
Automated Analysis of

Software Product Lines with

Orthogonal Variability Models

Extending the FaMa Ecosystem

Fabricia Carneiro Roos Frantz

Advisors:

Dr. Antonio Ruiz Cortés
Dr. David Benavides Cuevas

European Doctoral Dissertation

AUTOMATED ANALYSIS OF
SOFTWARE PRODUCT LINES WITH

ORTHOGONAL VARIABILITY
MODELS

###
EXTENDING THE FAMA ECOSYSTEM

FABRICIA CARNEIRO ROOS FRANTZ

UNIVERSITY OF SEVILLE

EUROPEAN DOCTORAL DISSERTATION
SUPERVISED BY

DR. DAVID BENAVIDES CUEVAS
AND

DR. ANTONIO RUIZ CORTÉS

DECEMBER, 2011

First published in December 2011 by
The Department of Computer Languages and Systems
ETSI Informática
Avda. de la Reina Mercedes s/n
Sevilla, 41012. SPAIN

Copyright c⃝ MMXI Fabricia Carneiro Roos Frantz
http://www.isa.us.es/fabricia.roos
frfrantz@unijui.edu.br

In keeping with the traditional purpose of furthering science, education and research,
it is the policy of the publisher, whenever possible, to permit non-commercial use and
redistribution of the information contained in the documents whose copyright they
own. You however are not allowed to take money for the distribution or use of these
results except for a nominal charge for photocopying, sending copies, or whichever
means you use redistribute them. The results in this document have been tested care-
fully, but they are not guaranteed for any particular purpose. The publisher or the
holder of the copyright do not offer any warranties or representations, nor do they
accept any liabilities with respect to them.

Classification (ACM 1998): D.2.13 [Software Engineering]: Reusable Software:
Domain Engineering; D.2.4 [Software Engineering]: Software/Program Verification;
D.2.9 [Software Engineering]: Management: Software quality assurance.

Support: PhD scholarship has been granted by the Evangelischer Entwicklungsdi-
enst e.V. (EED). Additional support for research visit granted by the Andalusian Gov-
ernment, and for attending conferences by the European Commission (FEDER) and
Spanish Government under CICYT projects Web-Factories (TIN2006-00472) and SETI
(TIN2009-07366), by the Andalusian Government under projects ISABEL (TIC-2533)
and THEOS (TIC-5906), and by Evangelischer Entwicklungsdienst e.V. (EED).

http://www.isa.us.es/fabricia.roos
mailto:frfrantz@unijui.edu.br

Don David Benavides Cuevas y Don Antonio Ruiz Cortés, profesores Tit-
ulares del Área de Lenguajes y Sistemas Informáticos de la Universidad de
Sevilla,

HACEN CONSTAR

que Doña Fabricia Carneiro Roos Frantz, Mestre en Ciencias de la Com-
putación por la Universidade Federal de Santa Catarina, ha realizado bajo
nuestra supervisión el trabajo de investigación titulado

Automated Analysis of Software Product
Lines with Orthogonal Variability Models.

Extending the FaMa Ecosystem

Una vez revisado, autorizamos el comienzo de los trámites para su pre-
sentación como Tesis Doctoral al tribunal que ha de juzgarlo.

Fdo. Dr. David Benavides Cuevas y Dr. Antonio Ruiz Cortés
Área de Lenguajes y Sistemas Informáticos

Universidad de Sevilla
Sevilla, Diciembre de 2011

Yo, Fabricia Carneiro Roos Frantz, con NIE número X8406986-A,

DECLARO

Ser la autora del trabajo que se presenta en la memoria de esta tesis doctoral
que tiene por título:

Automated Analysis of Software Product
Lines with Orthogonal Variability Models.

Extending the FaMa Ecosystem

Lo cual firmo en Sevilla, Diciembre de 2011.

Fdo. Fabricia Carneiro Roos Frantz

In addition to the committee in charge of evaluating this dissertation and
the two supervisors of the thesis, it has been reviewed by the following re-
searchers:

• Dr. Benoit Baudry (INRIA, France)

• Dr. Rick Rabiser (Johannes Kepler University, Austria)

• Dr. Maurice H. ter Beek (Institute of Information Science and Technolo-
gies of the Italian National Research Council, Italy)

• Dr. Jaejoon Lee (Lancaster University, UK)

University of Seville

The committee in charge of evaluating the dissertation presented by Fabri-
cia Carneiro Roos Frantz in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Software Engineering, hereby recom-
mends of this dissertation and awards the au-
thor the grade .

D. Miguel Toro Bonilla
Catedrático de Universidad

Univ. de Sevilla

Dña. Coral Calero
Catedrática de Universidad

Univ. de Castilla-La Mancha

Dña. Lidia Fuentes
Catedrática de Universidad

Univ. de Málaga

D. Juan Garbajosa
Catedrático de Escuela Universitária

Univ. Politécnica de Madrid

D. Roberto Lopez Herrejon
Senior Researcher

Johannes Kepler University

To put record where necessary, we sign minutes in ,
.

To Rafa.
To my family.

Contents

Acknowledgements . xi

Abstract . xiii

Resumen . xv

Resumo . xvii

Abstrakt . xix

I Preface

1 Introduction . 3
1.1 Research context . 4

1.1.1 Software product lines . 4
1.1.2 Variability models . 6
1.1.3 Automated analysis of variability models 8
1.1.4 Automated analysis of attribute-aware variability models . 9

1.2 Contributions . 10
1.2.1 Summary of contributions . 12
1.2.2 Developed tool . 14
1.2.3 Potential benefits . 15

1.3 Research visits and collaborations . 17
1.4 Structure of this dissertation . 18

i

ii Contents

II Background Information

2 Variability Models . 23
2.1 Introduction . 24
2.2 Feature models . 24

2.2.1 Basic feature models . 25
2.2.2 Cardinality-based feature models . 26
2.2.3 Extended feature models . 28

2.3 Orthogonal variability models . 29
2.4 Summary . 33

3 Automated Analysis of Feature Models 35
3.1 Introduction . 36
3.2 Analysis operations on feature models . 37

3.2.1 Input and output parameters . 38
3.2.2 Operations overview . 39

3.3 Automated support for the analysis of feature models 42
3.3.1 Constraint programming . 43
3.3.2 Propositional logic . 45

3.4 Automated analysis of feature models with abstract features . . . 48
3.5 Summary . 49

III Our Contribution

4 Motivation . 53
4.1 Introduction . 54
4.2 Problems . 56
4.3 Analysis of current solutions . 58

4.3.1 Modelling Concepts . 58
4.3.2 Automated analysis of OVMs . 60
4.3.3 Interoperability between OVM and feature model tools . . 62

4.4 Discussion . 63
4.5 Summary . 66

5 Automated Analysis of OVMs . 67

Contents iii

5.1 Introduction . 68
5.2 Dealing with abstract elements . 68
5.3 Mapping OVM into Constraint Satisfaction Problem (CSP) 71

5.3.1 Full mapping . 71
5.3.2 Selective mapping . 73

5.4 Analysis operations for the full mapping . 79
5.4.1 Variations . 82
5.4.2 Number of variations . 83
5.4.3 Filter . 83
5.4.4 Void OVM . 84
5.4.5 Valid configuration . 85
5.4.6 Valid variation . 86
5.4.7 Dead elements . 87
5.4.8 False optional elements . 87
5.4.9 Commonality degree . 88
5.4.10 Refactoring . 89

5.5 Analysis operations for the selective mapping 90
5.5.1 Number of variations and all variations 90
5.5.2 Void OVM . 91
5.5.3 Dead and false optional . 92
5.5.4 Commonality degree . 93
5.5.5 Refactoring . 95

5.6 Summary . 96

6 Automated Analysis of Attribute-aware OVMs 97
6.1 Introduction . 98
6.2 Attribute-aware OVM . 98
6.3 Attribute-based Model . 102

6.3.1 Attributes . 103
6.3.2 Domain constraints . 106

6.4 The automated analysis process . 108
6.5 Mapping Attribute-aware OVM into CSP 110
6.6 Analysis operations on Attribute-aware OVMs 113

6.6.1 Operations for detecting anomalies 113
6.6.2 Valid attribute condition . 114
6.6.3 Optimal variation . 117

iv Contents

6.7 Summary . 119

7 Evaluating the approach with FaMa-OVM 121
7.1 Introduction . 122
7.2 Radio Frequency Warner (RFW) product line: a study of a case 122

7.2.1 System overview . 122
7.2.2 System components . 124

7.3 Specifying the RFW product line using OVM 125
7.4 Expressing attributes for the RFW product line 127

7.4.1 Attributes . 127
7.4.2 Domain constraints . 134

7.5 Automating the analysis using FaMa-OVM 136
7.5.1 The FaMa-OVM tool . 136
7.5.2 The textual format for the RFW product line 138
7.5.3 Analysis results . 140

7.6 Summary . 144

IV Final Remarks

8 Conclusions and Future Work . 147
8.1 Conclusions . 147
8.2 Discussion, limitations and extensions . 149
8.3 Other future work . 152

V Appendices

A Interoperability Between OVM and FM Tools 157

B Selective Mapping Rules . 193

C RFW Product Line Specification . 201

D Acronyms . 207

Bibliography . 209

List of Figures

1.1 Illustration of mass customisation in the sunglasses industry 5
1.2 Summary of variability model notations . 9
1.3 Summary of research problems . 11
1.4 The FaMa ecosystem . 15
1.5 A multi product line using heterogeneous variability models 16

2.1 Example of a basic feature model . 26
2.2 Set relationship with group cardinality . 27
2.3 Sample of feature cardinality . 28
2.4 Sample of an extended feature model . 28
2.5 Orthogonality of OVM (based on [90]) . 29
2.6 Graphical notation for OVMs . 30
2.7 OVM metamodel (from [102]) . 31
2.8 Example of an OVM . 32

3.1 Process for the automated analysis of feature models 37
3.2 A simple feature model for the mobile phone product line 38
3.3 Sample of void feature model . 39
3.4 Typical cases of dead features . 41
3.5 Typical cases of false optional features . 41
3.6 Classification of feature model edits (from Thüm et al. [125]) 43
3.7 Feature model with abstract features . 48

4.1 Different views of variability of a software product line 56

5.1 Process for the automated analysis of OVMs . 68
5.2 Product line component diagram with variability 69

v

vi List of Figures

5.3 Product component diagrams . 70
5.4 OVM for a mobile phone example . 73
5.5 Two different approaches for the selective mapping 75
5.6 Variation points from the mobile phone product line 76
5.7 Evolution of the mobile phone product line . 76
5.8 Excerpt of the OVM for the mobile phone product line 82
5.9 Example of an OVM becoming void . 85
5.10 Typical cases of dead elements in OVM . 87
5.11 Typical cases of false optional elements in OVM 88
5.12 Refactoring between two OVMs . 89
5.13 Sample OVM with two variation points . 90
5.14 OVM with a dead element when applying the full mapping 93
5.15 OVM with dead and false optional elements . 93

6.1 Excerpt of a feature model extended with attributes 99
6.2 OVM documenting variability of base models 100
6.3 (a) Attributes as a base model, (b) Attributes of base model elements 101
6.4 Attribute-aware OVM . 102
6.5 Attribute-based metamodel . 103
6.6 Example of basic and derived attributes . 104
6.7 Example of global attributes . 106
6.8 Domain constraints on attributes in the Attribute-aware OVM 107
6.9 Analysis of Attribute-aware OVM . 108
6.10 Process for the automated analysis of AOVMs 109
6.11 AOVM for a mobile phone example . 112
6.12 Example of void AOVM . 114
6.13 Example of a dead variant in the AOVM . 115
6.14 Example of a false optional variant in the AOVM 115

7.1 Functionality of the RFW . 123
7.2 Overview of the RFW system . 124
7.3 Excerpt of the RFW OVM . 126
7.4 Attributes of Positioning system and Antenna 128
7.5 Domain constraints on RFW AOVM . 135
7.6 FaMa-OVM web Site . 137
7.7 FaMa-OVM extending FaMa-FW . 138
7.8 RFW in FaMa-OVM textual format . 139

List of Figures vii

A.1 The feature model metamodel . 158
A.2 The OVM metamodel . 158

C.1 RFW OVM without excludes and requires dependencies 204

viii List of Figures

List of Tables

3.1 Mapping from a feature model to CSP . 45
3.2 Mapping from a feature model to propositional logic 47
3.3 Multiple products may result in the same program variant 48

4.1 Summary of related works . 64

5.1 Full mapping from an OVM to CSP . 72
5.2 Full mapping from a mobile phone OVM to CSP 74
5.3 Mapping variability dependencies into CSP . 78
5.4 Mapping requires constraints into CSP . 79
5.5 Mapping excludes constraints into CSP . 80
5.6 Selective mapping from a mobile phone OVM to CSP 81
5.7 Different set of variations depending on the approach 91
5.8 The set of variations represented by an OVM example 92
5.9 Dead elements . 94
5.10 Dead and false optional elements . 95
5.11 Results of commonality operation . 95
5.12 Models representing two different sets of variations 96

6.1 Mapping AOVM into a CSP . 111

7.1 Attributes in the RFW product line . 130
7.2 Values of basic attributes when associated with variants 131
7.3 Values of derived attributes when associated with variation points 133
7.4 Equations for the values of global attributes . 134
7.5 Analysis operations results . 141

B.1 Mapping rules for variability dependencies . 194

ix

x List of Tables

B.2 VP requires VP mapping rules for mandatory VPs 195
B.3 VP requires VP mapping rules for optional VPs 196
B.4 V requires VP mapping rules . 197
B.5 V requires V mapping rules . 197
B.6 VP excludes VP mapping rules for mandatory VPs 198
B.7 VP excludes VP mapping rules for optional VPs 199
B.8 V excludes VP mapping rules . 200
B.9 V excludes V mapping rules . 200

C.2 RFW domain constraints . 203
C.1 RFW excludes and requires dependencies . 205

Acknowledgements

I am very pleased to be able to thank all the people who have collaborated,
in one way or another, to the realization of this work. I am aware that it is
impossible to name all of them here, since during these years of hard work I
have received many comments, support, and advices from several colleagues,
professors, friends and from my family.

First of all, I want to deeply thank my supervisors, Dr. David Benavides
and Dr. Antonio Ruiz Cortés, whose help, advice and supervision was invalu-
able. I am very grateful to them for their confidence and words of encourage-
ment, which are very important in such a long-term research work.

During the research period, I have also had the pleasure to be part of the
Applied Software Engineering (ISA) research group. I wish to thank all the
members of the ISA group for their warm welcome and great help along this
time. I would especially like to thank José A. Galindo for his commitment and
time dedicated to our fruitful discussions.

In the same way, I would like to thank Dr. Artur Boronat and Dr. Cristina
Gacek, who kindly hosted me and dedicated their time to discussions during
my research visits to their Universities. I am also very thankful for the PhD
scholarship granted by the Evangelischer Entwicklungsdienst (EED) and all
the other support received from them, without which this project would not
have been possible.

Finally, and more importantly, I have to thank my family and my husband,
Rafa. I really wish to thank my mother, sister, and brother for their help and
understanding during all these years of distance. Thanks to all of you for
waiting patiently for this day. All this years living so far from you were not
easy, but your love and encouragement kept me strong and I carried on. The
“saudade” is huge, but I am sure it was worth. I also would like to thank
my lovely mother in law and father in law for their fondness and time for

xi

xii Acknowledgments

long hours of virtual conversations. Thanks Rafa, for your love, patience, and
endless motivation, without your help, I may perhaps have reached the end,
but I am sure that it would have been harder and much less enjoyable.

Abstract

You will have only one opportunity
to make a first impression.

Popular saying

S
oftware product line engineering is a software development paradigm
that aims to build a family of software products by reusing a com-
mon set of core assets. In this paradigm, variability models are central
artefacts, since they document the variability amongst products in a

product line. Over the past twenty years, a number of variability modelling
approaches have been proposed in order to document and manage variabil-
ity, such as feature modelling, decision modelling, and orthogonal variability
modelling. Amongst them, feature modelling is the most popular. In this ap-
proach, feature models are used to provide a compact representation of all the
products of a product line in terms of features.

The automated analysis of variability models is defined as the computer-
aided extraction of information from variability models. This is an active re-
search topic that has received the attention of many researchers during the
last twenty years. Most of this research has been focused on feature mod-
els, resulting in a set of analysis operations, techniques, and tools to automate
the analysis of this kind of models. The existence of other variability mod-
els is naturally leading to the need for new techniques and tools to support
their automated analysis as well. Furthermore, there is a need for extending
variability with attributes, so that the analysis can take into account not only
variability in terms of functional features, but also in terms of attributes.

Variability models usually contain elements that are used only to structure
the variability of the product line, and therefore do not have any impact on the
generated models, such as requirements, design, or implementation models.

xiii

xiv Abstract

We refer to these elements as abstract elements. Most of the variability mod-
elling languages do not provide an explicit way to express abstract elements.
Furthermore, the majority of the current approaches for the automated anal-
ysis of variability models can only reason about the combinations of all the
elements in the variability model, but not about those that may be relevant for
the user, i.e., those that have some impact on other models of the product line.
Therefore, abstract elements should be made explicit in the variability models,
so that the analysis that only considers relevant elements can be performed.

The Orthogonal Variability Model is a modelling language to define the
variability of a software product line. It is a known standard of the product
line community that interrelates the variability in base models such as require-
ment models, design models, component models, and test models. In this dis-
sertation, we provide a set of techniques and tools to support the automated
analysis of Orthogonal Variability Models. An important strength of our con-
tribution lies in the fact that we provide support for dealing with attributes
and abstract elements. First, we make abstract elements explicit in the orthog-
onal variability models, and then we provide two techniques to automate the
analysis of such models, one omitting abstract elements and other consider-
ing all the elements of the model. Second, we provide a technique to enrich
orthogonal variability models with attributes and to automate their analysis.

Our contributions have been integrated into a tool that is built as part of the
FaMa ecosystem, which is a framework for the analysis of variability models
developed by our research group. In order to demonstrate the effectiveness of
our techniques and analysis tool we present an evaluation using a product line
in the automotive domain, which was created in a German project by a leading
car company. Such evaluation allowed the detection of false optional and dead
elements in the orthogonal variability model that represents the variability of
such product line, and the verification of attribute conditions as well.

Resumen

Sólo tendrás una oportunidad
de dar una primera impresión.

Dicho popular

L
a ingeniería de líneas de producto software es un paradigma de desa-
rrollo de software que permite la creación de una familia de produc-
tos software por medio de la reutilización de un conjunto común de
activos software. En este paradigma, los modelos de variabilidad son

artefactos centrales. Dichos modelos documentan la variabilidad entre los dis-
tintos productos de una línea de productos. En los últimos veinte años, un
conjunto de técnicas para el modelado de la variabilidad se han propuesto
con el fin de documentar y gestionar la variabilidad, tales como el modelado
de características, el modelado de decisión y el modelado ortogonal de varia-
bilidad. La más popular es la del modelado de características. En esta técnica,
se usan modelos de características para representar de forma compacta todos
los productos de una línea de productos en términos de características.

El análisis automático de modelos de variabilidad se define como la extrac-
ción de información de los modelos de variabilidad asistida por ordenador.
Esa es un área de investigación activa que ha recibido la atención de los inves-
tigadores durante los últimos veinte años. Gran parte de esa investigación ha
ido enfocada a los modelos de características, resultando en un conjunto de
operaciones de análisis, de técnicas y de herramientas para el análisis automá-
tico de ese tipo de modelos. Con la aparición de otros modelos de variabilidad,
se ha detectado la necesidad de proporcionar nuevas técnicas y herramientas
para dar soporte al análisis automático de dichos modelos. Además, existe la
necesidad de extender la variabilidad con atributos, de manera que el análisis
no solamente lleve en cuenta la variabilidad en términos de las características
funcionales, sino también en términos de atributos.

xv

xvi Resumen

Los modelos de variabilidad por lo general contienen elementos que se
utilizan sólo para estructurar la variabilidad de la línea de productos, y por
lo tanto no tienen ningún impacto en los modelos que se geran, tales como
los modelos de requisitos, diseño o implementación. Estos elementos se cono-
cen como elementos abstractos. La mayoría de los lenguajes de modelado de
variabilidad no proporcionan una forma explícita de expresar los elementos
abstractos. Además, la mayoría de los enfoques actuales para el análisis auto-
matizado de los modelos de la variabilidad sólo pueden razonar acerca de las
combinaciones de todos los elementos en el modelo de variabilidad, pero no
sobre los que pueden ser relevantes para el usuario, es decir, aquellos elemen-
tos que tienen algún impacto en otros modelos de la línea de productos. Por
lo tanto, los elementos abstractos deben ser expresados explícitamente en los
modelos de variabilidad, por lo que se pueda analizar modelos de variabili-
dad teniendo en cuenta únicamente los elementos pertinentes.

El modelo de variabilidad ortogonal es un lenguaje de modelado para de-
finir la variabilidad de una línea de productos de software. Se trata de una
notación usual en la comunidad de línea de productos que interrelaciona la
variabilidad en los modelos base, tal como los modelos de requisitos, diseño,
componentes y prueba. En esta tesis doctoral, se presenta un conjunto de téc-
nicas y herramientas para dar soporte al análisis automático de los modelos de
variabilidad ortogonales. Una importante ventaja de nuestra contribución se
basa en el soporte a los atributos y a los elementos abstractos. En primer lugar,
se hacen explícitos los elementos abstractos en los modelos de variabilidad or-
togonal, y se proporcionan dos técnicas para automatizar el análisis de estos
modelos, una en la que se omiten los elementos abstractos, y otra en la que se
tienen en cuenta todos los elementos del modelo. En segundo lugar, se pro-
porciona una técnica para enriquecer los modelos ortogonales de variabilidad
con atributos y se automatiza su análisis.

Nuestras contribuciones han sido integradas en una herramienta que se ha
construido como parte del ecosistema de FaMa, que es un marco para el análi-
sis de los modelos de la variabilidad desarrollada por nuestro grupo de inves-
tigación. Con el fin de demostrar la eficacia de nuestras técnicas y de nuestra
herramienta de análisis se presenta una evaluación usando un caso desarro-
llado en la industria alemana de automóviles. Dicha evaluación ha sido útil
para detectar elementos opcionales falsos y elementos muertos en el modelo
de variabilidad ortogonal de dicha línea de producto y también la verificación
de restricciones sobre los atributos de este modelo.

Resumo

Só terás uma oportunidade
de causar uma primera impressão.

Provérbio popular

A
engenharia de linhas de produtos de software é um paradigma de
desenvolvimento de software que permite a criação de uma famí-
lia de produtos de software através da reutilização de um conjunto
comum de ativos principais. Neste paradigma, os modelos de va-

riabilidade são artefatos centrais, uma vez que documentam a variabilidade
entre diferentes produtos de uma linha de produtos. Nos últimos 20 anos, um
conjunto de técnicas para a modelagem da variabilidade têm sido propostas
a fim de documentar e gerenciar a variabilidade, tais como a modelagem de
características, a modelagem de decisões e a modelagem ortogonal da variabi-
lidade. A mais conhecida é a modelagem de caracteristicas. Nesta técnica, os
modelos de características representam de forma compacta todos os produtos
de uma linha de produtos em termos de características.

A análise automática de modelos de variabilidade é definida como a extra-
ção de informações dos modelos de variabilidade assistida por computador.
Essa é uma área de pesquisa ativa que tem recebido atenção de pesquisadores
ao longo dos últimos 20 anos. Grande parte desta pesquisa tem sido centrada
em modelos de características, o que resultou em um conjunto de operações
de análise, técnicas e ferramentas para a análise automática de tais modelos.
Com o surgimento de outros modelos de variabilidade, identificou-se a ne-
cessidade de proporcionar novas técnicas e ferramentas de apoio para análise
automática de tais modelos. Além disso, há uma necessidade de estender a
variabilidade com atributos, de modo que a análise não só tenha em conta a
variabilidade em termos de características funcionais, mas também em termos
de atributos.

xvii

xviii Resumo

Geralmente os modelos de variabilidade contêm elementos que são usa-
dos apenas para estruturar a variabilidade de uma linha de produtos, e que,
portanto, não têm impacto sobre os modelos gerados, tais como modelos de
requisitos, projeto ou implementação. Estes elementos são conhecidos como
elementos abstratos. A maioria das linguagens de modelagem da variabili-
dade não proporcionam uma forma para expressar explicitamente elementos
abstratos. Além disso, a maioria das abordagens atuais para análise automá-
tica de modelos de variabilidade só raciocinan sobre a combinação de todos os
elementos do modelo, mas não sobre a combinação daqueles que podem ser
relevantes para o usuário, ou seja, aqueles elementos que têm um impacto so-
bre outros modelos da linha de produtos. Portanto, os elementos abstratos nos
modelos de variabilidade devem ser expresados explícitamente, para que de
esta forma seja possível fazer a análise de modelos de variabilidade levando
em conta apenas os elementos relevantes.

O modelo de variabilidade ortogonal é uma linguagem de modelagem
para definir a variabilidade em linhas de produtos de software. Trata-se de
uma notação conhecida na comunidade de linhas de produtos que interrelaci-
ona a variabilidade dos modelos base, tais como modelos de requisitos, pro-
jeto, componentes e teste. Nesta tese, apresentamos um conjunto de técnicas
e ferramentas para dar suporte a análise automática de modelos de variabi-
lidade ortogonais. Uma vantagem de nossa contribuição é que a mesma dá
suporte para elementos abstratos e atributos. Em primeiro lugar, tornamos
explícitos os elementos abstratos nos modelos de variabilidade ortogonais, e,
proporcionamos duas técnicas para automatizar a análise destes modelos. Um
técnica omite os elementos abstratos e a outra leva em cosideração todos os
elementos do modelo. Logo, também proporcionamos uma técnica para en-
riquecer os modelos de variabilidade ortogonais com atributos e automatiza-
mos sua análise.

Nossas contribuições foram integradas em uma ferramenta construída
como parte do ecossistema FaMa, o qual é um framework para a análise de
modelos de variabilidade, desenvolvida por nosso grupo de pesquisa. Para
demonstrar a eficácia das nossas técnicas e da nossa ferramenta de análise,
apresentamos uma avaliação utilizando um caso desenvolvido pela indústria
automobilística alemã. Esta avaliação foi útil para detectar elementos opcio-
nais falsos e elementos mortos no modelo de variabilidade ortogonal da linha
de produtos em questão e também a verificação de restrições sobre os atribu-
tos deste modelo.

Abstrakt

Man hat nur eine einzige Gelegenheit,
einen ersten Eindruck zu hinterlassen.

Volksweisheit

P
roduktlinienentwicklung ist ein Softwareentwicklungsparadigma,
das durch die Wiederverwendung eines gemeinsamen Satzes von
Softwareaktiva auf eine Familie von Softwareprodukten abzielt. In
diesem Paradigma sind Variabilitätsmodelle zentrale Artefakte, da

sie die Variabilität innerhalb von Produkten einer Produktlinie dokumentie-
ren. In den vergangenen zwanzig Jahren wurde eine Reihe von Ansätzen zur
Variabilitätsmodellierung unterbreitet, um Variabilität wie etwa Featuremo-
dellierung, Entscheidungsmodellierung und orthogonale Variabilitätsmodel-
lierung zu dokumentieren und zu verwalten. Unter ihnen ist Featuremodel-
lierung am beliebtesten. In diesem Ansatz werden Featuremodelle verwendet,
um in Bezug auf die Funktionen eine kompakte Darstellung aller Produkte ei-
ner Produktlinie zu bieten.

Die automatisierte Analyse von Variabilitätsmodellen wird als computer-
gestützte Informationsgewinnung aus Variabilitätsmodellen definiert. Dies ist
ein dynamischer Forschungsgegenstand, der in den letzten 20 Jahren die Auf-
merksamkeit vieler Forscher erregte. Der größte Teil dieser Forschung hat sich
auf Featuremodelle konzentriert, was zu einer Reihe von Analyseoperationen,
–techniken und –werkzeugen zur Automatisierung der Analyse dieser Art
von Modellen führte. Die Existenz anderer Variabilitätsmodelle führt in na-
türlicher Weise zu einem Bedarf nach neuen Techniken und Werkzeugen zur
Unterstützung automatisierter Analysen. Darüber hinaus besteht Bedarf für
die Erweiterung der Variabilität mit Attributen, so dass die Analyse nicht nur
die Variabilität in Bezug auf die funktionellen Eigenschaften, sondern auch in
Bezug auf die Attribute berücksichtigen kann.

xix

xx Abstrakt

Variabilitätsmodelle enthalten in der Regel Elemente, die nur zur Struk-
turierung der Produktlinienvariabilität verwendet werden und somit keine
Auswirkungen auf die erzeugten Modelle wie etwa auf Anforderungen, De-
sign oder Implementierungsmodelle haben. Diese Elemente bezeichnen wir
abstrakte Elemente. Die meisten der Variabilitätsmodellierungssprachen bie-
ten keine ausdrückliche Möglichkeit, abstrakte Elemente zu bezeichnen. Dar-
über hinaus kann die Mehrheit der derzeitigen Ansätze für die automatisierte
Analyse der Variabilitätsmodelle nur die Kombination aller Elemente im Va-
riabilitätsmodell erörtern, nicht aber diejenigen, die für die Nutzer relevant
sind, also diejenigen, die einen gewissen Einfluss auf andere Modelle der Pro-
duktlinie ausüben. Daher sollten abstrakte Elemente explizit in den Variabili-
tätsmodellen selber gemacht werden, so dass nur relevante Elemente beinhal-
tende Analysen durchgeführt werden können.

Das orthogonale Variabilitätsmodell ist eine Modellierungssprache zur Va-
riabilitätsbestimmung einer Softwareproduktlinie. Dies ist ein bekannter Stan-
dard der Produktliniencommunity, der die Variabilität in Basismodellen wie
etwa Anforderungsmodellen, Designmodellen, Komponentenmodellen und
Testmodellen verknüpft. In dieser Dissertation stellen wir eine Reihe von
Techniken und Werkzeugen zur Unterstützung der automatisierten Analyse
von orthogonalen Variabilitätsmodellen zur Verfügung. Eine wichtige Stär-
ke unseres Beitrags liegt darin, dass wir Unterstützung für den Umgang mit
Attributen und abstrakten Elementen bieten. Zuerst erarbeiten wir abstrakte
Elemente explizit in den orthogonalen Variabilitätsmodellen, daraufhin bieten
wir zwei Techniken zur Automatisierung der Modellanalyse an – eines unter
Verzicht auf abstrakte Elemente und ein weiteres unter Berücksichtigung al-
ler Elemente des Modells. Zweitens bieten wir eine Technik, um orthogonale
Variabilitätsmodelle mit Attributen zu bereichern und ihre Analyse zu auto-
matisieren.

Unsere Beiträge wurden in einem Werkzeug integriert, das als Teil des
Ökosystems FaMa fungiert, welches eine von unserer Arbeitsgruppe ent-
wickelte Struktur zur Analyse von Variabilitätsmodellen ist. Um die Effektivi-
tät unserer Techniken und Analysewerkzeuge zu demonstrieren, präsentieren
wir eine Auswertung der Produktlinie in der Automobildomäne, die in einem
deutschen Projekt von einem führenden Automobilkonzern in Deutschland
geschaffen wurde. Eine solche Auswertung erlaubte die Erkennung falscher
optionaler und toter Elemente im orthogonalen Variabilitätsmodell – das die
Variabilität dieser Produktlinie darstellt – sowie die Prüfung der Attributvor-
aussetzungen.

Part I

Preface

Chapter 1

Introduction

A journey of a thousand miles starts with a single step.
Lao Zi, 6th-5th century B.C.

Chinese taoist Philosopher

I
n this dissertation, we report on our contributions to develop a set of
techniques and tools to support the automated analysis of Orthogonal
Variability Models taking into account attributes. In this chapter, we
first describe the topics that constitute the context of our research work

in Section §1.1. In Section §1.2, we summarise our main contributions and
research activities. In Section §1.3, we report on the research visits and collab-
orations carried out during the development of this dissertation. Finally, in
Section §1.4, we present the structure of this dissertation.

3

4 Chapter 1. Introduction

1.1 Research context

In the next subsections, we concisely introduce the main concepts that will
be used throughout the rest of this dissertation. In Section §1.1.1, we present
software product lines. Section §1.1.2 introduces variability models. In Sec-
tion §1.1.3, we introduce automated analysis of variability models, and finally,
in Section §1.1.4, we introduce automated analysis of attribute-aware variabil-
ity models.

1.1.1 Software product lines

In the last decade, the trend towards globalised business competition has
pressured organisations to find ways to offer more diversified goods with
reduced development cost and time-to-market. As it happened in earlier
times, both research community and industry have believed in software reuse
as a powerful means to improve productivity and quality in software de-
velopment [69, 85, 98]. Software product line has emerged as one of the
most promising ways of software reuse. Software product lines institution-
alise systematic reuse throughout all software development phases. This soft-
ware development paradigm has increased productivity of IT-related indus-
tries, reduced time-to-market, and allowed for developing more diversified
goods [32, 77, 122].

The story of software product lines begins with the application of mass
customisation to the production of software [8, 13]. In contrast to the mass
production, where a large number of standardised products are built and then
distributed to the customers, in the mass customisation paradigm products are
made on-demand according to individual customer needs. Tseng and Jiao de-
fine mass customisation as “producing goods and services to meet individual
customer needs with near mass production efficiency” [132]. In this defini-
tion, we notice that there is a concern to efficiently produce a large amount of
products, and at the same time, meet the needs of each individual customer.
Figure §1.1 depicts an example of how mass customisation is offered to cus-
tomers in the sunglasses industry. Customers can choose the features that
better meet their needs by selecting features in a web configurator.

In applying mass customisation to the production of software, a soft-
ware development organisation that produces individual software products
replaces its production of single products by the production of a family of

1.1. Research context 5

Figure 1.1: Illustration of mass customisation in the sunglasses industry.

similar products. In this way, organisations can repeatedly build similar soft-
ware products, and then, customise these products according to individual
customer needs by adding specific features. A software family is composed of
a set of varied software products that are constructed from a set of core assets
designed for a specific domain. As these products belong to the same applica-
tion domain, they share more commonalities (i.e., common features) than sin-
gularities. Consider, for instance, the commonalities amongst current mobile
phone systems (e.g., calls, ring tones, messaging, and alarm clock). One of the
definitions for software product line, given by Clements and Northrop [32], is
as follows:

“a set of software-intensive systems that share a common, managed set
of features satisfying the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in
a prescribed way.”

Software product line engineering usually consists of two development
processes, namely: domain engineering and application engineering [102]. In
domain engineering, common software artefacts are designed and developed
for reuse. In application engineering, specific products are derived by reusing
a set of the aforementioned domain artefacts.

Software product lines are traditionally designed and managed in an intra-
organisational context. However, due to the success of its product line, a com-

6 Chapter 1. Introduction

pany can be interested in expanding its product line platform (i.e., the core
assets) outside its organisational boundaries. Once the company decides to
make its platform available to the community, the company transitions from
a software product line approach to a software ecosystem approach [24, 89].
The emerging trend of software ecosystems is motivated by multiple benefits,
such as increasing the value of products for existing users and heightening
attractiveness for the new ones, as well as, collaborations with partners to ac-
celerate and share cost of innovation. However, the adoption of a software
ecosystem brings new challenges, such as management of frequent platform
releases, and coordination mechanisms to manage the complexity of the rela-
tionship amongst the number of parties involved (i.e., external and internal
developers, partner companies and independent solution vendors). Examples
of software ecosystems can be found in different areas of the software indus-
try like operating systems, web applications, and end-user programming (e.g.,
Android, Amazon, and Microsoft PopFly). Although software ecosystems be-
came popular with the web 2.0, they have been around for decades [24]. Some
software ecosystems are derived from classical desktop applications, e.g. MS
Office suite. This is an example of a successful application in the market place
without the support of an ecosystem that is opened up to promote contribu-
tions from its user community.

1.1.2 Variability models

Developing software using a product line paradigm implies planning and
building software assets for reuse, and subsequently reusing these assets. A
key difference between software product line development and traditional
software development is the need for modelling variability, which allows for
mass customisation. Variability is a concern in all phases of the software prod-
uct line development [25]. Modelling variability means the commonalities and
variabilities amongst software products have to be described in order to ex-
press and understand the complexity and diversity of products in the domain
of interest [115].

Variability models are central artefacts in all phases of software product
line engineering. They explicitly and effectively document the commonalities
and variabilities amongst software products, i.e., the rules that constraint the
possible combinations of reusable assets in a product. These assets include
requirements, design models, test cases, etc. The derivation of an individual
product is done by selecting options in the variability model.

1.1. Research context 7

Over the past twenty years, a number of variability modelling approaches
have been proposed. Roughly speaking, they can be grouped into four main
categories:

Feature modelling. It is one of the most popular and has gained the most
attention of both research and industry. The first feature model was proposed
by Kang et al. [71], in 1990, as part of the method Feature-Oriented Do-
main Analysis (FODA). Since then, several other feature-model-oriented ap-
proaches were proposed based on FODA, such as in [35, 37, 52, 64, 72, 73, 105],
for a detailed description about feature model semantics we refer the reader
to Schobbens et al. [116]. Feature modelling approaches usually focus on de-
scribing the product line domain. The key idea of this approach is to capture
in a feature model the set of possible products of a product line.

Decision modelling. It focuses on decisions rather than domain descrip-
tion. Decisions were first introduced by Campbell et al. [28] as “actions
which can be taken by application engineers to resolve the variations for a
work product of a system in the domain”. Most of the existing decision mod-
elling approaches have been influenced by the Synthesis method [33] which
first introduced the idea of decision models. In this report, a decision model
was defined as “a set of requirements and engineering decisions that deter-
mine the variety of work products in the domain, and must be resolved by
an application engineer to define and construct work products”. Schmid and
John [114], Forster et al. [55], Dhungana et al. [39, 42], amongst others, use
decision models as variability modelling language.

Orthogonal modelling. It was introduced with the aim to explicitly doc-
ument the variability of software product lines in a separate model. They
provide a cross-sectional view of the variability of the product line across all
software development artefacts. One-way references to the base model de-
scribe how the base model elements can vary. Bachmann et al. [2] proposed
the use of orthogonal variability models to provide this separate view of the
variability by documenting explicitly the variation points. The Orthogonal
Variability Model (OVM), proposed in [102], is the variability model we focus
on throughout this dissertation. This approach proposes to document vari-
ability in a separate model, and interrelates variability on the base product
line models. OVM is mainly characterised by considering variation points as
first-class citizens. Another approach proposed to make variability models
orthogonal to the product line models is the Common Variability Language
(CVL) [54], which is a generic language to define variability on any other
model defined by means of MetaObject Facility compliant metamodels, in-

8 Chapter 1. Introduction

cluding Unified Modelling Language (UML) and domain-specific languages.
CVL is an attempt to standardise a language for variability modelling in the
Object Management Group.

UML-based modelling. Variability can be modelled in traditional existing
models, such as requirement models and design models. Some approaches,
as those proposed by Gomaa [61], Gomaa and Shin [62], Gomaa [63], Ziadi
et al. [156], propose including commonality and variability in the UML mod-
els. However, this strategy has some shortcomings, such as the mixing of
variability and other modelling concepts [65, 90]; the variability is implicitly
spread across the product line software artefacts.

There are other variability modelling proposals that we do not have in-
cluded in those categories, as for instance COVAMOF by Sinnema et al. [120],
or DebianVML by Galindo et al. [56], which provides a way to describe
Debian Packages Repositories as software product line models. Figure §1.2
shows a summary of some variability model notations found in the literature.

1.1.3 Automated analysis of variability models

The configuration of a product is done by selecting desired and valid op-
tions in the variability model during application engineering. For example,
in a mobile phone product line, an option could be the selection of the screen
resolution, which can be basic or high. This option demands a constraint to
ensure that the products support only one screen resolution simultaneously.
Variability models can have thousands of options. Therefore, it was recog-
nised that their manual treatment is a difficult and error-prone task [71]. Con-
sequently, several contributions were done on the automated analysis of vari-
ability models, mostly focusing on feature models [13].

The automated analysis of variability models deals with the computer-
aided extraction of information from variability models [13]. This information
supports many technical, managerial, and marketing decisions throughout all
phases of software product line development [8]. Typical operations of anal-
ysis allow knowing whether a variability model is void (i.e., it does not rep-
resent any product), whether a given product is represented by a variability
model, or whether a model contains errors. A recent survey has identified up
to 30 different analysis operations on feature models and a number of analysis
techniques and tools for their automation [13].

1.1. Research context 9

Features layer

Architecture layer

Variation point 2

Dependency

Variation point 1

Realization
Variant 1

Variant 2 Variant 3 Variant 4

Variation point 4

Variant 6 Variant 7Variant 5

Variation point 3

excludes

VP

Variation
point 2

VP

Variation
point 1

VP

Variation
point 2

VP

Variation
point 4

V

Variant 1

V

Variant 4

V

Variant 2

[1..2]

V

Variant 3

V

Variant 6

V

Variant 7

V

Variant 8

V

Variant 5

[1..1]

requires

requires

Root

Feature 1 Feature 2 Feature 3

Feature 7 Feature 8 Feature 9Feature 5 Feature 6

Do you require variant 1??
name: Question 1 expected value: boolean

Do you need variant 2??
name: Question 2 expected value: boolean

Which variant do you need??
name: Question 2 expected value: list{string 1|string2|string3}

visibility

condition

Decision efect

Feature 2

<<optional>>

Feature 3

<<optional>>

Feature 1
<<optional>>

Feature 4

<<at-least-one>>

Feature 5

<<default>>

Feature 6

<<optional>>

Feature 7

<<optional>>

Variability modelling

notations

Feature modelling

Decision

modelling

Orthogonal

variability

modelling

UML-based

COVAMOF

Figure 1.2: Summary of variability model notations.

1.1.4 Automated analysis of attribute-aware variability mod-
els

The specification of variability can be extended with measurable attributes
(e.g., CPU and memory consumption) and constraints on these attributes (e.g.,
memory consumption should be in a range of values) in order to express
some properties about different products [13]. For example, in cases in which
there are limitations of resources such as memory capacity and CPU time, the

10 Chapter 1. Introduction

derivation of products that does not satisfy those conditions must be avoided.
When attributes are captured and added to variability models, we refer to
them as attribute-aware variability models.

The product line engineer may want to verify whether it is possible to build
a product that satisfies required attributes or to verify whether there is any
contradiction in the specification of attributes. This analysis is possible when
having an attribute-aware variability model specification. In software prod-
uct line engineering, this analysis is an essential activity to guarantee that the
derived software products fulfil attribute constraints. We refer to automated
analysis of attribute-aware variability models as the computer-aided extrac-
tion of valuable information from attribute-aware variability models.

