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A B S T R A C T

In this paper, we introduce the position value as a centrality measure to evaluate the relevance of the edges and
players in a network, with the additional advantage that this value integrates the degree measure of each player
in it. In fact, in the real world, it is particularly important to consider the natural influence of connections of a
player in a network. Its applications were very limited in real-world situations due to the high computational
complexity of exactly obtaining this value. With the aim of solving this problem we provide a method, based
on sampling theory, to estimate the position value, which is analyzed in terms of the theoretical properties
of the resulting estimator. Moreover, we establish specific statistical results for bounding the absolute error
in this approximation. It is important to emphasize that this approach allows for obtaining rankings not only
of the nodes but also of the edges of the network. To illustrate the advantages and interest of the proposed
methodology, as well as the variety of problems that can be analyzed in this framework, we applied it in three
very different settings, the suburban train network of Madrid in the year 2000, the Spanish national team in
a match against Portugal, and the Zerkani network responsible for the terrorist attacks of Paris (2015) and
Brussels (2016).
1. Introduction

In this paper, we focus on the position value for communication
situations as a centrality measure, solving by sampling methods the
computational problems involved with it, and showing the advantages
and variety of settings in which it can be applied. This value was
introduced in Meesen (1988) and later studied by Borm et al. (1992),
who provided a characterization of it for cycle-free communication
situations. In Algaba et al. (2000), this value was generalized and
characterized for a special class of union stable systems which extends
the subclass of cycle-free communication situations and, in Algaba
et al. (2004), its connection with hypergraphs was established. Slikker
(2005) provided a first characterization of the position value for the
whole class of communication situations. New characterizations of the
position value as a special solution of the class of Harsanyi solutions
in the settings of communication situations and union stable systems
are obtained, respectively, in van den Brink et al. (2011) and Algaba
et al. (2015). Recently, Manuel et al. (2023) have provided a char-
acterization of the position value from a marginality properties-based
approach. Also, relationships, in these contexts, between the Myerson
value (Myerson, 1977) and the position value can be found in Gómez
et al. (2004), Casajus (2007) and Algaba et al. (2012).
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The literature about the position value shows interesting features
about this value, specifically, in a communication situation, the position
value gives a measure of the importance of a node in a graph, assessing
firstly the relevance of the communication links between players, which
is of big interest when applying to real data in network structures
defined by an undirected graph. However, its exact computation is
a very complicated computational task. In fact, the position value is
defined from the Shapley value applied to the transferable utility game
(TU game) defined on the set of edges that connect the different nodes,
focusing on the role of the edges in the network.

Nevertheless, for certain class of TU games and/or graphs some
efficient algorithms have been introduced for computing certain values
based on the Shapley value, for instance, Fernández et al. (2002)
proposed polynomial time algorithms for computing the Myerson value
(Myerson, 1977), for weighted voting games restricted by a tree. Like-
wise, algorithms by means of the Harsanyi dividends for the Myerson
value can be found in Algaba et al. (2007). Aadithya et al. (2010),
Michalak et al. (2013), and Szczepanski et al. (2012, 2016) also gave
polynomial time algorithms for computing the Shapley value and the
so-called value betweenness centrality, for certain graphs, respectively.
In the general framework of TU games, a common problem that has
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already been tackled was the computational drawbacks of using known
solution concepts as allocation procedures in large-scale real-world
problems. Namely, the study of the Shapley value (Shapley, 1953)
and the Banzhaf value (Banzhaf, 1964), as well as their extensions the
Owen value (Owen, 1977) and the Banzhaf-Owen value (Owen, 1982),
respectively, to contexts with a priori unions, have been already dealt
with. Specifically, sampling techniques were considered for the approx-
imation of the Shapley value (Castro et al., 2009) and the Banzhaf
value (Bachrach et al., 2010), and their extensions when assuming an
a priori unions structure, such as the Owen value (Saavedra-Nieves
et al., 2018) and the Banzhaf-Owen value (Saavedra-Nieves & Fiestras-
Janeiro, 2021). More recently, Saavedra-Nieves (2023) used stratified
sampling for the approximation of the Owen value and the Banzhaf-
Owen value. For other families of games, such as games with exter-
nalities, their solutions have been also approximated (Saavedra-Nieves
& Fiestras-Janeiro, 2022). However, to the best of our knowledge, the
problem of studying the position value in communication situations
from a computational point of view, and apply it as centrality measure
to provide simultaneously rankings of both nodes and edges of a
network defined by a graph, has not been addressed so far.

Along the last decades, social network analysis has focused on the
identification of those key members within an internal organization,
often without full knowledge of the numerous connections between
these elements. For instance, in sports, the interactions of players of
a team can be also described as a complex network (see Buldú et al.,
2019). Similarly, from a socio-economic perspective, this approach
allows us to quantify the relative importance of transfer stops in public
transport systems (see Hadas et al., 2017). Terrorist networks are a case
of networks, in which members use violence, receiving much attention
because of the massive attacks in Western World along recent years.
Examples include the 9/11 attacks in 2001, or the attacks carried
out by the Zerkani network of Paris in 2015 and Brussels in 2016,
among others. Koschade (2006), Sparrow (1991), Klerks (2001), Farley
(2003), Guzman et al. (2014), and McGuire et al. (2015) are examples
that use the conventional social network perspective to identify essen-
tial agents within this kind of organizational structure. However, recent
works in graph analysis have incorporated a link-based perspective, for
instance, for the detection of communities. We refer to Li et al. (2022),
that use likelihood optimization; or Song et al. (2022) and Li et al.
(2023), who consider a non-cooperative game scheme for the same
purpose.

In network analysis described by a graph, Lindelauf et al. (2013)
and Husslage et al. (2015) are the first in considering information
about the communication between the members of the network. In
fact, the heterogeneity of edges and nodes is incorporated for the
first time through transferable utility games (TU games), in which
cooperation of individuals is a vital aspect. An overall ranking of
the nodes of the network, according to its importance, can be de-
termined using solutions for TU games. For example, Hamers et al.
(2019) rank the members of the Zerkani network using the Shapley
value. Recently, Algaba, Prieto, Saavedra-Nieves, and Hamers (2023)
and Algaba, Prieto, and Saavedra-Nieves (2023) assume the existence
of an a priori union system modeling the affinities in the cooperation of
agents, and Saavedra-Nieves and Casas-Méndez (2023) use games with
externalities for this same purpose.

