16 h, indicates that this could be the building’s own 
trec for a setpoint temperature of 20 ◦C. Thus, the scheduling of pre
heating at 11 a.m. would not affect the result. Nevertheless, this again 
demonstrates that the trec metric may be constrained by the actual 
operation of the building. This is also indicated by the results in HB, for 
which the values related to Actual EF remain constant at 5 h. This is due 
to the beginning of the night setback in this house being scheduled at 
midnight. Thus, when applying the trec quantification from the end of the 
DR strategy at 7 pm, the indoor temperature in the flexible profile rea
ches the value of the indoor temperature in the baseline at midnight, 

resulting in the trec being 5 h in all the DR-days independently of the 
outdoor temperature values. 

Furthermore, the results show that the values of recovery time for the 
Expected EF strongly differ from the values obtained for the Actual EF. 
The Expected EF values are approximately 41 and 15 h respectively for 
HA and HB. Thus, the gap between the expected and actual recovery 
time ranges between 25 and 40 h in HA, while in HB it is around 10 h. 

Similar to what is observed for committed power, the Expected EF 
and Expected EF* values are practically identical in the case of HB and 
differ in HA. However, in HA, the relative discrepancy derived from the 
differences between these values for recovery time (21 h: ~50 % vari
ation) is notoriously higher than in the values for committed power (0.3 
kWe: ~15 % variation). 

With respect to energy variation (EDR), the graphs show that the 
values increase from lower outdoor temperature values up to reaching a 
peak and then decrease again. The highest values are related to the 
Actual EF and lie in the range of mean outside temperatures between 
0 and 5 ◦C. Thus, energy variation in HA reaches up to 8 kWh, while the 
highest value in HB is just over 6kWh. Moreover, the Expected EF value 
in HB1 and HB2 is approximately zero while in HA it is negative and 
slightly higher than the positive peak in the Actual EF values. This in
dicates that HA is more likely to experience a gap between the energy 
variation estimated at the design level and the actual energy variation 
during operation than HB. This can be related to the lower energy effi
ciency of HA and the higher size of its HP, but also due to the differences 
between the user’s operational settings with respect to the standard 
values implemented for Expected EF. In addition, the Expected EF and 
Expected EF* values of energy variation are very similar in all case 
studies, showing a limited impact of the differences between the applied 
setpoints on this parameter. 

The FPI values of HA lie between 1 and 6, while in HB they lie be
tween 1 and 11. Therefore, HB reaches a higher EF in terms of FPI, 
despite the higher Ṗres values of HA with respect to HB. This seems to be 
mainly a consequence of the method of not considering directly Ṗres in 

the FPI calculation but the normalized Ṗ*
res by means of a division by the 

nominal electrical power of the HP. As this nominal power in HA is twice 
that of HB (6 kWe in HA and 3 kWe in HB), the normalisation results in a 
greater transformation in HA with respect to HB of the relationship 
observed in Ṗres and FPI between these values and outdoor temperature. 
The values tres in HA and HB are identical and the effect of this parameter 
on the differences in FPI between both houses can therefore be dis
carded. The values of trec and EDR are different in HA and HB, but their 
effect plays only a minor role as they are taken into account with a factor 
of 10 in the FPI equation compared to the factor 20 of Ṗres. 

The values of Actual EF related to FPI in HA do not show a clear 
correlation with the outdoor temperature. The same occurs if these 
values are considered together with the value of ‘maximum’ Expected 
EF*. However, in combination with the values of ‘maximum’ Expected 
EF, there could be a weak positive correlation. In addition, these 
maximum values are located in the lower range of calculated values for 
FPI, indicating that the highest FPI for this case study might not occur in 
the worst-case day but in days with more moderate outdoor tempera
tures. On the contrary, in HB the ‘maximum’ Expected EF values related 
to FPI do appear to be in the higher part of the calculated results, being 
in line with the assumption that the highest FPI in this case study is more 
likely to be reached in the worst-case day. In addition, the values of 
Expected EF and Expected EF* in combination with the Actual EF values 
show a stronger relationship between FPI and outdoor temperature 
values in HB with respect to HA. This is negative and tends to be 
exponential, indicating that the lower the average outdoor temperature, 
the lower the FPI. 