1.2 Contributions

The main goal of this dissertation is to provide a set of techniques and
tools to support the automated analysis of attribute-aware OVMs. Since we
have previous experience with the analysis of feature models, we are inter-
ested in applying this knowledge to other domains by providing support for
the automated analysis of other variability models, and thus, endowing the
FaMa ecosystem with a new analysis component.

We have chosen OVM because it is a variability modelling language sup-
ported by an acknowledged research group of the product line community,
and so far its automated analysis was hardly explored. In addition, OVM
and feature model diagrams, though similar, are different in terms of their
elements and structure. OVMs, unlike feature models that are composed of
features and relationships amongst features, are composed of two different el-
ements (i.e., variation points and variants) and relationships amongst them;
moreover, they are not hierarchically structured. OVM only documents infor-
mation about the variability of product line artefacts, but not data information.
Hence, relating OVM elements with attributes is currently a challenge, since
these elements cannot be annotated with attributes as was done with feature
models. Furthermore, given that we have a product line case from the automo-
tive industry, in which OVM was used to document variability, by providing
support for the automated analysis of OVM we would be able to apply our
approach to a case, and therefore contribute with the product line community.
In the pursuit of our goal we have identified some research problems to be
addressed, which are summarised in Figure §1.3.

1.2. Contributions 11

Figure 1.3: Summary of research problems.

The first problem concerns the improvements on some OVM modelling
concepts that should be done. Currently, there is no way to explicitly denote
abstract elements in OVM. In addition, when using OVM to represent variabil-
ity in software product line development, there are no techniques to specify
attributes and constraints on them.

The second problem regards the lack of a suitable support for the auto-
mated analysis of OVMs. It is practically impossible to carry out OVM analy-
sis manually and besides, it is an error-prone task. The automated analysis of
OVM has hardly been explored by the research community. In addition, the
analysis of attribute-aware OVMs is an important activity to guarantee that
the derived software products reach the desired attribute constraints. Due to
the complexity of this analysis it is essential to rely on automated support.

The third problem refers to the lack of support for the interoperability be-
tween OVM and feature model tools. In order to understand the connection
between both languages, a comparison study should be done, allowing to
identify the weaknesses and strengths of these languages in a specific context
or domain. In addition, in the current literature, there is no approach for the
interoperability between the two languages. A first step would be to provide
support for the transformation of a feature model into an OVM.

In Section §1.2.1 we summarise the main contributions we have made to
solve each one of the research problems we have identified in the field of auto-

12 Chapter 1. Introduction

mated analysis of OVMs. In Section §1.2.2, we introduce FaMa-OVM, which is
the tool we have developed to automate the analysis of attribute-aware OVMs.
These contributions have been published in a relevant journal, a national con-
ference, and national and international workshops.

1.2.1 Summary of contributions

In this dissertation, we have made the following contributions to solve the
research problems presented in Section §1.2:

i. IMPROVEMENTS ON MODELLING CONCEPTS

Problem statement: Abstract elements should be made explicit in the
OVM.

Contribution: We have made the abstract elements in the OVM explicit,
so that we are able not only to analyse an OVM with all its elements,
but also analyse it leaving out abstract elements. These contributions are
presented in Sections §5.2, §5.3, and §5.5.

Problem statement: The lack of a technique to associate attributes to vari-
ability in the OVM.

Contribution: We have proposed a model to express attributes and con-
straints on these attributes, so that it can be related to variability in the
OVM. We have identified what should be the main characteristics of
this model, and defined its relationship with the variability in the OVM.
These contributions are presented in Sections §6.2 and §6.3.

ii. AUTOMATED ANALYSIS OF OVMs

Problem statement: The lack of automated support for the analysis of
OVMs.

Contribution: We have developed an approach and provided a tool for
the automated analyses of OVMs. For this purpose, we have provided
a number of analysis operations on OVMs, defined a mapping from an
OVM to a constraint satisfaction problem, and used an off-the-shelf con-
straint solver to automate the analysis. These results are presented in
Chapter §5.

1.2. Contributions 13

Problem statement: Attribute-aware OVMs need an operational support
to automate their analysis.

Contribution: We have provided support to automate the analysis of
attribute-aware OVMs. For this purpose, we have proposed a mapping
from an attribute-aware OVM to a constraint satisfaction problem, and
provided a tool support where a specific constraint solver was used to
automate the analysis. These results are presented in Chapter §6.

The main results of the aforementioned contributions were published
in [110, 111], and preliminary results in [108].

iii. INTEROPERABILITY BETWEEN OVM AND FEATURE MODEL
TOOLS

During our research period other research problems have arisen, for
which we have contributed taking the first step towards a possible so-
lution. We may remark that these results do not form part of the core
of this dissertation. Some of them are presented in Appendix §A. We
intend to continue this work as future work.

Problem statement: Understanding the differences between both lan-
guages requires a comparison study.

Contribution: We have informally compared both languages, identified
the main differences between them, and discussed some issues that came
to light when trying to apply the same process for the analysis of feature
models to OVM. The main results of these contributions have been pub-
lished in [106].

Problem statement: Currently, there are no approaches for the transfor-
mation of feature models to OVM.

Contribution: We have proposed an algorithm to transform a feature
model into an OVM, and implemented it by using a model-driven de-
velopment approach. The preliminary results of this contribution were
published in [107, 109].

In addition to the set of techniques for the automated analysis of OVMs
and attribute-aware OVMs, we have developed a tool to which we refer to as
FaMa-OVM. In Subsection §1.2.2, we introduce FaMa-OVM and describe how
it has endowed the FaMa ecosystem.

14 Chapter 1. Introduction

1.2.2 Developed tool

The results of this dissertation have been integrated into FaMa-OVM, a
tool support for the automated analysis of OVMs. This tool has been released
under open source license and is accessible from the FaMa-OVM web site [48].
We believe that FaMa-OVM would be useful for those researchers, such as
Bencomo et al. [17], Elfaki et al. [45], Loughran et al. [79], Metzger et al.
[91], Peña [100], Petersen et al. [101], and Mærsk-Møller and Jørgensen [80],
who, amongst others, work with Orthogonal Variability Models.

This dissertation continues the work on the analysis of variability models
developed in the last years by our research group, the Applied Software Engi-
neering research group (ISA). The ISA group has focused on the development
of a product line of tools for the analysis of variability models and a frame-
work, referred to as FeAture Model Analyser (FaMa), to support it. Following
the recent trend towards a transition from a software product line environ-
ment to ecosystems, the ISA group has decided to open up the FaMa product
line to external partners in order to share the costs and benefits of innovation.
Hence, we are currently in the process of moving from a product line strategy
to a software ecosystem approach [24]. With FaMa-OVM we have endowed
the FaMa ecosystem with a new analysis component. This work was a good
experience in the context of ISA group since we were able to evidence the ben-
efits of FaMa framework when developing a new tool for the analysis of a
different variability model.

Figure §1.4 illustrates the FaMa ecosystem, in which the FaMa framework
is the core (i.e., the platform). Around it, a number of extensions are built,
which we mainly organise in three different groups:

Testing and benchmarking. The FaMa Test Suite (FaMa TeS), and the
framework, Benchmarking and TesTing on the analysis of feature models
(BeTTy) are contributions added to the FaMa ecosystem to provide functional
and performance testing of feature model analysis tools [19, 47].

Analysis components. At the time of writing this dissertation, there is one
extension, FaMa-FM, in the field of analysis component tools that is already
integrated into the FaMa framework. FaMa-FM integrates different solvers for
automated analyses of feature models (JavaBDD [142], SAT [18], Choco [75],
and JaCoP [70] solvers are implemented). Another extension that is being
integrate into FaMa ecosystem is FaMa-DEB, which is a tool to support the
automated analysis of Debian packages descriptions (DEB) models. The third

1.2. Contributions 15

- FaMa TeS

- BeTTy

- FaMa-FM

- FaMa-DEB

Figure 1.4: The FaMa ecosystem.

extension to be integrated into the ecosystem is FaMa-OVM tool, which is part
of the results of this dissertation.

Third part tool integration. These extensions are carried out by external
collaborators. At the time of writing this dissertation, FaMa is integrated into
the visual editor MOSKitt feature modeller [94], it is being integrated into the
commercial tool pure::variants [103]†1, and being integrated into the OVM Ed-
itor of the case tool REMiDEMMI (Requirements Engineering and Manage-
ment in Domain Engineering with Multi-Model Interaction) [67].

1.2.3 Potential benefits

OVM was devised to document variability of software product lines, how-
ever it can be applied to other areas, such as done by Mietzner et al. [92].
Thus, although our contribution targets the software product line community,
other OVM users can benefit from it.

In a German project, a leading car company has used OVM to model their
product line. The resulting product line represents a typical case in which

†1In the context of the DiVA European project (http://www.ict-diva.eu/)

16 Chapter 1. Introduction

Mobile Phone

Alarm
clock

Connectivity

GPS

Calls

Voice Data

Messaging

Media

Camera

MP3

MP4

Mobile Media

Album Management

...

Create Album

Media Selection

VideoMusic

Media Management

...Favorites Basic operations

Delete MediaCreate Media ...

Photo

Mobile Phone vendor feature model

Supplier of mobile media software

Provides

feature

[1..2]

V
SMS

V
MMS

VP

Messaging

V
...

VP

...

V
...

[1,2]

re
q
u
ire
s

Messaging supplier OVM

Connectivity supplier decision model

Provides

feature

OS

Extends

model

Do you want Connectivity??
name: Q 1 expected value: boolean

...?

Which type of connectivity do you want??
name: Q2 expected value: list{Wifi|3G}

visibility

condition

Decision

efect

V ...

VP

...

V ...

Figure 1.5: A multi product line using heterogeneous variability models.

we can apply our approach. We have studied this case and shown that the
engineers of such product line can benefit from our approach to automatically
extract information from their OVMs.

Another context to which our approach can be useful is the multi product
lines. In this context, several organisations collaborate to build products. Ven-
dor and suppliers usually maintain their own product lines, which often are
developed and managed using heterogeneous techniques and tools [41]. In
Figure §1.5, we present an example to illustrate a common scenario in which
heterogeneous variability modelling approaches are used to document vari-
ability of a multi product line in the mobile phone domain. In this exam-
ple, there is a main vendor of mobile phones that uses resources from several
suppliers. The vendor uses a feature model to express the possible choices
that the customer can select. The suppliers use different approaches to ex-
press variability of their product line, namely: feature modelling, OVM, and

1.3. Research visits and collaborations 17

decision modelling. In order to express how the features provided by sup-
pliers are related to features in the mobile phone feature model, relationships
amongst the variability models are defined. The mobile phone vendor defines
in the feature model that a mobile phone always has messaging resource and
can support media and connectivity. One supplier provides a mobile media
software, which has several, detailed configuration choices. Another supplier
uses an OVM to describe the variability of the messaging system, whereas the
other supplier uses a decision model to express connectivity choices.

1.3 Research visits and collaborations

Throughout the development of these doctoral studies we carried out some
research activities in collaboration with the following universities:

• Newcastle University (United Kingdom) . A research visit was paid to
the School of Computing Science for the period from the 25th of Febru-
ary until the 3rd of April, 2009. The focus of this visit was on discussing
our research problems and gathering feedback about variability mod-
elling languages.

• Leicester University (United Kingdom). A research visit was paid to the
Department of Computer Science for the period from the 1st of October
until the 29th of December, 2009. We worked closely with the creator
of MOMENT2 [22, 23], a suite of tools that provides support for formal
model-driven development. Amongst other activities, we implemented,
using MOMENT2’s, a first version of our algorithm for the feature model
to OVM transformation presented in [107]. The refinement and applica-
tion of this algorithm is one of the tasks we placed as future work. In
addition to this, we took the opportunity to learn more about the use
of Maude language [31] for giving semantics to variability models and
specifying their verification, since researchers of this department have
an expertise in the use of this language. MOMENT2 uses Maude as the
underlying engine to model check invariants and lineal temporal logic
properties of model transformations [22].

• University of Duisburg-Essen (Germany) . During the development of
this dissertation we collaborated with members of the Software Systems
Engineering research group at the Institute for Computer Science and
Business Information Systems. Our collaboration aimed at applying our

18 Chapter 1. Introduction

results, particularly automated analysis of attribute-aware OVMs, to a
case of study. Amongst other results, the collaboration resulted in a pub-
lication in the special issue on Quality Engineering for Software Product
Lines of the Software Quality Journal [111].

• Federal University of Rio Grande do Sul (Brazil). We have organised a
workshop in Seville, Spain from the 11th until 15th of October, 2010 to
present research results of both Brazilian and Spanish research groups
aiming at preparing a collaboration project, and gathering feedback on
our work.

1.4 Structure of this dissertation

This dissertation is organised as follows:

Part I: Preface. Comprises this introduction chapter, in which we present our
research context and summarise our contributions.

Part II: Background Information. Provides the reader with information re-
garding to the research context in which our work has been developed.
In Chapter §2, we survey the most common notations of feature models
providing some examples and describe OVM. In Chapter §3, we present
a summary of the most relevant analysis operations on feature models
found in the literature and the proposed automated support for them.
This chapter is based on an extensive literature review on the analysis of
feature models presented by Benavides et al. [13].

Part III: Our Contribution. Reports on the core contributions we made with
this dissertation and is organised in four chapters. In Chapter §4, we
motivate our research work, present the problems addressed in this dis-
sertation, analyse current solutions, and conclude that current works
do not provide support for the problems we addressed. In Chapter §5,
we present our approach to automate the analysis of regular OVMs, in
which we describe the analysis process and the techniques used to au-
tomate this analysis. In Chapter §6, we introduce attribute-aware OVM,
by defining a way of expressing and relating attributes to OVM, and re-
port on our proposal to automate the analysis of attribute-aware OVMs.
In Chapter §7, we present a proof of concepts implementation of our ap-
proach using concrete solvers. In this chapter we present a study of a

1.4. Structure of this dissertation 19

case from the automotive domain in which we have used our approach
to demonstrate its feasibility.

Part IV: Final Remarks. Concludes this dissertation and highlights some fu-
ture research directions in Chapter §8.

Part V: Appendices. In Appendix §A, we present a set of mapping rules for
the Feature model to OVM transformation. A complete list of the se-
lective mapping rules defined in our dissertation is presented in Ap-
pendix §B. In Appendix §C, we present the OVM specification for the
case we have studied. Finally, in Appendix §D, we clarify the meaning
of the acronyms used throughout this dissertation.

20 Chapter 1. Introduction

Part II

Background Information

Chapter 2

Variability Models

Variabi lity is the law of life, and as no two faces are the same,
so no two bodies are alike(...)

William Osler, 1849-1919
Canadian Physician

V
ariability models are mainly used to document the variability of
software product lines. Variability modelling is used to efficiently
describe the commonalities and variabilities of a family of soft-
ware products. One of the most popular variability modelling tech-

niques is feature modelling. The first feature modelling approach was pre-
sented as part of the feature-oriented domain analysis (FODA). Since then,
several extensions of FODA have been proposed. Although the majority of
works address feature models, there are many approaches providing other
alternatives to variability management. In this chapter, we focus on those ap-
proaches to which we will refer throughout this dissertation. The remainder
of this chapter is structured as follows: Section §2.1 introduces the concept of
variability modelling. A brief survey of the most common notations for fea-
ture modelling is presented in Section §2.2. Section §2.3 presents an overview
of the orthogonal variability modelling approach. Finally, Section §2.4 sum-
marises the chapter.

23

24 Chapter 2. Variability Models

2.1 Introduction

Variability modelling was introduced in software product line engineering
to allow for an efficient documentation of what is common and what is dif-
ferent in the products of a family of software products. Variability modelling
techniques provide a mechanism to specify rules that constrain the combina-
tion of reusable assets. These constraints may come from technical restrictions
or any domain decision throughout all development phases. For instance, re-
quirement engineers have to define which requirements are mandatory (i.e.,
common to all products) and which ones are optional (i.e., may or may not
be in a specific product). Similarly, design engineers have to know the de-
pendencies and incompatibilities amongst software components. Therefore,
variability models rely on describing a set of options that must be selected
in order to derive a specific product line instance. The derivation process is
done by selecting desired and valid options in the variability model during
application engineering.

2.2 Feature models

Feature models have been proposed to represent in an abstract way the
commonalities and variabilities amongst products in a software product line.
They provide an abstract representation of all the products of the product line,
which are determined by all the possible combinations of features.

A feature model is usually composed of two main elements: features and
relationships between them. In this context, features are any domain abstrac-
tion relevant to stakeholders and are typically increments in program func-
tionality [125]. Features are arranged in a tree-like structure. Constraints of
the type requires and excludes between features can be added, leading to ad-
ditional complexity, thus resulting in a directed acyclic graph [116].

The first feature modelling approach was proposed in 1990 by Kang et al.
[71] as part of the Feature-Oriented Domain Analysis (FODA). Since then, sev-
eral extensions of FODA have been proposed. In the next sections, we provide
an overview of the classical notation of feature models, which we refer to as
Basic feature models, and briefly describe Cardinality-based and Extended
feature models. For a more complete description about feature model seman-
tics we refer the reader to Schobbens et al. [116].

2.2. Feature models 25

2.2.1 Basic feature models

We call the FODA [71] and Feature-RSEB [64] feature models basic since
they use simple relationships between features. In the FODA approach, the
relationships between features can be of two types:

i. Hierarchical relationship. This relationship is defined between a par-
ent feature and its child features. A child feature can only be part of
those products in which the parent feature appears. FODA provides
three types of hierarchical relationships:

Mandatory. It means that when the parent is part of a specific product,
the child also must be part of it.

Optional. It means that when the parent is part of a specific product, the
child may or may not be part of it.

Alternative. It means that when the parent is part of a specific prod-
uct, one and only one of the child features in the set must be in the
product.

ii. Cross-tree constraints. They are of two types:

Requires. Feature X requires Y means that if the feature X is included in
the product, then feature Y must be included as well, but not vice
versa.

Excludes. Feature X excludes Y means that if the feature X is included
in the product, then feature Y cannot be included, and vice versa.

In 1998, Griss et al. [64] proposed integrating the Feature-Oriented Do-
main Analysis method (FODA) into the so-called Reuse-Driven Software En-
gineering Business (RSEB). We refer to this notation as Feature-RSEB. They
extend FODA feature models by adding a new hierarchical relationship be-
tween parent and child features, as follows:

Or-relationship. It means that when the parent is part of a specific product,
one or more of the child features must be in the product.

Figure §2.1 depicts a basic feature model example inspired by the mobile
phone industry. This feature model represents a product line in which ev-
ery product contains eight features, namely, MobilePhone, UtilityFunctions,

26 Chapter 2. Variability Models

Mobile Phone

Utility Functions

Ringing Tones

Alarm Clock

Messaging

Calls

SMS MMS

Games

Settings Media

Camera MP3

Java Support

Basic Color

GPS

Screen

High Resolution

Mandatory

Optional

Alternative

Or

Requires

Excludes

Figure 2.1: Example of a basic feature model.

Calls, Messaging, AlarmClock, RingingTones, Settings, and Screen. Further-
more, the product line may have: i) five features, namely, GPS, Games,
JavaSupport, Media, and Camera, which can be selected or left out at will,
however, if Media is selected, MP3 must be selected as well; ii) the grouped
features Basic, Color and HighResolution that are possible choices of their par-
ent feature (Screen), but one and only one of these grouped features can be
selected, and iii) the grouped features SMS and MMS that are possible choices
of their parent feature (Messaging) with the Or relationship defining that one
or more features of the group must be selected. In addition, the constraints
requires and excludes impose limitations on the possible combinations of fea-
tures. In this case, when Games is selected, JavaSupport must be selected as
well, and GPS and Basic features cannot be part of the same product.

2.2.2 Cardinality-based feature models

In [104, 105], Riebisch and others introduced the concept of set of features
and proposed adding multiplicities (a.k.a cardinalities) to this set in order to
avoid ambiguities. To this effect, the authors proposed keeping the same no-

2.2. Feature models 27

 A

C

<1..2>

B D

Figure 2.2: Set relationship with group cardinality.

tation for mandatory and optional features as in FODA, but replacing the al-
ternative and or-relationships with a new relationship, as follows:

Set-relationship. It relates a parent feature with a set of child features. This
set can include group cardinalities, which are represented by an interval,
⟨n..n ′⟩. This cardinality limits the number of child features in the group
that can be part of a product, at least n and at most n ′. For instance, in
the relationship depicted in Figure §2.2, the number of child features that
can be part of a product is 1 or 2. The alternative relationship in FODA
is replaced by cardinality ⟨1− 1⟩, meaning that one and only one of the
child features must be part of the product. Similarly, the or-relationship
is replaced by cardinality ⟨1− n⟩, where n is the number of features in
the set, which means that one or more (at most n) of the child features
must be part of the product.

Later, Czarnecki et al. [36, 37] proposed another extension to the FODA
feature models. In these works, the authors introduce a new hierarchical re-
lationship, namely feature cardinality, maintaining the mandatory, optional,
and set relationship previously described.

Feature cardinality. It limits the number of instances of the feature that can be
part of a product. This cardinality is represented by a sequence of inter-
vals of the form [n..n ′] with n as lower bound a n ′ as upper bound. For
instance, in Figure §2.3, the feature cardinality indicates that the number
of instances of the feature B that must be part of a product is at least 2 and
at most 4. This relationship can generalise the original mandatory and
optional relationships. The mandatory relationship can be represented
by the feature cardinality [1..1] and the optional one by [0..1].

28 Chapter 2. Variability Models

 A

B

[2..4]

Figure 2.3: Sample of feature cardinality.

Root

A D

E FB C

G

Name: cost

Domain: Real

Value: 30

Name: memory

Domain: Integer

Value: 254

Name: cost

Domain: Real

Value: 250 Name: cost

Domain: Real

Value: 250

Name: cost

Domain: Real

Value: 75.5

Name: memory

Domain: Integer

Value: 32

Name: memory

Domain: Integer

Value: 32

Name: memory

Domain: Integer

Value: 512

Constraint: B and C implies E.memory > 64

Figure 2.4: Sample of an extended feature model.

2.2.3 Extended feature models

Some authors have identified the need to extend feature models with at-
tributes such as memory consumption, binary size and development cost [15,
37, 72]. The purpose of this extension is to add measurable information about
the features, which is done by introducing attributes to features. As stated by
[13], there is no consensus on a notation to define attributes. However, most
proposals agree that an attribute should consist of a name, a domain and a
value. Figure §2.4 shows an example of an extended feature model using the
notation proposed by [15].

2.3. Orthogonal variability models 29

Base Models

Requirements Architecture Components Test artefacts

OVM

Figure 2.5: Orthogonality of OVM (based on [90]).

Note that, this extension enables the inclusion of more complex constraints
amongst features and attributes. For example, it is possible to specify con-
straints like: “If feature B and feature C are selected, then memory of feature
E must be higher than 64”.

2.3 Orthogonal variability models

The Orthogonal Variability Model (OVM) is a modelling language pro-
posed by Pohl et al. [102] to define the variability of a software product line
in an orthogonal way, i.e., it provides a cross-sectional view of the variabil-
ity across all product line artefacts. OVM interrelates the variability in base
models such as requirement models, design models, component models, and
test models (see Figure §2.5). The traceability between OVM and the different
types of base models is established through artefact dependencies (dashed
lines in Figure §2.5). Figure §2.6 shows an example of a graphical notation
for OVM. On the right hand side, the meaning of each graphical element and
their relationships is depicted.

An OVM is composed of two main elements: variation points and variants.
We refer to these elements as variability elements, and they have the following
meaning:

30 Chapter 2. Variability Models

Mandatory Variation Point
(it must always be bound)

Optional Variation Point
(It may or may not be bound)

[min..max]

Alternative variability dependency
(the cardinality determines
how many variants of the group
can be bound)

Mandatory variability dependency
(the variant must be bound whenever
 its parent VP is bound)

Optional variability dependency
(the variant may or may not be bound
 whenever its parent VP is bound)

Requires constraint dependency
(the selection of a specific element
requires the selection of another one)

V
Variant

VP

VP2

VP

VP1

1..2

V2
V

V3
V

V1
V

V4
V

V5

V

VP

VP

Excludes constraint dependency
(the selection of a specific element
forbid the selection of another one)

Figure 2.6: Graphical notation for OVMs.

Variation Point (VP). It documents what can vary within artefacts of the
product line, i.e., where differences exist in the final software product,
and are chosen by the customer or engineer of the software product line.
For instance, products may differ with respect to operating systems they
support, with respect to whether they provide access to the internet or
not, and so on. Variation points can be mandatory or optional.

Variant (V). It is related to a variation point and documents how such varia-
tion point can vary. For instance, products may come with two different
operating systems.

The relationships between variability elements can be of two types:

Variability dependencies. They define the rules that constraint the possible
choices (variants) to a variation point. Variability dependencies can be
of three types, namely: mandatory, optional, and alternative, as shown
in Figure §2.7. The cardinality in the alternative relationship determines
how many variants can be chosen simultaneously. We refer to the vari-
ability dependency between a variation point and a variant as parent-
child relationship.

2.3. Orthogonal variability models 31

Variation Point

Constraint

Dependency

Requires

VP_VP

Excludes

VP_VP

Variation Point to

Variant Constraint

Dependency

Requires

V_VP

Excludes

V_VP

Variant

Constraint

Dependency

Requires

V_V

Excludes

V_V

Variation Point Variant

Internal

Variation Point

External

Variation Point

VP Artefact

Dependency

Development

Artefact

Artefact

Dependency

Variability

Dependency

Alternative

min

max

re
a

liz
a

e
d

 b
y

represented by

part of

constrainsconstrainsconstrains

Optional Mandatory

Figure 2.7: OVM metamodel (from [102]).

Constraint dependencies. They define possible dependencies and incompat-
ibilities amongst variant selections. They are of two forms: excludes and
requires, as shown in Figure §2.7.

The first OVM’s abstract syntax was defined in [102] by means of a meta-
model, which describes what is a well-formed OVM diagram (see Figure §2.7).
In this meta-model, InternalVariationPoint and ExternalVariationPoint
represent the type of variation point with regard to the visibility of the vari-
ability they document, i.e., internal variation point has child variants that are
only visible to developers but not to customers, and external variation point
has child variants that are visible to developers and customers. These classi-
fication of variation points is not observed in the graphical notation. Further-
more, the grey elements depicted in the meta-model represent the relationship
between variability and artefacts, where DevelopmentArtefact is an abstract
class that represents any kind of software artefact, realised by association

32 Chapter 2. Variability Models

V

VP

V
Java support

Settings

V

VV

VP

Games
V

GPS

Utility
functions

VP

Camera
V

MP3
V

VP

Media[1..2]

SMS MMS

VV

VP

Messaging

[1..1]

Basic Color

VV

VP
Screen

resolution

High

V

Figure 2.8: Example of an OVM.

relates Variant with DevelopmentArtefact, and represented by association
relates VariationPoint with DevelopmentArtefact. These associations deter-
mine that i) a variant must be related to one or more artefacts, but an artefact
can but does not have to be related to one or more variants, and ii) a variation
point can be related to zero or more artefacts, and an artefact can be related to
zero or more variation points.

Later, the previously described abstract syntax was defined in mathemati-
cal notation by Metzger et al. [91]. In their work, the authors introduced two
small changes in the language, as follows:

• two types of variation points are distinguished, Optional and Manda-
tory (see VP1 and VP2 in Figure §2.6);

• the variation points have at least one child and each variant has at most
one parent.

As an example, Figure §2.8 depicts a possible OVM for the mobile phone
product line presented in Figure §2.1.

In summary, an OVM provides an abstract representation of all the varia-
tions of the product line, which are determined by all the possible combina-
tions of variation points and variants in the OVM.

2.4. Summary 33

2.4 Summary

In this chapter, we have introduced the concept of variability models. In
particular, we have presented an overview of feature models, the most popu-
lar variability model in the literature. We also have presented extended feature
models since the concepts introduced in this kind of model are relevant to the
context of this dissertation. Furthermore, we have introduced the orthogonal
variability modelling language, which is the focus of our research and thus
is used throughout the writing of this dissertation. For a more complete and
rigorous definition of orthogonal variability modelling language we refer the
reader to Metzger et al. [91].

34 Chapter 2. Variability Models

Chapter 3

Automated Analysis of Feature
Models

Computers are useless.
T hey can only give you answers.

Pablo Picasso, 1881–1973
Spanish Cubist painter

T
he automated analysis of feature models deals with the computer-
aided extraction of information from feature models. In this chapter,
we give an overview of the main contributions found in the litera-
ture in the context of automated analysis of feature models. In Sec-

tion §3.1, we report on the importance of automated analysis of variability
models, especially feature models, and describe the automated analysis pro-
cess used by most of the approaches. Next, in Section §3.2, we summarise
some of the analysis operations proposed by the research community. In Sec-
tion §3.3, we present some of the approaches providing automated support for
the analysis of feature models. In Section §3.4, we provide information about
the automated analysis of feature models with abstract features. Finally, Sec-
tion §3.5 summarises the chapter.

35

36 Chapter 3. Automated Analysis of Feature Models

3.1 Introduction

In the software product line community, it is well-known that variability
in product lines is increasing [6, 78, 121, 122, 143]; feature models may have
thousands of features, and these features may have complex dependencies
amongst them. Moreover, the number of possible products (i.e., feature com-
binations) may grow exponentially with the number of features in the feature
model. For instance, the number of possible different products that can be
derived from the mobile phone product line is 45, as shown in Figure §2.1
(Section §2.2.1). However, if we increase the number of features in this prod-
uct line from 19 to 30 features, and the new relationships between features
increases the number of possible combinations, the number of possible prod-
ucts may reach 5040. Therefore, the management of such models is practically
impossible without an automated tool support. In addition, analysis opera-
tions such as whether a product belongs to a product line or whether a feature
model contains any errors, can become a very difficult and error-prone task to
be done manually. As a consequence, automated analysis of feature models
has increasingly become a relevant research topic for the software product line
community.

The automated analysis of software product lines by means of variabil-
ity models can be considered as the computer-aided extraction of information
from variability models [13]. As reviewed by Benavides et al. [13], many au-
thors have proposed approaches to automate the analysis of feature models.
Currently, there are some contributions on the automated analysis of other
variability models (e.g., DOPLER decision models [84]), however they are
practically based on the same concepts introduced in the analysis of feature
models. Therefore, in this chapter, we focus our attention on describing con-
cepts and analysis operations in the context of the analysis of feature models.

The purpose of automated analysis of feature models is to extract informa-
tion from feature models using automated mechanisms [6]. This extraction is
mainly performed in a two-step process depicted in Figure §3.1. The first step
consists of translating an input data into a representation or paradigm such
as propositional logic, description logic or any ad-hoc data structure. Then,
in the second step, off-the-shelf solvers or specific algorithms are used to au-
tomatically analyse the intermediate representation generated from the given
input, and then provide the obtained result. The input data is made up of
one or more parameters, but it necessarily includes a feature model. The other
parameters to be included in the input data are determined by the analysis
operations to be carried out in the second step. This implies that analysis op-

3.2. Analysis operations on feature models 37

Inputs

Operation selection

+ [...] TranslatorTranslator

first step second step

Solver/ToolSolver/Tool

filter void explanation

optimization

filter dead void

#products

explanation

...

Intermediate

representation

Analysis

results

Figure 3.1: Process for the automated analysis of feature models.

erations are central and thus practically guide the analysis process.

In the rest of this chapter, we briefly report on the most relevant analysis
operations found in the literature, and also on the different proposals provid-
ing automated support for the analysis of feature models. First, we explain
the operations and give some examples. Then, we present and explain the
approaches proposed to automate the analysis.

3.2 Analysis operations on feature models

An analysis operation takes a set of parameters as input and returns a re-
sult as output. From the results obtained, product line engineers, product
managers or developers can improve their decision making [8, 99, 128]. In
2010, Benavides et al. [13] performed an exhaustive literature review to bring
the software product line community up to date with current literature on the
analysis of feature models. In this literature review, 30 different analysis oper-
ations that can be performed on feature models were identified.

38 Chapter 3. Automated Analysis of Feature Models

Mobile Phone

MessagingCalls OS

Symbian WinCE

Media

Camera MP3

Figure 3.2: A simple feature model for the mobile phone product line.

3.2.1 Input and output parameters

Before we delve into the definition of each operation, it is important to
clarify some of the terms that are necessary to understand the operation defi-
nitions, since they are usually ambiguously defined in the literature. Accord-
ing to Benavides et al. [13], in addition to feature models, typical input and
output parameters for the analysis operations can be described as follows:

• Configuration. Given a feature model with a set of features F, a configu-
ration is a 2–tuple of the form (S,R) such that S, R ⊆ F being S the set of
features to be selected and R the set of features to be removed such that
S ∩ R = ∅. There are two types of configurations, as follows:

⋄ Full configuration. If S ∪ R = F the configuration is called full con-
figuration. To give an example, we use a simpler feature model for
the mobile phone presented in Figure §3.2. A possible full configu-
ration (FC) for this model can be as follows:
FC =({MobilePhone,Calls,Messaging,OS,Symbian}, {WinCE,Media,Camera,MP3})

⋄ Partial configuration. If S ∪ R ⊂ F the configuration is called partial
configuration. As an example, a possible partial configuration (PC)
for the model in Figure §3.2 can be as follows:
PC = ({MobilePhone,Calls,Messaging,OS,Symbian}, {MP3})

• Product. A product is equivalent to a full configuration, but in this case,
features that should be removed can be omitted. Thus, the product (P)
equivalent to the full configuration described above is as follows:

P = {MobilePhone,Calls,Messaging,OS,Symbian}

3.2. Analysis operations on feature models 39

Is the model void?

Mobile Phone

MessagingCalls OS

Symbian WinCE

Media

Camera MP3
excludes

yes, it is!

Figure 3.3: Sample of void feature model.

3.2.2 Operations overview

Some of the most common analysis operations on feature models are as
follows:

Void feature models. A feature model is void if it does not represent any
product. Figure §3.3 shows how the feature model previously pre-
sented in Figure §3.2 become void by the wrong use of a constraint.
The excludes constraint makes the simultaneous selection of Calls and
Messaging impossible, which leads the model to a contradiction since
both features are mandatory and thus must be in all products. The au-
tomation of this operation may be helpful since the manual detection of
errors is error-prone and time-consuming [5, 71, 127].

Valid product. A product is valid if it belongs to the set of products repre-
sented by the feature model. For instance, consider the feature model in
Figure §3.2 and the products, P1 and P2, described below.

P1 = {MobilePhone,Calls,Messaging,OS,Symbian}
P2 = {MobilePhone,Messaging,OS,Symbian,Media,MP3}

Product P1 is valid since it includes all the mandatory features, namely,
MobilePhone, Calls, Messaging, and OS and besides, one and only one
of the operating systems is selected, Symbian. On the other hand, prod-
uct P2 does not belong to the set of products represented by the model
since it does not include all the mandatory features. This operation may
be helpful for product line managers to verify whether a given product
is available in the software product line.

40 Chapter 3. Automated Analysis of Feature Models

All products. This operation returns the set of products represented by a
given feature model. For instance, the set of all products of the feature
model presented in Figure §3.2 is as follows:

P1 = {MobilePhone,Calls,Messaging,OS,Symbian}
P2 = {MobilePhone,Calls,Messaging,OS,Symbian,Media,MP3}
P3 = {MobilePhone,Calls,Messaging,OS,Symbian,Media,Camera}
P4 = {MobilePhone,Calls,Messaging,OS,Symbian,Media,Camera,MP3}
P5 = {MobilePhone,Calls,Messaging,OS,WinCE}
P6 = {MobilePhone,Calls,Messaging,OS,WinCE,Media,MP3}
P7 = {MobilePhone,Calls,Messaging,OS,WinCE,Media,Camera}
P8 = {MobilePhone,Calls,Messaging,OS,WinCE,Media,Camera,MP3}

This operation may be helpful to give an overview of the scope of the
product line.

Number of products. This operation returns the number of products repre-
sented by a given feature model. As an example, the feature model de-
picted in Figure §3.2 represents 8 products, whereas the feature model in
Figure §2.1 represents 45.

This operation provides information about flexibility and complexity of
the software product line [15, 38, 137]. In the example in Figure §2.1, if
we simply remove the requires from Games to JavaSupport, the number
of products raises from 45 to 60. A big number of potential products
may reveal a more flexible product line; however, this may increase its
complexity.

Filter. Given an input configuration, it returns the set of products including
such configuration that can be derived from a given feature model. As
an example, the set of products of the feature model in Figure §3.2 ap-
plying the filter with the partial configuration ({Symbian}, {MP3}), where
feature Symbian is selected and feature MP3 is removed, are as detailed
below:

P1 = {MobilePhone,Calls,Messaging,OS,Symbian}
P2 = {MobilePhone,Calls,Messaging,OS,Symbian,Media,Camera}

Dead features. A feature is dead if it does not appear in any of the products
represented by a given feature model. This is an undesirable situation
since the model gives to the user a false view of the product line do-
main. Figure §3.4 shows some typical cases that generate dead features
in feature models (features “D” are dead).

False optional features. A feature is false optional if despite it not being mod-
elled as mandatory, it is included in all the products represented by the

3.2. Analysis operations on feature models 41

D D

D D D

Figure 3.4: Typical cases of dead features.

FO

FO FO FO

FO FO

Figure 3.5: Typical cases of false optional features.

model. Just as with dead features, false optional features give a wrong
idea of the product line domain. Figure §3.5 shows some typical cases
that generate false optional features (features “FO” are false optional).

Commonality. This operation returns the percentage of valid products repre-
sented by a given feature model in which an input feature appears. For
instance, the commonality of feature Camera in the model in Figure §3.2
is 0.5 since Camera is included in 4 out of the 8 products represented
by the model. This means that feature Camera appears in 50% of the
products of the product line. This operation can easily be generalised in
order to receive as input a configuration instead of a single feature, as
described in [13].

Optimisation. This operation returns the optimal product(s), i.e., the solu-
tion(s) that optimise a problem associated with an objective function.
This operation applies to extended feature models where features have
attributes. Finding the optimal solution, as opposed to any possible so-
lution, may be helpful for making attribute-aware decisions. As an ex-
ample, consider the model in Figure §2.4, on page 28. This model has
several attributes called memory, which are associated to some features.
Each of these attributes has a value. So, if a product line engineer wants
to know which product of the set of products represented by this model
consumes less memory, the optimisation operation can be used. The ob-

42 Chapter 3. Automated Analysis of Feature Models

jective function would be defined as the sum of values of the attributes
memory, and the optimal product(s) would be one(s) that minimise this
objective function. Consider that the set of all possible products is as
follows:

P1 = {Root,A,B,G}

P2 = {Root,A,B,D,E,G}

P3 = {Root,A,B,D,F,G}

P4 = {Root,A,B,C,D,E,G}

P5 = {Root,A,C,D,E,G}

Then, the optimal product is product P5 since it minimises the sum of
values of attributes memory; features C and D consumes less memory
than features B and F.

Edits. These operations give information about how two different models are
related. These operations are useful for determining how a model has
evolved over time. Editing a feature model produces a new feature
model. In [125], the authors consider that modifications to evolve a fea-
ture model can be classified as: refactorings, specialisations, generaliza-
tions, or arbitrary edits, as shown in Figure §3.6. An edit is a refactoring
when the original and the resulting feature models represent exactly the
same set of products; it is a specialisation when existing products are
removed, but no new products added; it is a generalisation when new
products are added, but no existing products are removed; and, an edit
is arbitrary when it cannot be classified into any of the previous edits.

For a more formal definition of the analysis operations on feature models
we refer the reader to [8, 44].

3.3 Automated support for the analysis of feature
models

As identified by Benavides et al. [13], a number of different techniques
and algorithms proposed to automatically analyse some of the analysis opera-
tions on feature models were identified. These works can be divided into four
categories according to the logical paradigm or technique used to automated
the analysis: namely, propositional logic, constraint programming, descrip-
tion logic, and ad-hoc. Ad-hoc solutions are those that are not classified in the
former groups. In the next sections, we give more details about approaches

3.3. Automated support for the analysis of feature models 43

No products deleted

Products deleted

No products added Products added

Refactoring Generalization

Specialization Arbitrary

Set of products represented by the original feature model

Set of products represented by the resulting feature model

Figure 3.6: Classification of feature model edits (from Thüm et al. [125]).

that use constraints programming and propositional logic paradigm, which
we consider more relevant in the context of our dissertation. For a more ex-
tensive survey of approaches providing automated support for the analysis of
feature models we refer the reader to [13].

3.3.1 Constraint programming

Constraint Programming is a discipline that relies on a set of techniques
and algorithms to deal with constraint satisfaction problems (CSPs) [1]. A
CSP is defined as a set of variables, a set of domains for those variables, and a
set of constraints restricting the values of those variables [131]. A CSP solver
takes a problem modelled as a CSP and determines whether there is a solution
for the problem. Particularly, it searches for a valid set of variable values that
simultaneously satisfies all constraints. For example, suppose x1, x2, x3 are
variables of a CSP, all with domains in [1, 2, 3], and (x1 = x2), (x2 < x3) being
the constraints. A solution to this CSP is an assignment to every variable of
some value in its domain such that it does not violate any of the constraints.
Therefore, a possible solution to this CSP is ((x1 7→ 1), (x2 7→ 1), (x3 7→ 2)).
We usually denote the set of solutions of a CSP as sol(ψ).

Unlike propositional formulas, constraint programming deals not only

44 Chapter 3. Automated Analysis of Feature Models

with boolean variables but also offer the possibility to work with numerical
variables, such as integer or intervals, which, for instance, allow dealing with
attributes of features, enabling them to maximise or minimise values.

The mapping of a feature model into a CSP can change depending on the
solver that is used later for the analysis. The language used to define CSPs,
and therefore the type of constraints allowed in common CSP solvers can vary
greatly. In order to provide a generic CSP language to specify feature mod-
els as CSPs, Benavides [8] has formally defined a general abstract language of
CSPs for feature models, which is independent of the solver. Roughly speak-
ing, this generic CSP allows defining constraints by using operators, such as
and, or, not, implies, biconditional, atMostOne, and AtLeastOne.

In general, the mapping of a feature model into CSP follows the next steps:

i. each feature of the feature model becomes a variable of the CSP with a
domain in {0..1} or {true, false}, depending on the solver to be used;

ii. each relationship of the model becomes a constraint which depends on
the type of relationship. Some auxiliary variables can be needed;

iii. a constraint assigning true to the variable that represents the root is de-
fined, i.e., “root ⇐⇒ true” or “root == 1”, depending on the vari-
ables’ domains;

iv. the resulting CSP is the one defined by the variables of step i with the
corresponding domains and a constraint that is the conjunction of all
constraints defined in steps ii and iii.

