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ABSTRACT This paper presents an original algorithm based on the Model Predictive Control strategy for
estimating the direct normal irradiance of cloud shaded regions using a mobile robotic sensor system to
improve the control of a solar thermal power plant. This new algorithm generates the waypoints of the robot
team solving a minimisation problem where the objective function combines several criteria, including the
measurements taken by the team. The novel method has been tested by simulation with groups of different
numbers of unmanned aerial vehicles using the shape of real cloud shadows projected on the ground extracted
from images and it improves the estimation error and the estimation time of previous algorithms.

INDEX TERMS DNI, robotic sensor system, solar energy, spatial solar radiation estimation, UAV.

I. INTRODUCTION
Climate change is one of the biggest challenges of this
century. Greenhouse gases are one of the main causes of
climate change [1]. The problem is that carbon emissions are
linked to economic growth [2], so a balance must be struck
between producing energy in a way that is not harmful to the
environment and economic growth. The most affordable way
to achieve this goal is through renewable energy [3], which
requires increasing the efficiency of this alternative energy
source.

Among renewable energy sources, solar energy is one of
the best choices, as the sun continuously radiates energy
to the earth. Solar energy can be converted into electricity
directly through photovoltaic (PV) cells or indirectly through
concentrated solar power (CSP) systems. Many solar plants
have been built in recent decades [4], and the European
Commission has recognised the need to increase their
competitiveness [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Fei Chen.

The main disadvantage of obtaining energy from solar
radiation is its strong dependence on weather and climate
conditions [6], which makes solar radiation variable. The
theoretical solar radiation received can be predicted with
physical models using latitude and longitude, date, and
hour [7]. However, there are other factors, such as meteoro-
logical ones, that are unpredictable. The blocking effect of
the passing clouds affects the intensity of solar radiation and
thus the production of electrical energy. This attenuation can
easily reach 50% of the solar radiation [8].
Large variations in direct normal irradiance (DNI) are

counterproductive in a solar thermal power plant, since
its operation depends on maintaining the average temper-
ature of the field around the set point [9]. Knowing the
spatial distribution of the DNI and varying the operating
temperature accordingly has been shown to increase energy
production and, consequently, the economic benefits [10].
This work covers part of the objectives of the European
Research Council in the Advanced Grant OCONTSO-
LAR [11], specifically the design of methods to control
the mobile sensor fleet as part of the control system,
and the design of spatially distributed solar irradiance
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estimation methods using this fleet. Other research has also
studied the estimation of the spatial distribution of DNI,
or algorithms to improve the control of solar plants with these
estimations [12].

Reference [13] describes the use of cameras to create an
irradiance map through shadow detection. Other research
uses sensors, as in [14], where photovoltaic panels are
used as irradiance sensors and their data are fused with
fixed DNI sensors to provide a spatial DNI measurement.
In the last decade, unmanned aerial vehicles (UAVs) have
become increasingly popular and their use has been extended
to various fields such as 3D geomatic mapping [15]
or precision agriculture [16]. UAVs have already been
used in solar power plants, but mainly for maintenance
purposes [17].
This paper proposes a new method to characterise the

variations in DNI caused by clouds passing in the vicinity
of a concentrated solar power plant, as this information
is critical for the plant’s control system to operate in the
most efficient manner. The main contribution of this work is
an original algorithm based on a Model Predictive Control
(MPC) strategy to manage a robotic sensor system (RSS)
composed of several UAVs to collect DNI information. The
waypoints of the RSS are generated using an algorithm based
on a Model Predictive Control (MPC) strategy that combines
several criteria, such as measurement uncertainty and energy
consumption, among others. The measurements are carried
out by lightweight and low energy consumption sensors
mounted on the UAVs and are used to estimate the DNI
of the area using the Delauney triangulation. This proposal
has been tested by simulation using the shape of real cloud
shadows projected on the ground and extracted from images,
and compared with a previous algorithm, improving both
the estimate obtained and the time to converge to the final
estimate.

This paper is structured as follows. Section II describes
the problem under consideration. Section III presents the pro-
posed solution, which is tested by simulations in Section IV.
Finally, some conclusions and remarks are given in SectionV.