Considering what has been said above about the expected FPI and the 
ranges of actual FPI values, the results show that the gap between these 
values can reach a higher level in HB than in HA. This indicates an 
opposite trend to what is observed in the parameters committed power, 
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recovery time and energy variation. 
Finally, the boxplots in Fig. 3 show that, in general, design-based 

Expected EF values are far from the mean values of operational-based 
Actual EF and even reach the level of outliers. Furthermore, the 
Actual EF values usually differ from the ‘maximum’ Expected EF values, 
highlighting the risk of an EF Gap. This is further evaluated in Section 
3.5. 

3.3. House A considering pre heating and PSS 

The plots in the left column in Fig. 4 combine the Actual EF values of 
HA obtained by taking into account the combination of preheating and 
PSS as the DR strategy, with those from Fig. 3 (only considering PSS). 
These results show that when the quantification of EF is applied 
considering preheating as part of the DR, the Actual EF values for tres 
increase from 3 to 8 h, resulting in a difference with respect to the value 

of Expected EF of approximately 5 h. This is due to the heating schedule 
in HA, which starts preheating at 11:00 until 16:00, when the PSS starts 
at 16:00 and lasts until 19:00. 

Furthermore, the values for Ṗres of Actual EF including preheating as 
a part of the DR strategy in the calculation are lower with respect to 
those of considering only PSS. This is because during preheating, the 
load demand profile is higher than that of the baseline, resulting in 
negative values when subtracting both profiles, in contrast to what oc
curs during the PSS. The total committed power is calculated as the 
average of all these values. 

In terms of trec there are no differences as the effect of the preheating 
was captured in the monitored data from HA. Thus, even though the 
results of Fig. 3 were calculated without considering the preheating time 
in the calculation, its effect was implicit in the results of recovery time. 
On the contrary, Actual EF values for EDR decrease when preheating is 

Fig. 4. Comparison of results for Actual EF applying different calculations. Model-based ‘maximum’ Expected EF: calculation for the day of the year of lowest 
average temperature and with 22 ◦C as the base setpoint temperature. Model-based Actual EF: values obtained considering exclusively PSS as the DR strategy and 
using energy models to generate the baseline profiles. Model-based Actual EF*: values obtained considering the combination of preheating and PSS as the DR strategy 
and using energy models to generate the baseline profiles. Data-only Actual EF: values obtained considering exclusively PSS as the DR strategy and applying profiles 
of monitored BL-days as the baselines instead of using predicted baselines using the models. WD: weekdays. WE: weekend days. HA: house A. HB1: house B, before 
user adjustment of thermostat. HB2: house B, after user adjustment of thermostat. 
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taken into account in the DR strategy. This is due to the compensation of 
the lower demand during PSS with the additional demand in the pre
heating at the DR-day with respect to the baseline. 

With regard to FPI, the Actual EF values are more concentrated be
tween the range of 3 to 6, thereby increasing the average FPI value of HA 
with respect to the case without preheating. This occurs despite the 
smaller values of Ṗres and EDR, due to the higher values of tres, which have 
a large impact on the FPI calculation as they are computed in the 
equation with a weight factor of 60 (compared to 20 and 10 for Ṗres and 
EDR, respectively). Compared to not considering preheating, the higher 
average of the actual FPI values including preheating lead in turn to a 
higher average gap between these operational values and the design- 
level Expected EF. This points out limitations of the quantification of 
FPI and suggests the need of incorporating further DR events when 
estimating the Expected EF to cover a broader range of strategies, which 
are likely to be implemented in a building in operation (such as the 

combination of preheating and PSS). 