As proposed by some authors, after the mapping of feature models into
CSP, an off-the-shelf solver is used to automatically analyse the CSP and thus
the feature model. Some of the solvers used for this analysis are: JaCoP [70],
Choco [75], OPL studio [95], GNU Prolog [60], and SkyBlue [113].

In Table §3.1 we list the rules for translating each type of relationship in the
feature model into a generic CSP, as provided by Benavides et al. [15]. In this
table, we also present the rules for the mapping of the mobile phone feature
model presented in Figure §2.1 into the JaCoP solver.

3.3. Automated support for the analysis of feature models 45

implies(id(F2,id(F1))

CSP mapping

biconditional(id(F1),id(F2))

Relationship JaCoP-like notation

E
X
C
L
U
D
E
S

R
E
Q
U
IR
E
S

M
A
N
D
A
T
O
R
Y

O
P
T
IO
N
A
L

O
R

A
L
T
E
R
N
A
T
IV
E

biconditional(id(F1),id(F2)),

atLeastOne({F1, F2,...,Fn})

MobilePhone = UtilityFunctions

MobilePhone = Settings

UtilityFunctions = Calls

UtilityFunctions = Messaging

UtilityFunctions = AlarmClock

UtilityFunctions = RingingTones

Settings = Screen

Media = MP3

if (MobilePhone = 0)

 Media = 0

if (UtilityFunctions = 0)

 GPS = 0

if (UtilityFunctions = 0)

 Games = 0

if (Settings = 0)

 JavaSupport = 0

if (Media = 0)

 Camera = 0

if (Messaging > 0)

 sum (SMS,MMS) in {1..2}

else

 SMS = 0, MMS = 0

if (Screen > 0)

 sum (Basic, Color, highResolution) in {1..1}

else

 Basic = 0, Color = 0, HighResolution = 0

if (Games > 0)

 JavaSupport > 0

if (GPS > 0)

 Basic = 0

biconditional(id(F1),id(F2)),

atMostOne({F1, F2,...,Fn})

implies(id(F1,id(F2))

implies(id(F1,not(id(F2)))

Table 3.1: Mapping from a feature model to CSP.

3.3.2 Propositional logic

There are a number of approaches in the literature proposing the use of
propositional formulas for the automated analysis of feature models. A propo-
sitional formula consists of a set of primitive symbols or variables, which are
interpreted as either true or false, and a set of logical connectives (e.g., ∧, ∨,

46 Chapter 3. Automated Analysis of Feature Models

¬, ⇒, ⇔). If the values of all variables are given, the formula determines
a unique truth value. It has been proved that every propositional formula
can be converted into an equivalent Conjunctive Normal Form (CNF) [34]. A
CNF is a standard form to represent propositional formulas where only ∧, ∨,
¬ connectives are allowed. We may remark that a propositional formula can
be considered an special instance of CSP, where the variables are boolean and
constraints are composed of logical connectives.

In general, the mapping of a feature model into a propositional formula
follows four steps, namely:

i. each feature of the feature model becomes a variable in the propositional
formula;

ii. each relationship of the model becomes one or more small formulas; the
specific formula depends on the type of relationship. Some auxiliary
variables can be needed;

iii. a constraint assigning true to the variable that represents the root is de-
fined, i.e., ′′root⇔ true ′′;

iv. the resulting formula is the conjunction of all the resulting formulas of
step ii plus the additional constraint of step iii.

After the mapping of feature models into a propositional formula, an off-
the-shelf solver is used to automatically analyse the formula and thus the fea-
ture model. The most commonly used solvers are SAT [18], and BDD [142].

Propositional satisfiability problem (SAT) is the problem of determining
if there is a variable assignment that makes a given propositional formula
(in CNF) evaluates to true. SAT is a well-known NP-complete problem [34].
However, the advances in SAT solving algorithms have significantly im-
proved SAT solver tools allowing them to decide the satisfiability of industrial
problems with tens of thousands of variables and millions of clauses [83].

Another way of determining if a given formula is satisfiable is by using a
Binary Decision Diagram (BDD) solver. This is a software package that takes
a propositional formula as input (not necessarily in CNF) and translates it into
a BDD (i.e., a data structure that is used to represent a propositional formula).
The formula being represented and the ordering of the variables determine
the size of the BDD. It is of crucial importance to care about variable ordering
since in the worst case it increases exponentially the size of the structure. It

3.3. Automated support for the analysis of feature models 47

Propositional logic mappingRelationship Mobile phone example

E
X
C
L
U
D
E
S

R
E
Q
U
IR
E
S

M
A
N
D
A
T
O
R
Y

O
P
T
IO
N
A
L

O
R

A
L
T
E
R
N
A
T
IV
E

F1 F2

V

V

F2 F1V

F (F1 v F2 v ... v Fn)

V

V

V

V

vv

(F1 F2(... Fn

v

F))

v

V

V

vv

(F2 F1(... Fn

v

F))

v

V

V

vv

(Fn F1(... Fn-1

v

F)) F2

v
F1 F2V

(F1

v

F2)

MobilePhone

MobilePhone

UtilityFunctions

UtilityFunctions

UtilityFunctions

UtilityFunctions

Settings

Media

UtilityFunctions

Settings

Calls

Messaging

AlarmClock

RingingTones

Screen

MP3

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

MobilePhone

UtilityFunctions

UtilityFunctions

Settings

Media

Media

GPS

Games

JavaSupport

Camera

V
V

V
V

V

Messaging (SMS v MMS)

V

V

V

V

v

(Basic Color(HighResolution

v

Screen))

v

V

V

v

(Color Basic(HighResolution

v

Screen))

v

V

V(HighResolution Basic(

v

Screen)) Color

v
Games JavaSupportV

(GPS

v

Basic)

Table 3.2: Mapping from a feature model to propositional logic.

is usually possible to find a good variable ordering that reduces this size, but
finding the best variable ordering is an NP-complete problem [20]. On the
other hand, BDD solvers are able to count the number of possible solutions
very efficiently [26].

In Table §3.2, we list the concrete rules for translating each type of relation-
ship in the feature model into a small formula, as provided by Benavides et al.
[11]. In the same figure, as an example, we add the mapping of the mobile
phone feature model presented in Figure §2.1.

48 Chapter 3. Automated Analysis of Feature Models

Mobile Phone

MessagingCalls Connectivity

Wifi USB

Figure 3.7: Feature model with abstract features.

Valid Products Program Variants

{MobilePhone,Calls,Messaging}
{MobilePhone,Calls,Messaging}

{MobilePhone,Calls,Messaging,Connectivity}

{MobilePhone,Calls,Messaging,Connectivity,Wifi} {MobilePhone,Calls,Messaging,Wifi}

{MobilePhone,Calls,Messaging,Connectivity,USB} {MobilePhone,Calls,Messaging,USB}

{MobilePhone,Calls,Messaging,Connectivity,Wifi,USB} {MobilePhone,Calls,Messaging,Wifi,USB}
Connectivity is an abstract feature

Table 3.3: Multiple products may result in the same program variant.

3.4 Automated analysis of feature models with ab-
stract features

Most of the approaches that provide automated support for the analysis of
feature models aim at reasoning about the combination of all features (valid
products) represented by the feature model. They do not take into account
whether these features are relevant at implementation level or not. In order to
reason about the combinations of features that are relevant at implementation
level, which they refer to as program variants, Thüm et al. [126] have pro-
posed to explicitly denote abstract features in feature modelling. Figure §3.7
depicts an example of a feature model, in which feature Connectivity is ab-
stract.

Abstract features are features used usually to structure a feature model,
but that do not have any impact at implementation level, i.e., selecting or re-
moving abstract features does not make any difference in the generated code.
Therefore, the set of valid products and the set of program variants are not

3.5. Summary 49

equivalent. Usually, multiple products represented by a feature model result
in the same program variant. For example, the model in Figure §3.7 represents
five valid products, however, they result in only 4 different program variants,
as shown in Table §3.3. In Section §5, we comment and discuss the possible
impact of abstract elements on the analysis operations.

3.5 Summary

In this chapter, we have presented the main concepts in the context of the
automated analysis of feature models. We have focused on the analysis op-
erations and the different kinds of automated support found in the literature.
In particular, we have considered those operations that are more relevant in
the context of our dissertation, and those related works proposing support
for the analysis of feature models, which are based on propositional logic or
constraint programming.

50 Chapter 3. Automated Analysis of Feature Models

Part III

Our Contribution

Chapter 4

Motivation

T he important thing in science is not so much to obtain new facts
as to discover new ways of thinking about them.

William Bragg, 1862–1942
British physicist and Nobel Prize in Physics 1915

O
ur goal in this chapter is to introduce the problems identified dur-
ing our research and to motivate this dissertation. We analyse the
current solutions and bring attention to the contributions we have
done to solve the problems. In Section §4.1, we motivate our re-

search. In Section §4.2, we present the main problems addressed in this dis-
sertation. In Section §4.3, we review the current solutions found in the litera-
ture. In Section §4.4, we resume, analyse, and compare current solutions and
contextualise our contributions. Finally, Section §4.5 summarises the chapter.

53

54 Chapter 4. Motivation

4.1 Introduction

Variability models have a key role in documenting variability of software
product lines, allowing the variability management, especially during product
derivation [119]. The automated analysis of variability models is an active
research topic that has received attention of many researchers during the last
twenty years [13]. Most of this research has been focused on feature models,
resulting in a number of analysis operations, techniques and tools to automate
the analysis of this kind of models.

The variability in variability models can be extended with measurable at-
tributes (e.g., CPU and memory consumption) and constraints on these at-
tributes, resulting in attribute-aware variability models. For example, in cases
in which there are limitations of resources, such as memory capacity and CPU
time, the derivation of products that do not satisfy those conditions must be
avoided. The automated analysis of attribute-aware variability models is also
important to guarantee that the derived software products reach the desired
attribute constraints. The early analysis of this kind of models is particularly
important, since any anomaly should be identified before the derivation of
specific products. Furthermore, the wrong use of constraints on attributes may
cause anomalies in the specification, leading to contradictory or to misleading
information about the scope of the product line. Such anomalies should be de-
tected and avoided to assure that desired products can be configured. If any
anomaly is not detected early, all products that were developed based on the
anomalous domain artefacts have to be corrected. This can lead to high cost
and effort.

The increasing interest in variability modelling techniques has led to re-
search papers and industrial experiences on the use, formalisation and appli-
cation of different variability models, such as the works presented by Bühne
et al. [27], Dhungana et al. [39, 42], Forster et al. [55], Lauenroth and Pohl
[76], Loughran et al. [79], Mazo et al. [84], Metzger et al. [91], Petersen et al.
[101], Schmid et al. [115], Sinnema et al. [120], Sun et al. [123], and Dhungana
et al. [41]. Therefore, due to the existence of different variability modelling
techniques, different organisation needs, and a multi-organisation software
development environment, it is necessary to rely on a support for the auto-
mated analysis of variability models beyond feature models. Furthermore,
this analysis should take into account attribute-aware variability models. For
example, as we describe in §1.2.3, this necessity is identified in the context of
multi product lines, as shown in Figure §1.5, on page 16.

4.1. Introduction 55

In the literature we have found a number of approaches to perform the
automated analysis of variability models; however, the vast majority of them
are focused on feature models and hardly address attribute-aware variability
models. Our main motivation in this dissertation is to provide support for the
automated analysis of both OVMs and attribute-aware OVMs. There is so far
only one approach dealing with the automated analysis of OVMs. Neverthe-
less, that proposal does not solve many of the problems we have addressed in
this dissertation, which are as follows:

i. Elements cannot be made explicit in the OVM language .

ii. None of the approaches provide attribute-aware OVMs.

iii. The automated analysis of OVMs has been little explored.

iv. None of the approaches provide support for the automated analysis of
attribute-aware OVMs.

We are aware that feature models are one of the most common approaches
employed to represent variability of software product lines. However, there
may be some cases were OVM can be considered as a more appropriate op-
tion [16, 27, 79]. We believe that it would be of practical importance to have
interoperability between FaMa-FM and FaMa-OVM analysis tools (see Sec-
tion §1.2.3). In addition, we believe that the interoperability between different
variability modelling tools can become useful in a software ecosystems built
specifically to support software product line development. Currently, there is
no such support.

In the context of FaMa ecosystem we are already able to automatically anal-
yse feature models, and we intend to provide support for OVMs. A tool sup-
port for transforming feature models into OVM and vice versa would support
the interoperability between FaMa-FM and FaMa-OVM, allowing the engi-
neers of a product line to work with different views of the product line vari-
ability. On the one hand, a hierarchical view of all features of the product
line represented with feature models, and on the other hand, another view
where only the variation points are visualised represented with OVM, see
Figure §4.1. Currently, there is no tool support that provides interoperabil-
ity between feature models and OVM.

56 Chapter 4. Motivation

 Feature Model

 (hierarchical view of features)

A

H

C

D E

F

G

OVM

(variability view)

FM to OVM

B

Root

VP

[1..2]

VV

C

D E
V

F

VP

A

Figure 4.1: Different views of variability of a software product line.

4.2 Problems

The main contributions of this dissertation were motivated by the follow-
ing problems:

i. IMPROVEMENTS ON MODELLING CONCEPTS

Abstract elements should be made explicit in the OVM. Currently,
there is no way to explicitly denote abstract elements in an OVM. Ab-
stract elements are used to structure the variability, but are not relevant
for the analysis.

The lack of a technique to associate attributes with OVM. Currently,
when using OVM to represent variability in software product line devel-
opment, there are no techniques to specify attributes and constraints on
them. When attributes are specified, and thus can be associated to vari-
ability in the OVM, the analysis of attribute-aware OVMs can be carried
out.

ii. AUTOMATED ANALYSIS OF OVMs

The lack of automated support for the analysis of OVMs. In the soft-
ware product line community, it is well-known that variability in prod-

4.2. Problems 57

uct lines is increasing. OVMs may have thousands of variants and varia-
tion points, and complex dependencies amongst these elements as well.
It is practically impossible to manually carry out the analysis of OVMs,
and besides, it is an error-prone task. The automated analysis of OVM
has hardly been explored by the research community. Moreover, the
analysis of OVMs considering abstract elements has not been addressed
so far. In addition, we intend to endow the FaMa ecosystem by provid-
ing support for the automated analysis of OVMs.

The lack of automated support for the analysis of attribute-aware
OVMs. In software product line engineering, analysis of attribute-aware
variability models can be used to guarantee that the derived software
products reach the desired attribute constraints. This analysis can i) de-
tect anomalies that are introduced in the model when adding attributes
specifications, and ii) support attribute-aware decisions. Due to the com-
plexity of this analysis it is essential to rely on automated support.

iii. INTEROPERABILITY BETWEEN OVM AND FEATURE MODEL
TOOLS

The lack of a comparison between feature model and OVM languages.
The question of “Which approach is the most suitable and in which con-
text?”, is not solved yet. A comparison study to identify the weaknesses
and strengths of these languages, considering specific contexts, would
be of interest for the software product line community.

Feature models to OVM transformation. Currently, there is no ap-
proach for the interoperability of feature models and OVM. It is likely
that a software product line development team may need to work with
different variability modelling techniques when working in collabora-
tion with another team. It would be helpful for these teams to have
an automatic transformation between both variability modelling lan-
guages.

58 Chapter 4. Motivation

4.3 Analysis of current solutions

In the next section, we present some related works found in the literature.
We have grouped them according to the aforementioned problems: modelling
concepts, automated analysis of OVMs, and interoperability between OVM
and feature model tools.

4.3.1 Modelling Concepts

With regard to abstract elements, all the works we have found in the litera-
ture do not provide support for making explicit the abstract elements in OVM;
all of them deal with feature models, as can be seen below.

Some authors have acknowledged that not all features are relevant at im-
plementation level (i.e., abstract features) [7, 143]; however, those authors only
considered the implicit use of abstract features and did not provide a way of
specifying them. Batory et al. [7] noted that some features are “empty” be-
cause no code needs to be written to implement that functionality. White et al.
[143] commented that features that consume resources or affect implementa-
tion are most often the leaves of the feature model.

Schobbens et al. [116] distinguished two types of features, namely: prim-
itive and compound. Primitive features are those that will influence in the
final product, and compound features are just intermediate features used for
decomposition. Metzger et al. [91] also distinguished two types of features,
which they call primitive and non-primitive. The former are the set of features
that the modeller considers relevant, whereas the latter are the ones consid-
ered irrelevant. In both approaches, the authors emphasised that primitive
features and leaf features are different concepts, since non-leaf features can be
deemed relevant by the modeller. For generality purposes, they leave it to the
modeler to define which features in the feature diagram are relevant or not.

Thüm et al. [126] introduced the concept of abstract features, i.e., features
used to structure a feature model, but that do not have any impact on the
implementation level. They argued that feature models should provide an ex-
plicit way of defining abstract features. Taking into account abstract features,
analysis techniques can reason about the combination of all features as well
as about the combinations of features relevant at implementation level. They
provided a technique based on propositional formula to automate the analysis

4.3. Analysis of current solutions 59

of both approaches.

With regard to attribute-aware OVMs, we have not found any approach
dealing with them. In the following, we report on those approaches that deal
with other attribute-aware variability models.

Accordingly to Montagud and Abrahão [93], a number of research efforts
have been made to capture attributes and their relationship with functional
features. Most of them were focused on feature models.

Kang et al. [71] were the first to suggest the relationship between feature
models and attributes. In their work, the authors contemplated the addition
of feature attributes with quantified values. They also introduced the need to
define relationships between features and attributes. Later, Kang et al. [72]
made an explicit reference to non-functional features, which they defined as
a kind of feature, referred to as capability feature. Other authors have also
proposed the extension of feature models with so-called feature attributes [15,
37, 133]. Benavides et al. [15] coined the term extended feature models for
feature models extended with attributes.

Zhang et al. [152] introduced Bayesian Belief Networks (BBN) for pre-
dicting the impact of feature selection on quality attributes. BBN represent
domain experts’ knowledge and experiences from the development of former
similar projects. The author’s approach can predict and assess the quality of a
product line member by performing a quantitative analysis over BBN.

Etxeberria and Sagardui [46] presented a method for cost-effective qual-
ity evaluation of a product line taking into account variability on quality at-
tributes. The authors used a quality feature tree to represent quality attributes,
and provided a way to represent qualitative and quantitative impacts of func-
tional features on quality attributes, as well.

Karataş et al. [74] proposed a language to express extended feature mod-
els. They addressed feature-attribute and attribute-attribute constraints.

Bagheri et al. [4] took into consideration the stakeholders’ desired quality
attributes (referred to as soft constraints) during a feature model configura-
tion, and used a fuzzy propositional language for the analysis. They provided
an interactive feature model configuration process, where they annotate fea-
tures with high-level abstract objectives. By using fuzzy form, they express
how features contribute to satisfy these objectives.

Zhang et al. [149] proposed a quantitative analysis method to identify and

60 Chapter 4. Motivation

measure the impact functional features can have on quality attributes, based
on the judgement of domain experts. The authors used a pair-wise compar-
ison method called Analytical Hierarchical Process to measure the relevant
importance of functional features on quality attributes. Later, in [150], the
authors developed an evaluation method to ensure the correctness of judge-
ments of domain experts, and in [151], they developed a quality attribute
knowledge base (QA_KB) to represent the inter-relationships amongst quality
attributes. This approach can assist application engineers during the product
configuration process; allowing validation of quality requirements and modi-
fication of configured product to satisfy quality requirements, and giving indi-
cators for feature selection. For this purpose, the authors provided an ad-hoc
algorithm.

Sinnema et al. [120] proposed COVAMOF, which is a variability modelling
framework for modelling variabilities and constraints on attributes. In COV-
AMOF, attributes are expressed as dependencies related to variation points.
These dependencies have, amongst other things, a function that determines
their values, depending on the selected variants, and a constraint on these val-
ues. The value of the dependencies can represent formal or informal knowl-
edge. The former is represented using algebraic expressions, and the latter can
contain or refer to documented knowledge (e.g., HTML documents). They do
not provide automated support for the analysis of COVAMOF.

4.3.2 Automated analysis of OVMs

In the literature we have found several proposals that provide support for
the automated analysis of variability models, however, only Metzger et al.
[91] have focused on OVMs. Next, we report on these proposals.

Metzger et al. [91] proposed to separate variability into two dimensions,
namely: product line variability and software variability. The former refers to
variability in the problem space, whereas the latter refers to variability in the
solution space. These authors proposed to use OVM to represent product line
variability and feature models to represent software variability. Furthermore,
they provided an approach to automatically analyse the relationship between
both models. As part of their work, they provide an indirect way to auto-
matically analyse OVMs. First, they transform an OVM into a Varied Feature
Diagram (VFD+), which is a formal ”back-end” language used to define se-
mantics and automating analysis, and in doing so, they reuse the semantics of
analysis operations on VFD+. To carry out this transformation, they provide

4.3. Analysis of current solutions 61

an ad-hoc algorithm. Second, they map the VFD+ to a propositional formula
and then automatically analyse the OVM by means of SAT4j solver [18].

Accordingly to Benavides et al. [13], there are several proposals providing
automated analysis of basic or cardinality-based feature models. Several anal-
ysis operations on feature models and, as well as automated support for them
were proposed. These approaches can be classified in four different groups,
according to the logic paradigm or method used to provide automated sup-
port, namely: i) constraint programming, ii) propositional logic, iii) descrip-
tion logic, iv) proposals integrating more than one paradigm and/or solver,
and v) works that provide ad-hoc tools not categorised in the former groups.

Dhungana et al. [39] proposed the decision-oriented variability modelling
language DOPLERVML as part of the DOPLER tool suite [40]. They were the
first authors to address the formal definition of decision-oriented variability
modelling approaches, by defining the formal semantics of DOPLERVML. In
DOPLERVML, decisions define variability in the problem space while assets
define the reusable artefacts and their dependencies in the solution space. The
problem and the solution space are linked with inclusion conditions. Based
on the formal semantics, the authors provided support to generate all possi-
ble configurations represented by the DOPLER variability model. They also
developed a tool that, based on decisions taken by the user, can arrive at a
set of included assets for a specific product configuration. Later, Mazo et al.
[84] provided an approach to automate the analysis of DOPLERVML. They
presented a mapping from DOPLERVML into CSP, and then used the con-
straint solver GNU Prolog [60] to automatically verify the variability model.
The authors introduced four analysis operations applicable to DOPLERVML,
namely: void model, non-attainable validity conditions and domains value,
dead decisions and assets, and redundant relationships.

With regards to automated analysis of attribute-aware OVMs, we have not
found any approach that provides support for it. Therefore, next, we report
on those approaches that deal with the automated analysis of other attribute-
aware variability models.

Benavides et al. [15] proposed the automated analysis of extended fea-
ture models by using constraint programming. In this work, the authors pre-
sented a simple and high-level example where they illustrate a possible map-
ping from feature attributes to CSP. In addition, they proposed a number of
analysis operations on the extended feature models.

Djebbi et al. [43] provided a set of rules to translate feature models into

62 Chapter 4. Motivation

boolean constraints in order to extract information from feature models. Their
analysis method is carry out by using queries. They described a tool un-
der development based on constraint programming using GNU-Prolog solver,
which provides support for the optimisation operation.

White et al. [143] proposed a method known as Filtered Cartesian Flatten-
ing to solve the problem of optimally selecting a set of features that simultane-
ously satisfy a number of resource constraints. They applied several existing
algorithms to this problem, which performed much faster and offered an ap-
proximate solution.

Tun et al. [133] separated feature descriptions into three feature mod-
els relating to the requirements, the problem world context, and the specifi-
cations. These feature models may contain quantitative attributes and con-
straint on attributes. Once requirements are selected for a desired product,
one or more products that satisfy the requirements and the quantitative con-
straints are generated. In addition, they provided a way to configure, from
a feature model, solutions that satisfy quality requirements and quantitative
constraints, as well.

Karataş et al. [74] proposed a language to build extended feature models
and provided a mapping from these models to a CSP. They used the CLP(FD)
constraint solver [30] to implement their approach, enabling the automated
analysis of extended feature models involving more complex relationships.

4.3.3 Interoperability between OVM and feature model tools

Currently, there is no approach providing support for the interoperability
between OVM and feature model tools. In addition, as far as we know, there
is only one work comparing both feature model and OVM languages [68]. In
that work, the authors propose a metamodel-based classification of variabil-
ity modelling techniques. Although their goal was to study the fundamental
characteristics of variability models in order to choose the most appropriate
one for a particular application context, they provided only a first step in this
direction. They did not provide any criteria for the comparison nor provided
any example of applications of the studied variability models.

4.4. Discussion 63

4.4 Discussion

A summary of the related works is shown in Table §4.1. Proposals are
listed horizontally. The properties we use to compare the proposals are listed
vertically, and are grouped into modelling concepts and automated analysis.
They are as follows: i) abstract elements: the proposal provides explicit mech-
anism to denote abstract elements in the variability model; ii) attributes: the
proposal provides explicit mechanism to relate attributes and variability mod-
els; iii) without attributes: the proposal provides automated support for the
analysis of variability models without attributes; iv) with attributes: the pro-
posal provides automated support for the analysis of attribute-aware variabil-
ity models; and, v) with abstract elements: the proposal provides automated
support for the analysis of variability models considering abstract elements.

The cells of the matrix indicate the information about a proposal in terms
of property supported. Cells marked with ‘+’ indicate that the proposal of the
row provides explicit support for the property of the column. The last two
columns on the right hand-side add information about the variability mod-
els addressed by each proposal, and group the proposals according to the
paradigm they use for the analyses. The variability models approached are:
feature model (F), decision model (D), COVAMOF (C), and OVM (O). This in-
formation is also reported in the final rows of Table §4.1. The paradigm used
are: i) Propositional Logic (PL); ii) Constraint Programming (CP); iii) (Multi),
works that integrate more than one paradigm and/or solver; and iv) (Others),
proposals that use their own tools not categorised in the former groups. The
cell marked with ‘-’ indicate that the proposals in these rows do not provide
automated support for the analysis of variability models.

With regarding to abstract elements, from the analysis of the related works,
we have identified that Thüm et al. [125] and Schobbens et al. [116] were
the only authors that proposed a way to differentiate abstract features from
non abstract features in feature models. Furthermore, we have not found in
the literature any approach dealing with abstract elements in OVM. In this
dissertation, as part of our contributions, we provide a way to express abstract
elements in OVM for analysis purpose, which is a novel approach.

Regarding attribute-aware variability models, we have realised that the ad-
dition of attributes to variability models has mostly been proposed for feature
model approaches. In [15] the authors provided a way to add attributes to fea-
tures, but they do not provide much detail about the values of the attributes, as
acknowledged in [13], and besides, relationships between attributes are hier-

64 Chapter 4. Motivation

Modelling Concepts Automated Analysis

A
bs

tr
ac

te
le

m
en

ts

A
tt

ri
bu

te
s

w
it

ho
ut

at
tr

ib
ut

es

w
it

h
at

tr
ib

ut
es

w
it

h
ab

st
ra

ct
el

em
en

ts

Proposals

Gheyi et al. [58], Sun et al. [124] + F

Mannion [81], Mannion and Camara [82] + F

Mendonça et al. [87, 88] + F

Thüm et al. [125], Batory [5] + F

van der Storm [135, 136], Yan et al. [147] + F PL

Zhang et al. [153, 154, 155] + F

Czarnecki and Kim [38] + + F

Thüm et al. [126] + + + F

Metzger et al. [91] + F and O

Djebbi et al. [43], Benavides et al. [14] + F

Trinidad et al. [127, 129], White et al. [144, 146] + F

Benavides et al. [9, 10] + + F CP

Benavides et al. [15], Karataş et al. [74] + + + F

Mazo et al. [84] + D

Benavides et al. [11, 12] + F
MultiSegura [117] + F

Tun et al. [133] + + + F

Zaid et al. [148], Wang et al. [140, 141] + F

Fan and Zhang [49], Cao et al. [29] + F

van Deursen and Klint [137], Bachmeyer and Delugach [3] + F

von der Massen and Lichter [138, 139] + F

Gheyi et al. [59], Hemakumar [66] + F

Mendonça et al. [86], Fernandez-Amoros et al. [51] + F

Osman et al. [96, 97], Salinesi et al. [112] + F Others

van den Broek and Galvao [134] + F

Kang et al. [71] + + F

White and Schmidt [145], White et al. [143] + + F

Zhang et al. [152], Bagheri et al. [4] + + + F

Kang et al. [72], Czarnecki et al. [37] + + F

Dhungana et al. [39, 40], + D

Zhang et al. [149, 150, 151] + F

Etxeberria and Sagardui [46] + F -

Schobbens et al. [116] + F

Sinnema et al. [120] + C

OUR PROPOSAL + + + + + O CP

F = Feature model D = Decision model C = COVAMOF O = OVM

Table 4.1: Summary of related works.

4.4. Discussion 65

archically organised in the feature tree, i.e., the relationship between attributes
exists only between a parent and a child. In this dissertation, we propose a
more comprehensive approach to express attributes and constraints. In DO-
PLERVML approach, attributes were not explicitly defined for decision mod-
els, and in COVAMOF [120], attributes are only related to variation points,
but not to variants, the direct impact a variant can have on another cannot be
specified. Although Metzger et al. [91] have explored the automated analysis
of OVMs, they do not provide support for attributes. In this dissertation, we
propose a technique to relate attributes and constraints on attributes to vari-
ability in the OVM. We were inspired by the ideas presented in [74] to define
a model for expressing attributes.

With regarding to the automated analysis of variability models without
attributes, we have concluded that most of the current literature provide
support for the automated analysis of feature models. Regarding the DO-
PLERVML, its formal semantics presented in [39] allowed devising algorithms
for automating operations on decision-oriented variability models. The first
work in this direction was presented by Mazo et al. [84], in which the au-
thors provided automated support for the analysis of DOPLERVML. Further-
more, as far as we know, there is no automated support for the analysis of
COVAMOF variability models. To the best of our knowledge, there is only
one approach that deals with the automated analysis of OVMs [91] without
attributes, which address few analysis operations and is done indirectly, by
means of feature model semantics. In this dissertation, we provide support
to automate the analysis of OVMs without attributes. For this purpose, we
define a number of analysis operations on OVMs, provide a set of mappings
rules to transform directly OVM to CSP, and provide tool support.

We also may remark that we did not find any related work considering
analysis of attribute-aware OVMs. Etxeberria and Sagardui [46] focused on
the evaluation process of the product line using feature models, and do not
provide support for the automated analysis of attribute-aware feature models.
Other authors have looked at more qualitative means of evaluating attribute
constraints based on goal-oriented analysis [4, 133], both works are focused
on feature models analysis. In this dissertation, we propose an approach to
automate the analysis of attribute-aware OVMs. We consider that the works
presented in [143] and [149] are complementary to ours. The former research
results could be applied to our optimisation problem in order to improve scal-
ability, and the latter could be used as a way of identifying and measuring
values of attributes. In addition, we have realised that the key aspect to au-
tomate the analysis of attribute-aware variability models is the technique or

66 Chapter 4. Motivation

paradigm used for the analysis. Most of the approaches that deal with at-
tributes propose the use of constraint programming to automate the analysis,
since it allows to deal with non-boolean variables. In this dissertation, we pro-
pose to use constraint programming as the logical paradigm to automate the
analysis of OVMs.

As far as we know, only Thüm et al. [125] provide support for the au-
tomated analysis of feature models considering abstract features. In this dis-
sertation, we provide support for both the analysis of OVMs without abstract
elements and the analysis of OVM with abstract elements.

With regarding to the interoperability between feature models and OVM,
we may remark that we did not find any approach that provide support for the
interoperability of feature model and OVM tools. We have identified only one
work comparing both languages, which is still preliminary. As part of our con-
tribution, we have informally compared both languages and identified some
differences between them [106], however, our results are a first step towards
a more rigorous comparison study. We intend to continue this work as fu-
ture work. In addition, we have proposed an algorithm to transform a feature
model into an OVM [107], and implemented it by using a model-driven devel-
opment approach. This work also are going to be continued. This discussion
is not summarised in Table §4.1.

4.5 Summary

In this chapter, we have presented the main problems that motivated our
research. We have reviewed the related literature and compared our contribu-
tion with others regarding to modelling concepts, automated analysis of vari-
ability models, and interoperability between feature model and OVM tools.
We have realised that most of the works focus on feature models, and that
the analysis of attribute-aware variability models has received little attention
by the research community. We have identified only one proposal provid-
ing automated analysis of OVMs without attributes; which does no provide
support for specifying attribute-aware OVMs, for their automate analysis, nor
for the automated analysis of OVMs with abstract elements. We have em-
phasised that our contribution provides support to denote abstract elements
and attributes in OVMs, for the automated analysis of OVMs with, without
attributes, and with abstract elements.

Chapter 5

Automated Analysis of OVMs

If you don’t know anything about computers,
just remember that they are machines that do exactly what you tell them

but often surprise you in the result.
Richard Dawkins, 1941 –

British evolutionary biologist and writer

T
he aim of this chapter is to present a set of techniques to automate
the analysis of OVMs. In Section §5.1, we describe the analysis pro-
cess we propose to automate the analysis of OVMs. In Section §5.2,
we provide information about abstract elements in OVMs. In Sec-

tion §5.3, we introduce two different approaches to automate the analysis of
OVMs, by providing two different mappings for translating an OVM into a
CSP, namely: full mapping, and selective mapping. The former takes into ac-
count all the elements in the OVM, and the latter deals with abstract elements.
In Section §5.4, we define a set of analysis operations on OVMs, apply them to
the first approach, and give some examples. Then, in Section §5.5, we discuss
the results of the operations defined in the previous section, when applied to
the second approach. Finally, Section §5.6 summarises the chapter.

67

68 Chapter 5. Automated Analysis of OVMs

Inputs

Operation selection

+ [...] TranslatorMapping

first step second step

Solver/ToolSolver/Tool

filter void explanation

optimization

filter dead void

#products

explanation

...

Intermediate

representation

Analysis

results

ovm

Figure 5.1: Process for the automated analysis of OVMs.

5.1 Introduction

The analysis of OVMs is performed in terms of analysis operations, which
takes a set of parameter as input (e.g., an OVM) and returns a result as output.
To automate this analysis, we follow the two-step process presented in Fig-
ure §5.1, which is similar to the process for the automated analysis of feature
models. The process starts by translating the input parameters into a specific
representation. Afterwards, an off-the-shelf solver is used to automatically
analyse the representation of the input parameters and provide the result as
an output.

In the next sections, we describe how to translate input parameters into a
representation, in this case we use CSP as logical paradigm. Then, we define
a set of analysis operations on OVM and give some examples.

5.2 Dealing with abstract elements

We consider that an OVM represents the set of all possible variations of
a product line. When all elements are relevant for the analysis, variations
are distinguished by the variability elements they have (i.e., variations points
and variants). For example, the OVM example depicted in Figure §5.2 rep-
resents five different variations, namely: {Connectivity}, {Connectivity,Wifi},

5.2. Dealing with abstract elements 69

Wifi
V

VP

USB
V

Connectivity <<component>>
:Connectivity

<<component>>
C2:USB

<<component>>
C1:Wifi

Product line

Component diagram

Figure 5.2: Product line component diagram with variability.

{Connectivity,USB}, {Connectivity,Wifi,USB}, and ∅. In this example, OVM
documents the variability of a product line component diagram.

In some cases, as for example in testing activities, it is useful to be able to
analyse the OVM taking into account only the elements that are relevant for
the final product. A variability element is not always relevant for the final
product. For example, variation {Connectivity} would probably not have any
impact on the design model, whereas {Connectivity,Wifi}, {Connectivity,USB},
and {Connectivity,Wifi,USB} would result in three different models. In the ex-
ample in Figure §5.2, variants Wifi and USB are realised by the components
C1:Wifi and C2:USB, respectively. However, variation point Connectivity is
used only to structure the different types of connectivity. In this case, the
possible component diagrams derived from the OVM model depicted in Fig-
ure §5.2 would be as shown in Figure §5.3 (the grey area illustrate the variant
being selected). The diagram depicted on the left hand-side results from the
selection of variant Wifi, whereas the component diagram in the right hand-
side represents the selection of variant USB, and, finally, the diagram shown in
the bottom results from the selection of both variants Wifi and USB. Therefore,
although the OVM depicted in Figure §5.2 represents five possible variations,
only three of them are relevant at design model, namely: {Connectivity,Wifi},
{Connectivity,USB}, and {Connectivity,Wifi,USB}.

In OVM, the variability is structured by using two main elements, namely:
variation points and variants. Considering that these two elements are al-
ready differentiated in the OVM abstract syntax, we propose to use variation

70 Chapter 5. Automated Analysis of OVMs

Wifi
V

VP

USB
V

Connectivity <<component>>
:Connectivity

<<component>>
C2:USB

<<component>>
C1:Wifi

Product 3

Component diagram

Wifi
V

VP

USB
V

Connectivity
<<component>>
:Connectivity

<<component>>
C2:USB

Product 2

Component diagram

Wifi
V

VP

USB
V

Connectivity
<<component>>
:Connectivity

<<component>>
C1:Wifi

Porduct 1

Component diagram

Figure 5.3: Product component diagrams.

points to make explicit the abstract elements in the OVM. Therefore, for analy-
sis purposes, variation points can be considered concrete or abstract, resulting
in two different OVM semantics, namely: full and selective. In the former, an
OVM represents a set of sets of combinations of variation points and variants,
meaning that all the variation points are concrete elements. In the latter, an
OVM represents a set of sets of combinations of variants, meaning that all the
variants are concrete elements and all the variation points are abstract. The
decision about which semantics to use when analysing an OVM depends on
which of them is more convenient to the user. Users may want to consider
variation points only as a way of structuring variants, and therefore, do not
consider these elements as part of variations. The set of variations obtained
with full and selective semantics may not be equivalent.

5.3. Mapping OVM into Constraint Satisfaction Problem (CSP) 71

5.3 Mapping OVM into Constraint Satisfaction
Problem (CSP)

In order to be able to analyse OVMs using full and selective semantics,
we provide two different mappings to translate an OVM into a CSP. In the
first mapping, we consider every element as concrete which we denote as Full
mapping. In the second, variants are concrete elements and variation points
are abstract, which we denote as Selective mapping.

5.3.1 Full mapping

As previously explained, a CSP is defined as a set of variables, a set of do-
mains for those variables, and a set of constraints restricting the values of those
variables. Therefore, to carry out the full mapping from an OVM to CSP fol-
lowing the mapping in feature models, the 3-tuple ψovmf

=(Vovmf
,Dovmf

, Covmf
)

is built, where the variability elements (variation points and variants) in the
OVM become variables in Vovmf

with their respective domains in Dovmf
, and

the variability and constraint dependencies in the OVM become constraints in
the Covmf

. To find solutions for the ψovmf
, the CSP solver searches for a valid

set of variable values that simultaneously satisfies all constraints.

The mapping of an OVM into a CSP can vary depending on the solver
that is used later for the analysis. We use the generic CSP language pro-
vided by Benavides [8] to represent ψovmf

. In order to represent cardinal-
ity of alternative relationship, we have added to this generic CSP language
another operator called inRangeOf. The syntax of the operator inRangeOf
is as follows: “inRangeOf([i..j], {v1, v2,. . . ,vn})”, where vp is the variation
point, vk | k ∈ [1 . . . n] the set of optional variants in the relationship, and
[i . . . j] | 0 < i ≤ j ≤ n the cardinality. Its semantics is as follows:

i ≤ (

n∑
k=1

vk) ≤ j

Table §5.1 lists the rules for the full mapping of an OVM into a generic CSP,
and concrete rules using JaCoP-like notation, which is one of the specific CSP
solvers used in FaMa framework as mentioned in Section §1.2.2. The mapping
from an OVM into a CSP is similar to the one used for feature models [15], with
the following differences:

72 Chapter 5. Automated Analysis of OVMs

M
A
N
D
A
T
O
R
Y

O
P
T
IO
N
A
L

A
L
T
E
R
N
A
T
IV
EV

a
ri

a
b

il
it

y
 D

e
p

e
n

d
e
n

c
y

vp = v

if (vp = 0)

 v = 0

R
E
Q
U
IR
E
S

E
X
C
L
U
D
E
S

if (v1 > 0)

 v2 = 0

if (v > 0)

 vp = 0

if (vp1 > 0)

 vp2 = 0

if (v1 > 0)

 v2 > 0

if (v > 0)

 vp > 0

if (vp1 > 0)

 vp2 > 0

C
o

n
s

tr
a

in
t

D
e
p

e
n

d
e

n
c

y

if (vp > 0)

 sum (v1, v2, ..., vn) in {i..j}

else

 v1 = 0, v2 = 0, ..., vn = 0

vp

vp

[i..j]

OVM relationships Generic CSP JaCoP-like notation

biconditional(id(vp),id(v))

implies(id(v),id(vp))

implies(id(v1),id(v2))

implies(id(v),id(vp))

implies(id(vp1),id(vp2))

implies(id(v1),not(id(v2)))

implies(id(v),not(id(vp)))

implies(id(vp1),not(id(vp2)))

biconditional(id(vp),inRangeOf([i..j],{v1,v2 ... vn})

*

* Variation points can be optional or mandatory

Table 5.1: Full mapping from an OVM to CSP.

i. In OVM there are two types of nodes, namely: variation points and vari-
ants. These nodes differ from each other. Contrarily, in feature models,
all nodes in the diagram are features;

ii. There is no constraint for a root node, since there is no root node in the
OVM;

iii. Variation points can be mandatory or optional. For every mandatory
variation point, we add a constraint assigning value 1 to the correspon-
dent variable, whereas for optional variation points no constraints are
added.

5.3. Mapping OVM into Constraint Satisfaction Problem (CSP) 73

V
Windows

VP

OS

V
Android

[1,1]

V
RAM

VP

Hardware

V
Flash

Memory

V
Processor

V
GPS

V
Screen

VP

Settings

V
JavaSupport

[1,2]

requires

V
Camera

V
MP3

VP

Media

[1..2]

V
MMS

V
IM

VP

Messaging

V
Wifi

VP

Internet

V
3G

[1,2]

requires

Figure 5.4: OVM for a mobile phone example.

iv. Every alternative relationship is mapped into a constraint of the form
“biconditional(id(vp), inRangeOf([i..j], {v1, v2,. . . ,vn})”, which means

that vp ↔ i ≤ (

n∑
k=1

vk) ≤ j. This mapping is similar to cardinality-based

feature models.

Table §5.2 shows how the example presented in Figure §5.4 can be repre-
sented as a CSP.

5.3.2 Selective mapping

There are two ways to approach the selective mapping. First, reducing
the CSP generated from the full mapping rules, by removing all the variables
equivalent to the variation points, as shown in Figure §5.5 (a). Second, defin-
ing a new set of mapping rules, enabling to directly map an OVM with abstract
variation points into a CSP, as shown in Figure §5.5 (b).