II. PROBLEM OVERVIEW
A. AREA DESCRIPTION AND WIND ASSUMPTIONS
In this work, the region of interest (ROI) is an area A adjacent
to the area where the solar power plant is located. This ROI
is defined as:

A ≡ (x, y)/x ∈ [xinf , xsup], y ∈ [yinf , ysup], (1)

where xinf , xsup, yinf , ysup are the width and length bound-
aries, respectively. The ROI is divided into a grid of M × N
cells to store the DNI measurements and the estimates made
from them. The exact location of A depends on the wind
direction, as the clouds are assumed to move in the same
direction as the wind. Fig. 1 shows an example of the area
description. Wind information is provided by anemometers
placed at ground level in the area. It can be adjusted for cloud

FIGURE 1. Area description and example of location by wind direction.

height using the equation 2:

vh = vh0
( h
h0

)1/α
, 0 < h < h0, (2)

described in [18], where vh, vh0 are the wind speed at
height h, h0 respectively, and α is the wind shear exponent
coefficient, which reflects how the wind speed increases with
height. Generally, α = 0.143 in open fields. In this case h0 is
the ground and h is the cloud base height. This height can be
estimated using stereo vision with two sky cameras as shown
in [19], or using a ceilometer, such as [20], to measure cloud
base distances. As the weather, wind direction, and speed can
change and the accuracy of predictions decreases over time,
we are consider short time horizons of 5 to 30 minutes.

B. ROBOTIC SENSOR SYSTEM
The RSS is defined as a set of nu UAVs:

U = {u1, u2, . . . , unu}, (3)

which are deployed in the field. The fleet is commanded by
a ground station computer that is able to receive the data
collected by the multi-UAV system, fuse them, decide the
next waypoints by running the algorithm described in this
paper, and command the new waypoints to the fleet. The
UAVs are equipped with a low energy consumption sensor
to measure DNI, such as the [21] shown in Fig. 2. This
sensor is mounted on a gimbal to point directly at the sun
and measure the DNI, as can be seen in Fig. 2b. Spencer’s
equations [22] can be used to point at the sun at any time. The
sensor’s radiation accuracy is better the closer it is to the sun’s
normal vector, but the error is less than 10% according to the
manufacturer. Although the sampling frequency of the sensor
is 50 Hz, in this work we assume that eachmeasurement is the
average of the last 5 measurements taken, in order to filter out
the noise and reduce the error. Therefore, the final sampling
frequency is 10 Hz. To avoid collisions, each UAV flies at an
operating altitude href 5 metres different from the previous
and the next, i.e.:

hrefi+1 − hrefi = 5, ∀i = 1, 2, . . . , nu. (4)
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FIGURE 2. Icons images from Flaticon.com.

FIGURE 3. Example of cloud shape and sun-blocking values extracted
from images.

In Fig. 2b a scheme of the scenario is shown. Finally, it is
assumed that they can move at a constant average speed of
commercial drones such as DJI Phantom 3 [23]. We have
assumed 8 m/s for horizontal movement, and 2 m/s for
vertical movement.

C. CLOUDS SHAPE AND BLOCKING EFFECT
To compensate for the lack of real cloud data, we have used
photographs of cloud shadows projected onto the ground.
The shape of the clouds is extracted from these images,
ranging from relatively elliptical shapes to highly concave
ones and with multiple holes. The sun-blocking properties
of a cloud depend mainly on its optical depth and vertical
extent, as described in [24]. These parameters are difficult to
obtain without sensors such as ceilometers, and also vary with
time and are strongly dependent on weather conditions such
as temperature, humidity or pressure [25]. As the operational
time of UAVs is typically around 25-30 minutes, this work
assumes that cloud characteristics remain constant during this
time frame. This is because significant weather changes are
unlikely to occur in such a short period of time. To generate
a sun-blocking value for each position of the cloud shape,
we have analysed the colour intensity of each pixel in the
images and compared it to an unshaded pixel assigning values
between 0 and 1. A value of 1 means that the sky is clear,
whereas a value of 0 means that the entire DNI is blocked.
An example of the cloud shape and sun-blocking values
obtained are shown in Fig. 3.

III. PROPOSED SOLUTION
A. VARIABLES AND DESCRIPTION OF THE SOLUTION
ALGORITHM
The proposed solution implements the Algorithm depicted in
Fig. 4 and described below, which controls the behaviour of
the RSS.