3.4. Model-based vs data-only baselines 

By applying the baseline selection method with the monitored data, 
DR-days and BL-days could be matched. However, it was not possible to 
assign a baseline to all monitored DR-days. In the case of HA, 44 DR-BL 
pair days were formed (58 % of its 76 monitored DR-days). For HB, 4 
DR-BL pair days could be formed in the case of HB2 (11 % of its DR-days) 
and none in the case of HB1. 

As shown in Fig. 4, the values of data-only Actual EF obtained are in 
the range of the values of model-based Actual EF. Furthermore, no clear 
separation is observed between the values obtained for weekdays and 
weekend days, which are integrated among all values without building 
specific clusters. The approach of matching weekday baselines to 
weekday DR-days and weekend-day baselines to weekend-day DR-days 

Fig. 5. Comparison between a DR-day and its baseline in HA using data-only baseline. Upper graph: temperatures. Middle graph: electrical load in 10-minute 
resolution. Bottom graph: electrical load in hourly resolution. HA: house A. WD: weekday. DRday: demand response day. BLday: baseline day. Tout: outdoor 
temperature. Tint: indoor temperature. Tset: setpoint temperature. HPel: electricity consumption of the HP. 

Table 6 
Comparison between data-only and model-based Actual EF values obtained for house A.  

Compared values Error index EF metrics 

tres Ṗres trec EDR FPI 

[h] [kWe] [h] [kWhe] [-] 

data-only Actual EF and model-based Actual EF NMBE 0 % 11 % 0 % 13 % 6 % 
CV(RMSE) 0 % 27 % 0 % 72 % 15 % 

data-only Actual EF and ‘maximum’ Expected EF data-only EF Gap MAE 0.17 1.27 37.53 11.55 3.00 
model-based Actual EF and ‘maximum’ Expected EF model-based EF Gap MAE 0.17 1.16 37.53 12.03 3.21 
data-only EF Gap MAE and model-based EF Gap MAE Relative difference 0 % − 7% 0 % 3 % 8 %  
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is therefore shown to be helpful. Table 6 additionally summarises the 
results of comparing the data-only and model-based Actual EF values. 
The comparison concentrates on HA, due to low availability of data-only 
values obtained for HB. Thus, the results show no differences between 
both sets of Actual EF values for tres and trec. Furthermore, a similar 
average EF Gap results in each approach, with a relative difference of 
data-only EF Gap MAE compared to model-based EF Gap MAE of − 7%, 3 % 
and 8 % for Ṗres, EDR and FPI, respectively. The results of NMBE and CV 
(RMSE) do not show strong discrepancies between the data-only and 
model-based Actual EF values, except for EDR with a CV(RMSE) of 72 %. 
Aspects that can play a role in this result are the constrained ability of 
the model to reproduce the operation in practice of the HP, and a non- 
optimal data-based baseline selected for the DR-day. In general, these 
results indicate that the data-only method is feasible and it could be an 
alternative to the use of models. It offers the potential of using actual 
operational data instead of a model-based prediction. However, the 
outcome of the data-only approach is limited by the presence of baseline 
data closely resembling the weather conditions on DR-days. 

An example of the profiles of a DR-day and its associated baseline 
from HA is represented in Fig. 5 and Fig. 6 (see also an example from HB 
in Appendix B). In Fig. 5, the baseline profiles of temperature and 
electricity consumption corresponds to the data of the monitored BL-day 
selected to build the DR-BL pair days (data-only baseline). In Fig. 6, the 
baseline profiles are the time-coincident ones generated by the energy 
models (model-based baseline). In each of these figures, the upper graph 
represents the temperature profiles, and the middle and bottom graphs 
represent the electrical load profiles respectively in 10-minute and 
hourly resolution. 