The semantics of ψ ′′ and ψ ′′′ are not necessarily equivalent. In the work
presented by Thüm et al. [126], the authors followed the first approach, where
they assume that the semantics of ψ ′′ is the result of removing abstract fea-
tures from ψ ′. This means that both semantics ψ ′ and ψ ′′ are strongly related.
For example, when a feature model is void in ψ ′, it is necessarily void in ψ ′′.

74 Chapter 5. Automated Analysis of OVMs

Hardware = RAM

Hardware = Processor

Hardware = FlashMemory

V
a
ri

a
b

il
it

y
 D

e
p

e
n

d
e
n

c
y

C
o

n
s

tr
a

in
t

D
e
p

e
n

d
e

n
c

y

Mobile phone example JaCoP-like notation

V
RAM

VP

Hardware

V
Flash

Memory

V
Processor

V
GPS

V
Screen

VP

Settings

V
JavaSupport

[1,2]

V
Camera

V
MP3

VP

Media

[1..2]

V
MMS

V
IM

VP

Messaging

V
Windows

VP

OS

V
Android

[1,1]

V
GPS

V
JavaSupport

requires

V
Wifi

VP

Internet

V
3G

[1,2]

V
Wifi

VP

Internet

V
3G

[1,2]

requires

V
IM

Messaging = 1

OS = 1

Hardware = 1

Media = MP3

if (Hardware = 0) GPS = 0

if (Media = 0) Camera = 0

if(GPS > 0)

 JavaSupport >0

if (IM > 0)

 Internet > 0

if (Settings > 0) sum (Screeen, JavaSupport) in {1..2}

 else Screen = 0, JavaSupport = 0

if (Internet > 0) sum (Wifi, 3G) in {1..2}

 else Wifi = 0, 3G = 0

if (OS > 0) sum (Windows, Android) in {1..1}

 else Windows = 0, Android = 0

if (Messaging > 0) sum (MMS, IM) in {1..2}

 else MMS = 0, IM = 0

Table 5.2: Full mapping from a mobile phone OVM to CSP.

5.3. Mapping OVM into Constraint Satisfaction Problem (CSP) 75

Analysis
operations

TranslatorMapping Solver/ToolSolver/Tool+ [...]

ResultRepresentation

'

Inputs

R1
''

R2

Analysis
operations

TranslatorMapping Solver/ToolSolver/Tool+ [...]

ResultRepresentation

'''

Inputs

(a)

(b)

Figure 5.5: Two different approaches for the selective mapping.

However, we have realised that maybe, in the case of OVMs, it would be in-
teresting to define a new OVM semantics to deal with abstract elements. To
better illustrate this idea, we will use the scenario described below.

Let us assume a scenario in which a given mobile phone product line
was devised to support one ore more different mobile web browsers, namely:
IEMobile, FirefoxMobile, and Safari. In addition, products from this product
line optionally should support off-line GMail and Calendar, which are possi-
ble choices for the mandatory variation point GoogleGears, as shown in Fig-
ure §5.6. Now, let us suppose that as a consequence of a new business strat-
egy, the company has decided to evolve the product line by adopting Safari
as mandatory browser. This decision requires a modification in the OVM by
changing the relationship between MobileWebBrowser and Safari to manda-
tory, as shown in Figure §5.7. In the meantime, the Safari was updated by
its developers and has become incompatible with Google Gears applications.
Thus, the product line had to be modified again to include an excludes con-
straint between Safari and GoogleGears, as shown in Figure §5.7.

76 Chapter 5. Automated Analysis of OVMs

[1...3]

V

Firefox Mobile

Mobile Web
Browser

VP

VP
Google
Gears

VP

V V V V

IE Mobile Safari GMail Calendar

Figure 5.6: Variation points from the mobile phone product line.

V

Firefox Mobile

Mobile Web
Browser

VP

VP
Google
Gears

VP

V V V V

IE Mobile Safari GMail Calendar

Figure 5.7: Evolution of the mobile phone product line.

Considering the previous scenario, if we apply the first approach depicted
in Figure §5.5 (a) to the resulting OVM, the model is void, regardless if we con-
sider abstract elements or not. This is due to the excludes constraint between
two mandatory elements in the OVM, i.e., Safari and GoogleGears. We argue
that, when considering abstract elements, this model should not necessarily
be void. The reason for this is that, GMail and Calendar are optionals and if
none of them are selected, it should be possible to construct products without
GoogleGears. In this way, the number of possible variations would be greater
than zero, i.e., the model would be not void. However, GMail and Calendar
would be dead elements. Thus, we conclude that the second semantics seems
to be more reasonable, since GoogleGears is abstract.

We propose to follow the second approach presented in Figure §5.5 (b) to
define the selective mapping, and we conjecture that ψ ′′ and ψ ′′′ may not be
equivalent.

To carry out the selective mapping, we again have to build the 3-tuple,
in this case ψovms

= (Vovms
, Dovms

, Covms
). In the selective mapping, only the

5.3. Mapping OVM into Constraint Satisfaction Problem (CSP) 77

variants in the OVM become variables in Vovms
with their respective domains

in Dovms
. The selective mapping of an OVM into a CSP can vary depending

on the solver that is used later for the analysis. The selective mapping of an
OVM into a general CSP has the following general form:

i. Every variant of the OVM is mapped into a variable of the CSP with a
domain ∈ [0, 1];

ii. Every relationship of the model is mapped into a constraint depending
on the type of the relationship; in such constraints only variants are al-
lowed.

Unlike mapping rules for full mapping, the rules for selective mapping
cannot consider variation points as part of constraints, but only variants.
Therefore, each possible relationship between variation points and their child
variants may result in a different constraint, leading to a greater number of
rules. In order to know how many possible concrete rules we could obtain for
this mapping, we have used the following scheme:

i. There are two types of variation points: mandatory and optional. Each
variation point can have three types of relationships with its child vari-
ants, namely: mandatory, optional, and alternative variability depen-
dencies, shown in the OVM meta-model in Figure §2.7, on page 31.
Therefore, there must be six possible variability dependency rules,
which we denote by the set VD.

ii. There are three types of requires constraints, namely: VP requires VP,
V requires VP, and V requires V, and there are three types of excludes
constraints, namely: VP excludes VP, V excludes VP , and V excludes V.

iii. As said in item i, variation points can be related with their child vari-
ants in 6 different ways represented by VD. Therefore, a) the number
of possible combinations in VP requires VP is |VDxVD|, which means
6x6 = 36; b) the number of possible combinations in V requires VP is
|VD|, since there are only one possible V , and c) the number of possi-
ble combinations in V requires V is one. Summarizing, we may state
that the number of rules to transform requires constraints into CSP is
|VDxVD|+ |VD|+ 1 = (6x6) + 6+ 1 = 43

iv. The same reasoning is applied to VP excludes VP, V excludes VP, and
V excludes V, in which the number of rules are respectively |VDxVD|,

78 Chapter 5. Automated Analysis of OVMs

[i..j]

v1 v2 vn

vp

vp

vp
[i..j]

v1 v2 vn

v = 1

sum(v1,v2,vn) in {i..j}

sum(v1,v2,vn) in {0} U {i..j}

O
p

ti
o

n
a

l

V
a

ri
a

tio
n

 P
o

in
t

M
a

n
d

a
to

ry

V
a

ri
a

tio
n

 P
o

in
t

Variability dependency JaCoP-like notation

M
a

n
d

a
to

ry
A

lte
rn

a
tiv

e
A

lt
e

rn
a

ti
v
e

1

2

3

Table 5.3: Mapping variability dependencies into CSP.

|VD|, and one. Summarizing, we may state that the number of rules to
transform excludes constraints into CSP is |VDxVD|+ |VD|+ 1 = (6x6)+
6+ 1 = 43

v. Summarizing, we may state that the number of rules to transform an
OVM into CSP, for the selective mapping, is the sum of the number of
possible combinations presented in i, iii and iv, as follows:

|VD|+ 2.(|VDxVD|+ |VD|+ 1) = 6+ 2(36+ 6+ 1) = 92

All the 92 possible rules can be seen in Appendix §B. These mapping rules
can be generalised resulting in 25 rules. Tables §5.3, §5.4, and §5.5, shows the
25 concrete rules for mapping variability dependencies, require constraints,
and excludes constraints into a CSP, respectively.

In addition to these mapping rules, in Table §5.6 we show an example on
how the product line depicted in Figure §5.4 can be mapped into a CSP, when
considering selective mapping.

5.4. Analysis operations for the full mapping 79

vp2
if (v1 > 0)

 v2 > 0

vp2

[i..j]

v2 v3 vn

Requires_V_VP Constraint dependency JaCoP-like notation

16

17

if (v1 > 0)

 sum(v2,v3,vn) in {i..j}

v2

if (v1 > 0)

 v2 > 0

Requires_V_V Constraint dependency JaCoP-like notation

18

vp2vp1

v2 = 1

vp1
vp2

[i..j]

v2 v3 vn

sum(v2,v3,vn) in {i..j}

v2 = 1

sum(v2,v3,vn) in {i..j}

vp2vp1

vp2

[i..j]

v2 v3 vn

vp1

Requires_VP_VP Constraint dependency JaCoP-like notation

M
a

n
d

a
to

ry
 V

a
ri

a
ti
o

n
 P

o
in

t(
le

ft
-h

a
n

d
 s

id
e

)

v1 = 1

vp2
[i..j]

v2 v3 vn

vp2

[x..y]

q1 q2 qm

[i..j]

v1 v2 vn

sum(q1,q2,qm) in {x..y}

4

5

6

7

8

9

O
p

ti
o

n
a

l
V

a
ri

a
ti
o

n
 P

o
in

t
(l

e
ft
-h

a
n

d
 s

id
e

)

12

11

10

if (v1 > 0)

 v2 > 0

vp1 vp2

vp2
vp1

if (v1 > 0)

 v2 > 0

vp1

[i..j]

v2 v3 vn

vp2

vp1

[i..j]

v1 v2 vn

vp2

[x..y]

q1 q2 qm

if sum(v2,v3,vn) in {i..j}

 (v1 > 0)

if sum(v1,v2,vn) in {i..j}

 sum(q1,q2,qm) in {x..y}

vp2

[i..j]

v2 v3 vn

vp1

vp1
vp2

[i..j]

v2 v3 vn

if (v1 > 0)

 sum(v2,v3,vn) in {i..j}

if (v1 > 0)

 sum(v2,v3,vn) in {i..j}

Requires_VP_VP Constraint dependency JaCoP-like notation

15

14

13

Table 5.4: Mapping requires constraints into CSP.

5.4 Analysis operations for the full mapping

Before going into the analysis operations details, we have to revisit some
concepts described in Section §3.2, namely: configuration, full configuration,
and partial configuration. In addition, we have to define a new concept to
which we refer to as variation.

80 Chapter 5. Automated Analysis of OVMs

Excludes_VP_VP Constraint dependency CSP

M
a
n

d
a

to
ry

 o
r

O
p

ti
o

n
a
l
V

a
ri
a

ti
o
n

 P
o

in
t

19

20

21

22

23

24

if (v1 > 0)

 v2 = 0

Excludes_V_VP Constraint dependency CSP

if (v1 > 0)

 v2,= 0, v3 = 0, vn = 0

v2

vp2

v1

vp1 if (v1 > 0)

 v2 = 0

if (v1 > 0)

 v2 = 0, v3 = 0, vn = 0
[i..j]

v2 v3 vn

vp2

if sum(v1,v2,vn) in {i..j}

 (v2 = 0)

if sum(v1,v2,vn) in {i..j}

 q1= 0, q2, = 0, qm = 0

v1

vp1

[i..j]

v1 v2 vn v2

vp2

[x..y]

q1 q2 qm

vp2

[i..j]

v1 v2 vn Optional or Mandatory Variability dependency

Mandatory or Optional Variation Point

v2

if (v1 > 0)

 v2 = 0

Excludes_V_V Constraint dependency CSP

v1

25

v2

vp2

[i..j]

v2 v3 vn

Table 5.5: Mapping excludes constraints into CSP.

• Configuration. Given an OVM with a set of variation points VP and
variants V , and a set of variability elements VE such that VE = VP ∪ V ,
a configuration is a 2–tuple of the form (S,R) such that S, R ⊆ VE being S
the set of elements to be selected and R the set of elements to be removed
such that S ∩ R = ∅. There are two types of configurations, as follows:

⋄ Full configuration. If S ∪ R = VE the configuration is called full
configuration. As an example, a possible full configuration (FC) for
the model in Figure §5.4 can be as follows:
FC = ({Messaging, IM,OS,Android, Internet, 3G,Hardware,FlashMemory,Processor,RAM},

{GPS,Settings,Screen, JavaSupport,Wifi,MMS,Windows,Media,Camera,MP3})

⋄ Partial configuration. If S ∪ R ⊂ VE the configuration is called par-
tial configuration. As an example, a possible partial configuration
(PC) for the model in Figure §5.4 can be as follows:
PC = ({Messaging, IM,OS,Android}, {GPS})

• Variation. A variation is equivalent to a full configuration where only se-
lected variability elements are specified and omitted variability elements
are implicitly removed. For instance, the following variation (VAR) is
equivalent to the full configuration described above:

VAR = {Messaging, IM,OS,Android, Internet, 3G,Hardware,FlashMemory,Processor,RAM}

5.4. Analysis operations for the full mapping 81

V
a
ri

a
b

il
it

y
 D

e
p

e
n

d
e
n

c
y

if (GPS > 0)

 JavaSupport > 0

C
o

n
s

tr
a

in
t

D
e
p

e
n

d
e

n
c

y

RAM = 1

Processor = 1

FlashMemory = 1

OVM relationships JaCoP-like notation

V
RAM

VP

Hardware

V
Flash

Memory

V
Processor

V
GPS

V
Screen

VP

Settings

V
JavaSupport

[1,2]

V
Camera

V
MP3

VP

Media

[1..2]

V
MMS

V
IM

VP

Messaging

V
Windows

VP

OS

V
Android

[1,1]

V
GPS

V
JavaSupport

requires

V
Wifi

VP

Internet

V
3G

[1,2]

V
Wifi

VP

Internet

V
3G

[1,2]

requires

V
IM

no constraint

sum (MMS, IM) ∈ {1..2}

sum (Windows, Android) ∈ {1..1}

sum (Wifi, 3G) ∈ {0} U {1..2}

sum (Screeen, JavaSupport) ∈ {0} U {1..2}

if (IM > 0)

 sum (Wifi, 3G) ∈ {1..2}

Table 5.6: Selective mapping from a mobile phone OVM to CSP.

82 Chapter 5. Automated Analysis of OVMs

V
RAM

VP

Hardware

V
Flash

Memory

V
Processor

V
GPS

V
Windows

VP

OS

V
Android

[1,1]

V
Screen

VP

Settings

V
JavaSupport

[1,2]

requires

Figure 5.8: Excerpt of the OVM for the mobile phone product line.

In the following sections, we define a number of analysis operations on
OVM, and provide some examples.

5.4.1 Variations

This operation takes an OVM as input and returns all the variations repre-
sented by the input model. Roughly speaking, an OVM is a compact represen-
tation of all the possible variations that can be derived from a set of variation
points. In contrast to feature models, which represent a set of products (i.e.,
combination of features), OVM represents the possible variations of software
artefacts. Thus, when interpreting an OVM as a CSP, we can understand each
solution of the CSP as a variation of the OVM, and the set of all solutions of
this CSP as all possible variations of the OVM. Therefore, the Variations oper-
ation is defined as follows:

Operation 1 (Variations). Let ovm be an OVM and ψovmf
be its equivalent

CSP. Variations of ovm correspond to the set of solutions of ψovmf
.

variations(ovm) = sol(ψovmf
)

The following variations are derived from the OVM in Figure §5.8:

VAR1 = {OS,Hardware,Android,FlashMemory,Processor,RAM}

VAR2 = {OS,Hardware,Android,FlashMemory,Processor,RAM,Settings,Screen}
VAR3 = {OS,Hardware,Android,FlashMemory,Processor,RAM,Settings, JavaSupport}
VAR4 = {OS,Hardware,Android,FlashMemory,Processor,RAM,Settings,Screen, JavaSupport}
VAR5 = {OS,Hardware,Android,FlashMemory,Processor,RAM,Settings, JavaSupport,GPS}

5.4. Analysis operations for the full mapping 83

VAR6 = {OS,Hardware,Android,FlashMemory,Processor,RAM,Settings,Screen, JavaSupport,GPS}
VAR7 = {OS,Hardware,Windows,FlashMemory,Processor,RAM}

VAR8 = {OS,Hardware,Windows,FlashMemory,Processor,RAM,Settings,Screen}
VAR9 = {OS,Hardware,Windows,FlashMemory,Processor,RAM,Settings, JavaSupport}
VAR10 = {OS,Hardware,Windows,FlashMemory,Processor,RAM,Settings,Screen, JavaSupport}
VAR11 = {OS,Hardware,Windows,FlashMemory,Processor,RAM,Settings, JavaSupport,GPS}
VAR12 = {OS,Hardware,Windows,FlashMemory,Processor,RAM,Settings,Screen, JavaSupport,GPS}

5.4.2 Number of variations

This operation takes an OVM as input and returns the number of variations
represented by the input model. When the number of variations represented
by the OVM is zero, the model is void.

Operation 2 (Number of variations). Let ovm be an OVM and ψovmf
be its

equivalent CSP. The number of variations of ovm corresponds to the number
of solutions of ψovmf

.

#variations(ovm) = |sol(ψovmf
)|

As an example, the OVM depicted in Figure §5.8, on page 82, represents 12
variations, whereas the OVM depicted in Figure §5.4, on page 73, represents
360 variations.

5.4.3 Filter

This operation takes as inputs an OVM and a configuration (potentially
partial) and returns the set of variations derived from the input model that
match the given configuration. Thus, filtering an OVM can be interpreted as
adding additional constraints to the CSP, which usually will reduce the set of
solutions, and thus, the set of possible variations of the OVM. Therefore, the
Filter operation is defined as follows:

Operation 3 (Filter). Let ovm be an OVM and ψovmf
be its equivalent CSP,

and let C be a configuration of the form (S,R). The filtered model is the set
of solutions of the conjunction of ψovmf

and the equivalent constraints of a
configuration.

84 Chapter 5. Automated Analysis of OVMs

filter(ovm,C) = sol(ψovmf
∧

∧
ei∈S

ei = 1∧
∧
ei∈R

ei = 0)

For example, the set of variations derived from the OVM in Figure §5.8,
when applying a filter specified by partial configuration ({Android}, {GPS}),
where Android is selected and GPS is removed, are as follows:

VAR1 = {OS,Hardware,Android,FlashMemory,Processor,RAM}

VAR2 = {OS,Hardware,Android,FlashMemory,Processor,RAM,Settings,Screen}
VAR3 = {OS,Hardware,Android,FlashMemory,Processor,RAM,Settings, JavaSupport}
VAR4 = {OS,Hardware,Android,FlashMemory,Processor,RAM,Settings,Screen, JavaSupport}

5.4.4 Void OVM

This operation takes an OVM as input and returns a value (true or false)
informing whether such OVM is void or not. An OVM is void if it does not
represent any variation. An OVM can become void due to the wrong use of
constraint dependencies, i.e., requires and excludes.

Operation 4 (Void OVM). Let ovm be an OVM and ψovmf
be its equivalent

CSP. Then, ovm is void if the set of variations is empty.

void(ovm) ⇔ variations(ovm) = ∅

Figure §5.9 shows how an OVM example with two variation points can
become void by the wrong use of the excludes constraint. Let us consider
ψovm1

and ψovm2
the equivalent CSPs for the two models in Figure §5.9 (a) and

Figure §5.9 (b), respectively. Therefore, the variations for bothψovm1
andψovm2

are as follows:

sol(ψovm1
) = { {Hardware,FlashMemory,Processor,RAM,Messaging,MMS},

{Hardware,FlashMemory,Processor,RAM,Messaging, IM},
{Hardware,FlashMemory,Processor,RAM,Messaging,MMS, IM},
{Hardware,FlashMemory,Processor,RAM,Messaging,MMS,GPS},
{Hardware,FlashMemory,Processor,RAM,Messaging, IM,GPS},
{Hardware,FlashMemory,Processor,RAM,Messaging,MMS, IM,GPS} }

sol(ψovm2
) = ∅

In Figure §5.9 (a), model ovm1 is not void, but after adding an excludes, as
shown in Figure §5.9 (b), it becomes void. The excludes between Messaging
and RAM makes the selection of both variability elements impossible, which

5.4. Analysis operations for the full mapping 85

V
RAM

VP

Hardware

V
Flash

Memory

V
Processor

V
GPS

[1..2]

V
MMS

V
IM

VP

Messaging

excludes

V
RAM

VP

Hardware

V
Flash

Memory

V
Processor

V
GPS

[1..2]

V
MMS

V
IM

VP

Messaging

(a)

(b)

Figure 5.9: Example of an OVM becoming void.

leads the model to a contradiction since Messaging and RAM are both manda-
tory and thus must be in all variations.

5.4.5 Valid configuration

This operation takes an OVM and a configuration as inputs and returns
a value (true or false) informing whether such configuration is valid to such
OVM or not. A configuration, be it full or partial, is valid if when applied to
an OVM, it is possible to derive at least one variation from this model.

Operation 5 (Valid configuration). Let ovm be a valid OVM and ψovmf
be its

equivalent CSP. A configuration C is valid if after applying a filter specified by
C to ovm, the set of solutions of ψovmf

is not empty.

validConf(ovm,C) ⇔ |filter(ovm,C)| > 0

86 Chapter 5. Automated Analysis of OVMs

As an example, consider de model in Figure §5.4 on page 73 and the fol-
lowing partial configurations, PC1 and PC2:

PC1 = ({IM,Android},{Internet})
PC2 = ({MMS,Android},{3G})

Partial configuration PC1 is not valid since the selection of IM requires se-
lection of Internet, thus PC1 contradicts the relationship specified in the OVM.
Contrarily, partial configuration PC2 is valid since the selection of MMS and
Android, and removal of 3G is allowed.

5.4.6 Valid variation

This operation takes an OVM and a variation as inputs and returns a value
(true or false) informing whether such variation is valid or not. A variation is
valid if it belongs to the set of variations represented by the OVM.

Operation 6 (Valid variation). Let ovm be a valid OVM andψovmf
be its equiv-

alent CSP. A variation var is valid if var belongs to the set of variations of ovm.

validVariation(ovm, var) ⇔ var ∈ variations(ovm)

As an example, if we consider the OVM in Figure §5.4 on page 73, varia-
tions VAR1 and VAR2, described below, both are not valid. Variation VAR1 is
not valid since it does not include all the mandatory variability elements; it
misses out FlashMemory. Similarly, variation VAR2 is not valid, since one and
only one of the operating systems should be selected.

VAR1 = {Messaging,MMS,OS,Android,Hardware,RAM,Processor}
VAR2 = {Messaging,MMS,OS,Android,Windows,Hardware,RAM,Processor,FlashMemory}

On the other hand, variations VAR3 and VAR4, described below, do belong
to the set of variations represented by the OVM in Figure §5.4.

VAR3 = {Messaging,MMS,OS,Android,Hardware,RAM,Processor,FlashMemory}
VAR4 = {Messaging,MMS,OS,Android,Hardware,RAM,Processor,FlashMemory, Internet, 3G}

5.4. Analysis operations for the full mapping 87

[1,1]

Figure 5.10: Typical cases of dead elements in OVM.

5.4.7 Dead elements

This operation takes an OVM as input and returns the set of dead ele-
ments (if any). A variability element is dead if it does not belong to any of
the possible variations represented by the model. It can become dead due to
the wrong use of constraint dependencies. This is an undesirable situation
since the model gives to the user a false view of the product line variability.

Operation 7 (Dead element). Let ovm be an OVM, and let E be a variability
element that belongs to ovm, and let ψovmf

of the form (Vovmf
, Dovmf

, Covmf
)

be the equivalent CSP and e the mapped variable. E is dead if there is no
variation v in the set of variations of ovm such that e is an element of the set v.

isDead(ovm, E) ⇔ @v ∈ variations(ovm) • e ∈ v

Figure §5.10 shows some typical cases that generate dead elements in OVM
(dead elements are depicted in grey).

5.4.8 False optional elements

This operation takes an OVM as input and returns the set of false optional
elements (if any). A variability element is false optional if being modelled as
optional, still appears in all variations derived from the model. Just as with
dead elements, false optional elements are generated by the wrong use of con-
straint dependencies, and they give a wrong idea of the product line variabil-
ity as well.

Operation 8 (False Optional). Let ovm be an OVM, and let E be a variability
element that belongs to ovm, and let ψovmf

of the form (Vovmf
, Dovmf

, Covmf
)

88 Chapter 5. Automated Analysis of OVMs

Figure 5.11: Typical cases of false optional elements in OVM.

be the equivalent CSP and e the mapped variable. E is false optional if E is
optional and for all variations v in the set of variations of ovm, e is an element
of the set v.

isFalseOpt(ovm, E) ⇔ isOptional(E)∧ (∀v ∈ variations(ovm) • e ∈ v)

The predicate isOptional determines whether a given element has to be
interpreted as an optional element or not. Figure §5.11 shows some typical
cases that generate false optional elements in OVM (false optional elements
are depicted in grey).

5.4.9 Commonality degree

This operation takes as inputs an OVM and a variability element and re-
turns a value that represents the percentage of variations represented by the
OVM in which the input variability element appears. For example, if there are
10 possible variations and a variant v appears in 5 variations, the commonality
of v is 0.5.

Operation 9 (CommonalityDegree). Let ovm be an OVM, and let E be a vari-
ability element that belongs to ovm, and let ψovmf

of the form (Vovmf
, Dovmf

,
Covmf

) be the equivalent CSP and e the mapped variable. Commonality de-
gree of E is the relation between the number of variations derived from ovm

when applying a filter specified by a configuration ({E}, ∅), and the number of
all the possible variations derived from ovm.

commonalityDegree(ovm, E) =
|filter(ovm, ({E}, ∅))|
|variations(ovm)|

5.4. Analysis operations for the full mapping 89

V

D

VP

C

V

B

VP

A

(a) Original (b) Refactoring

V

B

VP

A

V

C
V

D

Figure 5.12: Refactoring between two OVMs.

For instance, the commonality degree of variant Android in the model in
Figure §5.8 is 0.5 since Android is included in 6 out of 12 variations, as can be
seen in Section §5.4.1. This means that Android appears in 50% of the varia-
tions of the product line. This operation can easily be generalised in order to
receive as input a partial configuration instead of a single variability element.

5.4.10 Refactoring

Refactoring is an edit operation that takes two different OVMs as inputs
and returns a value informing whether the models are equivalent or not. A
model g is a refactoring of another model fwhen f and g represent the same set
of variations while having a different structure. The set of variability elements
in both models is not necessarily the same.

Operation 10 (Refactoring). Let f and g be two OVMs, where f ̸= g, and ψf
and ψg be their equivalent CSPs. Then, g is a refactoring of f if the set of
variations represented by f is equal to the set of variations represented by g.

isRefactoring(f, g) ⇔ variations(f) = variations(g)

For instance, the OVM in Figure §5.12 (b) is a refactoring of the OVM
in Figure §5.12 (a). Both models represent the same set of variations, i.e.,
{{A,C},{A,C,B},{A,C,D},{A,C,B,D}}. We may remark that in this case, there
is no distinction between variation points and variants. Although C is a vari-
ant in the model represented in Figure §5.12 (a), and a variation point in the
other, in terms of variations they are not distinguished.

90 Chapter 5. Automated Analysis of OVMs

Internet

VP

Media

VP

V

WiFi

V

3G

V

Camera

Figure 5.13: Sample OVM with two variation points.

5.5 Analysis operations for the selective mapping

The operations defined in Section §5.4 can also be used for the analysis of
OVMs when using the selective mapping; they have the same definition for
the two different mappings. What changes from one approach to another is
how configuration and partial configuration are defined. Unlike in the full
mapping, where the set of variability elements, VE, is such that VE = VP ∪ V ,
in the selective mapping, VE = V , where V is the set of variants in the OVM.
Although the operations are the same, their results may not be. In this section,
we focus on those operations that may give us different results from those
obtained when applying the full mapping.

5.5.1 Number of variations and all variations

The set of all possible variations will change when we consider only vari-
ants as members of variations. Let us consider the example OVM in Fig-
ure §5.13. In this example, when applying the full mapping, twelve variations
can be derived, as shown in Table §5.7. However, when considering selective
mapping, some of those variations are equivalent, namely, VAR1 and VAR2,
VAR3 and VAR4, VAR5 and VAR6, and VAR7 and VAR8, since Internet and
Media are abstract and thus do not form part of variations. Consequently,
eight valid variations can be derived from the model when applying selective
mapping.

5.5. Analysis operations for the selective mapping 91

Valid variations
Fu

ll
m

ap
pi

ng
VAR1 = {Internet}

VAR2 = {Internet,Media}

VAR3 = {Internet,Wifi}

VAR4 = {Internet,Wifi,Media}

VAR5 = {Internet, 3G}

VAR6 = {Internet, 3G,Media}

VAR7 = {Internet,Wifi, 3G, }

VAR8 = {Internet,Wifi, 3G,Media}

VAR9 = {Internet,Media,Camera}

VAR10 = {Internet,Wifi,Media,Camera}

VAR11 = {Internet, 3G,Media,Camera}

VAR12 = {Internet,Wifi, 3G,Media,Camera}

Se
le

ct
iv

e
m

ap
pi

ng

VAR1 = {((((Internet} VAR1 = ∅
VAR2 = {((((Internet,���Media}

VAR3 = {((((Internet,Wifi} VAR2 = {Wifi}
VAR4 = {((((Internet,Wifi,���Media}

VAR5 = {((((Internet, 3G} VAR3 = {3G}
VAR6 = {((((Internet, 3G,���Media}

VAR7 = {((((Internet,Wifi, 3G} VAR7 = {Wifi, 3G}
VAR8 = {((((Internet,Wifi, 3G,���Media}

VAR9 = {((((Internet,���Media,Camera} VAR4 = {Camera}

VAR10 = {((((Internet,Wifi,���Media,Camera} VAR5 = {Wifi,Camera}

VAR11 = {((((Internet, 3G,���Media,Camera} VAR6 = {3G, Camera}

VAR12 = {((((Internet,Wifi, 3G,���Media,Camera} VAR8 = {Wifi, 3G, Camera}

Table 5.7: Different set of variations depending on the approach.

5.5.2 Void OVM

An OVM is void if it does not represent any variation. A model can be void
when applying full mapping, but not void when applying selective mapping.
This is because not all constraints (excludes and requires) that lead to a void
model in the first case, lead to a void model in the second one. Let us observe
the OVM example in Figure §5.7. This OVM is void when applying the full
mapping, but not void when applying the selective mapping. The full map-
ping of this model to a CSP results in eight rules, as shown in Table §5.8. Note
that constraints C1, C2, and C3 make constraint C8 inconsistent, so that there
is no solution for the resulting CSP. Therefore, the number of variations repre-
sented by this model is zero. Contrarily, when applying the selective mapping

92 Chapter 5. Automated Analysis of OVMs

Full mapping Selective mapping

C
on

st
ra

in
ts

C1 : MobileWebBrowser = 1 C1 : Safari = 1

C2 : GoogleGears = 1 C2 : if(Safari > 0) GMail = 0

C3 : Safari = MobileWebBrowser C3 : if(Safari > 0) Calendar = 0

C4 : if(MobileWebBrowser = 0) IEMobile = 0

C5 : if(MobileWebBrowser = 0) FirefoxMobile = 0

C6 : if(GoogleGears = 0) GMail = 0

C7 : if(GoogleGears = 0) Calendar = 0

C8 : if(Safari > 0) GoogleGears = 0

V
ar

ia
ti

on
s

∅

VAR1 = {Safari}

VAR2 = {FirefoxMobile,Safari}

VAR3 = {IEMobile,Safari}

VAR4 = {IEMobile,FirefoxMobile,Safari}

Table 5.8: The set of variations represented by an OVM example.

to the same example, two rules are generated. These rules do not cause any in-
consistency, thus resulting in a solution with four variations, namely: {Safari},
{FirefoxMobile,Safari}, {IEMobile,Safari}, and {IEMobile,FirefoxMobile,Safari}.

5.5.3 Dead and false optional

In the selective mapping, only variants can be identified as dead or false
optional. Therefore, if there is any dead or false optional variation point in
the model, there is no way to identify it when applying selective mapping.
A variability element can be dead or false optional when applying the full
mapping, but not when applying the selective mapping. This is because the
set of variations derived from one model can vary from one approach to an-
other. Figure §5.14 shows a new version of the previous model, but now the
Excludes constraint is defined between FirefoxMobile and GoogleGears. If we
analyse such model by using the full mapping, we find that FirefoxMobile is
dead, since GoogleGears is part of all variants and it excludes FirefoxMobile,
as can be seen in Table §5.9. However, FirefoxMobile is not dead when apply-
ing the selective mapping approach. In this case, as GoogleGears is abstract it
is not part of all variants.

In Figure §5.15, we show another example in which some elements are

5.5. Analysis operations for the selective mapping 93

V

Firefox Mobile

Mobile Web
Browser

VP

VP
Google
Gears

VP

V V V V

IE Mobile Safari GMail Calendar

Figure 5.14: OVM with a dead element when applying the full mapping.

V

Firefox Mobile

Mobile Web
Browser

VP

VP
Google
Gears

VP

V V V V

IE Mobile Safari GMail Calendar

[1..1]

Figure 5.15: OVM with dead and false optional elements.

dead or false optional in both approaches. If we analyse this model by using
both approaches, we find that Calendar is dead, since is does not appear in
any variant; and GMail is false optional, since it is modelled as alternative but
appears in all variations. Table §5.10 presents the set of variations represented
by the model in Figure §5.15 and the dead and false optional elements.

5.5.4 Commonality degree

When applying the selective mapping, the commonality operation takes as
inputs an OVM and a variability element and returns a value that represents
the percentage of valid variations represented by the OVM in which such vari-
ability element appears. This definition is similar to that in Section §5.4.9, but
here the variability element must be a variant. As an example, let us com-
pute the commonality degree of each variability element of the sample in Fig-

94 Chapter 5. Automated Analysis of OVMs

Full mapping Selective mapping

C
on

st
ra

in
ts

C1 : MobileWebBrowser = 1 C1 : Safari = 1

C2 : GoogleGears = 1 C2 : if(FirefoxMobile > 0)GMail = 0

C3 : Safari = MobileWebBrowser C3 : if(FirefoxMobile > 0)Calendar = 0

C4 : if(MobileWebBrowser = 0) IEMobile = 0

C5 : if(MobileWebBrowser = 0) FirefoxMobile = 0

C6 : if(GoogleGears = 0)GMail = 0

C7 : if(GoogleGears = 0)Calendar = 0

C8 : if(FirefoxMobile > 0)GoogleGears = 0

V
ar

ia
ti

on
s

VAR1 = {MobileWebBrowser,GoogleGears,Safari} VAR1 = {Safari}

VAR2 = {MobileWebBrowser,GoogleGears,Safari,
IEMobile} VAR2 = {Safari, FirefoxMobile}

VAR3 = {MobileWebBrowser,GoogleGears,Safari,
Calendar} VAR3 = {Safari, IEMobile}

VAR4 = {MobileWebBrowser,GoogleGears,Safari,
Calendar, IEMobile} VAR4 = {Safari, IEMobile,FirefoxMobile}

VAR5 = {MobileWebBrowser,GoogleGears,Safari,
GMail} VAR5 = {Safari, Calendar}

VAR6 = {MobileWebBrowser,GoogleGears,Safari,
GMail, IEMobile} VAR6 = {Safari, Calendar, IEMobile}

VAR7 = {MobileWebBrowser,GoogleGears,Safari,
Calendar,GMail} VAR7 = {Safari, GMail}

VAR8 = {MobileWebBrowser,GoogleGears,Safari,
Calendar,GMail, IEMobile} VAR8 = {Safari,GMail, IEMobile}

VAR9 = {Safari,Calendar,GMail}

VAR10 = {Safari,Calendar,GMail, IEMobile}

D FirefoxMobile none

FO none none

D = Dead elements FO = False optional elements

Table 5.9: Dead elements.

ure §5.13 for the two approaches. As can be seen in Table §5.11, when apply-
ing the selective mapping, Wifi and 3G are more relevant for the product line
than Camera, since their commonality degrees are 0.5, 0.5, and 0.33, respec-
tively. However, in the selective mapping, the three variants have the same
importance, since their commonality degree is 0.5. Therefore, the commonal-
ity degree of a given variant may change from one approach to another: the
user has to decide which is the more appropriated approach before analysing
the model.

5.5. Analysis operations for the selective mapping 95

Full mapping Selective mapping

C
on

st
ra

in
ts

C1 : MobileWebBrowser = 1 C1 : Safari = 1

C2 : GoogleGears = 1 C2 : if(Safari > 0)GMail = 1

C3 : Safari = MobileWebBrowser

C4 : if(MobileWebBrowser = 0) IEMobile = 0

C5 : if(MobileWebBrowser = 0) FirefoxMobile = 0

C6 : if(GoogleGears = 0)GMail = 0

C7 : if(GoogleGears = 0)Calendar = 0

C8 : if(Safari > 0)GMail = 1

V
ar

ia
ti

on
s

VAR1 = {MobileWebBrowser, GoogleGears, Safari,
GMail}

VAR1 = {Safari, GMail}

VAR2 = {MobileWebBrowser, GoogleGears, Safari,
GMail IEMobile}

VAR2 = {Safari, GMail, FirefoxMobile}

VAR3 = {MobileWebBrowser, GoogleGears, Safari,
GMail FirefoxMobile}

VAR3 = {Safari, GMail, IEMobile}

VAR4 = {MobileWebBrowser, GoogleGears, Safari,
GMail FirefoxMobile, IEMobile}

VAR4 = {Safari, GMail, FirefoxMobile, IEMobile}

D Calendar Calendar

FO GMail GMail

D = Dead elements FO = False optional elements

Table 5.10: Dead and false optional elements.

Commonlaity

Internet Media Wifi 3G Camera

Full mapping 12
12

= 1 8
12

= 0.66 6
12

= 0.5 6
12

= 0.5 4
12

= 0.33

Selective mapping - - 4
8
= 0.5 4

8
= 0.5 4

8
= 0.5

Table 5.11: Results of commonality operation.

5.5.5 Refactoring

This operation allows users to find out whether two OVMs are equivalent
or not. In order to have a more accurate result, the user has to be aware that,
depending on the approach, the result can be yes or no. For instance, let us
analyse again the two models in Figure §5.12, on page 89, which were anal-
ysed previously and identified as being a refactoring, but now applying the
selective mapping. In this case, the OVM in Figure §5.12 (b) is not a refactor-

96 Chapter 5. Automated Analysis of OVMs

Model in Figure §5.12 (a) Model in Figure §5.12 (b)

V
ar

ia
ti

on
s VAR1 = {C} VAR1 = {∅}

VAR2 = {C,B} VAR2 = {B}

VAR3 = {C,D} VAR3 = {D}

VAR4 = {C,B,D} VAR4 = {B,D}

Table 5.12: Models representing two different sets of variations.

ing of the OVM in Figure §5.12 (a), since these models do not represent the
same set of variations, as can be seen in Table §5.12.

5.6 Summary

In this chapter, we have presented the analysis process we have used to au-
tomate the analysis of OVMs. This process is based on the mapping of OVM
into CSP. We have provided two different approaches to map an OVM into
CSP. These approaches differ mainly regarding which variability element can
be part of a configuration, namely, variation points and variants, or only vari-
ants. Finally, we have defined a set of analysis operations that can be applied
to both approaches, and we have discussed their possible results, which differ
from one approach to another.

Chapter 6

Automated Analysis of
Attribute-aware OVMs

It’s more about good enough than it is about right or wrong.
James Marcus Bach,

Software tester

T
his chapter is devoted to presenting a technique to relate OVM and
attributes – which we call Attribute-aware OVMs – and a technique
to automate their analysis. In Section §6.1, we introduce the chap-
ter. In Section §6.2 we discuss the challenges of relating variability in

orthogonal variability models with attributes. In Section §6.3, we present the
Attribute-based Model, which we use to document attributes and constraint
on these attributes. Next, in Section §6.4, we describe the process to automate
the analysis of Attribute-aware OVMs. In Section §6.5, we define a set of map-
ping rules to translate an Attribute-aware OVM into a CSP. In Section §6.6, we
define a set of analysis operations to be performed on Attribute-aware OVMs.
Finally, Section §6.7 summarises the chapter.

97

98 Chapter 6. Automated Analysis of Attribute-aware OVMs

6.1 Introduction

In OVM, variability is defined by means of a set of rules which constraint
the combination of reusable artefacts that compose a particular product within
a product line. These rules are used to guide the derivation of products in ap-
plication engineering. In the derivation process, variations are resolved by
selecting options according to customer needs, but also respecting the vari-
ability modelling rules. For example, a mobile phone product line is planned
to offer mobile phones with at least one and at most three types of connec-
tivities, namely: Bluetooth, USB, and Wifi. Then, when deriving a specific
product, one, two, or three of these options have to be selected.

Variability information may be not enough to guarantee the success of
a product. Software engineers should be able to realise the impact of their
choices on the attributes, such as memory consumption or development costs.
Thus, decisions about the most suitable product to be built should take into
account attributes. Furthermore, when there are limitations of resources such
as memory and CPU capacity, the derivation of products that do not satisfy
those conditions must be avoided.

In this chapter, we present the Attribute-aware OVM (AOVM), which is
a technique we provide to express the relationship between OVM and at-
tributes, and constraints on these attributes. In addition, we provide support
to automate the analysis of AOVMs. This analysis aims to support the deci-
sions of engineers, but it can be performed by any stakeholder that wants to
obtain information from the AOVM.

6.2 Attribute-aware OVM

The specification of variability can be extended with measurable attributes
and constraints on these attributes [13]. In feature models, the attributes anno-
tate features, as illustrated in Figure §6.1. In this example, the feature model
provides information about the transfer rate of each type of connectivity, and
therefore speed is an attribute of features Bluetooth, USB, and Wifi.

Feature models document the variability of a product line in terms of fea-
tures; they graphically represent all products of a product line. Therefore,
when a feature model is extended with attributes, apart from variability, data
information is also represented, such as features of a system. Contrarily, in

6.2. Attribute-aware OVM 99

Connectivity

Bluetooth Wifi

Name: speed

Domain: Integer

Value: 24Mbit/s

Name: speed

Domain: Integer

Value:540Mbit/s

USB

Name: speed

Domain: Integer

Value: 480Mbit/s

Figure 6.1: Excerpt of a feature model extended with attributes.