Consider the aforementioned set U of nu UAVs. The
position of any ui UAV is given by:

posi = [li,Li, hi], (5)

where li,Li, hi are latitude, longitude, and altitude, respec-
tively. The operating altitude of each UAV, i.e., the height at
which ui must fly, is hrefi . In addition, each UAV has a list of
waypoints that are updated by the algorithm, defined as:

W = {w1,w2, . . . ,wnu},

wi = {wpi1,wpi2, . . . ,wpimi}, (6)

where wi is the list of mi waypoints wpij of ui. Each
measurement taken by the UAVs is compared to a threshold
Rcs, which takes the value of the clear sky radiation. This
value can be determined using a fixed sensor such as a
pyrheliometer pointed at the sun. Taking into account the
maximum possible error of the UAV-mounted sensor, any
reading below 10% Rcs is classified as a cloud point. A set of
detected cloud points is made up of the measurements taken
by the fleet following the waypoints ofW . This set is defined
as:

2 = {(posk , Ik , tk )}, (7)

where Ik is the irradiance value and tk is the timestamp of the
measurement taken by the UAV k at the position posk .

The algorithm uses the following variables:
• φi is boolean and indicates whether ui needs a new set
of waypoints wi.

• 3i is boolean and indicates whether ui needs to explore
deeper into the current region. This is necessary to
discard false positives and to ensure that the last
measurement below the radiation threshold Rcs really
belongs to a cloud shaded region.

• The variables γ and 0 indicate which UAV has
to describe the cloud boundary counterclockwise or
clockwise, respectively, or zero if no UAV is assigned.

• 1 is boolean and it indicates when the boundary is
sufficiently described.

The algorithm can be summarised by repeating these steps:
a) Generate a new waypoint list wi for each ui, if neces-

sary.
b) Assign a waypoint wpij from wi to each ui, if necessary.
c) Each ui follows its assigned waypoint wpij.
d) Update both the set of detected cloud points 2 and the

data maps with the new measurements taken.

B. DESCRIPTION OF THE ALGORITHM’S DATA MAPS
There are 3 different types of data map. All of them divide
the area of interest into a matrix of 5×5 metre cells, but each
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FIGURE 4. Flowchart of the algorithm.

one stores different information. These maps are constantly
updated as the UAVs take new measurements. The three are
described below and shown in Fig. 5.

1) DNI map: stores the DNI measurements taken by the
RSS in the area of interest. It is depicted in Fig. 5, on the
left.

2) Certainty map: stores values between 0 and 1. Each
cell indicates how reliable the measurement stored in
the same cell of the DNI map is. A 0 means that no
measurement has been taken; a 1 means that the DNI
value corresponds to a measurement that has just been

taken; any other intermediate value means that the DNI
value corresponds to ameasurement that was taken some
time ago and its accuracy cannot be guaranteed. The
lower the value, the less reliable it is. This reduction in
confidence follows an exponential forgetting factor rule:

Ct = C0e−λt , (8)

where C0 is the original value of a cell in the certainty
map, Ct its value after t seconds, and λ is the forgetting
factor. The forgetting factor is adjusted in this paper to
reduce the certainty to 0.5 after 60 seconds.
This map is shown in the middle of Fig. 5.
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FIGURE 5. Example of data maps. From left to right: DNI map, certainty
map, and shadow map.

3) Shadow map: determines which locations are in the
shadow of the cloud and which are not. To create this
map, all the low-DNI measurement positions are taken
to obtain a convex polygon. This polygon represents the
estimated area of the cloud shadow. The map cells inside
the polygon are marked with 0 and those outside the
polygon are marked with 1. This can be seen in Fig. 5,
on the right.

C. WAYPOINTS GENERATION
There are three sets of waypoints generation functions in the
algorithm. Each set has different objectives.

1) OPERATIONAL ALTITUDE
As it was mentioned in Section II, each UAV ui has
been assigned a safety operating altitude hrefi . The first set
of waypoints only has the wpOperatingAltitude function,
which is responsible for returning the wi to carry ui to
hrefi .