The indoor temperature in the DR-day rises above 20 ◦C during the 
preheating period (11:00–16:00), falls below 20 ◦C during the PSS 
(16:00–19:00), and stabilises again in the recovery period (in this case 
19:00–20:00). With respect to the internal temperature of the baselines, 
the model-based profile generally remains constant at 20 ◦C, while the 
data-only profile shows slight fluctuations around this value. This is a 

reflection of the actual operation of the HP, with an intermittent on–off 
profile. 

The ten-minutely graph of HP electrical load highlights the 
complexity of actual HP operation. The consumption is intermittent, 
with peak loads generally around 2000 We in the data-only case. The 
model-based baseline also reproduces this intermittent behaviour, 
although it has longer consumption intervals with lower peak demand 
compared to the monitored data. 

The graphs with hourly consumption values help corroborating the 
expected consumption peak after the PSS strategy in the DR-day profile 
compared to the BL-day. The hourly representation also shows that the 
total consumption during the response and recovery period in the 
model-based and data-only baselines are very similar, suggesting that if 
the former is normally applied, the latter could also be used as an 
alternative to the use of models. The model manages to reproduce the 
intermittent operation of the HP and its hourly consumption, but has 
difficulties in predicting peak demand at a higher resolution. The data- 
only baseline, on the other hand, is not a time-coincident profile with the 
DR-day profile, but it does correspond to a real HP operation profile with 
intervals and demand peaks more similar to those of the DR-day in the 
hours before and after the DR event. 

3.5. Contribution to the EF gap 

This part complements the evaluation of EF Gap in Section 3.2 by 
analysing the EF GapMAE between the values obtained for Expected EF 
and Actual EF, as explained in Section 2.2. Thus, we use two different 
interpretations of ‘Expected EF’:  

• The ‘maximum’ Expected EF obtained by applying Arteconi et al.’s 
method based on the design approach method.  

• A Expected EF ‘range’ of values obtained by, first, clustering the 
results using the monitored data (Actual EF values) according to 
daily outdoor temperature and, then, calculating the cluster mean. 

Fig. 6. Comparison between a DR-day and its baseline in HA using model-based baseline. Tout: outdoor temperature. Upper graph: temperatures. Middle graph: 
electrical load in 10-minute resolution. Bottom graph: electrical load in hourly resolution. HA: house A. WD: weekday. DRday: demand response day. BLday: baseline 
day. Tout: outdoor temperature. Tint: indoor temperature. Tset: setpoint temperature. HPel: electricity consumption of the HP. 
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Fig. 7. Calculated model-based Actual EF, clustered by daily mean outdoor temperature. HA: house A. HB1: house B, before user adjustment of thermostat. HB2: 
house B, after user adjustment of thermostat. 

Table 7 
Expected EF values and error between Expected EF and (model-based) Actual EF. HA: house A. HB1: house B, before user adjustment of thermostat. HB2: house B, after 
user adjustment of thermostat. Tout: outdoor temperature.  

Case study Interpretation of Expected EF Expected EF values (model-based)EF GapMAE 

tres Ṗres trec EDR FPI tres Ṗres trec EDR FPI 

[h] [kWe] [h] [kWhe] [-] [h] [kWe] [h] [kWhe] [-] 

HA ‘maximum’ Expected EF 3.17 1.96 41.83 − 9.31 0.78 0.17 1.09 35.97 11.81 2.89 
Expected EF ‘range’ 0 <= Tout < 5 3.00 1.39 11.54 3.65 3.46 0.00 0.12 5.65 1.40 0.93 

5 <= Tout < 10 3.00 0.77 5.00 2.39 3.61 0.00 0.14 5.24 1.41 0.93 
10 <= Tout < 15 3.00 0.47 0.59 1.21 4.14 0.00 0.14 0.67 0.42 0.58 

HB1 ‘maximum’ Expected EF 3.33 1.37 14.17 − 0.02 8.83 0.33 0.84 9.17 1.78 3.72 
Expected EF ‘range’ 0 <= Tout < 5 3.00 0.84 5.00 3.32 7.57 0.00 0.08 0.00 0.71 0.35 