OVM the variability should be orthogonal to all models that contain data in-
formation, since OVM documents the variability of base models, as depicted
in Figure §6.2. Consequently, there are two different possibilities when relat-
ing OVM to attributes, which represent two different problems:

i. The OVM is directly related to attributes. In this case, OVM documents
the variability of attributes, which are documented in a base model ac-
cording to the OVM terminology. Figure §6.3 (a) shows an example of a
base model (e.g., attribute information model) for representing three dif-
ferent levels of connectivity speed. In this example, the variability of the
attribute information model is documented by the OVM, meaning that
one and only one of the speed levels can be selected for each product.

ii. The OVM is not directly related to attributes. The attributes refers to a
base model (e.g., architecture, requirements, or configuration models),
and the variability of this base model is documented by the OVM. In
Figure §6.3 (b), we show an example of a configuration model with three
components, namely Bluetooth, USB, and Wifi; and each component has
an attribute Speed. Then, the variability of the configuration model is
documented by the OVM.

Our contribution addresses the second problem, in which we consider that
the base model is a configuration model and this model is related to attributes.
Roughly speaking, a configuration model is a model that represents configura-
tion problems [50, 53], and it is made up of a set of components (e.g., features
or variants) and rules that constrain the possible combinations of these com-
ponents. We assume that the rules of a configuration model can be represented
in an OVM, and that attributes and constraints on attributes are expressed in

100 Chapter 6. Automated Analysis of Attribute-aware OVMs

Requirements models

<<component>>
:Connectivity

<<component>>
C1:Wifi

<<component>>

C2:USB

<<component>>
C3:Bluetooth

Design models

Base models

[1..3]

Bluetooth USB

VV

VP

Connectivity

Wifi

V

Textual description

Req1:

......

Req2...

...

Req3: ...

.....

.......

<<include>> <<include>>

...

<<include>> <<include>>

...

...

...

... ...

...

... ...

...

v

v

v

V

...
V

V

...
V

VP

...

Figure 6.2: OVM documenting variability of base models.

the proposed Attribute-based Model, which is introduced in Section §6.3. The
specific configuration model depends on the language used to model the con-
figuration problem [50, 53]. A feature model is an example of a configuration
model. Our approach is independent from the configuration model used.

We assume that the relationship between elements in both models (OVM
and configuration model) is one-to-one. However, the relationship could be

6.2. Attribute-aware OVM 101

Configuration model
without variability

Speed = 540 Mbit/s

...

...

...Wifi

USB

Bluetooth

Base model Attributes

(a)

(b)

Attribute information model

Base model

Connectivity.Speed

540 Mbit/s

480 Mbit/s

24 Mbit/s

...

...

...

...

[1..1]

Low Medium
VV

VP

Connectivity
speed

High
V

[1..3]

Bluetooth USB
VV

VP

Connectivity

Wifi
V

Speed = 480 Mbit/s

Speed = 24 Mbit/s

Figure 6.3: (a) Attributes as a base model, (b) Attributes of base model ele-
ments.

extended to be 1 : N with only minor changes. These changes concern to the
mapping from OVM into a CSP, since in the process of automating the anal-
ysis of OVM we will map this specification into a CSP. In 1 : 1 relationships,
we can omit the configuration model in the mapping process and then each
relationship between an OVM element and an attribute becomes a variant in
the CSP. If 1 : N is allowed, the configuration model cannot be omitted. Con-
sequently, the mapping of OVM into CSP is changed and each relationship
involving an OVM element, a configuration model element, and an attribute
become a variable in the CSP. For the sake of simplicity, we have not addressed
1 : N relationships, however our approach is theoretically applicable.

102 Chapter 6. Automated Analysis of Attribute-aware OVMs

V1

V

VP

VP1

V2

VP

VP2

1..1

V

V5

V

V3

V

V4

V

Attribute-based

Model

Figure 6.4: Attribute-aware OVM.

To simplify the presentation, we omit the configuration model in the sub-
sequent figures and text, and relate the OVM directly to attributes in the
Attribute-based Model, as depicted in Figure §6.4. We refer to the resulting
relationship between OVM and the Attribute-based Model as Attribute-aware
OVM. We remark that we still consider the second problem aforementioned,
i.e., we are not documenting the variability of the Attribute-based Model.

6.3 Attribute-based Model

In this section, we describe the Attribute-based Model and how we relate
variability documented in an OVM to it. It is not our intention to provide
a rigorous syntax and semantics of a language to define the Attribute-based
Model, but we assume that such model should be defined so that it can be
mapped into a constraint satisfaction problem, thus enabling the automation
of the analysis of Attribute-aware OVMs. In Figure §6.5, we provide a high-
level conceptual model to describe the main elements of the Attribute-based
Model we use in our approach. An Attribute-based Model is composed of one
or more attributes with their respective domains, and zero or more constraints
on these attributes. In the following, we describe these elements and how they
are related to the OVM.

6.3. Attribute-based Model 103

AttributeBasedModel

unit

nullValue

value

domain

name

Attribute
1..*

DomainConstraint

0..*

1..*

BasicAttribute DerivedAttribute

1..*

VariabilityElement

0..* 0..*

is related to

Global attributes are

those attributes that

are not related to a

VariabilityElement

Figure 6.5: Attribute-based metamodel.

6.3.1 Attributes

Attributes are measurable properties of an artefact. We only consider those
properties that can be quantified and technically defined. For example: the
power consumption or the memory capacity of a feature in the mobile phone
product line. As stated by [13], most proposals agree that an attribute should
consist of a name, a domain, and a value. We have relied on this statement
to specify the attributes used in our approach. An Attribute has a name, a
domain, a value, a nullValue, and a unit. name denotes the name of the at-
tribute which does not need to be unique since different artefacts can have dif-
ferent attributes with the same name. domain denotes the range of values that
the attribute may hold such as Reals, Integers, and any range (e.g., [1..512]);
value denotes the attribute value which will depend on the concrete type of
attribute (we elaborate more on this later). nullValue denotes the value that
must be taken by the attribute when the VariabilityElement with which the
attribute is related is not selected. unit denotes a determinate quantity such
as meters, seconds, currency, and kilobytes, adopted as a standard for mea-
surement.

104 Chapter 6. Automated Analysis of Attribute-aware OVMs

Attribute-based Model

V
Windows

VP

OS

name = cost
domain = Real
value = Windows.cost + Android.cost
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 0
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 250
nullValue = 0
unit = Monetary unit

V
Android

[1,1]

name = version
domain = Real
value = [5.0,6.0,7.0]
nullValue = 1
unit = version number

name = version
domain = Real
value = [1.6,2.2,2.3,3.0]
nullValue = 1
unit = version number

Figure 6.6: Example of basic and derived attributes.

We distinguish two kinds of attributes depending on how their values are
calculated:

• BasicAttribute. The value of a basic attribute is a base measure [57],
i.e., a measure that does not depend upon any other measure. This value
can be single or a range of values (e.g., [“high”, “medium”, “low”]).

• DerivedAttribute. The value of a derived attribute is determined by a
function over other attribute values, including values of other derived
attributes.

An Attribute can be related to zero or more VariabilityElement (i.e.,
variation points and/or variants) in the OVM. In the same manner, a
VariabilityElement can be related to zero or more Attribute. Note that,
for the sake of simplicity, we relate attributes with variability elements; how-
ever, in practice variability elements are related with base model elements and
these to attributes.

To illustrate how we specify basic and derived attributes, we use the exam-
ple in Figure §6.6. In this example, the mobile phone product line has a varia-
tion point OS, meaning that the operating system can vary from one product
to another. Products from this product line can have Windows or Android op-
erating system. Furthermore, there are four basic attributes: i) cost, related

6.3. Attribute-based Model 105

to Windows; ii) cost, related to Android; iii) version, related to Windows, and
iv) version, related to Android (basic attributes are depicted in grey). These
attributes determine that each operating system has a different version and
system cost. In addition, there is one derived attribute: cost, related to vari-
ation point OS. This derived attribute expresses the system cost regarding
the type of operating system selected, and it is the sum of costs of basic at-
tributes Windows.cost and Android.cost. Note that we textually represent each
attribute by relating the variability element and the attribute with the form
<variability-element.attribute>, where variability-element denotes the name
of the variability element which must be unique and attribute denotes the
name of the attribute. For example, Windows.cost defines the relationship
between variant Windows and attribute cost.

An attribute is not always related to a variability element, sometimes we
may need to set it with no connection to elements in the OVM. For example,
we may define an attribute TotalCost that represents the sum of attributes cost
regarding to all or some of the variation points of the product line. When
an attribute is not related to a variability element in the OVM we refer to it
as a global attribute, and it can be basic or derived. Figure §6.7 shows an
example of global attributes (the global attribute is depicted in grey). In this
figure, we have included two more variation points, namely Hardware and
Settings. Hardware has an attribute cost, which in turn is calculated by the
sum of RAM.cost, Processor.cost, FlashMemory.cost, and GPS.cost. Thus,
a global attribute called TotalCost, which is not connected to any variability
element, is defined. The global attribute represents a property of the product
line as a whole. Then, in the case of TotalCost, it represents the resulting cost
of the product when variability is selected in the OVM and it is defined by
adding the costs of selected operating system and selected hardware.

The function used to calculate the values of derived attributes depends on
the solver used to automate the approach; furthermore, it is domain depen-
dent. The resulting value of a function depends on whether the variability el-
ement related to it is selected or not. Therefore, when an attribute is involved
in a function its nullValue must be neutral to such a function. Each function
must be handled specifically and suitable neutral values must be defined. Let
us observe, e.g., the function defined in the Hardware.cost attribute. In the
case where GPS is selected, the addition operation will assign the value 50 to
the term GPS.cost. However, if GPS is not selected, the value of GPS.cost
must have a neutral value with regard to the addition. In this case, we can
use 0 as the nullValue since addition is associative.

106 Chapter 6. Automated Analysis of Attribute-aware OVMs

V
RAM

VP

Hardware

V
Flash

Memory

name = cost
domain = Real
value = RAM.cost + Processor.cost +
 FlashMemory.cost + GPS.cost
nullValue = 0
unit = Monetary unit

name = cost
domain Real
value = 50
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 60
nullValue = 0
unit = Monetary unitV

Processor

V
GPS

name = Cost
domain = Real
value = 120
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 80
nullValue = 0
unit = Monetary unit

Attribute-based Model

V
Windows

VP

OS

name = cost
domain = Real
value = Windows.cost + Android.cost
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 0
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 250
nullValue = 0
unit = Monetary unit

V
Android

[1,1]

name = version
domain = Real
value = [5.0,6.0,7.0]
nullValue = 1
unit = version number

name = version
domain = Real
value = [1.6,2.2,2.3,3.0]
nullValue = 1
unit = version number

name = TotalCost
domain = Real
value = OS.cost + Hardware.cost
nullValue = 0
unit = Monetary unit

name = size
domain = Integer
value = [64,128,512,1024]
nullValue = 0
unit = MB

name = size
domain = Integer
value = [1, 4, 8, 16]
nullValue = 0
unit = GB

name = frequency
domain = Real
value = [0.5,1.2, 1.5].
nullValue = 0
unit = GHz

V
Screen

VP

Settings

V
JavaSupport

[1,2]
name = resolution
domain = Real
value = [320x240, 320x480, 640 x 960]
nullValue = 0
unit = width × height

requires

Figure 6.7: Example of global attributes.

6.3.2 Domain constraints

Domain constraints are constraints on attributes that limit the possible
variations derived from an OVM. These constraints may come from resource

6.3. Attribute-based Model 107

If Windows and Windows.version > 6

then Processor.frequency >= 1 and RAM.size >= 256 and

 FlashMemory.size >= 8

If Android then

Processor.frequency >= 0.2 and RAM.size >= 128 and

FlashMemory.size >= 0.25

If GPS then

Screen.resolution >= 320 x 480

V
RAM

VP

Hardware

V
Flash

Memory

name = cost
domain = Real
value = RAM.cost + Processor.cost +
 FlashMemory.cost + GPS.cost
nullValue = 0
unit = Monetary unit

name = cost
domain Real
value = 50
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 60
nullValue = 0
unit = Monetary unitV

Processor

V
GPS

name = Cost
domain = Real
value = 120
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 80
nullValue = 0
unit = Monetary unit

Attribute based information Model (AM)

V
Windows

VP

OS

name = cost
domain = Real
value = Windows.cost + Android.cost
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 0
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 250
nullValue = 0
unit = Monetary unit

V
Android

[1,1]

name = version
domain = Real
value = 7
nullValue = 1
unit = version number

name = version
domain = Real
value = 2.3
nullValue = 1
unit = version number

name = TotalCost
domain = Real
value = OS.cost + Hardware.cost
nullValue = 0
unit = Monetary unit

name = size
domain = Integer
value = 1024
nullValue = 0
unit = MB

name = size
domain = Integer
value = 8
nullValue = 0
unit = GB

name = frequency
domain = Real
value = 1.2
nullValue = 0
unit = GHz

V
Screen

VP

Settings

V
JavaSupport

[1,2]
name = resolution
domain = Real
value = 480x320
nullValue = 0
unit = width × height

requires

Figure 6.8: Domain constraints on attributes in the Attribute-aware OVM.

limitations (e.g., the maximum memory consumption allowed) or any domain
relevant restriction (e.g., all variations derived from the mobile phone prod-
uct line must provide at least 300 minutes of battery power in talk time, oth-
erwise the system is useless). Therefore, domain constraints can be defined
on attributes to avoid building unsuitable variations. We assume that domain
constraints can be represented in terms of CSP.

In the case of the mobile phone product line, e.g., a given version of
the operating system may require a minimum hardware device. This min-
imum must be fulfilled to allow the variation to provide a satisfiable per-
formance. Therefore, some constraints on the attribute Windows.version and
Android.version must be specified. To guarantee that a mobile phone variation
can successfully run, if Windows is selected and Windows.version greater than
6, Processor.frequency must be greater than or equal to 1 GHz and RAM.size
greater than or equal to 256MB and FlashMemory.size greater than or equal to
8 GB. However, if Android operating system is selected, Processor.frequency
must be greater than or equal to 0.2 GHz and RAM.size greater than or equal
to 128 MB and FlashMemory.size greater than or equal to 0.25 GB. In ad-
dition, when the mobile phone has GPS resource, Screen.resolution must be
greater than or equal to 320x480. Thus, the constraints on attributes repre-
sented within ellipses in Figure §6.8 are added to the OVM depicted in Fig-
ure §6.7 to prevent the configuration of unsatisfactory variations.

The syntax of domain constraints depends on the solver used to automate
the analysis. Domain constraints are predicates over attributes that can be

108 Chapter 6. Automated Analysis of Attribute-aware OVMs

V1

V2

V3

V4

V5

V7
V10

V9

V8

V6

V11

V12

V13

V16

V14

V15

V17

Subset satisfying

attribute conditions

Subset satisfying

AOVM
Variations

Attribute-based

Model

+

Analysis of

AOVM

AOVM

attribute conditions

OVM

Figure 6.9: Analysis of Attribute-aware OVM.

evaluated to true or false depending on the attribute values. The neutral val-
ues for attributes must also be considered in constraint definitions.

6.4 The automated analysis process

In Figure §6.9, we show an overview of our approach for the analysis of
AOVMs. An OVM represents a set of possible variations. When an OVM is
associated with attributes, resulting in the AOVM, the set of variations can
be reduced, since not all of them satisfy the required attributes. Based on
this new set of variations, which takes attributes into account, engineers of
a product line can carry out the analysis of AOVMs. On the one hand, the
AOVM specification can be analysed in order to verify possible anomalies.
On the other hand, engineers can execute other analysis operations on AOVM

6.4. The automated analysis process 109

Attribute

Condition

Operation
 selection

+

[...]

+

TranslatorMapping

first step second step

Solver/ToolSolver/Tool

Analysis
results

Generic CSP

aovm

link1

link2

V1
V

VP

VP1

V2

VP

VP2

1..1

V

V5
V

V3
V

V4
V

link3

link4

link6

Quality Model

link5

link7

Figure 6.10: Process for the automated analysis of AOVMs.

to extract other useful information, such as to verify attribute conditions, and
to ask for an optimal variation or the most representative one. An attribute
condition is any constraint that restricts the value of attributes, defined by the
engineers of the product line. Therefore, these conditions restrict the set of
variations even more, as shown in Figure §6.9.

In our approach, we consider that the number of variations represented by
an AOVM is less than or equals to the number of variations represented by
an OVM. However, it is worth highlighting that, in some cases, the number of
variations represented by an AOVM can be greater than those represented by
an OVM; it depends on how variation is defined. In our approach, we define
variations as a set of variations points and variants, meaning that variations
differ only by functionalities, whether they are associated with attributes or
not. However, variations can differ not only by functionality, but also by the
values of attributes. Therefore, it would be possible to consider variation as a
set of variation points, variants, and attribute values, meaning that different
variations can have the same functionalities but different values for attributes.
In this case, the number of variations represented by an AOVM can be greater
than the number of variations represented by an OVM.

The analysis process previously introduced to automate the analysis of
OVM is extended in order to consider attribute conditions (see Figure §6.10).
In this process, an operation takes as input an AOVM. Apart from the target
model and a possible partial configuration, an operation can also have as input
an attribute condition. We define an attribute condition as a statement of what
is required as part of a variation or a set of variations regarding attributes. For
example, the engineer of the mobile phone product line may want to anal-

110 Chapter 6. Automated Analysis of Attribute-aware OVMs

yse if it is possible to derive a particular variation with development cost no
higher than the assigned budget. The restrictions imposed by the engineer are
expressed as an attribute condition and are used to get the answer from the
AOVM specification.

6.5 Mapping Attribute-aware OVM into CSP

In this dissertation, the mapping from an AOVM into CSP follows the full
mapping approach described in Section §5.3.1. As previously commented,
the mapping of an AOVM into CSP can differ depending on the concrete
solver that is used later for the analysis. In general, the mapping process
goes through two main steps. First, the 3-tuple ψovmf

=(Vovmf
, Dovmf

, Covmf
)

is built, where the variability elements (variation points and variants) in the
OVM become variables in Vovmf

with their respective domains in Dovmf
, and

the variability and constraint dependencies in the OVM become constraints in
the Covmf

. Second, the final mapping from an AOVM into a CSP is carried out
by adding variables and constraints to the ψovmf

, where the attributes become
variables and the domain constraints become constraints, resulting in the 3-
tuple ψaovm = (Vaovm, Daovm, Caovm). Next, we detail the complete mapping
process.

The mapping from an OVM into a CSP was described in Section §5.3.1,
where we have shown how to build the 3-tuple ψovmf

=(Vovmf
, Dovmf

, Covmf
).

In this section, we add the variables equivalent to each attribute in the AOVM
and the needed constraints to the ψovmf

, thus resulting in the ψaovm. The gen-
eral mapping rules are presented in Table §6.1. In this table, we also show the
mapping from the mobile phone example in Figure §6.11 into CSP.

The mapping follows these steps:

i. Every attribute in the AOVM is mapped into a variable in ψaovm. The
domain of these variables is defined by the union of the domain interval
specified to the corresponding attribute and its nullValue.

• When the attribute is related to a variable element, the equivalent
variable in ψaovm is of the form “ve.Aname”, where ve is the vari-
able element, and Aname is the name of the attribute.

• When the attribute is global, the equivalent variable in ψaovm is of
the form “Aname”. Note that, when the attribute is global the do-

6.5. Mapping Attribute-aware OVM into CSP 111

AOVM Mobile phone example
aovm

A
tt

ri
b

u
te

s
 r

e
la

te
d

 t
o

 v
a

ri
a

ti
o

n
 p

o
in

t
A

tt
ri

b
u

te
s

 r
e

la
te

d
 t

o
 v

a
ri

a
n

ts

name = Aname
domain = Adomain
value = x
nullValue = y
unit = Aunit

name = Aname
domain = Adomain
value = x
nullValue = y
unit = Aunit

∪vp.Aname ∈ {Adomain}

v.Aname ∈ {Adomain} {y}

{y}

∪

name = Aname
domain = Adomain
value = x
nullValue = y
unit = Aunit

G
lo

b
a

l
a

tt
ri

b
u

te Aname ∈ {Adomain}

D
o

m
a

in

c
o

n
s

tr
a

in
t

domain constraint constraint

OS.cost ∈ Real ∪ {0} ∧

Hardware.cost ∈ Real ∪ {0}

D
o

m
a

in
C

o
n

s
tr

a
in

t

If vp = 1 then

 vp.Aname = x

else vp.Aname = y

If OS = 1 then

 OS.cost = Windows.cost + Android.cost

else OS.cost = 0

If Hardware = 1 then

 Hardware.cost = RAM.cost + Processor.cost +

 FlashMemory.cost + GPS.cost

else Hardware.cost = 0

D
o

m
a

in
C

o
n

s
tr

a
in

t

If v = 1 then

 v.Aname = x

else v.Aname = y

If Windows = 1 then

 Windows.cost = 250

 Windows.version = [5.0, 6.0, 7.0]

else Windows.cost = 0 and Windows.version = 0

If Android = 1 then

 Android.cost = 0

 Android.version = [1.6, 2.2, 2.3, 3.0]

else Android.cost = 0 and Android.version = 0

If RAM = 1 then

 RAM.cost = 80

 RAM.size = [64, 128, 512, 1024]

else RAM.cost = 0 and RAM.size = 0

If Windows and Winsows.version => 6 then

 Process.frequency >= 1 and RAM.size >= 256

 and FlashMemroy.size >= 8

Windows.cost ∈ Real ∪ {0} ∧

Android.cost ∈ Real ∪ {0} ∧

RAM.cost ∈ Real ∪ {0} ∧

Processor.cost ∈ Real ∪ {0} ∧

FlashMemory.cost ∈ Real ∪ {0} ∧

GPS.cost ∈ Real ∪ {0} ∧

Windows.version ∈ Real ∪ {0} ∧

Android.version ∈ Real ∪ {0} ∧

RAM.size ∈ Integer ∪ {0} ∧

Processor.frequency ∈ Real ∪ {0} ∧

FlashMemory.size ∈ Integer ∪ {0}

If Processor = 1 then

 Processor.cost = 120

 Processor.frequency = [0.5, 1.2, 1.5]

else Processor.cost = 0 and Processor.frequency = 0

If FlashMemory = 1 then

 FlashMemory.cost = 60

 FlashMemory.size = [1, 4, 8, 16]

else FlashMemory.cost = 0 and FlashMemory.size = 0

If GPS = 1 then GPS.cost = 50

else GPS.cost = 0

If Android then Process.frequency >=1 and

 RAM.size >= 256 and FlashMemroy.size >= 8

If GPS then Screen.resolution >= 320x480

TotalCost ∈ Real

D
o

m
a

in
C

o
n

s
tr

a
in

t

Aname = x TotalCost = OS.cost + Hardware.cost

(JaCoP-like notation)

Table 6.1: Mapping AOVM into a CSP.

112 Chapter 6. Automated Analysis of Attribute-aware OVMs

V
Camera

V
MP3

VP

Media

[1..2]

V
MMS

V
IM

VP

Messaging

requires

V
RAM

VP

Hardware

V
Flash

Memory

name = cost
domain = Real
value = RAM.cost + Processor.cost +
 FlashMemory.cost + GPS.cost
nullValue = 0
unit = Monetary unit

name = cost
domain Real
value = 50
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 60
nullValue = 0
unit = Monetary unitV

Processor

V
GPS

name = Cost
domain = Real
value = 120
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 80
nullValue = 0
unit = Monetary unit

Attribute-based Model

V
Windows

VP

OS

name = cost
domain = Real
value = Windows.cost + Android.cost
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 0
nullValue = 0
unit = Monetary unit

name = cost
domain = Real
value = 250
nullValue = 0
unit = Monetary unit

V
Android

[1,1]

name = version
domain = Real
value = [5.0, 6.0, 7.0]
nullValue = 0
unit = version number

name = version
domain = Real
value = [1.6, 2.2, 2.3, 3.0]
nullValue = 0
unit = version number

name = TotalCost
domain = Real
value = OS.cost + Hardware.cost
nullValue = 0
unit = Monetary unit

name = size
domain = Integer
value = [64, 128, 512, 1024]
nullValue = 0
unit = MB

name = size
domain = Integer
value = [1, 4, 8, 16]
nullValue = 0
unit = GB

name = frequency
domain = Real
value = [0.5,1.2, 1.5].
nullValue = 0
unit = GHz

V
Screen

VP

Settings

V
JavaSupport

[1,2] name = resolution
domain = Real
value = [320x240, 320x480, 640 x 960]
nullValue = 0
unit = width × height

requires

If Windows and Windows.version > 6

then Processor.frequency >= 1 and RAM.size >= 256 and

 FlashMemory.size >= 8

If Android then

Processor.frequency >= 0.2 and RAM.size >= 128 and

FlashMemory.size >= 0.25

If GPS then

Screen.resolution >= 320 x 480

V
Wifi

VP

Internet

V
3G

[1,2]

Figure 6.11: AOVM for a mobile phone example.

6.6. Analysis operations on Attribute-aware OVMs 113

main of the equivalent variable in ψaovm is defined only by the do-
main of the attribute.

ii. Every attribute in the AOVM is mapped into a constraint in ψaovm.

• When the attribute is related to a variable element, its value is
mapped into a constraint of the form “if(ve = 1) then ve.Aname =
x else ve.Aname = y”, where ve is the variable element, Aname is
the name of the attribute, x is the value of the attribute, and y is the
null value of the attribute.

• When the attribute is global, its value is mapped into a constraint of
the form “Aname = x”, where Aname is the name of the attribute,
and x is the value of the attribute.

iii. The domain constraints in the AOVM become constraints in ψaovm.

6.6 Analysis operations on Attribute-aware OVMs

In this section, we first present the analysis operations to detect anoma-
lies in the AOVM. In addition to requires and excludes constraints, domain
constraints can also cause anomalies. Therefore, before running any other at-
tribute aware-analysis operation, we have to detect possible anomalies in the
AOVM, such as “the model does not allow the derivation of any variation
that respects all the specified domain constraints”. Next, we propose other
analysis operations on AOVM.

6.6.1 Operations for detecting anomalies

The same operations applied to detect anomalies in the OVM, namely, void
model, dead element and false optional element, can be used to detect anoma-
lies in the AOVM. Their definitions are the same as those described in Sec-
tions §5.4.4, §5.4.7, and §5.4.8, respectively, except for the input model, which
is the CSP equivalent to the AOVM, i.e., ψaovm. Next, we detail each of them.

Void model. An AOVM is void when it does not represent any valid varia-
tion. An AOVM can become void due to the wrong use of constraint
dependencies and/or domain constraints. For example, Figure §6.12

114 Chapter 6. Automated Analysis of Attribute-aware OVMs

Attribute-based Model

V
A

VP

VP

name = att
domain = Integer
value = A.att + B.att
nullValue = 0
unit = att unit

name = att
domain = Integer
value = [3,6]
nullValue = 0
unit = att unit

name = att
domain = Integer
value = [2,3,4]
nullValue = 0
unit = att unit

V
B

[1,2]

If VP then

 VP.att > 10

domain constraint

causing void model

Figure 6.12: Example of void AOVM.

shows an example of a void AOVM, in which the anomaly is caused
by a very restrictive domain constraint.

Dead element. A variability element in the AOVM is dead if it does not ap-
pear in any of the variations represented by the AOVM. It can become
dead due to the wrong use of constraint dependencies and/or domain
constraints. For example, Figure §6.13 shows an example of a dead vari-
ant (B), caused by a domain constraint.

False optional element. A variability element in the AOVM is false optional
when it is modelled as optional, but it appears in every valid variations.
It can become false optional due to the wrong use of constraint depen-
dencies and/or domain constraints. For example, Figure §6.14 shows an
example of a false optional variant (C), caused by a domain constraint.

6.6.2 Valid attribute condition

An engineer of a product line may want to verify if it is possible to con-
figure a variation or a set of variations that satisfy a given attribute condition,
and that at the same time satisfy functional variability and domain constraints.
Additionally, taking into account the needs of the stakeholders, the engineers

6.6. Analysis operations on Attribute-aware OVMs 115

Attribute-based Model

V
A

VP

VP

name = att
domain = Integer
value = A.att + B.att
nullValue = 0
unit = att unit

name = att
domain = Integer
value = [3,6]
nullValue = 0
unit = att unit

name = att
domain = Integer
value = [2,3,4]
nullValue = 0
unit = att unit

V
B

[1,3]

If VP then

 VP.att <= 2

V
C

dead

variant

domain constraint

causing dead variant

Figure 6.13: Example of a dead variant in the AOVM.

Attribute-based Model

V
A

VP

VP2

name = att
domain = Integer
value = A.att + B.att
nullValue = 0
unit = att unit

name = att
domain = Integer
value = [3,6]
nullValue = 0
unit = att unit

name = att
domain = Integer
value = [3,4]
nullValue = 0
unit = att unit

[1,1]

If VP2.att > 2

 then C

V
B

false optional

variant

domain constraint

causing false optional variant

V
C

VP

VP1

Figure 6.14: Example of a false optional variant in the AOVM.

can verify whether some configuration (i.e., a set of variability elements to be
selected and/or a set of variability elements to be removed) satisfies the vari-
ability expressed by the AOVM, and an attribute condition, as well. Therefore,

116 Chapter 6. Automated Analysis of Attribute-aware OVMs

if necessary, the engineer can try to achieve the required configuration by re-
laxing or removing relationships in the variability model.

As our approach is automated by means of CSP, our basic assumption is
that attribute conditions can be specified as a constraint on attributes, as fol-
lows:

Definition 1 (Attribute condition). Let aovm be an AOVM specification,
ψaovm be its equivalent CSP of the form (Vaovm, Daovm, Caovm), A be a set of at-
tributes in aovm, and Aaovm its equivalent variables, such that Aaovm ⊂ Vaovm.
An attribute condition AC is a constraint on one or more attributes, where
attributes ∈ Aaovm.

To analyse if there is some variation that satisfies an attribute condition, we
defined an operation called Valid attribute condition. This operation takes an
AOVM and an attribute condition as inputs and returns a value (true or false)
informing whether AOVM satisfies the given attribute condition or not.

Operation 11 (Valid attribute condition). Let aovm be an AOVM specifica-
tion, ψaovm be its equivalent CSP, ac be an attribute condition, and AC its
equivalent CSP. The attribute condition ac is valid for aovm if there is at least
one solution for the conjunction of ψaovm and AC.

validAC(aovm,ac) ⇔ |sol(ψaovm ∧AC)| > 0

Let us, consider AC = TotalCost < 300 as the attribute condition defined
for the AOVM presented in Figure §6.11. This attribute condition is valid
for the mobile phone product line, since there is at least one valid variation
satisfying TotalCost < 300, such as {OS, Hardware, Android, FlashMemory,
Processor, RAM} that has TotalCost = 260. Thus validAC(aovm, TotalCost
< 300) = true. However, when applying another attribute condition, e.g.,
AC = TotalCost < 100, to the same example, this time the attribute condi-
tion is not valid. Thus validAC(aovm, TotalCost < 100) = false.

Now, let us consider that the engineer of the same mobile phone product
line wants to verify if it is possible to derive a variation with GPS and Internet
support, and without Camera resource, that satisfies his/her attribute condi-
tion, AC = TotalCost < 550. To provide support for this analysis, we define a
new operation, in which we add the equivalent constraint of a configuration to
the model. Then we check whether this configuration is valid when applying
a given attribute condition.

6.6. Analysis operations on Attribute-aware OVMs 117

Operation 12 (Valid Configuration with attribute condition (ValidConfAC)).
Let aovm be an AOVM specification, ψaovm be its equivalent CSP, ac be an
attribute condition, AC be its equivalent CSP, C be a configuration of the form
(S,R), E be a variability element ∈ S∪R, and e be its equivalent variable ∈ψaovm.
The configuration C is valid for the aovm if there is at least one solution for
the conjunction of its equivalent constraint and ψaovm and AC.

ValidConfAC(aovm,ac,C) ⇔
|sol(ψaovm ∧AC∧ (

∧
ei∈S

ei = 1∧
∧
ei∈R

ei = 0))| > 0

Applying this operation to the example in Figure §6.11, we verify that if
GPS and Internet are selected, and Camera is removed, there is no valid vari-
ation that satisfies TotalCost < 300, as follows:

ValidConfAC(aovm, ({GPS, Internet}, {Camera}), TotalCost < 550) = false

6.6.3 Optimal variation

We refer to optimal variation as the variation that satisfies AOVM, and
also minimises or maximises a given objective function. When relating at-
tribute information to OVM we are able to ask for an optimal variation, since
the objective function takes into account values of attributes. The product line
engineer may want to verify, e.g., which variation of the set of variations con-
sumes less memory, or even to find the variation with the lowest development
cost. Therefore, finding the optimal solution, as opposed to any possible solu-
tion, would be helpful for making attribute-aware decisions.

The Optimal operation takes an AOVM and an objective function as in-
puts and returns the set of variations fulfilling the criteria established by the
function. Hence, to find the optimal solution, we can associate an objective
function with an optimisation problem. Then, the solver has to find the best
variation from all valid variations.

Definition 2 (Optimal). Let aovm be an AOVM specification, and O be an
objective function, the optimal set of variations, hereinafter max and min, is
equal to the optimal space of ψaovm.

118 Chapter 6. Automated Analysis of Attribute-aware OVMs

max(ψaovm, O)

min(ψaovm, O)

For example, to find the cheapest variation(s) represented by an AOVM,
a possible objective function could be O = TotalCost, such that the sought
solution is rendered by minimising O, as follows:

CheapestVariation(s) = min(ψaovm, TotalCost)

The engineer of a product line may want to verify which is the optimal
variation that satisfies some attribute condition and a desired partial configu-
ration. For example, which is the cheapest variation that offers RAM.size <
128 and has variant GPS? To find this optimal solution, we add a constraint
equivalent to the configuration ({GPS}, {}) and another equivalent to the at-
tribute condition to aovm. Then, we ask for the optimal variation(s), which
minimise(s) the total cost. Thus the optimal variations Vopt are:

ψ ′
aovm = (ψaovm ∧GPS = 1∧ RAM.size < 128)

O = TotalCost

Vopt = min(ψ
′
aovm, O)

A possible application of the Optimal Variation operation can be to sup-
port the Most Representative Variation operation, which aims to find the most
representative variation for a given product line. Assessing all possible varia-
tions of the product line is impracticable due to the usually very large number
of variations in a product line. Therefore, there is a need for deciding which
variations should be assessed, i.e., the most representative variation for the
product line.

There may be different ways of implementing the Most Representative
Variation (MRV) operation. In this dissertation, we consider the MRV as those
that have variants involved in a larger number of variations, however there are
other possibilities (e.g., the most expensive ones or those that have the largest
number of variants). Therefore, the MRV operation is defined as the varia-
tion(s) of the software product line that maximise(s) the sum of commonality
degrees of variations.

The commonality degree of a variation is determined by the sum of the

6.7. Summary 119

commonality of its variants and variation points. The commonality of a vari-
ability elements was already defined in Section §5.4.9, it represents the per-
centage of variations where the variability element appears, e.g., if there are
10 possible variations and a variant v appears in 5 variations, the commonality
of v is 0.5. After the most representative variation has been found, it can be
assessed by applying any evaluation technique employed in single-systems.
MRV operation is defined as follows:

Operation 13 (Most Representative Variation (MRV)). Let aovm be an AOVM
specification, ψaovm be its equivalent CSP of the form (Vaovm, Daovm, Caovm), E
be a variability element ∈ Vaovm, and e be its equivalent variable ∈ ψaovm. The
commonality degree (CommDegree) of e is the relation between the number of
solutions of the conjunction of ψaovm and e, and the number of all the possible
solutions of ψaovm. O is the summation of commonality degree of variants,
and MRV is the variation(s) that maximise(s) O.

CommDegree(aovm,E) =
|sol(ψaovm ∧ e = 1)|

|sol(ψaovm)|

O =
∑

vi∈Vaovm

CommDegree(aovm, vi)

MRV(ψaovm) = max(ψaovm, O)

Note that, the MRV operation is defined based on an optimisation function
represented by O. This function can be defined according to the user needs and
it is attribute-aware. For example, O could be defined as the sum of the at-
tributes cost and therefore MRV would return the most expensive variation(s).

6.7 Summary

In this chapter, we have presented the AOVM, which is used to document
the relationship between OVM and attributes, and constraints on these at-
tributes. To build an AOVM, we have introduced an Attribute-based Model, a
model based on attributes and constraints on these attributes to capture mea-
surable attributes of components in the base models of a product line. Then,
we have described how we relate this Attribute-based Model to the variability
documented in the OVM. In addition, we have presented the analysis process
to automate the analysis of AOVMs. We have provided a set of mapping rules

120 Chapter 6. Automated Analysis of Attribute-aware OVMs

to translate an AOVM into a CSP, and defined a set of analysis operations to
be preformed on AOVMs. With the provided analysis, the engineers can ver-
ify anomalies in the specification, find an optimal variation, verify attribute
conditions, and find the most representative variation.

Chapter 7

Evaluating the approach with
FaMa-OVM

T he man of science has learned to believe in justification,
not by faith, but by verification.

T homas Henry Huxley, 1825 – 1895
British biologist

T
he goal of this chapter is to present an evaluation of our approach.
To this purpose, we introduce a study of a case from the automotive
domain we have used in our evaluation, and also introduce FaMa-
OVM, a prototype tool we have developed to automatically anal-

yse OVM. In Section §7.1, we introduce the sections that will be presented in
this chapter. In Section §7.2, we describe the Radio Frequency Warner (RFW)
product line, a study of a case we have used to evaluate our approach. In
Section §7.3, we specify the RFW product line using OVM. In Section §7.4
we relate attributes and domain constraints with the RFW product line OVM.
In Section §7.5, we introduce the FaMa-OVM tool, which we have used for
automating the analysis of the RFW product line, and present the analysis re-
sults we have obtained from such analysis. Finally, Section §7.6 summarises
the chapter.

121

122 Chapter 7. Evaluating the approach with FaMa-OVM

7.1 Introduction

In this chapter, we first introduce the Radio Frequency Warner (RFW)
product line, a study of a case from the automotive domain that we have used
to evaluate our proposal. RFW product line is part of a case study created
in a national project by a leading car company in Germany, and carried out
by Paluno - The Ruhr Institute for Software Technology at the University of
Duisburg-Essen. We show how the RFW product line was specified using
OVM, describing the variation points, variants and their variability and con-
straints dependencies. We also describe and define the attributes and domain
constraints identified by the RFW product line engineers using AOVM. We
present the analysis results we have obtained using FaMa-OVM tool for the
analysis of the RFW product line AOVM. FaMa-OVM is a prototype tool we
have developed to illustrate the feasibility of our approach, enabling to auto-
matically analyse both OVM and AOVM. It is worth mentioning that we have
no intention of providing an industrial tool support for the analysis of OVM,
but offer a proof of concepts of our approach.

7.2 Radio Frequency Warner (RFW) product line: a
study of a case

In this section we describe the RFW system and its components. This de-
scription was provided by Paluno.

7.2.1 System overview

The motivation for developing the RFW product line is the increasing com-
plexity of today’s traffic. Systems derived from the RFW product line aim to
give hints of relevant traffic signs to a driver of a car or truck. The product line
is based on the fictional assumption that all traffic signs are equipped with a
Radio-Frequency Identification (RFID) tag. This allows the identification of
traffic signs when approaching a sign. The transmitted data includes the type
of sign (maximum speed, no overtaking, etc.) and the direction of the sign.
The functionality of the RFW is realised by a control unit in the car that inter-
acts with other components in the car such as the display and sound system.

7.2. Radio Frequency Warner (RFW) product line: a study of a case 123

N

EW

S

Figure 7.1: Functionality of the RFW.

An illustration of the functionality of the RFW system can be found in Fig-
ure §7.1: the car is arriving from the east heading west. Four different signs are
in the area: a stop sign, a do-not-enter sign, a no-trucks sign, and a no-parking
sign. All these signs are equipped with an active RFID transmitter and each
sign knows its direction:

• the stop sign is relevant for all vehicles approaching from the east;

• the do-not-enter sign is relevant for all vehicles approaching from the
east and west;

• the no-parking sign is relevant for all vehicles approaching from the
west;

• the no-trucks sign is relevant for all trucks approaching from the west
and the east.

The information about the direction is encoded in the signal of the traffic
signs. If the car, for example, heads to the west, it will receive the signals of
all signs. The RFW processes the signals and dismisses the no-parking sign,
because it is only relevant for the opposite direction. It signals the stop sign to
the driver, since this is the nearest sign to the car that is relevant. During the
trip, the RFW system will also show the do-not-enter sign. The no-trucks sign
is dismissed for the car. The truck, for example, that is approaching from the
west receives the same signals including the no-parking sign in the opposite
order, but the RFW does not dismiss the no-trucks sign, because it is relevant
for the truck driver.

124 Chapter 7. Evaluating the approach with FaMa-OVM

Antenna

(receive only)

RF-Receiver

unit
RFW control unit CAN

On/Off

switch

Discard

switch

RFW display

...

Figure 7.2: Overview of the RFW system.

7.2.2 System components

An overview of the system can be found in Figure §7.2. Roughly speaking,
the system consists of three components: the RFW display, RF-receiver unit,
and the RFW control unit. They communicate via a Controller Area Network
(CAN) which is a standard interface in the automotive area, standardised by
ISO (ISO 11898). However, the CAN is used as a transparent transport gate-
way. The components can be characterised as follows:

• RFW control unit. the control unit is the main part of the system. It
receives the signals of the RF receiver and reacts specifically based on a
set of rules.

⋄ Discard switch. the discard switch marks the current signal to be
discarded. When the user presses the button, the actual symbol in
the display is discarded and the actual warning sound is stopped,
and all upcoming signs with the same RFID are dismissed for the
next 60 seconds.

⋄ On/Off switch. the On/Off switch activates and deactivates the
RFW system.

• RFW display. the RFW display shows the output of the RFW control
unit.

7.3. Specifying the RFW product line using OVM 125

• RF receiver unit. the RF receiver unit receives the signals and sends
them to the RFW control unit.

⋄ Antenna. the antenna of the RF-receiver unit receives the signals of
the active RFID transmitters and decodes them.

7.3 Specifying the RFW product line using OVM

In order to provide a RFW system to customers with different needs,
the RFW product line has been created. Figure §7.3 shows an excerpt of
the OVM corresponding to the RFW product line. In this figure, vari-
ation points VP7 : OtherSigns, VP8 : ProhibitionSigns, VP9 : WarningSigns,
and VP10 : SignsGivingOrders subsume the different categories of signs that
can be detected. For simplification, we show only two signs for each cate-
gory. The complete OVM diagram with all variation points and variants can
be found in Appendix §C, Figure §C.1. We may remark that in this figure
we are omitting several requires and excludes dependencies since it would be
too confusing to show all of them. We present a list with these constraints in
Appendix §C, Table §C.1.