2) SEARCHING THE CLOUD SHADED REGIONS
The second subset is responsible for finding the cloud shaded
regions, namely, regions with low DNI values. For this
task, this work uses an improved version of the algorithm
described in a previous work by the authors [26]. These
changes speed up the delineation of the low-DNI region
boundary. In the previous work, all UAVs followed the
boundary in a clockwise direction. Now, the first UAV is
the only one with this behaviour. The second follows the
boundary counterclockwise. The others, if any, extend the
boundaries of the polygon already detected. To do this,
the less explored boundaries of the polygon are selected
and the UAVs fly through them following the gradient
vector of the DNI, i.e., from the lower DNI values inside
the shadow region to the higher ones in the outer region.
In this way, the UAVs push out the boundaries of the
estimated low-DNI polygon. The functions that implement
this behaviour in the algorithm are wpUlamSpiral, wpA-
COinspired, wpCCWBoundary, wpCWBoundary, wpExtend-
Boundary, and wpGoCloudPointsSet, which are explained
in the cited work except for the modifications mentioned
above.

TABLE 1. Objective function weights.

3) DESCRIBING THE CLOUD SHADED REGIONS
The last subset is responsible for describing the spatial
radiation of the cloud shaded regions. This paper presents a
new procedure to generate the waypoints listwi for each UAV
ui. This method is inspired by a Model Predictive Control
(MPC) strategy in which a minimisation problem is solved
to obtain the control signals for a time window, and only
a few or only one control signals is applied in a receding
control manner. The problem is formulated in the Equation 9,
as shown at the bottom of the next page, where ν is themodule
of the UAVs speed, and λi is the weight of each term of
the objective function. The function wpInternalDNI solves
this minimisation problem to return the waypoints list wi
of each UAV ui but, equivalent to the control signals of the
MPC strategy, only the first waypoints are travelled. This is
repeated periodically to get enoughmeasurements to describe
the DNI values of the region.

The decision variables of this problem are the angles
θi. These angles determine the turn that each UAV ui will
make on its trajectory. In this paper, the time window or
prediction horizon is defined as N1 = 0 s and N2 = 10 s,
whereas the control horizon is defined as Nu = 3 s. The
values of the weights λi of the objective function have been
set heuristically after 1000 tests over 5 different cases with
the properties described in Section IV and take their values
from the Table 1, depending on whether ui is inside the
shaded area or not. For clouds that differ significantly from
this configuration, e.g. with a higher velocity, these weights
should be adjusted. Once the minimisation problem is solved
and θi are selected for a time window, the waypoint lists wi is
computed for each ui. Fig. 6 shows part of this process. The
solution to the minimisation problem is obtained using an ad
hoc Monte Carlo method, explained later.

The terms of the objective function are described as
follows:

1) DNI criterion:MI (θi) uses the DNImap to sum the DNI
values of the places visited after applying θi. As regions
with low DNI values are more interesting than regions
with high DNI values, the lower the result, the better the
waypoints are.

2) Certainty criterion: MC (θi) uses the certainty map in
the same way that MI (θi) uses the DNI map. Since
low certainty values come from unexplored regions or
regions visited some time ago, the lower the value, the
better the waypoints are.

3) Boundary criterion: MB(θi) uses the shadow map in
the same way as before. As regions inside the polygon
boundaries are more interesting than those outside, the
lower the value, the better the waypoints are.
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FIGURE 6. Example of the generation of the waypoints list wi . The orange
lines are the previous movement direction of each UAV ui , i.e., the future
movement if they didn’t change their trajectory. When the angles θi are
randomly generated, they define new trajectories that rotate the previous
direction of movement, shown as red lines with crosses. Only a few
possible waypoints are shown here. The final chosen waypoints of each
UAV are shown as green circles.

4) Efficiency criterion: T (θi) returns a value between 0,
corresponding to a rotation of θi = 0 degrees, and 1,
corresponding to the maximum allowed rotation, which
is set to 120 degrees. Abrupt changes in the direction
of the movement are not only time consuming but also
energy consuming. This is because UAV motors must
apply enough force to counteract inertia and change
direction. The worst-case scenario, with no restrictions,
is a full 180-degree turn. The lower the result, the more
efficient the waypoints are.