5 <= Tout < 10 3.00 0.37 5.00 − 0.07 3.76 0.00 0.09 0.00 0.76 0.63 
10 <= Tout < 15 3.00 0.16 5.00 − 0.42 2.34 0.00 0.02 0.00 0.19 0.08 

HB2 ‘maximum’ Expected EF 3.33 1.37 14.17 − 0.02 8.83 0.33 0.60 9.17 2.29 2.69 
Expected EF ‘range’ 0 <= Tout < 5 3.00 1.07 5.00 3.01 8.61 0.00 0.13 0.00 0.48 0.80 

5 <= Tout < 10 3.00 0.35 5.00 0.29 3.93 0.00 0.18 0.00 1.07 1.37 
10 <= Tout < 15 – – – – – – – – – –  
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Fig. 7 shows the Actual EF values from Fig. 3 clustered into three 
groups according to the daily outdoor temperature value and repre
sented as boxplots. The mean values of Actual EF of these clusters differ 
from the ‘maximum’ Expected EF values. Table 7 shows the errors be
tween the different Expected EF values and their corresponding set of 
Actual EF values. In general, the error is reduced when considering the 
data-based mean values as the Expected EF. For example, in HA, the 
EF GapMAE for committed power related to the reference design-based 
‘maximum’ Expected EF is around 1.09 kWe, (~55 % of the Expected 
EF value of 1.96 kWe). Conversely, EF GapMAE is constrained to 0.12 
kWe, 0.14 kWe, and 0.14 kWe when respectively considering the three 
data-based mean values as the Expected EF. These values show an 
improvement (i.e. relative difference) in EF GapMAE of 87–89 % 
compared to the EF GapMAE associated with the design-based 
‘maximum’ Expected EF. In HB, this improvement for committed 
power falls within the range of 70 % to 98 %. With respect to FPI the 
enhancement ranges are 68–80 % in HA and 49–98 % in HB. 

4. Discussion 

In this study we defined the EF Gap in the introduction as Expected 
EF minus Actual EF. We have investigated ways to incorporate moni
tored data in Expected EF to align it more closely with Actual EF. Two 
approaches based on data have been used in the FPI rating method. This 
process is reflected on below. 

4.1. Reflection on research questions  

• Are existing EF metrics in the FPI rating method suitable for assessing EF 
using monitored data? 

It was found that the EF metrics within the FPI rating method can be 
calculated with monitored data, apart from the final step of calculating 
the FPIlimit and then deriving the building label. This is due to the need 
to neglect the thermal mass in the reference building, which is not 
possible without a physical model of the building. Therefore, currently 
the use of this type of models is the only option for labelling the build
ing’s EF. Our recommendation is to re-think this final step so that it can 
be created using approaches based on data. 

Despite the suitability of most of the EF metrics to incorporate 
monitored data, the pre-set boundary conditions used in these metrics 
were found not to reflect actual DR within the case study buildings, for 
example, the setpoint temperatures, the DR strategy, and the outdoor 
temperatures. The effect of this on the calculated EF and the EF Gap are 
discussed below in answer to the third research question. However, here 
we reflect specifically on one parameter – the response time. According 
to the FPI rating method, this is calculated by turning the heating off and 
waiting until the building cools down to a certain temperature. This is 
probably not possible to implement in reality, therefore using monitored 
data the response time will usually be capped at the length of time the 
heating is off according to real constraints such as the length of the DR 
period, in turn determined by external factors such as a time of use tariff. 
This particular metric, the response time, accounts for 60 % of the 
weighting in the FPI, so this inability to capture what is really meant in 
the FPI rating method due to practical constraints is problematic. We 
recommend complementing the rating of EF using the ‘maximum’ 
response time by additionally considering fixed DR periods (e.g. 1–3 h 
for PSS). Instead of using metric values that represent a ‘maximum’ 
state, the EF rating could then consist of a matrix of values, which 
represent the EF at a higher resolution covering different situations. 