The main differentiation of the RFW system is made in variation point
VP1 : TypeOfVehicle. There, one of four different vehicle types has to be cho-
sen. Variation point VP2 : Activation determines whether the RFW is switch-
able (i.e., whether it has a switch to turn it on or off) or whether it is turned
on instantly and continuously. Variation point VP3 : comfortFunctions deter-
mines the additional functionality of the RFW. The following comfort func-
tions are available:

• V7 : NoStoppingWarning: warns the driver if there is an active no stop-
ping sign at the current position and therefore stopping is forbidden.

• V8 : OverSpeedWarning: warns the driver if there is a speed limit in ef-
fect and the car is going too fast. This requires additional information
about the current speed that needs to be received via CAN.

• V9 : SoundAtWarningSign: if the car passes a warning sign, the RFW
system warns the driver acoustically.

• V10 : HazardousSituationAlarm: warns the driver in a hazardous situa-
tion and may take over control, e.g., by initiating an emergency brake.

126 Chapter 7. Evaluating the approach with FaMa-OVM

V26:No vehicles

V

VP

VP8:Prohibition
signs

V27:No cars

V

VP

VP6:Behaviour in
hazardous situations

V
V16:Display and
sound indication

V15:Show on
 display

V
V17:Emergency

brake

V

1..1

VP

VP1:Type of
vehicle

V1:Medium-
class car

V

1..1

V2:Upper-
class car

V
V3:Small

truck (3,5t)

V
V4:Big

truck (7,5t)

V

VP

VP2:Activation

1..1

V5:Switchable

V

V6:Continuously

V

VP

VP3:Comfort
functions

V7:No stopping
warning

V

V8:Overspeed
warning

V

V9:Sound at
warning signs

V

V10:Hazardous
situation alarm

V

VP

VP4:Behaviour
at warning signs

1..1

V11:Show
warning sign

V
V12:Display and
sound indication

V

VP

VP5:Behaviour
at no stopping signs

1..1

V13:Warn for
no stopping sign

V

V14:No warning

V

V18:Road w/right
of way start

V

VP

VP7:Other
signs

V19:City limit

V

V34:Danger

V

VP9:Warning
signs

V35:Side winds

V

V40:Stop and
give way

V

VP10:Signs
giving orders

V41:No overtaking

V

VP

VP

VP

Figure 7.3: Excerpt of the RFW OVM.

This detection requires much external information, e.g., the actual speed,
lateral acceleration, status of the wheels (i.e., blocking, slippage, etc.).

Variation point VP4 : BehaviourAtWarningSigns determines the behaviour,
if a relevant warning sign is passed. The system can show the warning sign in
the display and it can additionally sound an acoustic warning. The behaviour
of the RFW system at a relevant stopping sign is determined by variation point
VP5 : BehaviourAtNoStoppingSign. The system may warn the driver or not.

The behaviour in a hazardous situation is defined by variation point
VP6 : BehaviourInHazardousSituations. The RFW can show a warning in the

7.4. Expressing attributes for the RFW product line 127

display and it can additionally warn the driver with an acoustic signal. Addi-
tionally, the system can initiate an emergency brake.

7.4 Expressing attributes for the RFW product line

The specification of RFW variability using OVM is important to guaran-
tee that different customer needs are satisfied by the product line. However,
attributes are also relevant when developing RFW systems, since information
such as the specification of the development cost of the comfort function or
the power of the sensor required by different signals have to be captured.

7.4.1 Attributes

In Figure §7.4, we give an example of attributes that were specified for
the RFW product line. The RFW product line offers two different types
of positioning systems: V53 : GPS and/or V54 : Galileo. The positioning
systems have different accuracies, thus we define a basic attribute denoted
as accuracy. The GPS system has an accuracy of 8 meters, while Galileo
has 4 meters of accuracy. Furthermore, two derived attributes capture the
relationships between basic attributes: Accuracy and AccuracyFactor, re-
lated to VP12 : PositioningSystem, and VP13 : Antenna, respectively. The for-
mer expresses the system accuracy regarding the type of positioning sys-
tem selected, and it is the minimum value between V53 : GPS.Accuracy
and V54 : Galileo.Accuracy; the latter expresses the accuracy factor of
the selected antenna which is obtained by the maximum value between
Small.AccuracyFactor, Medium.AccuracyFactor, and Big.AccuracyFactor. Fi-
nally, the TotalAccuracy is a global attribute because it is not connected to any
variable element. The global attribute represents a property of the product line
as a whole. Thus, TotalAccuracy represents the resulting accuracy of the sys-
tem, which is the product of the selected positioning system accuracy and the
selected quantifier. With this specification, for example, it would be possible
to get the same overall accuracy with a bigger antenna and GPS, or a medium
size antenna and Galileo.

Let us observe the function defined in the value of Accuracy attribute in
VP12 : PositioningSystem variation point. In the case where both position-
ing systems, V54 : Galileo and V53 : GPS, are selected, the function will re-

128 Chapter 7. Evaluating the approach with FaMa-OVM

Attribute-based ModelOVM

V

VP

V

V

VP

VV

V53:GPS

VP12:Positioning
System

V54:Galileo

[1,2]

V55:Small

VP13:Antenna

V57:Big

[1,1]

V56:Medium

*

name = TotalAccuracy
domain = Real [0..20]
value = VP12:PositioningSystem.Accuracy
 VP13:Antenna.AccuracyFactor
unit = Factor

excludes

name = Accuracy
domain = Integer [1..10]
value = min(V53:GPS.Accuracy, V54:Galileo.Accuracy)
nullValue = +
unit = Metres

∞

name = Accuracy
domain = Integer [1..10]
value = 4
nullValue = +
unit = Metres

∞

name = Accuracy
domain = Integer [1..10]
value = 8
nullValue = +
unit = Metres

∞

name = AccuracyFactor
domain = Real [0..2]
value = max(V55:Small.AccuracyFactor,
 V56:Medium.AccuracyFactor,
 V57:Big.AccuracyFactor)
nullValue = -
unit = Factor

∞

name = AccuracyFactor
domain = Real [0..2]
value = 0.25
nullValue = -
unit = Factor

∞

name = AccuracyFactor
domain = Real [0..2]
value = 1
nullValue = -
unit = Factor

∞

name = AccuracyFactor
domain = Real [0..2]
value = 1.5
nullValue = -
unit = Factor

∞

Figure 7.4: Attributes of Positioning system and Antenna.

turn the minimum value between their accuracy, resulting in value 4. How-
ever, if one of the variants is not selected, e.g., V53 : GPS, the value of
V53 : GPS.Accuracy must have a neutral value with regard to the min func-
tion. In this case, we can use the +∞ as a neutral value because it is bigger
than any real number. In the RFW example, we use aggregate functions such
as sum, min and max and also functions with the operators + and ∗.

The list of all attributes identified for the RFW product line and their de-
scriptions can be found in Table §7.1. Their values are not shown in this ta-
ble because they depend on the association with the variable elements in the
OVM. The values are shown in Tables §7.2, §7.3, and §7.4; they were defined
by the engineers of the RFW product line. Table §7.2 shows the values taken
by the basic attributes. The variants are listed in the first column of the table,

7.4. Expressing attributes for the RFW product line 129

and the attribute names are listed along the first row. The cells indicate the val-
ues taken by each attribute when related to the corresponding variant. They
are shown in the form value | neutral-value. Cells marked with “–” indicate
that the attribute is not related to the variant.

In the RFW example, all derived attributes are related to variation points.
Their values are shown in Table §7.3. The variation points are listed in the
first column, and the attribute names are listed along the first row. The cells
indicate which function is used to calculate each attribute value when related
to the corresponding variation point. Those cells marked with “–” indicate
that the attribute is not related to the corresponding variation point. Values are
shown in the form value|neutral-value. As these attributes are involved in the
values of the global attributes (see Table §7.4), their null values are defined as
+∞, −∞ or 0. In the case that the variation point is selected, the attributes can
take as values the functionsmin,max or sum. They are defined as follows:

min(v1.attribute, ..., vn.attribute), where {v1, ..., vn} ⊆ childrenOf(vp)

max(v1.attribute, ..., vn.attribute), where {v1, ..., vn} ⊆ childrenOf(vp)

n∑
i=1

vi.attribute, where {v1, ..., vn} ⊆ childrenOf(vp)

Consider that childrenOf(vp), with vp belonging to the set of variation
points returns the set of children of vp, and n ≤ |childrenOf(vp)|. Next, we
provide some examples.

VP12 : PositioningSystem.Accuracy = min(GPS.Accuracy,Galileo.Accuracy)
VP13 : Antenna.AccuracyFactor =max(Small.AccuracyFactor,Medium.AccuracyFactor,Big.AccuracyFactor)
VP2 : Activation.Memory = V5 : Switchable.Memory + V6 : Continuously.Memory

The equations for the values of global attributes are shown in Table §7.4.
Except for the TotalAccuracy, the other global attributes are calculated using
an aggregate function in the set of variation points. In the following we elab-
orate on their meaning:

• TotalAccuracy: represents the overall accuracy of a given product which
is computed by multiplying the accuracy of the positioning system by
the antenna accuracy factor. For example, a variation of the RFW product
line that has GPS and a medium antenna offers an overall accuracy of 8,
since V53 : GPS.Accuracy = 8 and V56 : Medium = 1.

• TotalMemory: represents the total memory required by a given varia-
tion, which is computed by the sum of all attributes Memory related to
variation points.

130 Chapter 7. Evaluating the approach with FaMa-OVM

Name Description Domain Unit

1. Accuracy Specifies the accuracy of the positioning sys-
tem to locate the position of the car

Integer [1..10] meters

2. AccuracyFactor Specifies a quantifier for the antenna Real [0..2] meters

3. TotalAccuracy
Specifies the accuracy offered by the system. It
is calculated by relating the accuracy and the
accuracyFactor attributes

Real[0..20] meters

4. Memory Specifies the memory size of the control unit
that is needed to process the traffic sign

Integer [1..512] kilobytes

5. TotalMemory
Specifies the total of memory required by a sys-
tem. It is calculated by aggregating the mem-
ory attributes

Integer[1..512] kilobytes

6. ROM Specifies the ROM size of the control unit
utilised by a specific variant

Integer [1..512] kilobytes

7. TotalROM

Specifies the ROM size of the control unit. The
more traffic signs are recognisable, the bigger
the ROM size has to be to save the different
types of signs and the required action for the
traffic sign. It is calculated by aggregating the
ROM attributes

Integer [1..512] kilobytes

8. Range

It concerns the power of a sensor and specifies
the distance from which the sensor is capable
to detect a traffic sign. The higher the value is,
the earlier a traffic sign can be detected

Integer meters

9. Latency

Specifies the latency required by a variant. La-
tency means the elapsed time between the fir-
ing of an event and the feedback given to the
user.

Integer [200..800] milliseconds

10. TotalLatency
Specifies the latency that has to be guaranteed
by the system. It is calculated by aggregating
the latency attributes

Integer [200..800] milliseconds

11. Cost Cost of the specific variant Real [1..500] monetary
unit

12. TotalCost Specifies the total cost of a system. It is calcu-
lated by aggregating the cost attributes

Real [1..500] monetary
unit

13. Cycle Specifies the maximum recognition time re-
quired by a variant.

Integer[10..500] milliseconds

14. RecognitionTime
Specifies the maximum recognition time that
the system has to ensure. It is calculated by
aggregating the cycle attributes

Integer [10..500] milliseconds

Table 7.1: Attributes in the RFW product line.

• TotalROM: represents the total ROM required by a given product, which
is computed by the sum of all attributes ROM related to variation points.

• TotalLatency: represents the maximum time that a given variation takes
to provide feedback, which corresponds to the minimum value amongst

7.4.
Expressing

attributes
for

the
R

FW
productline

131
Accuracy Accuracy Factor Memory ROM Range Latency Cost Cycle

V5:Switchable - - 2 | 0 2 | 0 - - 2 | 0 -

V6:Continuously - - 2 | 0 2 | 0 - - 0.2 | 0 -

V7:No stopping warning - - - 8 | 0 - - 0.5 | 0 -

V8:Overspeed warning - - - 16 | 0 - - 0.5 | 0 -

V9:Sound at warning signs - - - 4 | 0 - - 1 | 0 -

V10:Hazardous situation alarm - - - 16 | 0 - - 1 | 0 -

V11:Show warning sign - - 2 | 0 4 | 0 - 400 | + ∞ 1 | 0 -

V12:Display and sound indication - - 2 | 0 4 | 0 - 400 | + ∞ 1 | 0 -

V13:Warn for no stopping sign - - 2 | 0 4 | 0 - 500 | + ∞ 0.5 | 0 -

V14:No warning - - 2 | 0 0 | 0 - 500 | + ∞ 0.2 | 0 -

V15:Show on display - - 8 | 0 8 | 0 - 350 | + ∞ 1 | 0 -

V16:Display and sound indication - - 8 | 0 8 | 0 - 350 | + ∞ 1 | 0 -

V17:Emergency brake - - 16 | 0 32 | 0 - 350 | + ∞ 3 | 0 -

V18:Road w/ right of way start - - 4 | 0 4 | 0 - - 0.2 | 0 100 | + ∞

V19:City limit - - 2 | 0 4 | 0 - - 0.2 | 0 50 | + ∞

V20:Crossroads - - 2 | 0 4 | 0 - - 0.2 | 0 100 | + ∞

V21:Home zone entry - - 4 | 0 4 | 0 - - 0.2 | 0 100 | + ∞

V22:Road w/ right of way end - - 4 | 0 4 | 0 - - 0.2 | 0 100 | + ∞

V23:End of city limit - - 4 | 0 4 | 0 - - 0.2 | 0 50 | + ∞

V24:Traffic has priority - - 2 | 0 4 | 0 - - 0.2 | 0 75 | + ∞

V25:Home zone end - - 4 | 0 4 | 0 - - 0.2 | 0 100 | + ∞

V26:No vehicles - - 2 | 0 4 | 0 - - 0.2 | 0 50 | + ∞

V27:No cars - - 2 | 0 4 | 0 - - 0.2 | 0 100 | + ∞

V28:No vehicles over max width > Xm - - 8 | 0 8 | 0 - - 0.2 | 0 200 | + ∞

V29:No vehicles w/ weight > 3.5t - - 2 | 0 4 | 0 - - 0.2 | 0 100 | + ∞

V30:No vehicles over max gross weight g > Xt - - 8 | 0 8 | 0 - - 0.2 | 0 200 | + ∞

V31:Do not enter - - 2 | 0 4 | 0 - - 0.2 | 0 100 | + ∞

Table
7.2:V

alues
ofbasic

attributes
w

hen
associated

w
ith

variants.

132
C

hapter
7.

Evaluating
the

approach
w

ith
FaM

a-O
V

M

Accuracy Accuracy Factor Memory ROM Range Latency Cost Cycle

V32:No vehicles over max height h > Xm - - 8 | 0 8 | 0 - - 0.2 | 0 200 | + ∞

V33:No stopping - - 2 | 0 4 | 0 - - 0.2 | 0 100 | + ∞

V34:Danger - - 2 | 0 4 | 0 - - 0.5 | 0 100 | + ∞

V35:Side winds - - 2 | 0 4 | 0 - - 0.5 | 0 100 | + ∞

V36:Slippery road - - 2 | 0 4 | 0 - - 0.5 | 0 100 | + ∞

V37:Risk of ice - - 2 | 0 4 | 0 - - 0.5 | 0 100 | + ∞

V38:Bend - - 2 | 0 4 | 0 - - 0.5 | 0 100 | + ∞

V39:Traffic queues - - 2 | 0 4 | 0 - - 0.5 | 0 100 | + ∞

V40:Stop and give way - - 2 | 0 4 | 0 - - 0.2 | 0 50 | + ∞

V41:No overtaking - - 4 | 0 4 | 0 - - 0.2 | 0 50 | + ∞

V42:No overtaking end - - 4 | 0 4 | 0 - - 0.2 | 0 50 | + ∞

V43:No overtaking vehicles > 3.5t - - 4 | 0 4 | 0 - - 0.2 | 0 50 | + ∞

V44:End of prohibitions - - 4 | 0 4 | 0 - - 0.2 | 0 50 | + ∞

V45:Yield - - 2 | 0 4 | 0 - - 0.2 | 0 50 | + ∞

V46:Maximum speed X Km/h - - 8 | 0 8 | 0 - - 0.2 | 0 200 | + ∞

V47:One way - - 2 | 0 4 | 0 - - 0.2 | 0 50 | + ∞

V48:Maximum speed of X Km/h end - - 8 | 0 8 | 0 - - 0.2 | 0 200 | + ∞

V49:No overtaking vehicles > 3.5t end - - 4 | 0 4 | 0 - - 0.2 | 0 50 | + ∞

V50:Low - - - - 20 | - ∞ - 10 | 0 -

V51:Medium - - - - 45 | - ∞ - 35 | 0 -

V52:High - - - - 70 | - ∞ - 50 | 0 -

V53:GPS 8 | + ∞ - - - - - - -

V54:Galileo 4 | + ∞ - - - - - - -

V55:Small - 1.5 | - ∞ - - - - 15 | 0 -

V56:Medium - 1 | - ∞ - - - - 0.5 | 0 -

V57:Big - 0.25 | - ∞ - - - - 50 | 0 -

Table
7.2:V

alues
ofbasic

attributes
w

hen
associated

w
ith

variants
(C

ont’d).

7.4.
Expressing

attributes
for

the
R

FW
productline

133

Accuracy Accuracy Factor Memory ROM Range Latency Cost Cycle

VP2:Activation - - sum | 0 sum | 0 - - sum | 0 -

VP3:Comfort functions - - - sum | 0 - - sum | 0 -

VP4:Behaviour at warning signs - - sum | 0 sum | 0 - min | + ∞ sum | 0 -

VP5:Behaviour at no stopping signs - - sum | 0 sum | 0 - min | + ∞ sum | 0 -

VP6:Behaviour in hazardous situations - - sum | 0 sum | 0 - min | + ∞ sum | 0 -

VP7:Other signs - - sum | 0 sum | 0 - - sum | 0 min | + ∞

VP8:Prohibitions signs - - sum | 0 sum | 0 - - sum | 0 min | + ∞

VP9:Warning signs - - sum | 0 sum | 0 - - sum | 0 min | + ∞

VP10:Signs giving orders - - sum | 0 sum | 0 - - sum | 0 min | + ∞

VP11:Sensor power - - - - max | - ∞ - sum | 0 -

VP12:Positioning system min | + ∞ - - - - - - -

VP13:Antenna - max | - ∞ - - - - sum | 0 -

Table
7.3:V

alues
ofderived

attributes
w

hen
associated

w
ith

variation
points.

134 Chapter 7. Evaluating the approach with FaMa-OVM

Name Value

TotalAccuracy PositioningSystem.Accuracy ∗ Antenna.AccuracyFactor

TotalMemory
k∑

j=1

vpj.Memory, where vpj.Memory ∈ AOVM

TotalROM
k∑

j=1

vpj.ROM, where vpj.ROM ∈ AOVM

TotalLatency min(vp1.Latency, ..., vpk.Latency), where vp1.Latency, ..., vpk.Latency ∈
AOVM

TotalCost
k∑

j=1

vpj.Cost, where vpj.Cost ∈ AOVM

RecognitionTime min(vp1.Cycle, ..., vpk.Cycle), where vp1.Cycle, ..., vpk.Cycle ∈ AOVM

k ≤ number of variation points ∈ AOVM

Table 7.4: Equations for the values of global attributes.

the attributes Latency related to variation points. For example, the min-
imum value between VP1.Latency = 350 and VP2.Latency = 500 is 350.
Then, the maximum time this variation should take to provide feedback
to the user is 350 milliseconds.

• TotalCost: represents the cost of a given variation, which is computed by
the sum of all attributes Cost related to variation points.

• RecognitionTime: represents the maximum time that a given variation
takes to recognise a signal, which corresponds to the minimum value
amongst the attributes Cycle related to variation points. For example,
the minimum value between VP1.Cycle = 50 and VP2.Cycle = 100 is 50.
Then, the maximum time this variation should take to recognise a signal
is 50 milliseconds.

7.4.2 Domain constraints

In the RFW product line, the traffic signs must be detected by the sen-
sor from a given distance before passing the traffic sign. This distance
must be reasonable to allow the product to provide feedback to the user
within an expected time. Therefore, some constraints on the attribute
VP11 : SensorPower.range must be defined. To guarantee that a RFW varia-
tion can successfully detect the V44 : EndOfProhibitions sign, the sensor has to

7.4. Expressing attributes for the RFW product line 135

OVM

VP

V VV

If (V41:No overtaking) then
 VP11:Sensor power.Range >= 50

If (V44:End of prohibitions) then
 VP11:Sensor power.Range >= 25

VP11:Sensor
power

V50:Low V52:High

[1,1]

V51:Medium

VP10:Signs
giving orders

V41:No overtaking

V44:End of prohibitions

...

VPVP

V

V

V

Quality Information

name = Range
domain = Integer
value = max(V50:Low.Range, V51:Medium.Range,
 V52:High.Range)
nullValue = -
unit = Metres

∞

name = Range
domain = Integer
value = 70
nullValue = -
unit = Metres

∞

name = Range
domain = Integer
value = 20
nullValue = -
unit = Metres

∞

name = Range
domain = Integer
value = 45
nullValue = -
unit = Metres

∞

Figure 7.5: Domain constraints on RFW AOVM.

have a range of at least 25 meters. However, to detect the V41 : NoOvertaking
sign, the sensor must be able to detect the signal at least 50 meters before pass-
ing the sign. Thus, the constraints on attributes represented within ellipses in
Figure §7.5 are specified to prevent the configuration of unsatisfactory prod-
ucts.

In the RFW product line, we have identified a number of required domain
constraints. A complete list of these constraints can be found in Appendix §C,
Table §C.2.

The RFW product line has 13 variations points, 4 out of which are optional,
and 57 variants. Consequently, there are 57 variability dependencies between
variation points and variants, 65% of them are optional and 35% are alterna-
tive. Furthermore, the product line has 34 requires and 4 excludes relation-
ships between variable elements, 225 attributes (18 out of them are derived
and 6 are global), and 72 domain constraints. Consequently, to manually de-
tect anomalies and extract information from this model is a tedious and error-
prone task. This task is even more complicated if we consider that the prod-
ucts should respect domain constraints.

136 Chapter 7. Evaluating the approach with FaMa-OVM

7.5 Automating the analysis using FaMa-OVM

In the following subsections we give an overview of the FaMa-OVM
tool, introduce the FaMa-OVM textual format for the RFW product line, and
present the analysis results obtained.

7.5.1 The FaMa-OVM tool

FaMa-OVM provides support for the analysis of both OVM and AOVM.
This tool allows performing all the analysis operations defined in this disserta-
tion, such as detecting anomalies, checking satisfiability of quality conditions,
and finding an optimal variation or the most representative one. FaMa-OVM
is freely distributed under LGPL v3 license and can be downloaded from the
FaMa-OVM Web site †1 (see Figure §7.6).

FaMa-OVM is an open source Java tool, that is implemented based on
FaMa-Framework (FaMa-FW) [130]. FaMa-FW is an open source Java frame-
work designed to facilitate the development of analysis tools for diverse vari-
ability modelling languages. This framework provides a number of extension
points to plug in new components, such as metamodels, readers/writers and
reasoners. Figure §7.7 shows an overview of FaMa-OVM components. The
dark components are the extensions of the original framework. In the follow-
ing, we report on those components we have implemented:

The OVM metamodel implements the description of the different variabil-
ity elements, and the rules that constraint the combination of these elements.
Furthermore, it describes the attributes and their relationship with variability
elements, as well as the domain constraints on attributes.

The OVM reader implements a reader to both OVM and AOVM textual
format, which we have defined for representing OVM and AOVM specifica-
tion, respectively.

The OVM reasoner implements the specific solver for the analysis. FaMa-
FW provides by default JavaBDD, Choco, JaCoP GPL, and SAT4j for the anal-
ysis of feature models. For the analysis of both OVM and AOVM, we have
implemented Choco solver, which is CSP solver. This solver enables working
with numerical values, such as integers, which allows to deal with attributes:

†1FaMa-OVM website (www.isa.us.es/fama-ovm)

7.5. Automating the analysis using FaMa-OVM 137

Figure 7.6: FaMa-OVM web Site.

enabling it to maximise or minimise values. We may remark that we could
also have used a SAT solver, since the transformation from a CSP into SAT is
reasonably easy. In fact, we have implemented in FaMA-OVM a SAT solver
for the analysis of OVM without attributes, since this solver is more efficient
for most of the operations defined in this dissertation. For the sake of simplic-
ity, in this dissertation, we will only address the analysis results obtained by
using Choco solver.

138 Chapter 7. Evaluating the approach with FaMa-OVM

Figure 7.7: FaMa-OVM extending FaMa-FW.

7.5.2 The textual format for the RFW product line

We have defined a FaMa-OVM textual format to represent both OVM
and AOVM specifications†2. This textual format consists of four main parts,
namely: Relationships, Attributes, Global Attributes, and Constraints.
Relationships specifies the variability dependencies between variation
points and variants. Attributes specifies basic and derived attributes. Global
Attributes specifies global attributes. Constraints specifies excludes and re-
quires relationships, and quality conditions. Attributes are defined in the form
of <name>:<domain>,<value>,<nullValue>; where the terms are separated by
commas, and lines are finished with semicolon. When the value of an attribute
is a function, a semicolon after <value> is used. Figure §7.8 shows a single tex-
tual format for the examples in Figures §7.4 and §7.5.

Because we have used Choco solver, all variables in the CSP must belong to
a finite domain, which implies that attributes must have a finite domain. Due
to this limitation, functions can only involve integer values. Consequently, we
were unable to use real numbers as we intended. Subsequently, real numbers

†2The FaMa-OVM tool and the textual AOVM for the RFW model used in our evaluation
are available at www.isa.us.es/fama-ovm

www.isa.us.es/fama-ovm

7.5. Automating the analysis using FaMa-OVM 139

1: %Relationships

2: VP12PositioningSystem : [1,2]V53GPS V54Galileo;

3: VP13Antenna : [1,1]V55Small V56Medium V57Big;

4: VP11SensorPower: [1,1]V50Low V51Medium V52High;

5: [VP10SignsGivingOrders] : [V41NoOvertaking]

[V44EndOfProhibitions];

6: %Attributes

7: V53GPS.Accuracy: Integer[1 to 10], 8, INF;

8: V54Galileo.Accuracy: Integer[1 to 10], 4, INF;

9: VP12PositioningSystem.Accuracy: Integer[1 to 10],

min(V53GPS.Accuracy,V54Galileo.Accuracy);,INF;

10: V55Small.AccuracyFactor: Integer [1 to 4], 4, MINF;

11: V56Medium.AccuracyFactor: Integer [1 to 4], 3, MINF;

12: V57Big.AccuracyFactor: Integer [1 to 4], 1, MINF;

13: VP13Antenna.AccuracyFactor: Integer [1 to 4],

max(V55Small.AccuracyFactor,

V56Medium.AccuracyFactor,V57Big.AccuracyFactor);,MINF;

14: V50Low.Range: Integer [20 to 30], 20, MINF;

15: V51Medium.Range: Integer [45 to 60], 45, MINF;

16: V52High.Range: Integer [70 to 100], 70, MINF;

17: VP11SensorPower.Range: Integer [1 to 100],

max(V50Low.Range,V51Medium.Range,V52High.Range);,MINF;

18: %GlobalAttributes

19: TotalAccuracy: Integer [1 to 40],

VP12PositioningSystem.Accuracy *

VP13Antenna.AccuracyFactor;, 0;

20: %Constraints

21: V53GPS EXCLUDES V55Small;

22: V41NoOvertaking IMPLIES VP11SensorPower.Range >= 50;

23: V44EndOfProhibitions IMPLIES VP11SensorPower.Range >= 25;

Figure 7.8: RFW in FaMa-OVM textual format.

140 Chapter 7. Evaluating the approach with FaMa-OVM

were mapped to integers. The values of attributes V55Small.AccuracyFactor,
V56Medium.AccuracyFactor, and V57Big.AccuracyFactor were mapped from
[1.5, 1, 0.25] to [4, 3, 1], respectively.

7.5.3 Analysis results

We have used FaMa-OVM to execute the analysis of AOVM defined in
Chapter §6. In our evaluation we have analysed two models: i) the RFW
model, which represents the RFW product line with all attributes and domain
constraints that were defined through this chapter, and ii) the Excerpt of RFW
model, which is the RFW excerpt depicted in Figure §7.3.

When specifying quality attributes for the RFW product line we have de-
fined a certain domain for them. The domain sets the limits of the attribute
values. We addressed the analysis problem as a CSP, then the higher the
range of the domain is, the more complex the problem becomes. In our im-
plementation, when mapping the RFW product line to a CSP, we have re-
placed the domain range of attributes as much as possible in order to re-
duce the problem complexity. For example, in the case of V11.Latency, we
have replaced the range Integer[200..800] by [400], and in the case of
VP4BehaviorAtWarningSigns.Latency, we have replaced Integer[200..800]
by 350,400,500. An effort was made to preserve consistency amongst the as-
signed values. In the following we present the obtained analysis operations
results:

Detecting anomalies. None of the two models were identified as void, but
other anomalies where detected. The excerpt model does not have any
anomaly, however the RFW model has seven dead elements and six false
optional elements, as can be seen in Table §7.5. These anomalies were
caused by the wrong use of constraints by the product line engineer.
We were able to identify that the constraints involving TotalAccuracy
<= 10 cause some of the dead elements as well as the false optional.
Therefore, it allows us to conclude that the bigger the model is, the more
error-prone the modelling task becomes.

Satisfiability with quality condition. The RFW product line does not sat-
isfy the quality condition TotalAcurancy < 10 ∧ TotalCost < 30.
When we have relaxed this quality condition, by changing values to
TotalAccuracy < 30 ∧ TotalCost <= 50, we have found that there
are variations which satisfy the relaxed quality condition. As can be

7.5. Automating the analysis using FaMa-OVM 141

RFW model†± Excerpt of RFW ‡ ∓

D
et

ec
ta

no
m

al
ie

s
Void False False

Dead

V38Bend

None

V39Traffic queues

V45Yield

V50Low

V51Medium

V55Small

V56Medium

False Optional

VP7Other signs

None

VP8Prohibition signs

VP9Warning signs

VP10Signs given orders

V41No overtaking

V57Big

Sa
ti

sfi
ab

il
it

y Satisfies(QC) False True

Satisfies(QC+PC) False True

† QC = TotalAccuracy < 10 ∧ TotalCosts < 30

‡ QC = TotalAccuracy < 10

± PC = {{V53 : GPS, V52 : High, V1 :Medium − ClassCar}, {}}

∓ PC = {{V53 : GPS, V52 : High, {}}

Table 7.5: Analysis operations results.

seen in Table §7.5, the excerpt model satisfies the quality condition
TotalAcurancy < 10. The number of variations found in the ex-
cerpt model when no quality conditions were defined is 70, but when
analysing it using the quality condition TotalAcurancy < 10, this num-
ber was reduced to 30.

Satisfiability with quality condition and configuration. We have analysed
the RFW model to verify whether it satisfies the quality condition
TotalAcurancy < 10 ∧ TotalCost < 30 associated with the partial
configuration {{V53GPS, V52High,V1MediumClassCar},{}}. As shown
in Table §7.5, there are no variations which have V53GPS, V52High,

142 Chapter 7. Evaluating the approach with FaMa-OVM

and V1MediumClassCar, and satisfy such quality condition. In the
case of the excerpt model, we have verified that there are variations
which have V53GPS and V52High, and satisfy the quality condition
TotalAcurancy < 10. When we have associated the partial configu-
ration with the quality condition and verified satisfiability, the number
of variations found in the excerpt model was reduced to 10.

Optimal variation. This operation needs to compute all possible solutions be-
forehand to be able to find a solution. Therefore the problem to be solved
is more complex. We have observed that for the RFW model this oper-
ation has taken much more time. The Choco solver was not able to find
the optimal variation in a reasonable time; however, it found a solution
to this operation when analysing the excerpt model. In this model, we
were able to find the most accurate variations. For this purpose we have
defined that the optimal variations minimise the TotalAccuracy global
attribute. Thus, we have found that 20 variations are able to provide the
minimum accuracy, which is 4. In the following, we present the 20 most
accurate variations (OptVar).

OptVar1 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,V52High}

OptVar2 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,V52High,
VP10SignsGivingOrders}

OptVar3 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,V52High,
VP10SignsGivingOrders,V44EndOfProhibitions}

OptVar4 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,V52High,
VP10SignsGivingOrders,V41NoOvertaking}

OptVar5 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,V52High,
VP10SignsGivingOrders,V41NoOvertaking,V44EndOfProhibitions}

OptVar6 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V51Medium}

OptVar7 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V51Medium,VP10SignsGivingOrders}

OptVar8 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V51Medium,VP10SignsGivingOrders,V44EndOfProhibitions}

OptVar9 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V50Low}

OptVar10 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V50Low,VP10SignsGivingOrders}

OptVar11 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V52High}

OptVar12 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V52High,VP10SignsGivingOrders}

7.5. Automating the analysis using FaMa-OVM 143

OptVar13 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V52High,VP10SignsGivingOrders,V44EndOfProhibitions}

OptVar14 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V52High,VP10SignsGivingOrders,V41NoOvertaking}

OptVar15 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V52High,VP10SignsGivingOrders,V41NoOvertaking,V44EndOfProhibitions}

OptVar16 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V51Medium}

OptVar17 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V51Medium,VP10SignsGivingOrders}

OptVar18 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V51Medium,VP10SignsGivingOrders,V44EndOfProhibitions}

OptVar19 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V50Low}

OptVar20 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V50Low,VP10SignsGivingOrders}

Optimal variation with quality condition. We have analysed the excerpt
model by executing the optimal operation associated with the qual-
ity condition TotalAcurancy < 10 and the partial configuration
{{V53GPS, V52High},{}}, and still using TotalAccuracy as the objective
function. In this case, five variations were found as the most accurate
variations, as follows:

OptVar1 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V52High}

OptVar2 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V52High,VP10SignsGivingOrders}

OptVar3 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V52High,VP10SignsGivingOrders,V44EndOfProhibitions}

OptVar4 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V52High,VP10SignsGivingOrders,V41NoOvertaking}

OptVar5 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V52High,VP10SignsGivingOrders,V41NoOvertaking,V44EndOfProhibitions}

Most representative variation. Similarly to the optimal variation, the most
representative operation also needs to compute all possible solutions be-
forehand to be able to find a solution. Therefore, the Choco solver was
also not able to find the most representative variations in a reasonable
time; however, it found a solution when analysing the excerpt model,
which is as follows:

144 Chapter 7. Evaluating the approach with FaMa-OVM

MRV1 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V56Medium,VP11SensorPower,
V52High,VP10SignsGivingOrders,V41NoOvertaking,V44EndOfProhibitions}

MRV2 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,VP11SensorPower,
V52High,VP10SignsGivingOrders,V41NoOvertaking,V44EndOfProhibitions}

We ran our experiments on a computer that is equipped with a Dual core
AMD Opteron 1218 processor running at 2.6 GHz, 2GB of RAM, Ubuntu 10.10
with Kernel 2.6.35.28, and the 1.6.0 version of the Java Runtime Environment.

7.6 Summary

In this chapter, we have evaluated our approach by using a study of a case
from the automotive domain. First, we have specified the RFW product line
using OVM, and then specified attributes and domain constraints of the RFW
product line using AOVM. Afterwards, we have presented FaMa-OVM tool,
which we have used to analyse the RFW AOVM. FaMa-OVM is a prototype
tool we have developed that works a proof of concepts of our approach. With
this tool we were able to perform the analysis operations described in Sec-
tion §6.6 on the RFW product line. From our results we have verified that two
of those analysis operations on RFW AOVM are too complex for the solver we
have used, namely Choco. The complexity of finding the optimal variation(s)
and finding the most representative variation(s) increases exponentially with
the number of variability elements on the model.

Part IV

Final Remarks

Chapter 8

Conclusions and Future Work

All progress is precarious, and the solution of one problem
brings us face to face with another problem.

Martin Luther King Jr., 1929 – 1968
US civi l rights leader and clergyman

8.1 Conclusions

In this dissertation we have shown that:

We can enrich orthogonal variability models with attributes and con-
straints on attributes, and based on a framework developed for the
automated analysis of feature models, provide an automated support
for the analysis of software product lines by means of attribute-aware
orthogonal variability models.

The automated analysis of variability models is an active research field.
The importance of variability modelling activity to the software product line
development has led to an increased interest of researchers in extracting use-
ful information from its resulting models. The automated analysis of software
product lines by means of variability models deals with the computer-aided

147

148 Chapter 8. Conclusions and Future Work

extraction of information from variability models. Currently, there are sev-
eral works providing automated support for the analysis of feature models
in particular. However, the emergence of other techniques for the variability
modelling is leading to the need for an automated support of their analysis.
Current efforts are mainly driven towards feature modelling approaches, and
the analysis of variability models taking into account attributes is hardly sup-
ported. This limits the scope and applicability of current variability modelling
analysis tools to feature models domain.

In this dissertation, we have presented a set of techniques and tools to sup-
port the automated analysis of OVMs, and attribute-aware OVMs as well.
These contributions are the result of applying the analysis process from the
feature models community to the analysis of OVM. Our main results are:

i. Improvements on modelling concepts of the OVM language. These im-
provements consist of a way to document abstract elements explicitly
and to specify attribute-aware OVMs, which allows us to express at-
tributes and constraints on attributes, and their relationship with an
OVM;

ii. Support for the automated analysis of OVMs. To this purpose, we pro-
vided a set of mapping rules to translate an OVM and also an attribute-
aware OVM into a CSP. Then, we provided a set of analysis operations
to be performed on the resulting CSP specification.

iii. The FaMa-OVM, a tool support for the automated analysis of both,
OVMs and attribute-aware OVMs.

To illustrate the feasibility of our approach, we have presented a study of
a case from the automotive domain, showing that we were able to perform
the analysis of a non-trivial real-world product line, allowing to detect false
optional and dead elements in the OVM that represents the variability of such
product line, and to verify attribute conditions as well. FaMa-OVM is based
on a framework for the analysis of feature models, which simplified the de-
velopment of our tool.

Based on our experience, we have observed that although feature models
and OVM are similar, and the same techniques from the feature models con-
text can be applied to automate the analysis of OVM, the realisation of our
approach was not straightforward. Next, we point out some differences in
automating the analysis of OVMs with respect to automating the analysis of
feature models.

8.2. Discussion, limitations and extensions 149

• With regards to the modelling concepts. First, we have used the variation
points to make explicit the abstract elements in the OVM. We have taken
the advantage that its syntax distinguishes between variation points and
variants, and the former is usually used to structure variability. Second,
unlike feature models, OVM only documents information about the vari-
ability of product line artefacts, but not data information. Therefore, we
could not annotate OVM elements with attributes as in feature models,
instead we had to relate OVMs with external models in which attributes
are specified.

• With regards to the selective mapping of OVM into CSP. In feature mod-
els, the selective mapping is done in a two-step process. First, a fea-
ture model is transformed into a propositional formula that contains
the variables equivalent to all features. Second, the resulting formula
is transformed into a propositional formula in which there is no variable
equivalent to abstract features. Contrarily, we have done the selective
mapping of OVM using a single-step, i.e., we transform OVMs directly
into a CSP with no variables equivalent to abstract elements.

• With regards to the FaMa-OVM implementation, we have implemented
the full and the selective mapping using a specific solver. The implemen-
tation is based on the FaMa framework, which has simplified the devel-
opment of our tool, since key components, such as reasoners, readers,
and writers were partially reused. With FaMa-OVM we have demon-
strated that the analysis of OVMs, as in the case of feature models, can
be computationally expensive. This is particularly true for those opera-
tions that need to compute all possible solutions beforehand to be able
to find a solution, such as the number of variations operation. Further-
more, the analysis of variability models with attributes can be even more
complex, as for example when asking for the optimal solution or for the
most representative variation, since there is the need to compute the op-
timal solution from the total set of solutions.

8.2 Discussion, limitations and extensions

We next discuss some of the decisions that we have made in this disserta-
tion highlighting its main limitations and possible extensions.

• Is our Attribute-based Model adequate and sufficiently comprehen-

150 Chapter 8. Conclusions and Future Work

sive? Although we have provided a model to express attributes and
constraints on attributes, we did not rigorously define its elements and
neither have we investigated how it should be defined in order to be a
comprehensive model, so that it can be used for any other variability
modelling technique.

Extension: Study the domain of attributes of product line artefacts in
order to provide a domain-specific language that can be used to
express attributes and constraints on attributes, regardless of the
variability model being used for expressing variability.

• Which type of attributes can be modelled with our approach and how
are their values defined? The compositionality of certain attributes,
such as security, usability, and performance is not obvious and often
hard to define. We deal with measurable attributes that are technically
known and that can be composed by means of functions on individual
values. These attributes can be functional or non-functional. A limita-
tion of our approach is that the same attribute can only be involved in
multiple functions when it is possible to find a common neutral value
for these functions. Furthermore, we did not provide a systematic way
to assign values to attributes.

Extension: Complement our approach with a systematic way of defin-
ing attribute values. For this purpose we intend to use some of the
works identified in the literature [149–151].

• Are all operations contemplated in our approach? We have not defined
to OVM all the operations identified for the analysis of feature mod-
els. In addition, we deal with operations that extract information from
models without modifying them. To provide support for staged config-
uration of OVM, operations that modify the model have to be studied.
This operation is very useful to support the user in deriving variations
of OVM. This operation would have an impact on the states of the vari-
ability elements, which in our approach are only selected and removed;
other states such as decided and undecided have to be considered.

Extension:

⋄ Extending our approach with modification operations.
⋄ Provide new analysis operations that can be applied to OVM.

• OVM semantics. Although we have discussed two different semantics
for OVMs, namely: Full and Selective. We have only addressed full se-

8.2. Discussion, limitations and extensions 151

mantics when providing support for the automated analysis of attribute-
aware OVMs.

Extension: Provide selective mapping from attribute-aware OVMs into
CSP, and support for analysis operations as well.

• Are CSPs the most appropriated intermediate representation? We
have chosen CSP as the intermediate representation for two reasons:
i) it offers a high level of abstraction in the specification, since any
CSP can always be translated into a propositional formula [21], and be-
sides, the language of CSP solvers is more intuitive for developers than
propositional-based solvers; and, ii) using CSP solvers enables to work
with numerical values, such as integer, which allows dealing with at-
tributes. One of the limitations of have chosen this paradigm is that it is
well-known that CSPs are in general NP-complete problems. We have
identified that, similar to the analysis of feature models, determining
whether an OVM is void is an NP-complete problem as well. In addi-
tion, with our proof of concepts, we have determined that the addition
of attributes to the analysis process highly increases the complexity of
the problem when trying to find an optimal solution.