Unlike of the perspective analyzed in all these works, the link-based
perspective in graph analysis has not been still considered, in practice,
as basis for a ranking of the members of a network under cooperation.
In this paper, we want to focus on the importance of a certain node in a
network according to its position in it, namely, through of the relevance
of the communication links between players. With this aim, we firstly
analyze the position value for communication situations (cf. Borm
et al., 1992) as a centrality measure for networks from a quantitative
approach. This value offers additional advantages in comparison with
all centrality measures proposed until now, even compared to those
2

based on classical solution concepts for TU games considered so far. The
position value, following the cooperative approach in the literature, is
the unique solution concept that includes not only information related
to the nodes, but also to the number of links incident on them and their
strength. On one hand, the position value captures the topology of the
network, independently of the initial TU game. On the other hand, it
allows for providing a ranking not only of the influence of the nodes
but also, it can be obtained a ranking of the strength of the connections
among players, achieving a much more complete information and
overview of the network than with the classical measures in social
network analysis and the ones based on TU games. To illustrate and
motivate it, we provide a first application to the suburban train network
of Madrid in the year 2000, establishing the main stations and the most
robust railway segments. However, many other networked situations
can be represented by means of communication situations in which
connections between network members and their individual weights
have a strong influence on the study of the effectiveness of coalitions
at different cooperation scenarios. A major drawback of considering
the position value lies in the fact of that, due to the computational
complexity involved, its exact calculation has so far been limited to
academic examples with few nodes and edges not being possible to
apply it for real world examples, in general. Thus, inspired by the
sampling techniques that were considered for the Shapley value es-
timation (Castro et al., 2009), we propose a specific approximation
methodology based on simple random sampling with replacement to
estimate the position value for large-scale communication situations.
In this context, we specifically analyze the problem of bounding the
estimation error by providing some useful theoretical results. Moreover,
to illustrate the applicability and relevance of the position value, we
center on three very different scenarios that reflect the wide range
of real situations in which its use is justified. First, we motivate its
introduction as centrality measure in the setting of the suburban train
network of Madrid in the year 2000. Second, we classify the players
as well as the best performances of pairs of players corresponding to
the Spanish national team in a match against Portugal. Third, we rank
the members providing additionally the stronger connections between
terrorists of the Zerkani network supporting the attacks of Paris and
Brussels in 2015 and 2016, respectively. Finally, a comparison between
the position value and the most well-known centrality measures in the
literature, related to this value, is made, showing the interest and utility
of this approach.

This paper is structured as follows. Section 2 briefly presents the
position value and those notions required for the understanding of the
paper. Section 3 introduces the position value as a new connection-
based ranking mechanism of nodes and edges corresponding to a
communication situation, motivating it with an application to the
suburban train network of Madrid corresponding to the year 2000.
The computational problems arising from its exact calculation in those
situations with a large enough number of links in the network are
addressed in Section 4 from a sampling perspective. Section 5 illustrates
the performance of proposal of ranking on two different scenarios: we
classify both the players and pairs of players of the Spanish national
team in a match against Portugal, and we rank the terrorists and pairs
of terrorists of the Zerkani network. Finally, taking account the nature
of the position value and with the aim of showing the feasibility of
our approach, the results are compared to those obtained for the main
centrality measures related to the graph or the own definition of the
position value. Hence, the position value is analyzed versus the main
classical centrality measures in the literature as well as the Myerson
value (Myerson, 1977), defined also from Shapley value (Shapley,
1953) of a TU game whose cooperation among the players is re-
stricted by the connection of the nodes in the graph. Finally, Section 6
concludes.

2. Preliminaries

In this section, we formally present some theoretical terminology
on cooperative game theory and communication situations, focusing on
solution concepts such as the Shapley value (cf. Shapley, 1953) and the

position value (cf. Meesen, 1988).
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2.1. On transferable utility games and the Shapley value

A transferable utility game, or TU game, is a pair (𝑁, 𝑣), where 𝑁 =
{1, 2,… , 𝑛} is the set of players, called usually the grand coalition, and
𝑣 is a map that assigns a real value 𝑣(𝑆) to each coalition 𝑆 ⊆ 𝑁 such
that 𝑣(∅) = 0. The set of all cooperative games with player set 𝑁 is
denoted by 𝑁 .

For each 𝑇 ⊆ 𝑁 , with 𝑇 ≠ ∅, the unanimity game (𝑁, 𝑢𝑇 ) is
given by 𝑢𝑇 (𝑆) = 1, if 𝑇 ⊆ 𝑆, and 𝑢𝑇 (𝑆) = 0, otherwise. It is well-
known that the unanimity games form a basis for the vector space 𝑁 .
For every 𝑣 ∈ 𝑁 , it holds that 𝑣 =

∑

𝑇⊆𝑁
𝑇≠∅

𝛥𝑣(𝑇 )𝑢𝑇 , where 𝛥𝑣(𝑇 ) =
∑

𝑆⊆𝑇 (−1)|𝑇 |−|𝑆|𝑣(𝑆) are the Harsanyi dividends, Harsanyi (1959).
A payoff vector 𝑧 = (𝑧𝑖)𝑖∈𝑁 ∈ R𝑛 is a vector where 𝑧𝑖 represents the

payoff associated to player 𝑖 by its collaboration in a given TU game
(𝑁, 𝑣). In general, a solution concept (in short a solution) is a map
𝜙 ∶ 𝑁 → R𝑛 that assigns to each TU game (𝑁, 𝑣) a payoff vector.

One of the most appealing and well-known solution concepts for co-
operative games is the Shapley value, introduced by Shapley (Shapley,
1953). Formally, the Shapley value for each (𝑁, 𝑣) ∈ 𝑁 assigns to each
𝑖 ∈ 𝑁 ,

𝑆ℎ𝑖(𝑁, 𝑣) = 1
|𝛱(𝑁)|

∑

𝜎∈𝛱(𝑁)
𝑚𝜎
𝑣 (𝑖), (1)

with 𝛱(𝑁) being the set of all permutations of 𝑁 , and 𝑚𝜎
𝑣 (𝑖) the

marginal contribution of player 𝑖 in a given 𝜎 ∈ 𝛱(𝑁). Formally, it
is defined as

𝑚𝜎
𝑣 (𝑖) = 𝑣

(

𝑃 𝜎
𝑖 ∪ {𝑖}

)

− 𝑣
(

𝑃 𝜎
𝑖
)

,

being 𝑃 𝜎
𝑖 the set of predecessors of 𝑖 in 𝜎, i.e., 𝑃 𝜎

𝑖 = {𝑘 ∈ 𝑁 ∶ 𝜎(𝑘) <
(𝑖)}. Then, the Shapley value for (𝑁, 𝑣) is interpreted, for each player
of 𝑁 , as the expected value of 𝑖’s marginal contributions over the set
f all possible orders of 𝑁 .

The popularity, attractiveness and versatility of this value is high-
ighted, in a wide collection of theoretical and applied results on it,
n Algaba et al. (2019a). In fact, the Shapley value not only continue
eing so appealing as when it was first introduced in 1953 but its
nterest has even increased enormously in the last years, due not only to
he fairness properties that this value satisfy, see Algaba et al. (2019b),
ut also to the numerous solution concepts derived from it.

In our opinion the magic and strength of the Shapley value is its
ndurance and at the same time its flexibility over time. It has been and
eeps being analyzed from many different perspectives. For instance,
or networked coalition structures when the TU game is focused on the
dges of the graph, see Meesen (1988), the original idea behind the
hapley value, planed in 1953, on how assess the venture of playing
game remains as important as ever and the solution provided by

hapley solves the problem in a successful and desirable way, giving
ay to the position value (cf. Meesen, 1988 and Borm et al., 1992).

.2. On communication situations and the position value

A communication situation is denoted by (𝑁, 𝑣, 𝐿), being (𝑁, 𝑣) a TU
game and (𝑁,𝐿) an undirected graph without parallel edges nor loops
connecting the members of 𝑁 . Notice that the set of nodes 𝑁 in the
raph (𝑁,𝐿) coincide with the set of players in the TU game (𝑁, 𝑣).
herefore, the set of edges 𝐿 describes all relationships between pairs
f players. A relationship between players 𝑖 and 𝑗 is denoted by 𝑖𝑗, with
𝑗 ∈ 𝐿.