Despite the benefits of using monitored data, there are also several 
difficulties. Firstly, we showed the difficulty of obtaining days with 
similar enough weather to construct baselines. Secondly, the occupants 
in both houses made adjustments to the setup which made the analysis 
more difficult. Thirdly, as mentioned above, the real schedules used led 
to fixed response and recovery times for all cases. For example, the 

buildings were not allowed to take as long as they needed to recover to 
their pre-DR temperature – either the occupants used the HP for DHW 
after the end of the DR period, or they used a lower temperature setpoint 
overnight.  

• What is the difference between design and operational EF when calculated 
using monitored data, and how does this contribute towards explaining 
the EF Gap? 

We found the model-based Expected EF calculated by applying the 
FPI rating method to deviate from the Actual EF, in some cases by a high 
proportion (e.g. 55 % on average in Committed Power for HA). Four 
reasons for this are identified: firstly, the indoor temperature setpoints 
and outdoor conditions are different for the design and operational 
level. The Expected EF under design conditions is specific to the worst 
case day, and the indoor setpoints are standardised. Secondly, and 
related to this point, building physical models are able to maintain the 
indoor temperature at the setpoint, whereas in reality the indoor tem
perature fluctuates as the HP cycles. Thus, comparing the indoor tem
perature under DR conditions to a baseline of no DR (either generated 
using a model based on data, or directly measured during real operation) 
involves contrasting two inherently variable profiles. This can lead to 
the recovery time being highly variable, since in different situations but 
with similar conditions, the indoor temperature under DR can meet the 
one of the baseline at different times simply because of the HP’s cycles. 

Thirdly, the concept of the recovery period was found not to fully 
exist in the two real cases, due either to prioritisation of other energy 
services (DHW) or to a lower space heating temperature setpoint being 
used in the evening/night than before the DR period. Thus, even though 
the recovery period is a useful construct in the FPI rating method to 
express the building’s ability to restore original internal conditions, it 
may not be a valuable aspect of EF performance in evening peak shaving 
in some countries. 

Finally, the existing FPI rating method is based on a PSS, while in 
reality this may be accompanied by preheating – for example in the UK 
domestic tariffs are encouraging this combined approach.2 Clearly, 
applying the metric for situations in which it was never intended will not 
lead to insightful results. However perhaps the FPI rating method could 
be extended to include other types of DR strategy for which monitored 
data may be more likely to be available. This could be of use for both the 
users and network owners to better plan and implement DR programs.  

• How can data best be incorporated into existing EF metrics and ratings? 

Two approaches based on data were investigated in this paper to 
derive the variables to enter the FPI rating method: a model-based and a 
data-only method. Both approaches were found to give a good estimate 
of EF, and both were found to have strengths and weaknesses as 
described below. 

A model-based approach allows generation of baseline profiles 
which are time-coincident with flexible profiles, and make use of these 
profiles to quantify EF values. It also allows creation of a more robust set 
of reference values that enable characterising EF, constraining the risk of 
an EF Gap. The model, however, had limited capacity to reproduce the 
real operation of energy systems at high temporal resolutions, as seen in 
Section 2.4.2 for our data-driven model; better results are obtained by 
aggregating hourly. Whether this is a problem or not depends on the 
application: hourly resolution is adequate for hourly dynamic electricity 
pricing, whereas higher time resolution is needed for use cases such as 
optimising the self-consumption rate of fluctuating renewable energy 
production. Another drawback of data-driven models is their limitation 
of predicting conditions for which training data is lacking or missing. 