Conclusion: We believe that it is important to work in collaboration
with other research areas (e.g., Constraint Programming, Artificial
Intelligence) in order to find other techniques that could better solve
the problem.

• Should we use formal language for specifying our approach? We
have not formally specify our approach. Although we have based our
approach on the OVM semantics defined in [91], in this dissertation,
we have presented an informal definition of the OVM semantics, the
Attribute-based Model, and the analysis process itself. This has brought
us some benefits in terms of ease of understanding for regular software
engineers and developers, since they are more used to UML models and
metamodels. However, using informal specification our approach lacks
rigour.

Extension: Formalise our specification using a formal language.

152 Chapter 8. Conclusions and Future Work

8.3 Other future work

• Relationship between OVM and base models. In our approach we
consider 1 : 1 relationships between OVM and configuration model ele-
ments. However, these relationships could be extended to be 1 : N with
minor changes. In addition, we have considered that base model is a
configuration model, which has limited the approach.

Future work:

⋄ Extend our approach to allow 1:N relationships between OVM
and configuration models.

⋄ Study how our approach could be applied to analyse OVM re-
lated to other kinds of base model.

• Should variations also be distinguished by attributes? In our ap-
proach, variations are distinguished by variability elements, but not by
attributes. In other words, variations that have the same set of variability
elements are considered equivalent variations, regardless their attribute
values. However, in some cases, could be appropriate to differentiate
variations by they attribute values as well. This means that different
variations can have the same set of variability elements, but different
values for their attributes.

Conclusion: At the time of writing this dissertation, the distinction of
variations only by variability elements seems to be the most appro-
priate approach for the analysis of OVM.

Future work: Study the practical significance of considering attribute
values as a way of distinguishing variations.

• Tool support. Although FaMa-OVM is already functional, it is only a
prototype and there is much improvements to be done.

Future work:

⋄ Perform functional testing of FaMa-OVM. For this purpose, we
intend to use metamorphic testing techniques, such the one pre-
sented in [118].

⋄ Provide an user Web interface for FaMa-OVM.

• Survey and research agenda. During the development of this disser-
tation a question always came to light, “Which is the most appropriate
variability modelling technique and in which context?” The state of the

8.3. Other future work 153

art on this field has to be reviewed in order to summarise the differences
between variability modelling techniques. More rigorous surveys are
missing and this is a field that we plan to explore as well.

Future work: Revise the state of the art and the challenges ahead on the
domain of variability modelling techniques.

• MDD and transformation of OVM. We have already started research-
ing in this field, but we only have preliminary results. We believe that
this is an open research area that has to be investigated to provide in-
teroperability between feature models and OVM tools, and to leverage
automated analysis of OVM.

Future work:

⋄ Investigate more about the possibility of using model transfor-
mation to provide interoperability between feature models and
OVM tools.

⋄ Mapping OVM selection into base models and verifying that
specific variation model is consequent with its OVM.

154 Chapter 8. Conclusions and Future Work

Part V

Appendices

Appendix A

Interoperability Between OVM and
FM Tools

In this appendix, we report on the implementation of an algorithm to carry
out FM to OVM transformations. The algorithm transforms the variable part
of a feature model into an OVM, thus providing an explicit view of variability
of a product line. We have devised model-to-model transformations using
MOMENT2 [22, 23]. The transformations we have devised transform models
described with the metamodel presented in Figure §A.1 into models described
with the metamodel depicted in Figure §A.2.

In the following, we provide the transformation rules, cf. Programs §A.2–
§A.18. Each rule performs an specific transformation of feature model ele-
ments into OVM elements. Every rule must be written inside Program §A.1.

157

158 Appendix A. Interoperability Between OVM and FM Tools

Figure A.1: The feature model metamodel.

Figure A.2: The OVM metamodel.

159

import “platform:/resource/fm2ovm/metamodels/FM_METAMODEL.ecore”;

import “platform:/resource/fm2ovm/metamodels/OVM_METAMODEL.ecore”;

transformation fm2ovm(fm: FM_METAMODEL; ovm: OVM_METAMODEL) {

⟨ ... Rules come here... ⟩
}

Program A.1: Main transformation method that contains every rule.

rl FeatureModelToVmodel {

nac ovm noVmodel {

vm: Vmodel { }

};

lhs {

fm {

f: FeatureModel {

name = n

}

}

ovm { }

};

rhs {

fm {

f: FeatureModel {

name = n

}

}

ovm {

vm: Vmodel {

name = n

}

}

};

}

Program A.2: Map each feature model to an OVM.

160 Appendix A. Interoperability Between OVM and FM Tools

rl OptFeatureToMandatoryVP {

nac ovm noVariationPoint {

mdt: MandatoryVariationPoint {

id = nf1

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = true,

hasSubFeatures = op: OptionalRelationship {

optionalChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vm: Vmodel { }

}

};

Program A.3: Map each core feature with optional child to a mandatory VP
with an optional child variant.

161

rhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = true,

hasSubFeatures = op: OptionalRelationship {

optionalChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vm: Vmodel {

hasElements = mdt: MandatoryVariationPoint {

id = nf1,

name = nf1,

hasRelationships = optRel: Optional {

hasVariant = v: Variant {

id = nf2,

name = nf2

}

}

}

}

}

};

}

Program A.3: Map each core feature with optional child to a mandatory VP
with an optional child variant (Cont’d).

162 Appendix A. Interoperability Between OVM and FM Tools

rl OptFeatureToOptionalVP {

nac ovm noVariationPoint {

opt: OptionalVariationPoint {

id = nf1

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = op: OptionalRelationship {

optionalChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

v1: Variant {

id = nf1

}

vm: Vmodel { }

}

};

rhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = op: OptionalRelationship {

optionalChild = f2: Feature {

name = nf2

}

}

}

}

Program A.4: Map each non-core feature with optional child to an optional VP
with an optional child variant.

163

ovm {

v1: Variant {

id = nf1,

name = nf1 + "_V"

}

vm: Vmodel {

hasElements = opt: OptionalVariationPoint {

id = nf1,

name = nf1 + "_VP",

hasRelationships = optRel: Optional {

hasVariant = v: Variant {

id = nf2,

name = nf2

}

}

},

hasConstraints = req1: Requires {

source = v1: Variant { },

target = opt: OptionalVariationPoint { }

},

hasConstraints = req2: Requires {

source = opt: OptionalVariationPoint { },

target = v1: Variant { }

}

}

}

};

}

Program A.4: Map each non-core feature with optional child to an optional VP
with an optional child variant (Cont’d).

164 Appendix A. Interoperability Between OVM and FM Tools

rl OptFeatureToOptVariant {

nac ovm noVariant {

v: Variant {

id = nf2

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = true,

hasSubFeatures = op: OptionalRelationship {

optionalChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vm: Vmodel {

hasElements = mdt: MandatoryVariationPoint {

id = nf1

}

}

}

};

Program A.5: Map each optional feature with parent core feature to an op-
tional variant.

165

rhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = true,

hasSubFeatures = op: OptionalRelationship {

optionalChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vm: Vmodel {

hasElements = mdt: MandatoryVariationPoint {

id = nf1,

hasRelationships = optRel: Optional {

hasVariant = v: Variant {

id = nf2,

name = nf2

}

}

}

}

}

};

}

Program A.5: Map each optional feature with parent core feature to an op-
tional variant (Cont’d).

166 Appendix A. Interoperability Between OVM and FM Tools

rl OptFeatureToOptVariantNotCore {

nac ovm noVariant {

v: Variant {

id = nf2

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = op: OptionalRelationship {

optionalChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

opt: OptionalVariationPoint {

id = nf1

}

}

};

Program A.6: Map each optional feature with parent non-core feature to an
optional variant.

167

rhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = op: OptionalRelationship {

optionalChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

opt: OptionalVariationPoint {

id = nf1,

hasRelationships = optRel: Optional {

hasVariant = v: Variant {

id = nf2,

name = nf2

}

}

}

}

};

}

Program A.6: Map each optional feature with parent non-core feature to an
optional variant (Cont’d).

168 Appendix A. Interoperability Between OVM and FM Tools

rl MdtFeatureToOptionalVP {

nac ovm noVariationPoint {

opt: OptionalVariationPoint {

id = nf1

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = mdt: MandatoryRelationship {

mandatoryChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

v1: Variant {

id = nf1

}

vm: Vmodel { }

}

};

Program A.7: Map each non-core feature with mandatory child feature to an
optional VP with mandatory child variant.

169

rhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = mdt: MandatoryRelationship {

mandatoryChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

v1: Variant {

id = nf1,

name = nf1 + "_V"

}

vm: Vmodel {

hasElements = opt: OptionalVariationPoint {

id = nf1,

name = nf1 + "_VP",

hasRelationships = mdtRel: Mandatory {

hasVariant = v: Variant {

id = nf2,

name = nf2

}

}

},

hasConstraints = req1: Requires {

source = v1: Variant { },

target = opt: OptionalVariationPoint { }

},

hasConstraints = req2: Requires {

source = opt: OptionalVariationPoint { },

target = v1: Variant { }

}

}

}

};

}

Program A.7: Map each non-core feature with mandatory child feature to an
optional VP with mandatory child variant (Cont’d).

170 Appendix A. Interoperability Between OVM and FM Tools

rl MdtFeatureToMdtVariant {

nac ovm noVariant {

v: Variant {

id = nf2

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = mdt: MandatoryRelationship {

mandatoryChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vm: Vmodel {

hasElements = opt: OptionalVariationPoint {

id = nf1

}

}

}

};

Program A.8: Map each mandatory feature with non-core parent feature to a
mandatory variant.

171

rhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = mdt: MandatoryRelationship {

mandatoryChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vm: Vmodel {

hasElements = opt: OptionalVariationPoint {

id = nf1,

hasRelationships = mdtRel: Mandatory {

hasVariant = v: Variant {

id = nf2,

name = nf2

}

}

}

}

}

};

}

Program A.8: Map each mandatory feature with non-core parent feature to a
mandatory variant (Cont’d).

172 Appendix A. Interoperability Between OVM and FM Tools

rl AlternativeCoreToMandatoryVP {

nac ovm noVariationPoint {

vp: MandatoryVariationPoint {

id = nf1

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = true,

hasSubFeatures = alt: AlternativeRelationship {

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vm: Vmodel { }

}

};

Program A.9: Map each core feature with alternative child feature to a manda-
tory VP with an alternative child variant.

173

rhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = true,

hasSubFeatures = alt: AlternativeRelationship {

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vm: Vmodel {

hasElements = vp: MandatoryVariationPoint {

id = nf1,

name = nf1,

hasRelationships = alt1: Alternative {

minRange = 1,

maxRange = 1,

hasVariants = v: Variant {

id = nf2,

name = nf2

}

}

}

}

}

};

}

Program A.9: Map each core feature with alternative child feature to a manda-
tory VP with an alternative child variant (Cont’d).

174 Appendix A. Interoperability Between OVM and FM Tools

rl AlternativeToOptionalVP {

nac ovm noVariationPoint {

vp: OptionalVariationPoint {

id = nf1

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = alt: AlternativeRelationship {

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

v1: Variant {

id = nf1

}

vm: Vmodel { }

}

};

Program A.10: Map each non-core feature with alternative child feature to an
optional VP with an alternative child variant.

175

rhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = alt: AlternativeRelationship {

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

v1: Variant {

id = nf1,

name = nf1 + "_V"

}

vm: Vmodel {

hasElements = opt: OptionalVariationPoint {

id = nf1,

name = nf1 + "_VP",

hasRelationships = alt1: Alternative {

minRange = 1,

maxRange = 1,

hasVariants = v: Variant {

id = nf2,

name = nf2

}

}

},

hasConstraints = req1: Requires {

source = v1: Variant { },

target = opt: OptionalVariationPoint { }

},

hasConstraints = req2: Requires {

source = opt: OptionalVariationPoint { },

target = v1: Variant { }

}

}

}

};

}

Program A.10: Map each non-core feature with alternative child feature to an
optional VP with an alternative child variant (Cont’d).

176 Appendix A. Interoperability Between OVM and FM Tools

rl AlternativeCoreToAlternative {

nac ovm noAlternative {

vp: VariationPoint {

id = nf1,

hasRelationships = alt1: Alternative {

minRange = 1,

maxRange = 1

}

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

hasSubFeatures = alt: AlternativeRelationship {

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vp: VariationPoint {

id = nf1

}

}

};

Program A.11: Map each alternative feature to an alternative relationship and
an alternative child variant.

177

rhs {

fm {

f: AbstractFeature {

name = nf1,

hasSubFeatures = alt: AlternativeRelationship {

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vp: VariationPoint {

id = nf1,

hasRelationships = alt1: Alternative {

minRange = 1,

maxRange = 1,

hasVariants = v: Variant {

id = nf2,

name = nf2

}

}

}

}

};

}

Program A.11: Map each alternative feature to an alternative relationship and
an alternative child variant (Cont’d).

178 Appendix A. Interoperability Between OVM and FM Tools

rl AlternativeToVariants {

nac ovm noVariant {

v: Variant {

id = nf2

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

hasSubFeatures = alt: AlternativeRelationship {

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vp: VariationPoint {

id = nf1,

hasRelationships = alt1: Alternative {

maxRange = 1

}

}

}

};

Program A.12: Map each alternative feature to an alternative variant.

179

rhs {

fm {

f: AbstractFeature {

name = nf1,

hasSubFeatures = alt: AlternativeRelationship {

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vp: VariationPoint {

id = nf1,

hasRelationships = alt1: Alternative {

maxRange = 1,

hasVariants = v: Variant {

id = nf2,

name = nf2

}

}

}

}

};

}

Program A.12: Map each alternative feature to an alternative variant (Cont’d).

180 Appendix A. Interoperability Between OVM and FM Tools

rl OrCoreToMandatoryVP {

nac ovm noVariationPoint {

vp: MandatoryVariationPoint {

id = nf1

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = true,

hasSubFeatures = orRel: OrRelationship {

nChildren = n,

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vm: Vmodel { }

}

};

Program A.13: Map each core feature with an OR child feature to a mandatory
VP with an alternative child variant.

181

rhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = true,

hasSubFeatures = orRel: OrRelationship {

nChildren = n,

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vm: Vmodel {

hasElements = vp: MandatoryVariationPoint {

id = nf1,

name = nf1,

hasRelationships = alt1: Alternative {

minRange = 1,

maxRange = n,

hasVariants = v: Variant {

id = nf2,

name = nf2

}

}

}

}

}

};

}

Program A.13: Map each core feature with an OR child feature to a mandatory
VP with an alternative child variant (Cont’d).

182 Appendix A. Interoperability Between OVM and FM Tools

rl OrToOptionalVP {

nac ovm noVariationPoint {

opt: OptionalVariationPoint {

id = nf1

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = orRel: OrRelationship {

nChildren = n,

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

v1: Variant {

id = nf1

}

vm: Vmodel { }

}

};

Program A.14: Map each non-core feature with an OR child feature to an op-
tional VP with an alternative child variant.

183

rhs {

fm {

f: AbstractFeature {

name = nf1,

isCoreFeature = false,

hasSubFeatures = orRel: OrRelationship {

nChildren = n,

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

v1: Variant {

id = nf1,

name = nf1 + "_V"

}

vm: Vmodel {

hasElements = opt: OptionalVariationPoint {

id = nf1,

name = nf1 + "_VP",

hasRelationships = alt1: Alternative {

minRange = 1,

maxRange = n,

hasVariants = v: Variant {

id = nf2,

name = nf2

}

}

},

hasConstraints = req1: Requires {

source = v1: Variant { },

target = opt: OptionalVariationPoint { }

},

hasConstraints = req2: Requires {

source = opt: OptionalVariationPoint { },

target = v1: Variant { }

}

}

}

};

}

Program A.14: Map each non-core feature with an OR child feature to an op-
tional VP with an alternative child variant (Cont’d).

184 Appendix A. Interoperability Between OVM and FM Tools

rl OrToAlternative {

nac ovm noAlternative {

vp: VariationPoint {

id = nf1,

hasRelationships = alt1: Alternative {

minRange = 1,

maxRange = n

}

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

hasSubFeatures = orRel: OrRelationship {

nChildren = n,

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vp: VariationPoint {

id = nf1

}

}

};

Program A.15: Map each OR feature to an alternative relationship and an al-
ternative child variant.

185

rhs {

fm {

f: AbstractFeature {

name = nf1,

hasSubFeatures = orRel: OrRelationship {

nChildren = n,

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vp: VariationPoint {

id = nf1,

hasRelationships = alt1: Alternative {

minRange = 1,

maxRange = n,

hasVariants = v: Variant {

id = nf2,

name = nf2

}

}

}

}

};

}

Program A.15: Map each OR feature to an alternative relationship and an al-
ternative child variant (Cont’d).

186 Appendix A. Interoperability Between OVM and FM Tools

rl OrToVariants {

nac ovm noVariant {

v: Variant {

id = nf2

}

};

lhs {

fm {

f: AbstractFeature {

name = nf1,

hasSubFeatures = orRel: OrRelationship {

nChildren = n,

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vp: VariationPoint {

id = nf1,

hasRelationships = alt1: Alternative {

maxRange = n

}

}

}

};

Program A.16: Map each OR feature to an alternative child variant.

187

rhs {

fm {

f: AbstractFeature {

name = nf1,

hasSubFeatures = orRel: OrRelationship {

nChildren = n,

setOfChild = f2: Feature {

name = nf2

}

}

}

}

ovm {

vp: VariationPoint {

id = nf1,

hasRelationships = alt1: Alternative {

maxRange = n,

hasVariants = v: Variant {

id = nf2,

name = nf2

}

}

}

}

};

}

Program A.16: Map each OR feature to an alternative child variant (Cont’d).

188 Appendix A. Interoperability Between OVM and FM Tools

rl RequiresToRequires {

nac ovm noRequires {

req2: Requires {

source = ve1: VariationElement {

id = nf1

},

target = ve2: VariationElement {

id = nf2

}

}

};

lhs {

fm {

req: Requires {

from = f1: Feature {

name = nf1

},

to = f2: Feature {

name = nf2

}

}

}

ovm {

vm: Vmodel { }

ve1: VariationElement {

id = nf1

}

ve2: VariationElement {

id = nf2

}

}

};

Program A.17: Map each requires constraint to a requires constraint.

189

rhs {

fm {

req: Requires {

from = f1: Feature {

name = nf1

},

to = f2: Feature {

name = nf2

}

}

}

ovm {

vm: Vmodel {

hasConstraints = req2: Requires {

source = ve1: VariationElement {

id = nf1

},

target = ve2: VariationElement {

id = nf2

}

}

}

}

};

}

Program A.17: Map each requires constraint to a requires constraint (Cont’d).

190 Appendix A. Interoperability Between OVM and FM Tools

rl ExcludesToExcludes {

nac ovm noExcludes {

req2: Excludes {

excludes = ve1: VariationElement {

id = nf1

},

excludes = ve2: VariationElement {

id = nf2

}

}

};

lhs {

fm {

exc: Excludes {

excludes = f1: Feature {

name = nf1

},

excludes = f2: Feature {

name = nf2

}

}

}

ovm {

vm: Vmodel { }

ve1: VariationElement {

id = nf1

}

ve2: VariationElement {

id = nf2

}

}

};

Program A.18: Map each excludes constraint to an excludes constraint.

191

rhs {

fm {

exc: Excludes {

excludes = f1: Feature {

name = nf1

},

excludes = f2: Feature {

name = nf2

}

}

}

ovm {

vm: Vmodel {

hasConstraints = req2: Excludes {

excludes = ve1: VariationElement {

id = nf1

},

excludes = ve2: VariationElement {

id = nf2

}

}

}

}

};

}

}

Program A.18: Map each excludes constraint to an excludes con-
straint (Cont’d).

192 Appendix A. Interoperability Between OVM and FM Tools

Appendix B

Selective Mapping Rules

This appendix presents the 92 rules for translating an OVM into a CSP
applying the selective mapping, which were presented in Section §5.3.2.

193

194 Appendix B. Selective Mapping Rules

[i..j]

v1 v2 vn

vp

vp

vp
[i..j]

v1 v2 vn

v=1

sum(v1,v2,vn) in {i..j}

sum(v1,v2,vn) in {0} U {i..j}

vp

vp

vp

No constraint

No constraint

No constraint

A
lt
e

rn
a

ti
v
e

O
P

T
IO

N
A

L
 V

a
ri

a
ti
o

n
 P

o
in

t
M

A
N

D
A

T
O

R
Y

 V
a

ri
a

ti
o

n
 P

o
in

t

O
p

ti
o

n
a

l
M

a
n

d
a

to
ry

Variability dependency

A
lt
e

rn
a

ti
v
e

O
p

ti
o

n
a

l
M

a
n

d
a

to
ry

JaCoP-like notation

1

2

3

4

5

6

when a vp and v are mandatory,

v will be always equal to 1.

when a mandatory vp has an alternative

relationship with its child variants,

the sum of its child variants will be

always in {i..j}. Since they must be selected.

However, when a vp is optional,

the sum of its child variants will be always

in {i..j} or zero, since they may be selected or not.

When a vp or v is optional,

no constraint is generated.
+

+

+

+

Table B.1: Mapping rules for variability dependencies.

195

vp2
vp1

vp1

vp1

vp1
vp1

vp2vp1
v2=1

vp2
vp1

[i..j]

v2 v3 vn

vp2

vp2

[i..j]

v2 v3 vn

sum(v2,v3,vn) in {i..j}

vp2

[i..j]

v2 v3 vn

vp2

vp2

vp2

vp2

[i..j]

v2 v3 vn

v2=1

No constraint

sum(v2,v3,vn) in {i..j}

vp1

vp1

vp1

vp1

vp1

vp1

Requires_VP_VP Constraint dependency JaCoP-like notation

M
A

N
D

A
T

O
R

Y
 V

a
ri

a
ti
o

n
 P

o
in

t
(l

e
ft
-h

a
n

d
 s

id
e

)

M
a

n
d

a
to

ry
 v

a
ri

a
b

ili
ty

 d
e

p
e

n
d

e
n

c
y
 (

le
ft
-h

a
n

d
 s

id
e

)
O

p
ti

o
n

a
l
v
a

ri
a

b
ili

ty
 d

e
p

e
n

d
e

n
c
y
 (

le
ft
-h

a
n

d
 s

id
e

)

No constraint

Requires_VP_VP Constraint dependency JaCoP-like notation

M
A

N
D

A
T

O
R

Y
 V

a
ri

a
ti
o

n
 P

o
in

t
(l

e
ft
-h

a
n

d
 s

id
e

)

A
lt

e
rn

a
ti

v
e

 v
a

ri
a

b
ili

ty
 d

e
p

e
n

d
e

n
c
y
 (

le
ft
-h

a
n

d
 s

id
e

)

vp2
v1=1

vp2[i..j]

v2 v3 vn

[i..j]

v2 v3 vn

vp2

vp2
[i..j]

v2 v3 vn

[i..j]

v2 v3 vn

No constraint

[x..y]

q1 q2 qm

[i..j]

v1 v2 vn

vp2

[x..y]

q1 q2 qm

[i..j]

v1 v2 vn

sum(q1,q2,qm) in {x..y}

1

2

3

4

5

6

7

8

9

14

12

13

15

16

17

18

11

10

No constraint

No constraint

No constraint

No constraint

No constraint

No constraint

No constraint

No constraint

No constraint

when vp and v in the right-hand side are mandatory,

there is no constraint because v will be always equal

to 1 according to variability dependency rule number 1.

when vp in the right-hand side is mandatory and the

relationship with child variants is alternative, there is

no constraint because the sum of its child variants will be

always in the cardinatity, according to variability

dependency rule number 3.

When vp or v in the right-hand side is optional,

there is no constraint, according to variability

dependency rules numbers 2, 4 and 5.

+

+

+
+

+

+

+

Table B.2: VP requires VP mapping rules for mandatory VPs.

196 Appendix B. Selective Mapping Rules

if (v1 > 0)

 v2 > 0

vp2vp1

vp1 vp2

vp1 vp2

vp2vp1

No constraint

vp1 vp2

vp2
vp1 if (v1 > 0)

 v2 > 0

vp2

vp2

vp1

vp1

vp2

vp1

[i..j]

v2 v3 vn

vp1

[i..j]

v2 v3 vn

vp1

[i..j]

v2 v3 vn

vp1

[i..j]

v2 v3 vn

vp1

[i..j]

v1 v2 vn

Requires_VP_VP Constraint dependency JaCoP-like notation

O
P

T
IO

N
A

L
 V

a
ri

a
ti
o

n
 P

o
in

t
(l

e
ft
-h

a
n

d
 s

id
e

)

M
a

n
d

a
to

ry
 v

a
ri

a
b

ili
ty

 d
e

p
e

n
d

e
n

c
y
 (

le
ft
-h

a
n

d
 s

id
e

)
O

p
ti

o
n

a
l
v
a

ri
a

b
ili

ty
 d

e
p

e
n

d
e

n
c
y
 (

le
ft
-h

a
n

d
 s

id
e

)

Requires_VP_VP Constraint dependency JaCoP-like notation

O
P

T
IO

N
A

L
 V

a
ri

a
ti
o

n
 P

o
in

t
(l

e
ft
-h

a
n

d
 s

id
e

)

A
lt

e
rn

a
ti

v
e

 v
a

ri
a

b
ili

ty
 d

e
p

e
n

d
e

n
c
y
 (

le
ft
-h

a
n

d
 s

id
e

)

19

20

21

22

23

24

25

26

27

32

30

31

33

34

35

36

29

28

vp2

vp2

vp2

vp1

[i..j]

v1 v2 vn

[x..y]

q1 q2 qm

vp2

[x..y]

q1 q2 qm

if sum(v2,v3,vn) in {i..j}

 (v1 > 0)

if sum(v1,v2,vn) in {i..j}

 sum(q1,q2,qm) in {x..y}

[i..j]

v2 v3 vn

vp1

vp2

[i..j]

v2 v3 vn

vp1

vp1 [i..j]

v2 v3 vn

vp1
vp2

[i..j]

v2 v3 vn

if (v1 > 0)

 sum(v2,v3,vn) in {i..j}

if (v1 > 0)

 sum(v2,v3,vn) in {i..j}

No constraint

No constraint

No constraint

No constraint

No constraint

No constraint

No constraint

No constraint

No constraint

No constraint

No constraint

+
when vp and v in the right-hand side are mandatory,

there is no constraint because v will be always equal

to 1 according to variability dependency rule number 1.

when vp in the right-hand side is mandatory and the

relationship with child variants is alternative, there is

no constraint because the sum of its child variants will be

always in the cardinatity, according to variability

dependency rule number 3.

When vp or v in the right-hand side is optional,

there is no constraint, according to variability

dependency rules numbers 2, 4 and 5.

+
+

+

+

+

+

+

Table B.3: VP requires VP mapping rules for optional VPs.

197

vp2

vp1

vp2 if (v1 > 0)

 v2 > 0

vp2

[i..j]

v2 v3 vn

vp2

vp2

[i..j]

v2 v3 vn

Requires_V_VP Constraint dependency JaCoP-like notation

No constraint

1

2

3

4

5

6

if (v1 > 0)

 sum(v2,v3,vn) in {i..j}

No constraint

No constraint

No constraint

when vp and v in the right-hand side are mandatory,

there is no constraint because v will be always equal

to 1 according to variability dependency rule number 1.

when vp in the right-hand side is mandatory and the

relationship with child variants is alternative, there is

no constraint because the sum of its child variants will be

always in the cardinatity, according to variability

dependency rule number 3.

When vp or v in the right-hand side is optional,

there is no constraint, according to variability

dependency rules numbers 2, 4 and 5.

+

+

+

V
A

R
IA

N
T

 (
le

ft
-h

a
n

d
 s

id
e
)

Table B.4: V requires VP mapping rules.

v2

if (v1 > 0)

 v2 > 0

Requires_V_V Constraint dependency JaCoP-like notation

1

Table B.5: V requires V mapping rules.

198 Appendix B. Selective Mapping Rules

if (v1 > 0)

 v2 = 0

vp2
vp1

vp2vp1

if sum(v2,v3,vn) in {i..j}

 (v1 = 0)

if sum(v1,v2,vn) in {i..j}

 q1= 0, q2, = 0, qm = 0

Excludes_VP_VP Constraint dependency JaCoP-like notation

M
A

N
D

A
T

O
R

Y
 V

a
ri

a
ti
o

n
 P

o
in

t
(l

e
ft
-h

a
n

d
 s

id
e
)

M
a
n

d
a

to
ry

 v
a
ri

a
b

ili
ty

 d
e
p

e
n

d
e

n
c
y
 (

le
ft
-h

a
n

d
 s

id
e
)

O
p

ti
o

n
a

l
v
a
ri

a
b

ili
ty

 d
e
p

e
n

d
e

n
c
y
 (

le
ft
-h

a
n

d
 s

id
e
)

Excludes_VP_VP Constraint dependency JaCoP-like notation

M
A

N
D

A
T

O
R

Y
 V

a
ri

a
ti
o

n
 P

o
in

t
(l

e
ft
-h

a
n

d
 s

id
e
)

A
lt

e
rn

a
ti

v
e

 v
a
ri

a
b

ili
ty

 d
e
p

e
n

d
e

n
c
y
 (

le
ft
-h

a
n

d
 s

id
e
)

1

2

3

4

5

6

7

8

9

14

12

13

15

16

17

18

11

10

vp2vp1

vp2
vp1

vp1 [i..j]

v2 v3 vn

vp2

vp2

[i..j]

v2 v3 vn

if (v1 > 0)

 v2 = 0, v3 = 0, vn = 0

vp2

vp2

vp1

vp2

vp2

vp1

vp1

vp1

vp1

[i..j]

v2 v3 vn

vp2

vp2

[i..j]

v2 v3 vn

vp1

vp1

if (v1 > 0)

 v2 = 0

if (v1 > 0)

 v2 = 0, v3 = 0, vn = 0

vp2

vp2

*
[i..j]

v2 v3 vn

vp1

[i..j]

v2 v3 vn

vp1

vp2

vp2
[i..j]

v2 v3 vn

vp1

[i..j]

v2 v3 vn

[x..y]

q1 q2 qm

vp2

[i..j]

v1 v2 vn

vp1

vp2

[x..y]

q1 q2 qm

[i..j]

v1 v2 vn

vp1

Table B.6: VP excludes VP mapping rules for mandatory VPs.

199

if (v1 > 0)

 v2 = 0

vp2

vp2
vp1

if sum(v2,v3,vn) in {i..j}

 (v1 = 0)

if sum(v1,v2,vn) in {i..j}

 q1= 0, q2, = 0, qm = 0

Excludes_VP_VP Constraint dependency JaCoP-like notation

O
P

T
IO

N
A

L
 V

a
ri
a

ti
o
n

 P
o
in

t
(l

e
ft
-h

a
n

d
 s

id
e
)

M
a
n

d
a

to
ry

 v
a
ri

a
b

ili
ty

 d
e
p

e
n

d
e

n
c
y
 (

le
ft
-h

a
n

d
 s

id
e
)

O
p

ti
o

n
a

l
v
a
ri

a
b

ili
ty

 d
e
p

e
n

d
e

n
c
y
 (

le
ft
-h

a
n

d
 s

id
e
)

Excludes_VP_VP Constraint dependency JaCoP-like notation

O
P

T
IO

N
A

L
 V

a
ri
a

ti
o
n

 P
o
in

t
(l

e
ft
-h

a
n

d
 s

id
e
)

A
lt

e
rn

a
ti

v
e

 v
a
ri

a
b

ili
ty

 d
e
p

e
n

d
e

n
c
y
 (

le
ft
-h

a
n

d
 s

id
e
)

19

32

31

33

34

35

36

vp2vp1

vp2

[i..j]

v2 v3 vn

vp2

vp2

[i..j]

v2 v3 vn

if (v1 > 0)

 v2 = 0, v3 = 0, vn = 0

vp2

vp2

vp2

vp2

[i..j]

v2 v3 vn

vp2

vp2

[i..j]

v2 v3 vn

if (v1 > 0)

 v2 = 0

if (v1 > 0)

 v2 = 0, v3 = 0, vn = 0

vp2

vp2

vp2

vp2

[x..y]

q1 q2 qm

vp2

vp2

[x..y]

q1 q2 qm

vp1

vp1

vp1

vp1

vp1

vp1

vp1

vp1

vp1

vp1

vp1

[i..j]

v1 v2 vn

vp1

[i..j]

v1 v2 vn

vp1

[i..j]

v2 v3 vn

vp1

[i..j]

v2 v3 vn

vp1

[i..j]

v2 v3 vn

vp1

[i..j]

v2 v3 vn

20

21

22

23

24

25

26

27

28

29

30

Table B.7: VP excludes VP mapping rules for optional VPs.

200 Appendix B. Selective Mapping Rules

vp2

vp1

vp2

if (v1 > 0)

 v2 = 0

vp2

[i..j]

v2 v3 vn

vp2

vp2

[i..j]

v2 v3 vn

Excludes_V_VP Constraint dependency JaCoP-like notation

1

2

3

4

5

6

v1

v1

v1

if (v1 > 0)

 v2,= 0, v3 = 0, vn = 0

V
A

R
IA

N
T

 (
le

ft
-h

a
n

d
 s

id
e
)

Table B.8: V excludes VP mapping rules.

v2

if (v1 > 0)

 v2 = 0

Excludes_V_V Constraint dependency JaCoP-like notation

v1

1

Table B.9: V excludes V mapping rules.

Appendix C

RFW Product Line Specification

This appendix describes the complete AOVM specification for the RFW
product line presented in Chapter §7.

Domain constraints

V10Hazardous situation alarm IMPLIES VP11.Range >= 50;

V17Emergency brake IMPLIES VP11.Range >= 50;

V18Road w/ right of way start IMPLIES VP11.Range >= 25;

V19City limit IMPLIES VP11.Range >= 50;

V20Crossroads IMPLIES VP11.Range >= 25;

V21Home zone entry IMPLIES VP11.Range >= 25;

V22Road w/ right of way end IMPLIES VP11.Range >= 10;

V23End of city limit IMPLIES VP11.Range >= 10;

V24Traffic has priority IMPLIES VP11.Range >= 10;

V25Home zone end IMPLIES VP11.Range >= 10;

V26No vehicles IMPLIES VP11.Range >= 25;

V27No cars IMPLIES VP11.Range >= 25;

V28No vehicles over max width > Xm IMPLIES VP11.Range >= 25;

V29No vehicles w/ weight > 3.5t IMPLIES VP11.Range >= 25;

V30No vehicles over max gross weight g > Xt IMPLIES VP11.Range >= 25;

V31Do not enter IMPLIES VP11.Range >= 25;

V32No vehicles over max height h > Xm IMPLIES VP11.Range >= 25;

V33No stopping IMPLIES VP11.Range >= 10;

V34Danger IMPLIES VP11.Range >= 50;

V35Side winds IMPLIES VP11.Range >= 50;

V36Slippery road IMPLIES VP11.Range >= 50;

V37Risk of ice IMPLIES VP11.Range >= 50;

V38Bend IMPLIES VP11.Range >= 80;

V39Traffic queues IMPLIES VP11.Range >= 80;

201

202 Appendix C. RFW Product Line Specification

Domain constraints

V40Stop and give way IMPLIES VP11.Range >= 50;

V41No overtaking IMPLIES VP11.Range >= 50;

V42No overtaking end IMPLIES VP11.Range >= 50;

V43No overtaking vehicles > 3.5t IMPLIES VP11.Range >= 50;

V44End of prohibitions IMPLIES VP11.Range >= 25;

V45Yield IMPLIES VP11.Range >= 80;

V46Maximum speed X Km/h IMPLIES VP11.Range >= 50;

V47One way IMPLIES VP11.Range >= 25;

V48Maximum speed of X Km/h end IMPLIES VP11.Range >= 10;

V49No overtaking vehicles > 3.5t end IMPLIES VP11.Range >= 10;

V11Show warning sign IMPLIES TotalAccuracy <= 30;

V12Display and sound indication IMPLIES TotalAccuracy <= 30;

V13Warn for no stopping sign IMPLIES TotalAccuracy <= 10;

V15Show on display IMPLIES TotalAccuracy <= 30;

V16Display and sound indication IMPLIES TotalAccuracy <= 30;

V17Emergency brake IMPLIES TotalAccuracy <= 10;

V18Road w/ right of way start IMPLIES TotalAccuracy <= 30;

V19City limit IMPLIES TotalAccuracy <= 30;

V20Crossroads IMPLIES TotalAccuracy <= 30;

V21Home zone entry IMPLIES TotalAccuracy <= 30;

V22Road w/ right of way end IMPLIES TotalAccuracy <= 30;

V23End of city limit IMPLIES TotalAccuracy <= 30;

V24Traffic has priority IMPLIES TotalAccuracy <= 30;

V25Home zone end IMPLIES TotalAccuracy <= 30;

V26No vehicles IMPLIES TotalAccuracy <= 10;

V27No cars IMPLIES TotalAccuracy <= 10;

V28No vehicles over max width > Xm IMPLIES TotalAccuracy <= 10;

V29No vehicles w/ weight > 3.5t IMPLIES TotalAccuracy <= 10;

V30No vehicles over max gross weight g > Xt IMPLIES TotalAccuracy <= 10;

V31Do not enter IMPLIES TotalAccuracy <= 10;

V32No vehicles over max height h > Xm IMPLIES TotalAccuracy <= 10;

V33No stopping IMPLIES TotalAccuracy <= 10;

V34Danger IMPLIES TotalAccuracy <= 30;

V35Side winds IMPLIES TotalAccuracy <= 30;

V36Slippery road IMPLIES TotalAccuracy <= 30;

V37Risk of ice IMPLIES TotalAccuracy <= 30;

V38Bend IMPLIES TotalAccuracy <= 10;

V39Traffic queues IMPLIES TotalAccuracy <= 30;

V40Stop and give way IMPLIES TotalAccuracy <= 10;

V41No overtaking IMPLIES TotalAccuracy <= 30;

V42No overtaking end IMPLIES TotalAccuracy <= 30;

V43No overtaking vehicles > 3.5t IMPLIES TotalAccuracy <= 30;

V44End of prohibitions IMPLIES TotalAccuracy <= 30;

203

Domain constraints

V45Yield IMPLIES TotalAccuracy <= 10;

V46Maximum speed X Km/h IMPLIES TotalAccuracy <= 30;

V48Maximum speed of X Km/h end IMPLIES TotalAccuracy <= 30;

V49No overtaking vehicles > 3.5t IMPLIES TotalAccuracy <= 30;

Table C.2: RFW domain constraints

204 Appendix C. RFW Product Line Specification

VP

VP7:Other
signs

VP

V19:City limit

V

V18:Road w/right
of way start

V

V20:Crossroads

V

V21:Home zone entry

V

V22:Road w/ right
of way end

V

V23:End of city limit

V

V24:Traffic has priority

V

V25:Home zone end

V

VP

VP8:Prohibition
signs

VP

V27: No cars

V

V26:No vehicles

V

V28:No vehicles over
max width > Xm

V

V29:No vehicles
w/ weight > 3,5t

V

V30:No vehicles over max
gross weight g > Xt

V

V31:Do not enter

V

V32:No vehicles over max
height h > Xm

V

V33:No stopping

V

VP

VP9: Warning
signs

VP

V35:Side winds

V

V34:Danger

V

V36:Slippery road

V

V37:Risk of ice

V

V38:Bend

V

V39:Traffic queues

V

VP

VP10:Signs
giving orders

VP

V41:No overtaking

V

V40:Stop and give away

V

V42:No overtaking end

V

V43:No overtaking
vehickes > 3,5 t

V

V44:End of prohibitions

V

V45:Yield

V

V46:Maximum speed
x Km/h

V

V47:One way

V

V48:Maximum speed
of x Km/h end

V

V49:No overtaking
vehicles > 3,5t end

V

VP

VP5:Behaviour
at no stopping signs

1..1

V13:Warn for
no stopping sign V14:No warning

VV

VP

VP6:Behaviour in
hazardous situations

V16:Display and
sound indication

V15:Show on
 display

V17:Emergency
brake

1..1

V V V

VP

VP4:Behaviour
at warning signs

1..1

V11:Show
warning sign

V12:Display and
sound indication

VV

VP

VP3:Confort
functions

V7:No stopping
warning

V8:Overspeed
warning

V9:Sound at
warning signs

V10:Hazardous
situation alarm

V

V V

V

VP

VP1:Type of
vehicle

V1:Medium-class car

1..1

V2:Upper-class car V3:Small truck (3,5t) V4:Big truck (7,5t)

V V V V

VP

VP2:Activation

1..1

V5:Switchable V6:Continuously

VV

VP

VP11:Sensor power

V51:MediumV50:Low V52:High

1..1

V V V

VP

VP12:Positioning
system

1..2

V53:GPS V54:Galileo

VV

VP

VP13: Antenna

V56:MediumV55:Small V57:Big

1..1

V V V

Figure C.1: RFW OVM without excludes and requires dependencies.

205

Variation Point Variant Type Variation Point Variant

VP1:Type of vehicle requires VP9:Warning signs

VP1:Type of vehicle requires VP10:Signs giving orders

VP1:Type of vehicle requires VP8:Prohibition signs

VP1:Type of vehicle requires VP7:Other signs

V10:Hazardous situation alarm requires V16:Display and sound indication

V15:Show on display excludes V10:Hazardous situation alarm

V9:Sound at warning signs requires V12:Display and sound indication

V9:Sound at warning signs requires V34:Danger

V11:Show warning sign excludes V9:Sound at warning signs

V8:Overspeed warning requires V48:Maximum speed of x km/h end

V8:Overspeed warning requires V19:City limit

V8:Overspeed warning requires V21:Home zone entry

V7:No stopping warning requires V33:No stopping

V7:No stopping warning requires V13:Warn for no stopping sign

V7:No stopping warning excludes V14:No warning

V1:Medium‐class car requires V26:No vehicles

V1:Medium‐class car requires V27:No cars

V1:Medium‐class car requires V31:Do not enter

V1:Medium‐class car requires V41:No overtaking

V1:Medium‐class car requires V5:Switchable

V2:Upper‐class car requires V26:No vehicles

V2:Upper‐class car requires V27:No cars

V2:Upper‐class car requires V31:Do not enter

V2:Upper‐class car requires V41:No overtaking

V2:Upper‐class car requires V6:Continuously

V2:Upper‐class car requires V8:Overspeed warning

V3:Small truck (3,5t) requires V26:No vehicles

V3:Small truck (3,5t) requires V27:No cars

V3:Small truck (3,5t) requires V31:Do not enter

V3:Small truck (3,5t) requires V41:No overtaking

V3:Small truck (3,5t) requires V5:Switchable

V4:Big truck (7,5t) requires V29:No vehicles w/ weight > 3,5t

V4:Big truck (7,5t) requires V30:No vehicles over max gross weight g > x

V4:Big truck (7,5t) requires V43:No overtaking vehicles > 3,5t

V4:Big truck (7,5t) requires V41:No overtaking

V4:Big truck (7,5t) requires V6:Continuously

V17:Emergency brake requires V10:Hazardous situation alarm

V53:GPS excludes V55:Small

Table C.1: RFW excludes and requires dependencies.