For a coalition 𝑆 ⊆ 𝑁 , the subgraph (𝑆,𝐿𝑆 ), where 𝐿𝑆 = {𝑖𝑗 ∈
∶ 𝑖, 𝑗 ∈ 𝑆}, consists of the players in 𝑆 and their edges in 𝐿𝑆 .
coalition 𝑆 ⊆ 𝑁 is a connected coalition, if the subgraph (𝑆,𝐿𝑆 )

s connected, otherwise, 𝑆 is called disconnected. Clearly, the set of
aximal connected coalitions of 𝑁 determines a partition on 𝑁 , called

he components of 𝑁 , this set will be denoted as 𝐶𝐿(𝑁). Thus, the
esulting partition for coalition 𝑆 induced by the subgraph (𝑆,𝐿𝑆 ) is
3

enoted by 𝐶𝐿(𝑆).
Given (𝑁, 𝑣, 𝐿) a communication situation, Myerson (1977) defined
new game1 as
𝐿(𝑆) =

∑

𝑇∈𝐶𝐿(𝑆)
𝑣(𝑇 ), (2)

ith 𝑣𝐿(∅) = 0. In fact, the value 𝑣𝐿(𝑆) can be interpreted as the worth
f the cooperation on the components of 𝑆 under the communication
dges in 𝐿𝑆 . Notice that (𝑁, 𝑣𝐿) focuses on the economic possibilities of
he players in the game. By contrast, an alternative type of TU game can
e introduced centering in the economic possibilities of the edges, and
aking the edges as players. Formally, the link game, (𝐿, 𝑟𝐿)2 associated
ith a communication situation (𝑁, 𝑣, 𝐿) is given, for every non-empty

oalition of links 𝐴 ⊆ 𝐿 by
𝐿(𝐴) = 𝑣𝐴(𝑁), (3)

nd such that 𝑟𝐿(∅) = 0. The link game (𝐿, 𝑟𝐿) assigns to each possible
oalition of links 𝐴 ⊆ 𝐿 the worth of the cooperation of 𝑁 specified by
𝑁, 𝑣𝐴), by considering only those links in 𝐴 on the network.3

A solution concept on the class of communication situations is
iven by a function 𝛾 that assigns a payoff vector 𝛾(𝑁, 𝑣, 𝐿) ∈ R𝑛, to
ach communication situation (𝑁, 𝑣, 𝐿). The position value 𝜋(𝑁, 𝑣, 𝐿)
as introduced in Meesen (1988) and, later, studied in Borm et al.

1992). For every communication situation (𝑁, 𝑣, 𝐿), the position value
s defined from the Shapley value of the link game by

𝑖(𝑁, 𝑣, 𝐿) =
∑

𝑖𝑗∈𝐿𝑖

1
2
𝑆ℎ𝑖𝑗 (𝐿, 𝑟𝐿), for all 𝑖 ∈ 𝑁, (4)

here 𝐿𝑖 = {𝑖𝑗 ∈ 𝐿 ∶ 𝑗 ∈ 𝑁} denotes the set of edges with 𝑖 as an
ndpoint, and 𝑆ℎ𝑖𝑗 (𝐿, 𝑟𝐿) is the allocation provided for edge 𝑖𝑗 by the

Shapley value for the link game (𝐿, 𝑟𝐿). Then, the position value assigns
to each player 𝑖 of 𝑁 in the communication situation half as much as the
Shapley value of the link game assigns to each of the incident edges in
𝑖. However, given a collection of individual weights {𝑤𝑗}𝑗∈𝑁 , for each
layer 𝑗 ∈ 𝑁 , with 𝑤𝑗 > 0, a weighted version of the position value can
e naturally established. Thus, the weighted position value 𝜋𝜔(𝑁, 𝑣, 𝐿)

is specified, for every communication situation (𝑁, 𝑣, 𝐿) and for every
∈ 𝑁 , by
𝜔
𝑖 (𝑁, 𝑣, 𝐿) =

∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖
𝑤𝑖 +𝑤𝑗

𝑆ℎ𝑖𝑗 (𝐿, 𝑟𝐿). (5)

Notice that if all individual weights 𝑤𝑗 , for each player 𝑗, are equal,
then the weighted position value is equal to the position value.

Example 2.1 illustrates the obtaining of the position value on a small
network defined by a graph.

Example 2.1. Let (𝑁,𝐿) be the graph with the topology of nodes and
links in Fig. 1. Thus, we have 𝑁 = {1, 2, 3, 4} and 𝐿 = {𝑎, 𝑏, 𝑐, 𝑑}. The
weights associated with each of the players are detailed in Table 1.

Fig. 1. Graph of the network (𝑁,𝐿).

Now, let (𝑁, 𝑣, 𝐿) be the communication situation, where the TU
ame (𝑁, 𝑣) is specified in Table 2 for every connected coalition 𝑆 ⊆ 𝑁 .
sing (2), we display the associated TU game (𝑁, 𝑣𝐿) in Table 3.

1 The Shapley value of this game, i.e. 𝑆ℎ(𝑁, 𝑣𝐿), is called the Myerson
alue (Myerson, 1977).

2 If coalition 𝑁 and TU game 𝑣 are fixed, we will denote the link game as
𝐿, if only coalition 𝑁 is fixed, we will write it as 𝑟𝐿𝑣𝐿 ..

3 Both games 𝑣𝐿 and 𝑟𝐿 have been considered in Algaba, Bilbao, Borm, and
López (2001) and Algaba et al. (2000), respectively, for union stable systems,

which generalize communication situations.
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Table 1
List of weights for the nodes in (𝑁,𝐿).
Agent 𝑖 𝑤𝑖

1 2
2 1
3 2
4 3

Table 2
The TU game (𝑁, 𝑣) for connected coalitions.
𝑆 {1} {2} {3} {4} {1, 2} {1, 3}

𝑣(𝑆) 2 1 2 3 3 8

𝑆 {2, 3} {3, 4} {1, 2, 3} {1, 3, 4} {2, 3, 4} 𝑁

𝑣(𝑆) 3 15 10 21 18 24

Table 3
The TU game (𝑁, 𝑣𝐿).
𝑆 ∅ {1} {2} {3} {4} {1, 2} {1, 3} {1, 4}

𝑣𝐿(𝑆) 0 2 1 2 3 3 8 5

𝑆 {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} 𝑁

𝑣𝐿(𝑆) 3 4 15 10 6 21 18 24

From its characteristic function, we can obtain the link game (𝐿, 𝑟𝐿)
defined in (3). For each coalition of edges 𝐴 ⊆ 𝐿, its associated
characteristic function can be found in Table 4.
Table 4
The TU game (𝐿, 𝑟𝐿).
𝐴 ∅ {𝑎} {𝑏} {𝑐} {𝑑} {𝑎, 𝑏} {𝑎, 𝑐} {𝑎, 𝑑}

𝑟𝐿(𝐴) 0 8 8 12 18 13 13 18

𝐴 {𝑏, 𝑐} {𝑏, 𝑑} {𝑐, 𝑑} {𝑎, 𝑏, 𝑐} {𝑎, 𝑏, 𝑑} {𝑎, 𝑐, 𝑑} {𝑏, 𝑐, 𝑑} {𝑎, 𝑏, 𝑐, 𝑑}

𝑟𝐿(𝐴) 13 20 22 13 24 24 24 24

Once the link game is determined, the position value can be com-
uted for the communication situation (𝑁, 𝑣, 𝐿). For this purpose, we

firstly obtain the Shapley value of the considered link game, which
gives us a measure of the relevance of the edges of the graph. That
is, 𝑆ℎ(𝐿, 𝑟𝐿) = (2.750, 3.083, 4.750, 12.417). In view of these results, we
can conclude that the stronger relation is given between players 3 and
4, as this component of the Shapley value associated with the link is
the largest.