Alternatively, it is possible to quantify EF using timeseries data only, 

2 See for example https://octopus.energy/smart/cosy-octopus/. 
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without making use of energy models. Real load shifting events and 
counterfactual periods are used and as such the EF predictions are based 
on real operation of the system. This relies on using baselines which are 
not time coincident with DR events, but instead which are selected due 
to similar weather conditions and capture the real operation of the en
ergy system. The results obtained are in line with those from the model- 
based approach, however the method seems to require a large amount of 
data in order to match most/every real DR event to a suitable baseline 
period – this was not possible in our case studies in which data was 
collected for around 3 months. 

The data-only approach has potential to be further developed by 
refining the selection of baseline days. For example, incorporating 
additional weather variables – such as solar radiation – into the selection 
could improve the matching process, as it does differentiating between 
weekdays and weekend days. 

Both the model-based and the data-only approaches have the benefit 
that characterisation of uncertainty is automatically output with the EF 
metrics, since estimates of EF are accompanied by confidence intervals. 
The potential financial benefits of quantifying uncertainty in EF are 
described in previous literature [38]. Both approaches also present the 
ability to evolve and develop them over time by extending the under
lying data on which they are based, to capture changes in the building’s 
use or configuration. This is discussed in Section 4.2. Conversely, the 
model is only as good as the training data, and if as was the case here 
there is a lack of cold days in the dataset, steps have to be carried out to 
predict the HP’s operation during such times. 

In the next section we move from calculating the underlying metrics 
to discussing how these would be presented within a EF rating. 

4.2. Application to EF rating systems 

In this section we explore how to combine the benefits of the 
standardised EF rating system using a building physical model with the 
more realistic predictions from our data-based methods. 

EF rating systems, being used to compare buildings to one another, 
must incorporate a certain degree of standardisation - or normalisation - 
to enable this comparison. For example, energy performance ratings are 
standardised for weather and occupant behaviour to render buildings 
comparable to one another independent of their location or occupant 
behaviour [39]. The FPI rating method is designed for this purpose. 

EF quantification based on models informed by data can standardise 
weather conditions by fixing a certain outdoor temperature and other 
weather variables. It cannot however remove the effects of occupant 
behaviour. Thus, our proposal is not to replace the FPI rating method but 
to present additional information with it to give a more contextualised 
and likely picture of available EF. On the certificate would be two sets of 
values: 

1. Arteconi et al.’s ’maximum’ Expected EF – allows comparison be
tween buildings independent of occupant behaviour but unlikely to 
give realistic values  

2. Our set of Expected EF values – a contextualised picture of the likely 
EF achievable using different DR strategies. Given at several standard 
weather conditions (see Fig. 7) which really occurred during the 
monitoring period, and incorporating real setpoints and building 
operation strategies. This would be useful for certain stakeholders, 
for example distribution grids and aggregators seeking knowledge of 
how buildings respond to different types of DR events. By incorpo
rating monitored data, when the building occupants change, the 
rating may also change. This opens the possibility to better charac
terise the Actual EF. 

The data requirements for our Expected EF values would be: type of 
DR strategy, setpoint temperature schedules, monitored energy demand 
of the thermal system, indoor temperature and outdoor conditions. 

5. Conclusion and further work 

There is a move towards data-driven approaches to reduce inaccur
acies associated with models and standard boundary conditions not 
representing the actual energy performance of existing buildings for a 
variety of reasons. In this article, we applied this to EF by introducing 
the novel concept of the EF Gap, the difference between the building’s 
Expected EF (the EF at the design level) and Actual EF (the EF at the 
operational level). We then explore this concept by using monitored data 
from two case studies in combination with an existing EF quantification 
and rating method. 

Thus, we calculate several EF metrics which in previous literature are 
ascertained using building physical models and design specifications: 
response time, committed power, recovery time, actual energy variation 
and FPI. We determine the value of these metrics for the worst-case day 
(i.e. coldest day) under predefined DR conditions to represent the Ex
pected EF, and for the monitored days under user-defined DR conditions 
to represent the Actual EF. The EF quantification derives from 
comparing the flexible profile of the building under DR conditions to a 
baseline without DR. For the Actual EF values, the flexible profiles used 
in the calculation correspond to monitored profiles. To obtain the 
baselines we applied two method: a data-based method in which a data- 
driven model is trained with monitored data to predict baselines time- 
coincident with the flexible profiles; and a new data-only method in 
which baselines are selected from monitored data from similar days as 
the DR day. For the Expected EF, the data-driven model is used to 
determine both the flexible and the baseline profiles. 