206 Appendix C. RFW Product Line Specification

Appendix D

Acronyms

BDD. Binary Decision Diagram.

BeTTy. BEnchmarking and TesTing on the analYsis of feature models.

CNF. Conjunctive Normal Form.

COVAMOF. ConIPF Variability Modelling Framework.

CSP. Constraint Satisfaction Problem.

FaMa. FeAture Model Analyzer.

OVM. Orthogonal Variability Model.

SAT. Satisfiability Problem.

OMG. Object Management Group.

MOF. MetaObject Facility.

CVL. Common Variability Language.

MDD. Model-Driven Development.

VM. Variability model.

UML. Unified Modelling Language.

207

208 Appendix D. Acronyms

Bibliography

[1] K. R. Apt. Principles of constraint programming. Cambridge University
Press, Cambridge, United Kingdom, 2003

[2] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh, and
A. Vilbig. A meta-model for representing variability in product family
development. In F. van der Linden, editor, Software Product-Family
Engineering, volume 3014 of Lecture Notes in Computer Science, pages
66–80. Springer, 2004.

[3] R. Bachmeyer and H. Delugach. A conceptual graph approach to fea-
ture modeling. In U. Priss, S. Polovina, and R. Hill, editors, Conceptual
Structures: Knowledge Architectures for Smart Applications, volume
4604 of Lecture Notes in Computer Science, pages 179–191. Springer,
2007.

[4] E. Bagheri, T. Di Noia, A. Ragone, and D. Gasevic. Configuring software
product line feature models based on stakeholders’ soft and hard re-
quirements. In Proceedings of the 14th international conference on Soft-
ware product lines (SPLC’10), volume 6287 of Lecture Notes in Com-
puter Science, pages 16–31. Springer, 2010.

[5] D. Batory. Feature models, grammars, and propositional formulas. In
Proceedings of the 9th International Conference on Software Product
Lines (SPLC’05), volume 3714 of Lecture Notes in Computer Science,
pages 7–20. Springer, September 2005

[6] D. Batory, D. Benavides, and A. Ruiz-Cortes. Automated analysis of
feature models: challenges ahead. Communications of the ACM, 49:
45–47, December 2006.

[7] D. Batory, R. E. Lopez Herrejon, and J. P. Martin. Generating Product-
Lines of Product-Families. In Proceedings of the 17th IEEE international

209

http://dx.doi.org/10.1007/978-3-540-24667-1_6
http://dx.doi.org/10.1007/978-3-540-24667-1_6
http://dx.doi.org/10.1007/978-3-540-73681-3_14
http://dx.doi.org/10.1007/978-3-540-73681-3_14
http://dl.acm.org/citation.cfm?id=1885639.1885642
http://dl.acm.org/citation.cfm?id=1885639.1885642
http://dl.acm.org/citation.cfm?id=1885639.1885642
http://dx.doi.org/10.1145/1183236.1183264
http://dx.doi.org/10.1145/1183236.1183264
http://portal.acm.org/citation.cfm?id=787043
http://portal.acm.org/citation.cfm?id=787043

210 Bibliography

conference on Automated software engineering, ASE ’02, Washington,
DC, USA, 2002. IEEE CS.

[8] D. Benavides. On the automated analysis of software product lines us-
ing feature models. PhD thesis, University of Sevilla, Spain, 2007

[9] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Coping with automatic
reasoning on software product lines. In Proceedings of the 2nd Gronin-
gen Workshop on Software Variability Management, November 2004

[10] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using constraint
programming to reason on feature models. In The 17th Interna-
tional Conference on Software Engineering and Knowledge Engineer-
ing (SEKE’05), pages 677–682, 2005

[11] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A first step
towards a framework for the automated analysis of feature models. In
Workshop on Managing Variability for Software Product Lines: Work-
ing With Variability Mechanisms, pages 39–45, 2006

[12] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. FAMA: Tool-
ing a framework for the automated analysis of feature models. In First
International Workshop on Variability Modelling of Software–intensive
Systems, pages 129–134, 2007

[13] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of
feature models 20 years later: A literature review. Information Systems,
35(6):615 – 636, 2010

[14] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Using java
csp solvers in the automated analyses of feature models. In R. Läm-
mel, J. Saraiva, and J. Visser, editors, Generative and Transformational
Techniques in Software Engineering, volume 4143 of Lecture Notes in
Computer Science, pages 399–408. Springer, 2006.

[15] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated reasoning
on feature models. In O. Pastor and J. F. e Cunha, editors, Advanced
Information Systems Engineering (CAISE’05), volume 3520 of Lecture
Notes in Computer Science, pages 381–390. Springer, 2005.

[16] N. Bencomo. Supporting the modelling and generation of reflective
middleware families and applications using dynamic variability. PhD
thesis, Lancaster University, UK, 2008

http://dx.doi.org/10.1007/11877028_16
http://dx.doi.org/10.1007/11877028_16
http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1007/11431855_34

Bibliography 211

[17] N. Bencomo, P. Grace, C. A. Flores-Cortés, D. Hughes, and G. S.
Blair. Genie: supporting the model driven development of reflective,
component-based adaptive systems. In 30th International Conference
on Software Engineering (ICSE’08), pages 811–814, 2008

[18] D. L. Berre and A. Parrain. SAT4j solver. http:// sat4j.org/ , accessed July
2011

[19] BeTTy Framework. http:// www.isa.us.es/ betty , accessed August 2011

[20] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is
NP-complete. IEEE Transactions on Computers, 45(9):993–1002, 1996.

[21] L. Bordeaux, Y. Hamadi, and L. Zhang. Propositional satisfiability and
constraint programming: A comparative survey. ACM Comput. Surv.,
38(12), December 2006.

[22] A. Boronat, R. Heckel, and J. Meseguer. Rewriting logic semantics and
verification of model transformations. In M. Chechik and M. Wirs-
ing, editors, Fundamental Approaches to Software Engineering, vol-
ume 5503 of Lecture Notes in Computer Science, pages 18–33. Springer,
Berlin, Heidelberg, 2009.

[23] A. Boronat and J. Meseguer. An algebraic semantics for MOF. Formal
Aspects of Computing, 22:269–296, 2010.

[24] J. Bosch. From software product lines to software ecosystems. In Pro-
ceedings of the 13th International Software Product Line Conference
(SPLC’09), pages 111–119, Pittsburgh, PA, USA, 2009

[25] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. Obbink, and K. Pohl.
Variability issues in software product lines. In F. van der Linden, editor,
Software Product-Family Engineering, volume 2290 of Lecture Notes in
Computer Science, pages 303–338. Springer, April 2002.

[26] R. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986

[27] S. Bühne, K. Lauenroth, and K. Pohl. Why is it not sufficient to model
requirements variability with feature models? In Aoyama, M.; Houdek,
F.; Shigematsu, T. (Eds.) Proceedings of Workshop: Automotive Re-
quirements Engineering (AURE04), Los Alamitos, 2004. IEEE CS

http://sat4j.org/
http://www.isa.us.es/betty
http://dx.doi.org/10.1109/12.537122
http://dx.doi.org/10.1109/12.537122
http://dx.doi.org/10.1145/1177352.1177354
http://dx.doi.org/10.1145/1177352.1177354
http://dx.doi.org/10.1007/978-3-642-00593-0_2
http://dx.doi.org/10.1007/978-3-642-00593-0_2
http://dx.doi.org/10.1007/s00165-009-0140-9
http://dx.doi.org/10.1007/3-540-47833-7_3

212 Bibliography

[28] G. H. Campbell, S. R. Faulk, and D. M. Weiss. Introduction to synthe-
sis. Technical report INTRO-SYNTHESIS-PROCESS 90019-N, Software
Productivity Consortium, Herndon, VA, USA, 1990

[29] F. Cao, B. Bryant, C. Burt, Z. Huang, R. Raje, A. Olson, and M. Auguston.
Automating feature-oriented domain analysis. In International Confer-
ence on Software Engineering Research and Practice (SERP’03), pages
944–949, June 2003

[30] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain
constraint solver. In Proceedings of the 9th International Symposium
on Programming Languages: Implementations, Logics, and Programs:
Including a Special Track on Declarative Programming Languages in
Education, PLILP ’97, pages 191–206. Springer, 1997.

[31] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and
C. Talcott. All about Maude - a high-performance logical framework:
how to specify, program and verify systems in rewriting logic. Springer,
Berlin, Heidelberg, 2007

[32] P. Clements and L. Northrop. Software product lines: Practices and pat-
terns. SEI Series in Software Engineering. Addison–Wesley, Reading,
Massachusetts, USA, 2001

[33] S. P. Consortium. Reuse-driven software processes. Technical report
SPC-92019-CMC, Version 02.00.03, Software Productivity Consortium
Services Corporation, November 1993

[34] S. Cook. The complexity of theorem-proving procedures. In Conference
Record of Third Annual ACM Symposium on Theory of Computing,
pages 151–158, 1971

[35] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker. Generative pro-
gramming for embedded software: An industrial experience report. In
1st ACM SIGPLAN/SIGSOFT conference on Generative Programming
and Component Engineering, pages 156–172. Springer, October 2002

[36] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using
feature models. In Third Software Product Line Conference, volume
3154 of Lecture Notes in Computer Science, pages 266–282. Springer,
September 2004

http://dl.acm.org/citation.cfm?id=646452.692956
http://dl.acm.org/citation.cfm?id=646452.692956

Bibliography 213

[37] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing cardinality-
based feature models and their specialization. Software Process: Im-
provement and Practice, 10(1):7–29, 2005

[38] K. Czarnecki and C. H. P. Kim. Cardinality-based feature modeling and
constraints: a progress report. In International Workshop on Software
Factories at OOPSLA’05. ACM, 2005

[39] D. Dhungana, P. Heymans, and R. Rabiser. A formal semantics for
decision-oriented variability modeling with dopler. In Fourth Inter-
national Workshop on Variability Modelling of Software–Intensive Sys-
tems, pages 29–35, 2010

[40] D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neumayer. Integrated
tool support for software product line engineering. In 22nd IEEE/ACM
International Conference on Automated Software Engineering, pages
533–534, New York, NY, USA, 2007. ACM

[41] D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser, P. Grünbacher,
D. Benavides, and J. Galindo. Configuration of multi product lines by
bridging heterogeneous variability modeling approaches. In Proc. of
the 15th International Software Product Line Conference (SPLC 2011),
pages 120–129, August 2011

[42] D. Dhungana, P. Grünbacher, and R. Rabiser. The DOPLER meta-tool
for decision-oriented variability modeling: a multiple case study. Auto-
mated Software Engineering, 18(1):77–114, March 2011.

[43] O. Djebbi, C. Salinesi, and D. Diaz. Deriving product line requirements:
the RED-PL guidance approach. Asia-Pacific Software Engineering Con-
ference (ASPEC’07), pages 494–501, 2007.

[44] A. Durán, D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés.
Flame: A formal framework for the automated analysis of software
product lines using feature models. ACM Transactions on Software En-
gineering and Methodology, 2012, submitted

[45] A. Elfaki, S. Phon-Amnuaisuk, and C. Ho. Investigating inconsistency
detection as a validation operation in software product line. In R. Lee
and N. Ishii, editors, Software Engineering Research, Management and
Applications 2009, volume 253 of Studies in Computational Intelligence,
pages 159–168. Springer, 2009.

http://dx.doi.org/10.1007/s10515-010-0076-6
http://dx.doi.org/10.1007/s10515-010-0076-6
http://dx.doi.org/10.1109/ASPEC.2007.63
http://dx.doi.org/10.1109/ASPEC.2007.63
http://dx.doi.org/10.1007/978-3-642-05441-9_14
http://dx.doi.org/10.1007/978-3-642-05441-9_14

214 Bibliography

[46] L. Etxeberria and G. Sagardui. Evaluation of quality attribute variability
in software product families. In 15th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS 2008),
pages 255–264. IEEE, March 2008.

[47] FaMa Tool Suite. http:// www.isa.us.es/ fama/ , accessed August 2011

[48] FaMa-OVM. http:// www.isa.us.es/ fama-ovm/ , accessed August 2011

[49] S. Fan and N. Zhang. Feature model based on description logics.
In Knowledge-Based Intelligent Information and Engineering Systems,
volume 4252, pages 1144–1151. Springer, 2006

[50] A. Felfernig, G. E. Friedrich, and D. Jannach. UML as domain specific
language for the construction of Knowledge-Based configuration sys-
tems. International Journal of Software Engineering and Knowledge
Engineering (IJSEKE), 10(4):449–469, 2000

[51] D. Fernandez-Amoros, R. Heradio, and J. Cerrada. Inferring informa-
tion from feature diagrams to product line economic models. In Pro-
ceedings of the Sofware Product Line Conference, 2009

[52] D. Fey, R. Fajta, and A. Boros. Feature modeling: A Meta-Model to en-
hance usability and usefulness. In G. Chastek, editor, Software Product
Lines, volume 2379 of Lecture Notes in Computer Science, pages 198–
216. Springer, July 2002

[53] R. Finkel and B. O’Sullivan. Reasoning about conditional constraint
specification problems and feature models. Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing, 25(2):163–174, 2011

[54] F. Fleurey, Ø. Haugen, B. Møller-Pedersen, G. K. Olsen, A. Svendsen,
and X. Zhang. A generic language and tool for variability modeling.
Technical report A13505, SINTEF, Oslo, Norway, 2009

[55] T. Forster, D. Muthig, and D. Pech. Understanding decision models –
visualization and complexity reduction of software variability. In Pro-
ceedings of the 2nd Int. Workshop on Variability Modelling of Software-
intensive Systems, Essen, Germany, January 2008

[56] J. A. Galindo, D. Benavides, and S. Segura. Debian packages reposito-
ries as software product line models. towards automated analysis. In
Proceeding of the First International Workshop on Automated Configu-
ration and Tailoring of Applications (ACOTA), 2010

http://dx.doi.org/10.1109/ECBS.2008.14
http://dx.doi.org/10.1109/ECBS.2008.14
http://www.isa.us.es/fama/
http://www.isa.us.es/fama-ovm/

Bibliography 215

[57] F. Garcia, M. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M. Piattini, and
M. Genero. Towards a consistent terminology for software measure-
ment. Information and Software Technology, 48(8):631–644, August
2006

[58] R. Gheyi, T. Massoni, and P. Borba. A theory for feature models in Alloy.
In Proceedings of the ACM SIGSOFT First Alloy Workshop, pages 71–
80, Portland, United States, 2006

[59] R. Gheyi, T. Massoni, and P. Borba. Algebraic laws for feature models.
Journal of Universal Computer Science, 14(21):3573–3591, 2008.

[60] GNU Prolog, http:// www.gprolog.org, accessed July 2011

[61] H. Gomaa. Designing software product lines with UML 2.0: From use
cases to Pattern-Based software architectures. In Proceedings of the 10th
International Software Product Line Conference (SPLC’06). IEEE, 2006.

[62] H. Gomaa and M. E. Shin. Multiple-view modelling and meta-
modelling of software product lines. Software, IET, 2(2):94–122, April
2008

[63] H. Gomaa. Designing software product lines with UML: From use cases
to pattern-based software architectures. Addison Wesley Longman Pub-
lishing Co., Inc., Redwood City, CA, USA, 2004

[64] M. Griss, J. Favaro, and M. d’Alessandro. Integrating feature modeling
with the RSEB. In 5th Intl. Conference on Software Reuse, pages 76–85.
IEEE CS, June 1998

[65] G. Halmans, K. Pohl, and E. Sikora. Documenting Application-Specific
adaptations in software product line engineering. In Z. Bellahsène
and M. Léonard, editors, Advanced Information Systems Engineering,
volume 5074 of Lecture Notes in Computer Science, pages 109–123.
Springer, 2008.

[66] A. Hemakumar. Finding contradictions in feature models. In First In-
ternational Workshop on Analyses of Software Product Lines (ASPL),
pages 183–190, 2008

[67] A. Heuer, K. Lauenroth, M. Müller, and J.-N. Scheele. Towards effective
visual modeling of complex software product lines. In 3rd International
Workshop on Visualisation in Software Product Line Engineering (VIS-
PLE) in Proceedings of the SPLC’10, volume 2, pages 229–237, 2010

http://dx.doi.org/10.3217/jucs-014-21-3573
http://www.gprolog.org
http://dx.doi.org/10.1109/SPLINE.2006.1691600
http://dx.doi.org/10.1109/SPLINE.2006.1691600
http://dx.doi.org/10.1007/978-3-540-69534-9_8
http://dx.doi.org/10.1007/978-3-540-69534-9_8

216 Bibliography

[68] P. Istoan, J. Klein, G. Perouin, and J.-M. Jézéquel. A metamodel-based
classification of variability modeling approaches. In Proceedings of
VARY International Workshop affiliated with ACM/IEEE 14th Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems (MODELS’11), pages 23–32, 2011

[69] I. Jacobson, M. Griss, and P. Jonsson. Software reuse. architecture, pro-
cess and organization for business success. Addison-Wesley, 1997

[70] Java Constraint Programming solver (JaCoP). http:// jacop.osolpro.com/ ,
accessed July 2011

[71] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented
Domain Analysis (FODA) Feasibility Study. Technical report CMU/SEI-
90-TR-21, Software Engineering Institute, Carnegie Mellon University,
November 1990

[72] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM: A
feature–oriented reuse method with domain–specific reference architec-
tures. Annals of Software Engineering, 5(1):143–168, 1998

[73] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented product line engi-
neering. Software, IEEE, 19(4):58–65, July 2002

[74] A. Karataş, H. Oğuztüzün, and A. Doğru. Mapping extended feature
models to constraint logic programming over finite domains. In J. Bosch
and J. Lee, editors, Proceedings of the 14th international conference
on Software product lines (SPLC’10), volume 6287 of Lecture Notes in
Computer Science, pages 286–299. Springer, 2010

[75] F. Laburthe, N. Jussien, G. Rochart, H. Cambazard, C. Prud’homme,
A. Malapert, and J. Menana. CHOCO solver. http:// choco.emn.fr/ , ac-
cessed July 2011

[76] K. Lauenroth and K. Pohl. Dynamic consistency checking of domain
requirements in product line engineering. In Proceedings of the 16th
IEEE International Requirements Engineering Conference, RE 2008, 8-
12 September 2008, Barcelona, Catalunya, Spain, pages 193–202. IEEE
CS, 2008

[77] F. J. v. d. Linden, K. Schmid, and E. Rommes. Software product lines
in action: The best industrial practice in product line engineering.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007

http://jacop.osolpro.com/
http://choco.emn.fr/

Bibliography 217

[78] F. Loesch and E. Ploedereder. Optimization of variability in software
product lines. In Proceedings of the 11th International Software Product
Line Conference (SPLC’07), pages 151–162. IEEE CS, 2007.

[79] N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes. Language support
for managing variability in architectural models. In Software Composi-
tion, pages 36–51, 2008.

[80] H. M. Mærsk-Møller and B. N. Jørgensen. Cardinality-dependent vari-
ability in orthogonal variability models. In Sixth International Work-
shop on Variability Modelling of Software–Intensive Systems, 2012

[81] M. Mannion. Using first-order logic for product line model validation.
In Second Software Product Line Conference, volume 2379 of Lecture
Notes in Computer Science, pages 176–187. Springer, 2002

[82] M. Mannion and J. Camara. Theorem proving for product line model
verification. In Software Product-Family Engineering (PFE’03), volume
3014 of Lecture Notes in Computer Science, pages 211–224. Springer,
2003.

[83] F. Marić. Formalization and implementation of modern SAT solvers.
Journal of Automated Reasoning, 43(1):81–119, June 2009.

[84] R. Mazo, P. Grünbacher, W. Heider, R. Rabiser, C. Salinesi, and D. Diaz.
Using constraint programming to verify DOPLER variability models. In
Proceedings of the 5th Workshop on Variability Modeling of Software-
Intensive Systems, VaMoS ’11, pages 97–103. ACM, 2011.

[85] D. McIlroy. Mass-Produced software components. In Proceedings of
the 1st International Conference on Software Engineering, pages 88–98,
1968

[86] M. Mendonça, D. Cowan, W. Malyk, and T. Oliveira. Collaborative
product configuration: Formalization and efficient algorithms for de-
pendency analysis. Journal of Software, 3(2):69–82, 2008

[87] M. Mendonça, A. Wasowski, and K. Czarnecki. SAT–based analysis
of feature models is easy. In Proceedings of the International Sofware
Product Line Conference (SPLC’09), 2009

[88] M. Mendonça, A. Wasowski, K. Czarnecki, and D. Cowan. Efficient
compilation techniques for large scale feature models. In 7th Interna-
tional Conference on Generative Programming and Component Engi-
neering (GPCE), pages 13–22, 2008

http://dx.doi.org/10.1109/SPLINE.2007.31
http://dx.doi.org/10.1109/SPLINE.2007.31
http://dx.doi.org/10.1007/978-3-540-78789-1_3
http://dx.doi.org/10.1007/978-3-540-78789-1_3
http://dx.doi.org/10.1007/b97155
http://dx.doi.org/10.1007/b97155
http://dx.doi.org/10.1007/s10817-009-9127-8
http://dx.doi.org/10.1145/1944892.1944904

218 Bibliography

[89] D. Messerschmitt and C. Szyperski. Software ecosystem: Understand-
ing an indispensable technology and industry. The MIT Press, edition
1, 2005

[90] A. Metzger and K. Pohl. Variability management in software product
line engineering. In 29th International Conference on Software Engi-
neering (ICSE Companion), pages 186–187. IEEE CS, 2007

[91] A. Metzger, K. Pohl, P. Heymans, P. Schobbens, and G. Saval. Disam-
biguating the documentation of variability in software product lines:
A separation of concerns, formalization and automated analysis. In
15th Intl. Requirements Engineering Conference, pages 243–253, Octo-
ber 2007

[92] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability modeling
to support customization and deployment of multi-tenant-aware soft-
ware as a service applications. In 2009 ICSE Workshop on Principles of
Engineering Service Oriented Systems (PESOS 2009), pages 18–25. IEEE,
May 2009.

[93] S. Montagud and S. Abrahão. Gathering current knowledge about qual-
ity evaluation in software product lines. In SPLC ’09: Proceedings of
the 13th International Software Product Line Conference, pages 91–100,
Pittsburgh, PA, USA, 2009. Carnegie Mellon University

[94] Moskitt Feature Modeler. http:// www.pros.upv.es/ mfm, accessed Au-
gust 2011

[95] OPL studio, http:// www.ilog.com/ products/ oplstudio/ , accessed July
2011

[96] A. Osman, S. Phon-Amnuaisuk, and C. Ho. Knowledge based method
to validate feature models. In First International Workshop on Analyses
of Software Product Lines, pages 217–225, 2008

[97] A. Osman, S. Phon-Amnuaisuk, and C. Ho. Using first order logic to
validate feature model. In Third International Workshop on Variability
Modelling in Software-intensive Systems (VaMoS), pages 169–172, 2009

[98] D. Parnas. On the design and development of program families. IEEE
Transactions on Software Engineering, SE-2(1):1–9, march 1976

[99] J. Peña, M. Hinchey, A. Ruiz-Cortés, and P. Trinidad. Building the core
architecture of a multiagent system product line: With an example from

http://dx.doi.org/10.1109/PESOS.2009.5068815
http://dx.doi.org/10.1109/PESOS.2009.5068815
http://dx.doi.org/10.1109/PESOS.2009.5068815
http://www.pros.upv.es/mfm
http://www.ilog.com/products/oplstudio/

Bibliography 219

a future NASA mission. In 7th International Workshop on Agent Ori-
ented Software Engineering. Lecture Notes in Computer Science, 2006

[100] R. M. Peña. A generic approach for automated verification of product
line models. PhD thesis, Sorbonne University, Paris, France, 2011

[101] K. Petersen, J. M. Zaha, and A. Metzger. Variability-driven selection
of services for service compositions. In Service-Oriented Computing -
ICSOC Workshops, pages 388–400. Springer, September 2007

[102] K. Pohl, G. Böckle, and F. J. van der Linden. Software product line engi-
neering: Foundations, principles and techniques. Springer, Berlin Hei-
delberg New York, 2005

[103] pure::variants. http:// www.pure-systems.com/ , accessed August 2011

[104] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow. Extending fea-
ture diagrams with uml multiplicities. In 6th World Conference on Inte-
grated Design & Process Technology (IDPT), June 2002

[105] M. Riebisch, D. Streitferft, and I. Pashov. Modeling variability for object-
oriented product lines. In ECOOP 2003 Workshop Reader, volume 3013
of Lecture Notes in Computer Science. Springer, July 2004

[106] F. Roos-Frantz. A preliminary comparison of formal properties on
orthogonal variability model and feature models. In Third Interna-
tional Workshop on Variability Modelling of Software–Intensive Sys-
tems, pages 121–126, 2009

[107] F. Roos-Frantz, D. Benavides, and A. Ruiz-Cortés. Feature Model to
Orthogonal Variability Model Transformations. A First Step. In VI Taller
sobre Desarrollo de Software Dirigido por Modelos, volume 3, 2009

[108] F. Roos-Frantz and S. Segura. Automated analysis of orthogonal vari-
ability models. a first step. In Workshop on Analyses of Software Prod-
uct Lines, pages 243–248, 2008

[109] F. Roos-Frantz, D. Benavides, and A. Ruiz-Cortés. Feature model
to orthogonal variability model transformation towards interoperabil-
ity between tools. In Knowledge Industry Survival Strategy Initia-
tive, KISS workshop in ASE’09. http:// www.industrialized-software.org/
kiss-ase-2009, Auckland, New Zealand, Nov 2009

http://www.pure-systems.com/
http://www.industrialized-software.org/kiss-ase-2009
http://www.industrialized-software.org/kiss-ase-2009

220 Bibliography

[110] F. Roos-Frantz, D. Benavides, and A. Ruiz-Cortés. Automated analy-
sis of orthogonal variability models using constraint programming. In
XV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2010),
Valencia, España, Sep 2010

[111] F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés, A. Heuer, and K. Lauen-
roth. Quality-aware analysis in product line engineering with the or-
thogonal variability model. Software Quality Journal, pages 1–47, Au-
gust 2011.

[112] C. Salinesi, C. Rolland, and R. Mazo. VMWare: Tool support for auto-
matic verification of structural and semantic correctness in product line
models. In Third International Workshop on Variability Modelling of
Software-intensive Systems, pages 173–176, 2009

[113] M. Sannella. The skyblue constraint solver and its applications. In Pro-
ceedings of the 1993 Workshop on Principles and Practice of Constraint
Programming, pages 385–406. MIT Press, 1993

[114] K. Schmid and I. John. A customizable approach to full-life cycle vari-
ability management. Science of Computer Programming, Special Issue
on Variability Management, 53(3):259–284, 2004

[115] K. Schmid, R. Rabiser, and P. Grünbacher. A comparison of decision
modeling approaches in product lines. In Proceedings of the 5th Work-
shop on Variability Modeling of Software-Intensive Systems, VaMoS ’11,
pages 119–126. ACM, 2011.

[116] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps. Generic
semantics of feature diagrams. Computer Networks, 51(2):456–479, 2007

[117] S. Segura. Automated analysis of feature models using atomic sets. In
First Workshop on Analyses of Software Product Lines (ASPL), pages
201–207, Limerick, Ireland, September 2008

[118] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated
metamorphic testing on the analyses of feature models. Information and
Software Technology, 53(3):245 – 258, 2011.

[119] M. Sinnema and S. Deelstra. Classifying variability modeling tech-
niques. Information & Software Technology, 49(7):717–739, 2007

[120] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COVAMOF: A frame-
work for modeling variability in software product families. In Third

http://dx.doi.org/10.1007/s11219-011-9156-5
http://dx.doi.org/10.1007/s11219-011-9156-5
http://dx.doi.org/10.1145/1944892.1944907
http://dx.doi.org/10.1145/1944892.1944907
http://dx.doi.org/DOI: 10.1016/j.infsof.2010.11.002
http://dx.doi.org/DOI: 10.1016/j.infsof.2010.11.002

Bibliography 221

Software Product Line Conference, volume 3154 of Lecture Notes in
Computer Science, pages 197–213. Springer, September 2004

[121] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and S. Fer-
ber. Introducing pla at bosch gasoline systems: Experiences and prac-
tices. In International Sofware Product Line Conference (SPLC’04),
pages 34–50, 2004

[122] V. Sugumaran, S. Park, and K. C. Kang. Software product line engineer-
ing. Commun. ACM, 49(12):28–32, December 2006

[123] C. Sun, R. Rossing, M. Sinnema, P. Bulanov, and M. Aiello. Modeling
and managing the variability of web service-based systems. Journal of
Systems and Software, 83(3):502–516, 2010.

[124] J. Sun, H. Zhang, Y. Li, and H. H. Wang. Formal semantics and verifi-
cation for feature modeling. In 10th International Conference on Engi-
neering of Complex Computer Systems (ICECCS), pages 303–312. IEEE
CS, June 2005

[125] T. Thüm, D. Batory, and C. Kastner. Reasoning about edits to fea-
ture models. In 31st International Conference on Software Engineering,
pages 254–264. IEEE CS, 2009

[126] T. Thüm, C. Kastner, S. Erdweg, and N. Siegmund. Abstract features in
feature modeling. In Software Product Line Conference (SPLC’11), 2011
15th International, pages 191–200. IEEE, August 2011.

[127] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro. Au-
tomated error analysis for the agilization of feature modeling. Journal
of Systems and Software, 81(6):883–896, 2008

[128] P. Trinidad, D. Benavides, and A. Ruiz-Cortés. Improving decision mak-
ing in software product lines product plan management. In J. Dolado,
I. Ramos, and J. Cuadrado-Gallego, editors, Proceedings of the 5th ADIS
Workshop on Decision Support in Software Engineering, volume 120.
CEUR Workshop Proceedings (CEUR-WS.org), 2004

[129] P. Trinidad, D. Benavides, and A. Ruiz-Cortés. A first step detecting
inconsistencies in feature models. In CAiSE Short Paper Proceedings,
2006

[130] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A. Jimenez.
Fama framework. In 12th Intl. Software Product Line Conference - Tool
Demonstrations, pages 359 –359. IEEE CS, September 2008

http://dx.doi.org/10.1016/j.jss.2009.10.011
http://dx.doi.org/10.1016/j.jss.2009.10.011
http://dx.doi.org/10.1109/SPLC.2011.53
http://dx.doi.org/10.1109/SPLC.2011.53

222 Bibliography

[131] E. Tsang. Foundations of constraint satisfaction. Academic Press, Lon-
don and San Diego, 1993

[132] M. Tseng and J. Jiao. Handbook of industrial engineering: Technology
and operations management. Wiley, 2001

[133] T. T. Tun, Q. Boucher, A. Classen, A. Hubaux, and P. Heymans. Relat-
ing requirements and feature configurations: a systematic approach. In
SPLC, ACM International Conference Proceeding Series, pages 201–210.
ACM, 2009

[134] P. van den Broek and I. Galvao. Analysis of feature models using
generalised feature trees. In Third International Workshop on Vari-
ability Modelling of Software-intensive Systems, number 29. In ICB-
Research Report, pages 29–35, Essen, Germany, January 2009. Univer-
sität Duisburg-Essen

[135] T. van der Storm. Variability and component composition. In 8th Inter-
national Conference on Software Reuse: Methods, Techniques and Tools
(ICSR), volume 3107 of Lecture Notes in Computer Sciences, pages 157–
166. Springer, July 2004

[136] T. van der Storm. Generic feature-based software composition. In Soft-
ware Composition, volume 4829 of Lecture Notes in Computer Science,
pages 66–80. Springer, 2007

[137] A. van Deursen and P. Klint. Domain–specific language design requires
feature descriptions. Journal of Computing and Information Technol-
ogy, 10(1):1–17, 2002

[138] T. von der Massen and H. Lichter. Requiline: A requirements engineer-
ing tool for software product lines. In F. van der Linden, editor, Proceed-
ings of the Fifth International Workshop on Product Family Engineering
(PFE’03), Lecture Notes in Computer Science, Siena, Italy, 2003. Springer

[139] T. von der Massen and H. Lichter. Determining the variation degree
of feature models. In Proceedings of the 9th International Conference
on Software Product Lines (SPLC’05), volume 3714 of Lecture Notes in
Computer Science, pages 82–88, 2005

[140] H. Wang, Y. Li, J. Sun, H. Zhang, and J. Pan. A semantic web approach
to feature modeling and verification. In Workshop on Semantic Web
Enabled Software Engineering (SWESE’05), November 2005

Bibliography 223

[141] H. Wang, Y. Li, J. Sun, H. Zhang, and J. Pan. Verifying feature models
using OWL. Journal of Web Semantics, 5(2):117–129, 2007

[142] J. Whaley. JavaBDD solver. http:// javabdd.sourceforge.net/ , accessed
July 2011

[143] J. White, B. Dougherty, and D. C. Schmidt. Selecting highly optimal
architectural feature sets with filtered cartesian flattening. Journal of
Systems and Software, 82(8):1268–1284, August 2009

[144] J. White, B. Dougherty, D. C. Schmidt, and D. Benavides. Automated
reasoning for multi-step feature model configuration problems. In 13th
Intl. Software Product Line Conference, pages 11–20. IEEE CS, Aug 2009

[145] J. White and D. Schmidt. Filtered cartesian flattening: An approximation
technique for optimally selecting features while adhering to resource
constraints. In First International Workshop on Analyses of Software
Product Lines (ASPL), pages 209–216, 2008

[146] J. White, D. Schmidt, D. B. P. Trinidad, and Ruiz-Cortés. Automated
diagnosis of product-line configuration errors in feature models. In Pro-
ceedings of the 12th Sofware Product Line Conference (SPLC’08), Lim-
erick, Ireland, September 2008

[147] H. Yan, W. Zhang, H. Zhao, and H. Mei. An optimization strategy to fea-
ture models’ verification by eliminating verification-irrelevant features
and constraints. In ICSR, pages 65–75, 2009

[148] L. A. Zaid, F. Kleinermann, and O. D. Troyer. Applying semantic web
technology to feature modeling. In ACM symposium on Applied Com-
puting (SAC’09), pages 1252–1256, New York, NY, USA, 2009. ACM

[149] G. Zhang, H. Ye, and Y. Lin. Quality attributes assessment for feature-
based product configuration in software product line. In 17th Asia Pa-
cific Software Engineering Conference (APSEC), pages 137–146, 2010

[150] G. Zhang, H. Ye, and Y. Lin. Modelling quality attributes in feature mod-
els in software product line engineering. In 6th International Conference
on Software and Data Technologies (ICSOFT 2011), pages 249–254, 2011

[151] G. Zhang, H. Ye, and Y. Lin. Using knowledge-based systems to man-
age quality attributes in software product lines. In 15th International
Software Product Line Conference, Volume 2, SPLC ’11, New York, NY,
USA, 2011. ACM.

http://javabdd.sourceforge.net/
http://dx.doi.org/10.1145/2019136.2019172
http://dx.doi.org/10.1145/2019136.2019172

224 Bibliography

[152] H. Zhang, S. Jarzabek, and B. Yang. Quality prediction and assessment
for product lines. In 15th Int. Conf. Advanced Information Systems En-
gineering, volume 2681 of Lecture Notes in Computer Science. Springer,
June 2003

[153] W. Zhang, H. Mei, and H. Zhao. Feature-driven requirement depen-
dency analysis and high-level software design. Requirements Engineer-
ing, 11(3):205–220, June 2006.

[154] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based method for
verification of feature models. In 6th International Conference on For-
mal Engineering Methods, volume 3308 of Lecture Notes in Computer
Science, pages 115–130. Springer, November 2004

[155] W. Zhang, H. Yan, H. Zhao, and Z. Jin. A BDD–based approach to ver-
ifying clone-enabled feature models’ constraints and customization. In
10th International Conference on Software Reuse (ICSR), Lecture Notes
in Computer Science, pages 186–199. Springer, 2008.

[156] T. Ziadi, L. Hélouët, and J.-M. Jézéquel. Towards a UML profile for
software product lines. In Software Product-Family Engineering, pages
129–139, 2003.

http://dx.doi.org/10.1007/s00766-006-0033-x
http://dx.doi.org/10.1007/s00766-006-0033-x
http://dx.doi.org/10.1007/978-3-540-68073-4_18
http://dx.doi.org/10.1007/978-3-540-68073-4_18
http://www.springerlink.com/content/th3yv76mktm5d8yh
http://www.springerlink.com/content/th3yv76mktm5d8yh

This document was typeset using class RC–BOOK α2.12 for LATEX 2ε. As of
the time of writing this document, this class is not publicly available since it
is in alpha version. Only members of The Distributed Group are using it to
typeset their documents. Should you be interested in giving forthcoming

public versions a try, please, do contact us at contact@tdg-seville.info

S oftware product line engineering is a software development paradigm that aims to
 build a family of software products by reusing a common set of core assets. In this

paradigm, variability models are central artefacts, since they document the variability
amongst products in a product line. Over the past twenty years, a number of variability

modelling approaches have been proposed in order to document and manage variability,
such as feature modelling, decision modelling, and orthogonal variability modelling.

Amongst them, feature modelling is the most popular. In this approach, feature models
are used to provide a compact representation of all the products of a product line

in terms of features.

The automated analysis of variability models is defined as the computer-aided extraction
of information from variability models. This is an active research topic that has received

the attention of many researchers during the last twenty years. Most of this research has
been focused on feature models, resulting in a set of analysis operations, techniques, and

tools to automate the analysis of this kind of models. The existence of other variability
models is naturally leading to the need for new techniques and tools to support their

automated analysis as well. Furthermore, there is a need for extending variability with
attributes, so that the analysis can take into account not only variability in terms of

functional features, but also in terms of attributes.

Variability models usually contain elements that are used only to structure the variability of
the product line, and therefore do not have any impact on the generated models, such as
requirements, design, or implementation models. We refer to these elements as abstract

elements. Most of the variability modelling languages do not provide an explicit way to
express abstract elements. Furthermore, the majority of the current approaches for the

automated analysis of variability models can only reason about the combinations of all the
elements in the variability model, but not about those that may be relevant for the user, i.e.,

those that have some impact on other models of the product line. Therefore, abstract
elements should be made explicit in the variability models, so that the analysis that only

considers relevant elements can be performed.

The Orthogonal Variability Model is a modelling language to define the variability of a
software product line. It is a known standard of the product line community that interrelates

the variability in base models such as requirement models, design models, component
models, and test models. In this dissertation, we provide a set of techniques and tools to

support the automated analysis of Orthogonal Variability Models. An important strength of
our contribution lies in the fact that we provide support for dealing with attributes and

abstract elements. First, we make abstract elements explicit in the orthogonal variability
models, and then we provide two techniques to automate the analysis of such models, one

omitting abstract elements and other considering all the elements of the model. Second,
we provide a technique to enrich orthogonal variability models with attributes and to

automate their analysis.

Our contributions have been integrated into a tool that is built as part of the FaMa
ecosystem, which is a framework for the analysis of variability models developed by our

research group. In order to demonstrate the effectiveness of our techniques and analysis
tool we present an evaluation using a product line in the automotive domain, which was

created in a German project by a leading car company. Such evaluation allowed the
detection of false optional and dead elements in the orthogonal variability model that

represents the variability of such roduct line, and the verification of attribute
conditions as well.

	Automated Analysis of Software Product Lines with Orthogonal Variability Models
	Document Lists
	Contents
	List of Figures
	List of Tables

	Front Matter
	Acknowledgements
	Abstract
	Resumen
	Resumo
	Abstrakt

	Preface
	Introduction
	Research context
	Software product lines
	Variability models
	Automated analysis of variability models
	Automated analysis of attribute-aware variability models

	Contributions
	Summary of contributions
	Developed tool
	Potential benefits

	Research visits and collaborations
	Structure of this dissertation

	Background Information
	Variability Models
	Introduction
	Feature models
	Basic feature models
	Cardinality-based feature models
	Extended feature models

	Orthogonal variability models
	Summary

	Automated Analysis of Feature Models
	Introduction
	Analysis operations on feature models
	Input and output parameters
	Operations overview

	Automated support for the analysis of feature models
	Constraint programming
	Propositional logic

	Automated analysis of feature models with abstract features
	Summary

	Our Contribution
	Motivation
	Introduction
	Problems
	Analysis of current solutions
	Modelling Concepts
	Automated analysis of OVMs
	Interoperability between OVM and feature model tools

	Discussion
	Summary

	Automated Analysis of OVMs
	Introduction
	Dealing with abstract elements
	Mapping OVM into Constraint Satisfaction Problem (CSP)
	Full mapping
	Selective mapping

	Analysis operations for the full mapping
	Variations
	Number of variations
	Filter
	Void OVM
	Valid configuration
	Valid variation
	Dead elements
	False optional elements
	Commonality degree
	Refactoring

	Analysis operations for the selective mapping
	Number of variations and all variations
	Void OVM
	Dead and false optional
	Commonality degree
	Refactoring

	Summary

	Automated Analysis of Attribute-aware OVMs
	Introduction
	Attribute-aware OVM
	Attribute-based Model
	Attributes
	Domain constraints

	The automated analysis process
	Mapping Attribute-aware OVM into CSP
	Analysis operations on Attribute-aware OVMs
	Operations for detecting anomalies
	Valid attribute condition
	Optimal variation

	Summary

	Evaluating the approach with FaMa-OVM
	Introduction
	Radio Frequency Warner (RFW) product line: a study of a case
	System overview
	System components

	Specifying the RFW product line using OVM
	Expressing attributes for the RFW product line
	Attributes
	Domain constraints

	Automating the analysis using FaMa-OVM
	The FaMa-OVM tool
	The textual format for the RFW product line
	Analysis results

	Summary

	Final Remarks
	Conclusions and Future Work
	Conclusions
	Discussion, limitations and extensions
	Other future work

	Appendices
	Interoperability Between OVM and FM Tools
	Selective Mapping Rules
	RFW Product Line Specification
	Acronyms
	Bibliography