Next, we illustrate the obtaining of the position value and the
weighted position value for Agent 1, i.e., 𝜋1(𝑁, 𝑣, 𝐿) and 𝜋𝜔

1 (𝑁, 𝑣, 𝐿).
sing the formulas given in (4) and (5), as links 𝑎 and 𝑐 are adjacent
n node 1 in the network considered, we have that

• 𝜋1(𝑁, 𝑣, 𝐿) = 1
2 ⋅𝑆ℎ𝑎(𝐿, 𝑟

𝐿) + 1
2 ⋅𝑆ℎ𝑐 (𝐿, 𝑟

𝐿) = 1
2 ⋅ 2.750 +

1
2 ⋅ 3.083 =

3.750, and
• 𝜋𝜔

1 (𝑁, 𝑣, 𝐿) = 𝑤1
𝑤1+𝑤2

⋅𝑆ℎ𝑎(𝐿, 𝑟𝐿)+
𝑤1

𝑤1+𝑤3
⋅𝑆ℎ𝑐 (𝐿, 𝑟𝐿) =

2
2+1 ⋅2.750+

2
2+2 ⋅ 4.750 = 4.208.

imilarly, the other components of 𝜋(𝑁, 𝑣, 𝐿) and 𝜋𝜔(𝑁, 𝑣, 𝐿) can be
asily obtained. Their numerical results are shown in Table 5.

The fact that edge 𝑑 receives the largest amount of the worth of the
ooperation leads to players 3 and 4 receiving the largest allocations
hrough the position value, although player 3 gets much more than
thers by the allocations received from the other edges adjacent to it
n the graph, which underline the influence of the position of a node
n a graph in relation with the degree measure of it.

. A connection-based approach for network analysis

As mentioned, in a communication situation, (𝑁, 𝑣, 𝐿), the players
in the TU game (𝑁, 𝑣) are represented by the nodes of the graph (𝑁,𝐿)
and the links describe the interactions between each pair of players.
Classical network measures, such as degree, betweenness, or closeness
4

Table 5
The position value 𝜋(𝑁, 𝑣, 𝐿) and the weighted position value 𝜋𝜔(𝑁, 𝑣, 𝐿).

Player 1 2 3 4

𝜋(𝑁, 𝑣, 𝐿) 3.750 2.917 10.125 6.208
𝜋𝜔(𝑁, 𝑣, 𝐿) 4.208 1.944 9.397 7.450

centrality (see, for furthers details, Koschade, 2006), provide initial
methodologies for ranking their members. However, these lines of re-
search only consider the structure of the network under study, without
considering the possibilities of cooperation among its members. Lin-
delauf et al. (2013) or Husslage et al. (2015) solve this drawback by
using cooperative game theory to include the heterogeneity of edges
and nodes in the graph. In fact, this information is valued through
transferable utility games (or TU games). From now on, we will center
our study on two well-known TU games considered in the literature as
representatives of a network defined by the graph (𝑁,𝐿).

As mentioned in preliminaries, any TU game can be expressed as
linear combination of unanimity games through the coefficients of
arsanyi, see Harsanyi (1959). Specifically, first, we consider the com-
unication situation (𝑁, 𝑢𝑁 , 𝐿) derived from considering the unanimity

ame on the grand coalition. In this case, following Myerson (1977),
he TU game (𝑁, 𝑢𝐿𝑁 ) is obtained, which will be called grand coalition
onnectivity game and denoted by (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛), from now on. It assigns
or each 𝑆 ⊆ 𝑁 the worth of the cooperation according to the following
xpression:

𝑔𝑐𝑐𝑜𝑛𝑛(𝑆) =

{

1, if 𝑆 = 𝑁 and connected,
0, otherwise.

(6)

n particular, it assigns a worth equal to 1 when the grand coalition 𝑁
s formed, which means that all agents are connected in the graph, or
quivalently that the grand coalition is connected. The other coalitions
eceive a value equal to zero. The grand coalition connectivity game
𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) underlines the relevance of the cooperation, agreement or
ommunication of all agents. In other words, the key is the connectivity
f the total network under coordination of its members. Moreover,
ther important aspect about this TU game is that it does not contain
ny other information about the influence of the nodes or edges in the
raph under study.

Second, we consider the additive weighted connectivity TU game (aw-
onn) (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛), with respect to (𝑁,𝐿), following Myerson (1977) and
usslage et al. (2015). In order to define this game, a non-negative

unction 𝑓 is defined, depending on coalition 𝑆, to quantify the effec-
iveness of any coalition in graph (𝑁,𝐿) according to the influence of
he players in it, represented by a set of weights on 𝑁 , i.e.,  =

{

𝑤𝑗
}

𝑗∈𝑁
ith 𝑤𝑗 ≥ 0, and the relational strength between them in the network,
iven by a set of weights on the edges 𝐿, i.e.,  = {𝑘𝑙ℎ}𝑙ℎ∈𝐿 with
𝑙ℎ ≥ 0.

An example of effectiveness function 𝑓 is the one considered in Hus-
lage et al. (2015), that is defined, for each non-empty connected
oalition 𝑆 ⊆ 𝑁 in a given graph (𝑁,𝐿), as

(𝑆,,) =

⎧

⎪

⎨

⎪

⎩

(

∑

𝑗∈𝑆 𝑤𝑗

)

⋅ max𝑙ℎ∈𝐿𝑆
𝑘𝑙ℎ, if |𝑆| > 1,

𝑤𝑖, if 𝑆 = {𝑖}, with 𝑖 ∈ 𝑁.
(7)

This framework includes information about relationships between
ndividuals as well as personal information about individuals. More
pecifically, for each possible connected coalition 𝑆 with more than
ne player, this map specifies the sum of the individual weights of
he members of 𝑆 multiplied by the maximum weight over the set of
dges connecting the subgraph induced by 𝑆. In the case of the unitary
oalitions the value is its own worth and for the empty coalition, it will
ssign the value 0.
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Fig. 2. Flowchart for the implementation of rankings of nodes and links based on the position value.
Given the communication situation (𝑁, 𝑓,𝐿), following Myerson
(1977), the additive weighted connectivity game (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛), is given for
each 𝑆 ⊆ 𝑁 , by the following expression:

𝑣𝑎𝑤𝑐𝑜𝑛𝑛(𝑆) =
∑

𝑇∈𝐶𝐿(𝑆)
𝑓 (𝑇 ,,). (8)

Notice that the additive weighted connectivity game assigns to
any connected coalition 𝑆 the worth of its effectiveness prescribed by
the function 𝑓 considered. In the case of a disconnected coalition 𝑆,
it assigns the aggregated effectiveness of all its maximal connected
subsets (or components) in the subgraph induced by 𝑆. By contrast,
with the approach provided by the TU game (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛), we want to
emphasize the worth of the cooperation of each coalition of players,
that itself depends on the connectivity of the coalition and, therefore,
on the strength of the relations given between players. The definition
of this TU game is consistent and has been extensively utilized for
analyzing networks derived from graphs (Myerson, 1977), as well as in
more general networks with communication properties (Algaba, Bilbao,
& López, 2001). Furthermore, it has also been applied to networks with
both communication and hierarchical features, as discussed in Algaba
et al. (2018). Note that unlike of the grand coalition connectivity
game, the additive weighted connectivity game is considering implicitly
the features of the network in it, which will have implications when
applying the Shapley or the position values on them.