The results show that most metrics can be calculated using moni
tored data consisting of HP electricity consumption and indoor/outdoor 
temperature data of 1–10 min resolution associated with winter days in 
two UK locations. Other days and/or locations might need to incorpo
rate data on total solar radiation as well. On the other hand, practical 
constraints governing actual DR mean that some of the results do not 
properly correspond to the intended metrics. For example, the Expected 
EF values for response time and recovery time are not meaningful, since 
the DR in practice does not resemble the theoretical DR conceptualised 
for the purposes of EF rating. Furthermore the standard assumptions 
used regarding setpoints and outdoor temperature, while useful for 
comparing buildings to one another, lead to discrepancies with the 
calculated values of Actual EF. All of this contributes to the EF Gap. 

In addition, the data-only approach shows promising results as an 
alternative to the model-based approach for calculating Actual EF 
values: the EF Gap values calculated with the data-only approach show a 
low relative difference of approximately ± 8 %, compared to the model- 
based values. Moreover, the results using the model-based approach 
show MAE reductions of 50–98 % of the EF Gap when considering Ex
pected EF values derived from Actual EF values instead of the design- 
based Expected EF. 

We conclude that EF ratings can be improved by incorporating in
formation on Actual EF performance but that the existing rating method 
may need to be tweaked to more readily incorporate monitored data. In 
contrast to only using a single Expected EF, we propose the use of 
different reference EF values covering a range of bands of outdoor 
temperature, setpoints and DR types to produce a more effective EF 
rating, which can also be updated over time (e.g. regularly to better 
represent the current state and use of the building and/or after signifi
cant changes such us new occupants or renovation). 

The next steps involve setting out in more detail how the values 
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calculated using data-driven approaches are turned into a rating, given 
that it is not possible to complete the last step of the rating method 
(comparing the building’s FPI to an FPIlimit of the same building with 
neglected thermal mass) without a building physical model. Further 
details such as which external temperatures, setpoints and DR strategies 
should be covered also require defining, and further work on the se
lection methods of baselines for the data-only approach could be 
undertaken. 

Incorporating monitored data into assessments of EF can provide 
more realistic estimations of what can be achieved, helping flexibility 
business models, local area strategies and consumers to implement 
flexibility and thus deliver a reliable and low carbon electricity system. 
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Appendix A

Fig. A1. Residual analysis of data-driven demand-side model of House A.  
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Fig. A2. Residual analysis of data-driven supply-side model of House A. 

Fig. A3. Residual analysis of data-driven demand-side model of House B.  
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Fig. A4. Residual analysis of data-driven supply-side model of House B.  
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Appendix B

Fig. B1. Comparison between a DR-day and its BL-Day in HB using data-only baseline. Upper graph: temperatures. Middle graph: electrical load in 10-minute 
resolution. Bottom graph: electrical load in hourly resolution. HB: house B. WD: weekday. DRday: demand response day. BLday: baseline day. Tout: outdoor 
temperature. Tint: indoor temperature. Tset: setpoint temperature. HPel: electricity consumption of the HP. 
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Fig. B2. Comparison between a DR-day and its BL-Day in HB using model-based baseline. Upper graph: temperatures. Middle graph: electrical load in 10-minute 
resolution. Bottom graph: electrical load in hourly resolution. HB: house B. WD: weekday. DRday: demand response day. BLday: baseline day. Tout: outdoor 
temperature. Tint: indoor temperature. Tset: setpoint temperature. HPel: electricity consumption of the HP. 
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