5) Redundancy criterion: R(θi) evaluates the trajectories
generated by θi and returns how many cells of the grid
decomposition of the area would be explored more than
once. It is possible but not desirable for two different
UAVs to visit the same location, losing information due
to the opportunity cost. Again, the lower the result, the
better the waypoints are.

D. AD HOC MONTE CARLO METHOD
This paper uses a Monte Carlo method to solve the
minimisation problem. To avoid falling into local minima,
the method works with the three best results of the objective
function J , which are stored in J∗, a 3 × 1 vector. The
combinations of angles that give these values are stored in θ∗,
i.e., a nu × 3 matrix, being each column a vector nu × 1 with
the angles θi of each UAV. These solutions must be at certain
distances from each other, and these distances are stored in the

3×1 vector dJ . This distance criterion tries to avoid the local
minima by forcing to search for solutions in other regions of
the solution space of order Rnu . It is important to note that
using more than the three best results to explore the entire
solution space would be too time consuming.

The iterative process of finding the angles θi that yield
the minimum value of J is shown in Fig. 7. The first step
of the loop is to check the stop conditions. Since m is the
cumulative number of solutions θi evaluated at any time,
it cannot exceed the maximum number of evaluations, M .
Similarly, t is the amount of time spent in the process and T
is the maximum time allowed. Finally, c counts the iterations
without significantly improving the objective function values,
and C is the value that c cannot exceed. The percentage of
objective function improvement that is considered significant
is χ . If any of these conditions is not met, the loop ends and
the solution is the first combinations of angles of the variable
θ∗, i.e, θ∗(1).
If the loop continues, n solutions are going to be randomly

generated and evaluated. The 3 × 1 vector RJ denotes the
percentage of candidate solutions generated around each one
of the three best solutions found so far, so multiplied by n
gives the number of candidates around each solution, nθi .
Random angles generation has some limitations. Let the
nu × 1 vector θ0 be the current movement angle of each
UAV, and the 3 × 1 vector θlim be the maximum allowed
variation around each solution of θ∗. The random solution
angles θci must satisfy θci ∈ [θ∗(i)−θlim(i), θ∗(i)+θlim(i)] ⊆

[θ0 − Ω, θ0 + Ω], where Ω is the maximum allowed angle
variation over the movement angle of each UAV. In Fig. 7
only the generation of the angles of one UAV are shown for
clarity.

Once the candidate solutions have been generated, they are
evaluated in J . The new best solutions are chosen according
to the distance criterion. In Fig. 7, around each one of the
previous best solutions the circle bounded by the minimum
distance at which the new best solutions must lie is plotted as
8i. In the example, the new minimum value of the objective
function is obtained with θc9, which defines a new circle 81.
Although θc12 gives the secondminimum value of J , it cannot
be selected because it is inside the circle 81, so the angle
θc2 is chosen instead. Similarly, the previous best solution
θ∗(1) is discarded in favour of θc11. If one of the best angles

min
θi
J (θi) = λ1MI (θi) + λ2MC (θi) + λ3MB(θi) + λ4T (θi) + λ5R(θi)

s.t. 0 ≤ θi ≤ θsup

xinf ≤ xi ≤ xsup
yinf ≤ yi ≤ ysup

xi+1 = xi + νi cos θi

yi+1 = yi + νi sin θi,

∀i = 1, 2, . . . , nu (9)
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FIGURE 7. Ad hoc Monte Carlo method representation.

θ∗(i) is inside a previous circle 8j, the maximum allowed
variation θlim is decreased, otherwise it is increased to Ω/2.
The reason for this behaviour is that the previous circles are
already explored and narrowing the limits gets a more precise

search, whereas the new circles are unexplored and require a
wider search angle.

Finally, the method updates the value of RJ , and the
variables c,m and t that control the stop criteria, and repeats
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FIGURE 8. Estimated radiation map using the Delauney interpolation.

FIGURE 9. Possible cloud shapes.

TABLE 2. Parameters of the ad hoc Monte Carlo method.

the process again. For the simulations of this paper, the values
shown in Table 2 were used.