It is important to stress that unlike the classical game theory so-
lutions, our proposal additionally integrates the degree measure and,
moreover, it allows for obtaining rankings not only of the nodes of a
graph but also of the edges or relations between individuals in a graph.
In what follows, we focus on establishing a centrality node measure
based on the capabilities of influence of links of the any network
defined by the graph (𝑁,𝐿). Clearly, the number of links incident on
each node (the degree) and the strength of these connections will mark
the real influence of each node on the graph as a whole through the
link game (𝐿, 𝑟𝐿) associated. The flowchart of the steps of the position
value-based procedure to rank the nodes and the links of a graph are
summarized in Fig. 2.

For this purpose, the consideration of the additive weighted connec-
tivity link game (𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 ) obtained from the expression in (3) by using
(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛), and the grand coalition connectivity link game (𝐿, 𝑟𝐿𝑣𝑔𝑐𝑐𝑜𝑛𝑛 ),
associated to the TU game (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) when applying the expression
in (3), as well as the computation of the position value, are required.

Now, Example 3.1 illustrates the usage of the position value as
a mechanism of ranking the nodes and links of a real transportation
network.

Example 3.1. Let (𝑁,𝐿) be the graph specified in Fig. 3. It specifies the
topology of the nodes, representing the main stations of the suburban
trains in Madrid in the year 2000, and of the links, detailing the lines
that connect them. Thus, we have that |𝑁| = 18 and |𝐿| = 19. Each
station is weighted 1, except for the intermodal train stations of Atocha
5

Fig. 3. Graph of the suburban train network (𝑁,𝐿) of Madrid in the year 2000.

and Chamartín, which are weighted 2, according to the volume of their
passengers. Each link has a weight equal to the number of train lines
passing through it and that are shown in different colors in the figure.

Now, let (𝑁, 𝑢𝑁 , 𝐿) and (𝑁, 𝑓,𝐿)4 be the communication situations
above-defined, which induce the TU games (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) and (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛),
respectively. The last one is obtained by using the effectiveness function
in (7). From their characteristic functions, we can obtain the grand
coalition connectivity link game (𝐿, 𝑟𝐿𝑣𝑔𝑐𝑐𝑜𝑛𝑛 ) and the additive weighted
connectivity link game (𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 ), for each coalition of edges 𝐴 ⊆ 𝐿.

Using the TU games (𝐿, 𝑟𝐿𝑣𝑔𝑐𝑐𝑜𝑛𝑛 ) and (𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 ), several rankings can
be obtained derived from the computation of the position value. For

4 From now on, when dealing with the communication situations (𝑁, 𝑢𝑁 , 𝐿)
and (𝑁, 𝑓,𝐿), we will denote 𝜋(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛, 𝐿) and 𝜋(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛, 𝐿) instead of
𝜋(𝑁, 𝑢 , 𝐿) and 𝜋(𝑁, 𝑓,𝐿), to make clear the games used in the link game.
𝑁
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Table 6
Shapley value for the link games (𝐿, 𝑟𝐿𝑣𝑔𝑐𝑐𝑜𝑛𝑛 ) and (𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 ).

Pair of stations 𝑆ℎ(𝐿, 𝑟𝐿𝑣𝑔𝑐𝑐𝑜𝑛𝑛 ) 𝑆ℎ(𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 ) Pair of stations 𝑆ℎ(𝐿, 𝑟𝐿𝑣𝑔𝑐𝑐𝑜𝑛𝑛 ) 𝑆ℎ(𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 )

El Escorial-Villalba 0.08256 (1–11) 2.41850 (18) Atocha-Alcalá de Hen. 0.08256 (1–11) 6.76259 (4)
Villalba-Cercedilla 0.08256 (1–11) 3.43730 (13) Atocha-Vill. Bajo 0.01066 (16) 7.28532 (3)
Cercedilla-Cotos 0.08256 (1–11) 2.07143 (19) Atocha-Móstoles 0.08256 (1–11) 3.60263 (11)
Villalba-El Tejar 0.08256 (1–11) 7.30238 (2) Méndez Álvaro-Vill. Alto 0.01066 (17) 4.17460 (8)
El Tejar-Príncipe Pío 0.01393 (12) 4.15913 (9) Vill. Bajo-Vill. Alto 0.01066 (18) 3.51508 (12)
El Tejar-Chamartín 0.01393 (13) 4.83091 (7) Vill. Alto-Fuenlabrada 0.08256 (1–11) 2.71573 (16)
Chamartín-Tres Cantos 0.08256 (1–11) 3.92208 (10) Vill. Alto-Parla 0.08256 (1–11) 2.71573 (17)
Príncipe Pío-Méndez Álvaro 0.01393 (14) 5.12817 (6) Vill. Bajo-Aranjuez 0.08256 (1–11) 2.86454 (14)
Méndez Álvaro-Atocha 0.00413 (19) 6.37539 (5) Alcalá de Hen.-Guadalajara 0.08256 (1–11) 2.71930 (15)
Chamartín-Atocha 0.01393 (15) 23.9992 (1)
Table 7
Position value for the nodes of the graph (𝑁,𝐿).
Station �̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) �̂�(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿)

El Escorial 0.04128 (9) 0.04128 (9) 1.20925 (17) 1.20925 (15)
Villalba 0.12384 (1) 0.12384 (2) 6.57909 (6) 6.57909 (5)
Cercedilla 0.08256 (4) 0.08256 (4) 2.75436 (10) 2.75436 (10)
Cotos 0.04128 (10) 0.04128 (10) 1.03571 (18) 1.03571 (17)
El Tejar 0.05521 (6) 0.05289 (7) 8.14621 (3) 7.34106 (3)
Chamartín 0.05521 (7) 0.07129 (5) 16.3761 (2) 17.8349 (2)
Tres Cantos 0.04128 (11) 0.02752 (15) 1.96104 (11) 1.30736 (14)
Príncipe Pío 0.01393 (18) 0.01393 (17) 4.64365 (9) 4.64365 (8)
Atocha 0.09692 (2) 0.12691 (1) 24.0126 (1) 28.0169 (1)
Méndez Álvaro 0.01436 (17) 0.01367 (18) 7.83908 (4) 6.77652 (4)
Villaverde Bajo 0.05194 (8) 0.05017 (8) 6.83246 (5) 5.61825 (7)
Villaverde Alto 0.09322 (3) 0.09322 (3) 6.56057 (7) 6.56057 (6)
Móstoles 0.04128 (12) 0.02752 (16) 1.80132 (12) 1.20088 (16)
Fuenlabrada 0.04128 (13) 0.04128 (11) 1.35786 (15) 1.35786 (12)
Parla 0.04128 (14) 0.04128 (12) 1.35786 (16) 1.35786 (13)
Aranjuez 0.04128 (15) 0.04128 (13) 1.43227 (13) 1.43227 (11)
Alcalá de Henares 0.08256 (5) 0.06880 (6) 4.74094 (8) 3.61385 (9)
Guadalajara 0.04128 (16) 0.04128 (14) 1.35965 (14) 1.35965 (12)
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this purpose, we firstly obtain the Shapley value of the two considered
link games, which gives us a ranking of the edges of the graph ac-
cording to their relevance (see Table 6). When considering (𝐿, 𝑟𝐿𝑣𝑔𝑐𝑐𝑜𝑛𝑛 ),
here are several edges that can be qualified as key to the connectivity
f the network, as there are ties in the maximum allocations that the
hapley value specifies. However, the edge that contributes the least to
he connectivity of the entire network is Méndez Álvaro-Atocha. On
he other hand, under the consideration of (𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 ), the link that
ontributes most to the network is the one that connects the two most
mportant stations in the city, Atocha and Chamartín. The link that has
he least contribution to the network under this approach is the one
etween Cotos and Cercedilla stations. Table A.1 in Appendix A of the
nline resource section (ORS) gives the overall rankings.

The position value and the weighted position value are obtained for
he main stations of the suburban train network under the TU games
onsidered. These results are shown in Table 7.

Thus, such allocations prescribe different rankings for the nodes of
he graph. For each station, we indicate in brackets its position in the
ssociated ranking. Atocha occupies the first position in the rankings,
xcept for the case of �̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛, 𝐿) that assigns it position 2 of the
anking. Although Chamartín station is ranked second when using
𝑎𝑤𝑐𝑜𝑛𝑛, it drops several positions in the rankings based on 𝑣𝑔𝑐𝑐𝑜𝑛𝑛. As
or the least influential stations, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 assigns to the centrally located
tations of Mendez Álvaro and Príncipe Pío the last two positions.
onversely, the two least relevant stations according to 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 are
tations on the outskirts of the central area of the city. The overall
ankings are detailed in Table A.2 of Appendix A in the ORS.

The previous example illustrates the computation of rankings based
n the position value in a ‘‘small’’ scheme. However, the exact com-
utation of the position value becomes a challenging task when the
umber of links in the graph significantly increases. Notice that sim-
lar problems arise for the exact computation of the Shapley value
n those contexts with a large number of players (see, for exam-
6

le, Fernández-García & Puerto-Albandoz, 2006 or Castro et al., 2009),
or which sampling techniques provide an approximated solution as an
lternative.

. Estimating the position value

As mentioned, the main drawback concerning the (weighted) po-
ition value is computational, since its complexity exponentially in-
reases with the number of players and the number of links connecting
hem. However, up to the authors’ knowledge, the task of obtaining
procedure for the approximation of the position value has not been

xplored yet, in spite of the importance of taking into account the
onnections in real networks.

Let (𝑁, 𝑟𝐿) be the link game associated with a given communication
ituation (𝑁, 𝑣, 𝐿). Notice that the (weighted) position value can be
btained in terms of the Shapley value for the associated link game.
ence, its own definition justifies a proposal for its estimation, based
n the ideas used by Fernández-García and Puerto-Albandoz (2006)
nd Castro et al. (2009) for the Shapley value approximation by using
ampling techniques.

The steps of that sampling procedure for the estimation of the
eighted position value are illustrated below:

1. The sampling population corresponds to all orders of the set of
links 𝐿, i.e., 𝛱(𝐿).

2. The vector of unknown parameters to be estimated is 𝜋𝜔 =
(𝜋𝜔

𝑖 )𝑖∈𝑁 , with 𝜋𝜔
𝑖 being 𝜋𝜔

𝑖 (𝑁, 𝑣, 𝐿), for all 𝑖 ∈ 𝑁 .
3. The feature to analyze is the vector

(𝑚𝜎
𝑟𝐿
(𝑎))𝑎∈𝐿 = (𝑟𝐿

(

𝑃 𝜎
𝑎 ∪ {𝑎}

)

− 𝑟𝐿
(

𝑃 𝜎
𝑎
)

)𝑎∈𝐿,

for each sampling unit 𝜎 ∈ 𝛱(𝐿).
4. Each permutation 𝜎 ∈ 𝛱(𝐿) is equally likely.
5. The average of the marginal contribution vectors over a sample
 of permutations of 𝐿 is the estimation of the Shapley value for
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the link game (𝐿, 𝑟𝐿), i.e., 𝑆ℎ = (𝑆ℎ𝑎)𝑎∈𝐿, such that

𝑆ℎ𝑎(𝐿, 𝑟𝐿) =
1
𝓁

∑

𝜎∈
𝑚𝜎
𝑟𝐿
(𝑎),

for all 𝑎 ∈ 𝐿, where 𝓁 is the sample size.
6. The estimator for the weighted position value 𝜋𝜔(𝑁, 𝑣, 𝐿) is �̂�𝜔 =

(�̂�𝜔
𝑖 )𝑖∈𝑁 , where

�̂�𝜔
𝑖 (𝑁, 𝑣, 𝐿) =

∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖
𝑤𝑖 +𝑤𝑗

𝑆ℎ𝑖𝑗 (𝐿, 𝑟𝐿), for all 𝑖 ∈ 𝑁. (9)

Upon applying this procedure, the resulting vector �̂�𝜔 = (�̂�𝜔
1 ,… , �̂�𝜔

𝑛 )
corresponds to the estimation of the weighted position value for all
players involved in the communication situation (𝑁, 𝑣, 𝐿). First, we
examine the statistical properties of the estimator given in Eq. (9).
Consider a fixed player 𝑖 ∈ 𝑁 . Thus, �̂�𝜔

𝑖 is an unbiased estimator since
it holds that

E(�̂�𝜔
𝑖 ) = E

(

∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖
𝑤𝑖 +𝑤𝑗

𝑆ℎ𝑖𝑗 (𝐿, 𝑟𝐿)
)

=
∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖
𝑤𝑖 +𝑤𝑗

E
(

𝑆ℎ𝑖𝑗 (𝐿, 𝑟𝐿)
)

=
∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖
𝑤𝑖 +𝑤𝑗

𝑆ℎ𝑖𝑗 (𝐿, 𝑟𝐿)

= 𝜋𝜔
𝑖 .

(10)

These equalities are satisfied due to the unbiased nature of the Shapley
value estimator for a TU game, obtained when using simple random
sampling with replacement (cf. Castro et al., 2009). Similarly, the
consistency of the estimator �̂�𝜔 is also ensured.

Over a sample of permutations in 𝐿, given by , the estimator �̂�𝜔
𝑖

for the weighted position value of player 𝑖 in (9) admits an alternative
formulation, for every 𝑖 ∈ 𝑁 , that we detail below. Thus, we have that

�̂�𝜔
𝑖 (𝑁, 𝑣, 𝐿) =

∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖

𝑤𝑖 +𝑤𝑗
𝑆ℎ𝑖𝑗 (𝐿, 𝑟𝐿) =

∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖

𝑤𝑖 +𝑤𝑗

(

1
𝓁

∑

𝜎∈
𝑚𝜎

𝑟𝐿 (𝑖𝑗)
)

= 1
𝓁

(

∑

𝑖𝑗∈𝐿𝑖

∑

𝜎∈

𝑤𝑖

𝑤𝑖 +𝑤𝑗
𝑚𝜎

𝑟𝐿 (𝑖𝑗)
)

= 1
𝓁

∑

𝜎∈

(

∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖

𝑤𝑖 +𝑤𝑗
𝑚𝜎

𝑟𝐿 (𝑖𝑗)
)

= 1
𝓁

∑

𝜎∈
𝑥(𝜎)𝑖,

(11)

being 𝑥(𝜎)𝑖 =
∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖
𝑤𝑖+𝑤𝑗

𝑚𝜎
𝑟𝐿
(𝑖𝑗), for all 𝑖 ∈ 𝑁 .