1) ESTIMATED RADIATION MAP
An estimated DNI map is produced from the RSS measure-
ments. Delauney triangulation is used here to create a 2D
linear interpolation and calculate the value of the unvisited
cells in the map. This interpolation is well described in [27].
A result of this type of interpolation can be seen in Fig. 8,
taken after the 3 UAVs have been describing the cloud
shadow for almost 3 minutes. For a cloud of this size and
using 3 UAVs a longer time is needed to obtain the final
estimate, as it will be discussed later, but at this point the
characteristic triangular shapes of the Delauney interpolation
are noticeable.

IV. SIMULATION RESULTS
The proposed algorithm has been tested by simulations.
Two hundred cases were randomly generated, each with the
following properties:

• The ROI was a rectangular area measuring 1500 m by
1300 m. It was divided into a grid of 10 m by 10 m cells.

• The wind could blow in any direction. The wind
speed was assumed to have a constant average value
throughout the simulation, ranging from 1 m/s to 3 m/s.

• Clouds could have any of the 10 different shapes
shown in Fig. 9. These shapes vary in their degree of
similarity to an ellipse, concavity and number of holes.
In each case, the clouds were randomly rotated between
0 degrees and 360 degrees, and also randomly scaled in
length between 400 metres and 700 metres, relative to
their longitudinal section. Finally, the clouds could be
in any initial position as long as they crossed the ROI
during their movement.

• The radiation value of a clear sky position was of
700 W/m2. The threshold Rcs was set to 679 W/m2 as
the sensor error was assumed to be of 3%.

• Each one of the two hundred cases was tested three
times, with 3, 5, and 7 UAVs, respectively. The constant
average speed of the UAVs was assumed to be 8 m/s for
horizontal movement and 2 m/s for vertical movement.

The global mean errors of the simulations are shown
in Fig. 10. These errors are calculated using only the
information in the shaded area, not the entire ROI. The time
axis starts from the moment when the cloud was found. For
example, using 3 UAVs, the global mean error dropped to
about 110 W/m2 200 seconds after the cloud was found,
whereas the absolute mean error dropped to about 62 W/m2

and 53 W/m2 for the same period using 5 and 7 UAVs,
respectively.
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FIGURE 10. Global mean errors of the simulated cases. Time axis refers
to the time when the cloud was found.

It can be seen that there is a significant difference in the
rate of error reduction between using 3 and 5UAVs. However,
there is not such a big difference between using 5 or 7 UAVs.
Fig. 11a shows how the relative mean error decreases with
different numbers of UAVs. After 100 or 200 seconds, the
decrease ratio is very similar for the three cases, but before
that the 3 UAVs team has a lower decrease ratio. For example,
this difference results in a difference of almost 200 seconds
for the 3 UAVs to reach errors below 50 W/m2.
Fig. 11b shows the time to find the cloud using 3,

5, and 7 UAVs in each one of the simulated cases. The
average times are 207 seconds, 196 seconds and 184 seconds
respectively. Note that the team only knows the direction and
speed of the cloud, with no indication of its position in the
nearly 2 km2 range, and that the horizontal speed of the UAVs
only allows them to cover nearly 500 metres in one minute,
explaining why the team typically takes 3 minutes to find the
cloud.

The most problematic part of the shaded area for the
algorithm are the boundaries. Due to the decomposition of
the area, the boundary cells are more likely to have a higher
error because they contain both clear and cloudy portions.
As shown in Fig. 12, the errors in the boundaries can reach
100 W/m2, whereas most of the region is below 20 W/m2.
Fig. 13 shows the mean error and the percentage of the area
covered by the cloud shadowwith an absolute error belonging
to different error ranges. Fig. 13b is similar, but shows what
percentage of the area is above or below the mean error.
Both Fig. 13a and 13b refer to the case shown in Fig. 12.
With 3 UAVs it takes 180 seconds to get most of the area
under themean error, but with 5 or 7 UAVs this time is halved.

FIGURE 11. Comparison of variations in relative mean error and time
taken to find the cloud in the simulated cases. Time axis refers to the
time when the cloud was found.

FIGURE 12. Final estimation of the cloud shadow. From left to right: real,
estimated, and error radiation map.

As can be seen, after 180 seconds, in the case of 5 or 7 UAVs,
the mean error is around 50 W/m2 or 40 W/m2 respectively,
but the 40% of the area has an error less than 10 W/m2, and
the 20% an error between 10 W/m2 and 25 W/m2.