A fundamental issue in problems of solution approximating for
U games lies in bounding the estimation error, which refers to the
ifference between the approximated value and the exact value. Since it
s often impractical to measure this error directly, a probabilistic bound
s typically provided instead. Roughly speaking, the approximation of
he weighted position value for player 𝑖 is at a distance greater than 𝜀
f the real value with a probability 𝛼 as maximum. Formally, it means

(|�̂�𝜔
𝑖 − 𝜋𝜔

𝑖 | ≥ 𝜀) ≤ 𝛼, with 𝜀 > 0 and 𝛼 ∈ (0, 1].

herefore, as the sampling size enlarges, the estimated weighted po-
ition value tends to be a more accurate approximation of the real
ne.

Given the relevance of selecting an appropriate sampling size, we
rovide valuable results for effectively bounding such error. In order to
ccomplish this, we have thoroughly examined relevant literature con-
erning the approximation of coalitional values in cooperative games,
s Fernández-García and Puerto-Albandoz (2006), Castro et al. (2009)
nd Maleki (2015) for the Shapley value estimation, and Bachrach et al.
2010) for the estimation of power indices for simple games. It is note-
orthy that when estimating coalitional values, the population sizes

onsidered in sampling procedures are typically large but always finite.
hus, the conservative bound provided by Castro et al. (2009) cannot
7

b

e considered. The findings presented below enable the determination
f the minimum sample size necessary to approximate the weighted
osition value with a desired maximum error of 𝜀 and a confidence level

of 1−𝛼. They follow the lines of research of Maleki (2015) and Bachrach
et al. (2010), that make use of concentration bounds for the analysis of
the error in estimating unknown parameters on finite populations.

To establish a bound on the absolute error in estimating the weighted
position value, a statement relying on Hoeffding’s concentration in-
equality is introduced. Hoeffding’s inequality (Hoeffding, 1963) states
that if ∑𝑘

𝑗=1 𝑋𝑗 represents the sum of 𝑘 observations 𝑋1,… , 𝑋𝑘 ex-
racted with replacement, such that 𝑎𝑗 ≤ 𝑋𝑗 ≤ 𝑏𝑗 for all 𝑗 ∈ {1,… , 𝑘},
hen

(|
𝑘
∑

𝑗=1
𝑋𝑗 − E(

𝑘
∑

𝑗=1
𝑋𝑗 )| ≥ 𝑡) ≤ 2 exp

(

−2𝑡2
∑𝑘

𝑗=1(𝑏𝑗 − 𝑎𝑗 )2

)

, for all 𝑡 ≥ 0. (12)

Proposition 4.1 specifically formalizes this result for the case of
stimating the weighted position value.

roposition 4.1. Let (𝑁, 𝑣, 𝐿) be a communication situation. Take 𝜀 > 0,
∈ (0, 1) and denote the range of 𝑥(𝜎)𝑖 by

𝑖 = max
𝜎,𝜎′∈𝛱(𝐿)

(𝑥(𝜎)𝑖 − 𝑥(𝜎′)𝑖).

hen,

≥
ln(2∕𝛼)𝑟2𝑖

2𝜀2
implies that P(|�̂�𝜔

𝑖 − 𝜋𝜔
𝑖 | ≥ 𝜀) ≤ 𝛼.

roof. Indeed, we have that �̂�𝜔
𝑖 = 1

𝓁

∑

𝜎∈
𝑥(𝜎)𝑖 for a sample of 𝓁 elements.

hus,

(|�̂�𝜔
𝑖 − 𝜋𝜔

𝑖 | ≥ 𝜀) = P(|�̂�𝜔
𝑖 − E(�̂�𝜔

𝑖 )| ≥ 𝜀) = P(|
∑

𝜎∈
𝑥(𝜎)𝑖 − E(

∑

𝜎∈
𝑥(𝜎)𝑖)| ≥ 𝜀𝓁).

sing Hoeffding’s inequality (12), it satisfies that

(

|

|

|

∑

𝜎∈
𝑥(𝜎)𝑖 − E(

∑

𝜎∈
𝑥(𝜎)𝑖)

|

|

|

≥ 𝜀𝓁
)

≤ 2 exp
(

−2𝜀2𝓁
𝑟2𝑖

)

≤ 𝛼,

and we conclude the proof. □

Below, we establish a general bound on the range of 𝑥(𝜎)𝑖 that
may be useful in determining the sample sizes in the estimation of
the weighted position value for the additive weighted connectivity
TU game. For this purpose, the nature of the effectiveness function 𝑓
considered is essential. Specifically, we consider the case in which the
effectiveness function 𝑓 ∶ 2𝑁 ⟶ R is superadditive, that is, if it holds
that

𝑓 (𝑆,,) + 𝑓 (𝑇 ,,) ≤ 𝑓 (𝑆 ∪ 𝑇 ,,) (13)

for all pair of disjoint coalitions 𝑆, 𝑇 ⊆ 𝑁 .

Proposition 4.2. Let (𝑁, 𝑣gcconn) and (𝑁, 𝑣awconn) be the grand coalition
connectivity TU game and the additive weighted connectivity TU game
associated with the communication situations (𝑁, 𝑢𝑁 , 𝐿) and (𝑁, 𝑓,𝐿), with
𝑓 a superadditive effectiveness function. For every 𝑖 ∈ 𝑁 , it is satisfied that,

• for the case of estimating 𝜋𝜔(𝑁, 𝑣gcconn, 𝐿),

𝑟𝑖 ≤ |𝐿𝑖|
𝑤𝑖

𝑤𝑖 + min𝑗∈𝑁 ∶ 𝑖𝑗∈𝐿𝑖
𝑤𝑗

; (14)

• for the case of estimating 𝜋𝜔(𝑁, 𝑣awconn, 𝐿),

𝑟𝑖 ≤ |𝐿𝑖|
𝑤𝑖

𝑤𝑖 + min𝑗∈𝑁 ∶ 𝑖𝑗∈𝐿𝑖
𝑤𝑗

𝑓 (𝑁,,), (15)

eing |𝐿 | the number of edges with player 𝑖 as endpoint.
𝑖
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Proof. Take 𝑖 ∈ 𝑁 and let 𝜎 and 𝜎′ be two different permutations of
dges in 𝛱(𝐿). Taking into account that 𝑥(𝜎)𝑖 =

∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖
𝑤𝑖+𝑤𝑗

𝑚𝜎
𝑟𝐿
(𝑖𝑗), for

ll 𝑖 ∈ 𝑁 and for every 𝜎,

(𝜎)𝑖 − 𝑥(𝜎′)𝑖 =
∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖
𝑤𝑖 +𝑤𝑗

(

𝑚𝜎
𝑟𝐿
(𝑖𝑗) − 𝑚𝜎′

𝑟𝐿
(𝑖𝑗)

)

≤
∑

𝑖𝑗∈𝐿𝑖

𝑤𝑖
𝑤𝑖 +𝑤𝑗

𝑚𝜎
𝑟𝐿
(𝑖𝑗)

≤ |𝐿𝑖| max
𝑗∈𝑁 ∶ 𝑖𝑗∈𝐿𝑖

{

𝑤𝑖
𝑤𝑖 +𝑤𝑗

}

𝑚𝜎
𝑟𝐿
(𝑖𝑗)

≤ |𝐿𝑖|

(

𝑤𝑖
𝑤𝑖 + min𝑗∈𝑁 ∶ 𝑖𝑗∈𝐿𝑖

𝑤𝑗

)

𝑚𝜎
𝑟𝐿
(𝑖𝑗),

(16)

being |⋅| the cardinal operator of a set. The fourth inequality is satisfied
due to the decreasing character of the function 𝑓 (𝑥) = 𝐶

𝑥+𝐶 for all 𝑥 ≥ 0
nd being 𝐶 > 0.