A. COMPARISON WITH PREVIOUS ALGORITHM
We carried out another set of simulations to compare the
results of the proposed algorithm with a previous method,
specifically, with the algorithm explained in [28]. This
algorithm assumes that the cloud has an elliptical shape and
a blocking effect that behaves like a sigmoid function:

f (δ) =
1

1 + eaσ δ+bσ
+ cσ , (10)

where the parameters aσ , bσ , and cσ specify the inflection
point, slope, and the offset respectively, and δ is the
normalised distance to the centre of the cloud.

First, we tested the proposed algorithm on a cloud that
fulfilled the assumptions of the previous algorithm, i.e., with
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FIGURE 13. The time axis begins when the RSS finds the cloud shadow.

an elliptical shape and the sigmoid function blocking effect
behaviour. The cloudwas the same one described in the above
paper, with the following characteristics: 75 metres of semi-
major axis, 40 metres of semi-minor axis, a rotation angle of
30 degrees, a speed of 1 metre per second and a movement
direction −→s = (1, 0). We have also used the same number of
UAVs for the test as in the previous work: 3, 6, and 12 UAVs
teams.

The absolutemean errors obtained by both the previous and
the proposed algorithms on this passing cloud can be seen

in Fig. 14. Both algorithms converge in similar times, but
the proposed algorithm achieves lower mean errors, around
10 W/m2, whereas the previous one is around 40 W/m2,
so the new algorithm improves the previous one in a 75%.
Fig. 15 depicts the estimated radiation map and its associated
error map using the proposed algorithm.

Finally, we tested the same two hundred cases with the
more realistic cloud shapes that we used to test the proposed
algorithm with the previous algorithm. Fig. 16 shows the
relative mean error with both algorithms. After 100 seconds,
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FIGURE 14. Absolute mean errors of the previous algorithm of the
literature cloud case using this algorithm and the proposed algorithm.

FIGURE 15. Estimation of the comparison cloud case blocking effect with
the proposed algorithm. From left to right: real, estimated, and error
radiation map.

FIGURE 16. Relative mean errors. Time axis refers to the time when the
cloud was found.

both algorithms give similar results, but then the previous one
decreases more slowly than the proposed one, taking more
than 10 minutes to reach similar mean error values.

V. CONCLUSION
This paper presents an MPC-based algorithm for estimating
the DNI of a region covered by a cloud shadow using an

RSS, i.e. a group of UAVs equipped with light-weight and
low power consumption sensors for DNI measurements. The
algorithm manages the movement of the UAVs, generating
waypoints for a time window by solving a minimisation
problem, but only the first waypoints are used. The objective
function includes several criteria such as the measurements
taken and the efficiency in terms of energy consumption.
A Monte Carlo method has been developed to solve the
minimisation problem.

The proposed method has been tested with groups of 3,
5, and 7 UAVs and up to 10 different cloud shapes with
random dimensions, orientation, and movement. All of them
have provided a reliable description of the shadowed region,
with the group of 3 UAVs being the slowest. With 7 UAVs,
the algorithm gives a slightly better and faster description
than with 5 UAVs. Despite the fact that the boundary of
the shadowed region has an inherent error due to the grid
decomposition of the area, the mean error drops below
50 W/m2 after 5 minutes of description using 5 or 7 UAVs.
Furthermore, the proposed algorithm has been shown to
improve the results of a previous algorithm in terms of both
efficiency and speed.

Future work involves addressing the current limitations of
this proposal. Specifically, studying the proper tuning of the
objective function weights under variable conditions, such as
when the clouds move faster than 3 m/s or when their speed
varies during detection. Another research direction to extend
the capabilities of the current algorithm is to describemultiple
clouds simultaneously and modify the problem formulation
to address this scenario. In addition, it would be interesting to
reduce the estimation time and to include in the formulation
problem energy consumption models of the UAVs such as
the one described in [29]. With this information, it would be
possible to create energy-aware paths for the RSS andmanage
the fleet correctly, not sending the entire fleet into the field but
only theminimum number of UAVs required. Finally, another
line of research is to study the best control strategy of the
parabolic trough plant with the spatial irradiance estimation
given by this proposal.
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