From the last inequality in (16), for the case of estimating
𝜔(𝑁, 𝑣gcconn, 𝐿), we can state, for all 𝑖 ∈ 𝑁 , that

𝑖 = max
𝜎,𝜎′∈𝛱(𝐿)

(𝑥(𝜎)𝑖 − 𝑥(𝜎′)𝑖) ≤ |𝐿𝑖|
𝑤𝑖

𝑤𝑖 + min𝑗∈𝑁 ∶ 𝑖𝑗∈𝐿𝑖
𝑤𝑗

, (17)

since, under the consideration of the grand coalition connectivity TU
game (𝑁, 𝑣gcconn), 𝑚𝜎

𝑟𝐿
(𝑖𝑗) ≤ 1.

For the case of estimating 𝜋𝜔(𝑁, 𝑣awconn, 𝐿), let 𝑖𝑗 ∈ 𝐿, and 𝐴 ⊆ 𝐿,
it holds that

𝑚𝜎
𝑟𝐿
(𝑖𝑗) = 𝑟𝐿(𝐴 ∪ {𝑖𝑗}) − 𝑟𝐿(𝐴) ≤ 𝑟𝐿(𝐴 ∪ {𝑖𝑗})

= 𝑣𝐴∪{𝑖𝑗}(𝑁)

=
∑

𝑇∈𝐶𝐴∪{𝑖𝑗}(𝑁)
𝑣awconn(𝑇 )

=
∑

𝑊 ∈𝐶𝐴∪{𝑖𝑗}(𝑁)
𝑓 (𝑊 ,,)

≤ 𝑓 (𝑁,,),

where the last inequality is satisfied by the superadditive character of
the effectiveness function 𝑓 . Then, we immediately have that, for all
𝑖 ∈ 𝑁 ,

𝑟𝑖 ≤ |𝐿𝑖|

(

𝑤𝑖
𝑤𝑖 + min𝑗∈𝑁 ∶ 𝑖𝑗∈𝐿𝑖

𝑤𝑗

)

𝑓 (𝑁,,),

concluding the proof. □

The following two corollaries can be immediately obtained. First,
we state a general bound for the case of the grand coalition connectivity
TU game.

Corollary 4.3. Consider 𝜀 > 0, 𝛼 ∈ (0, 1) and (𝑁, 𝑣gcconn) the grand
coalition connectivity TU game associated with the communication situation
(𝑁, 𝑢𝑁 , 𝐿). If 𝓁 satisfies that

𝓁 ≥
ln(2∕𝛼)
2𝜀2

|𝐿𝑖|
2

(

𝑤𝑖
𝑤𝑖 + min𝑗∈𝑁 ∶ 𝑖𝑗∈𝐿𝑖

𝑤𝑗

)2

, (18)

then, P(|�̂�𝜔
𝑖 − 𝜋𝜔

𝑖 | ≥ 𝜀) ≤ 𝛼, for each 𝑖 ∈ 𝑁 .

Proof. The proof is straightforward from Proposition 4.2 and the
inequality in (14). □

Second, we establish a general bound for the additive weighted
connectivity TU games, when considering a superadditive effectiveness
function 𝑓 .

Corollary 4.4. Consider 𝜀 > 0, 𝛼 ∈ (0, 1) and (𝑁, 𝑣awconn) the additive
weighted connectivity TU game associated with the communication situation
(𝑁, 𝑓,𝐿), by using a superadditive effectiveness function 𝑓 . If 𝓁 satisfies that
8

𝓁 ≥
ln(2∕𝛼)
2𝜀2

|𝐿𝑖|
2

(

𝑤𝑖
𝑤𝑖 + min𝑗∈𝑁 ∶ 𝑖𝑗∈𝐿𝑖

𝑤𝑗

)2

(𝑓 (𝑁,,))2 , (19)

then, P(|�̂�𝜔
𝑖 − 𝜋𝜔

𝑖 | ≥ 𝜀) ≤ 𝛼, for each 𝑖 ∈ 𝑁 .

Proof. The proof directly follows Proposition 4.2 and the inequality in
(15). □

The previous result can be directly formalized for the case of the
additive weighted connectivity TU game associated with the communi-
cation situation (𝑁, 𝑓,𝐿) when using the effectiveness function in (7)
of Husslage et al. (2015). Given 𝜀 > 0 and 𝛼 ∈ (0, 1), if

𝓁 ≥
ln(2∕𝛼)
2𝜀2

|𝐿𝑖|
2

(

𝑤𝑖
𝑤𝑖 + min𝑗∈𝑁 ∶ 𝑖𝑗∈𝐿𝑖

𝑤𝑗

)2 ((

∑

𝑗∈𝑁
𝑤𝑗

)

⋅max
𝑙ℎ∈𝐿

𝑘𝑙ℎ

)2

,

(20)

hen, P(|�̂�𝜔
𝑖 − 𝜋𝜔

𝑖 | ≥ 𝜀) ≤ 𝛼, for each 𝑖 ∈ 𝑁 .
In the particular case of the position value, obtained from the

eighted position value when all edge weights are equal, we want
o mention explicitly the bounds of the error that can be specifically
stablished from the above results. In this case, the estimator for the
osition value 𝜋(𝑁, 𝑣, 𝐿) is directly given by �̂� = (�̂�𝑖)𝑖∈𝑁 , where

̂𝑖(𝑁, 𝑣, 𝐿) = 1
2
∑

𝑖𝑗∈𝐿𝑖

𝑆ℎ𝑖𝑗 (𝐿, 𝑟𝐿), (21)

or all 𝑖 ∈ 𝑁 . Immediately, the bounds of the error for the position
alue, derived from Corollaries 4.3 and 4.4, respectively, are stated
elow.

• First, we formalize a specific bound for 𝑟𝑖, with 𝑖 ∈ 𝑁 , for the
case of estimating the position value. As in Proposition 4.2, it is
easy to check that,

– for the case of estimating 𝜋(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛, 𝐿), we have that 𝑟𝑖 ≤
|𝐿𝑖|

2 for every 𝑖 ∈ 𝑁 ;
– for the case of estimating 𝜋(𝑁, 𝑣awconn, 𝐿) with a superaddi-

tive effectiveness function 𝑓 , it holds that 𝑟𝑖 ≤
|𝐿𝑖|

2 𝑓 (𝑁,,),
for every 𝑖 ∈ 𝑁 ,

being |𝐿𝑖| the number of edges with player 𝑖 as endpoint.
• Using these last two inequalities, we can formalize the following

two statements on sampling sizes. Take 𝜀 > 0 and 𝛼 ∈ (0, 1).
Let (𝑁, 𝑣gcconn) be the grand coalition connectivity TU game
associated with (𝑁, 𝑢𝑁 , 𝐿). If 𝓁 satisfies that

𝓁 ≥
ln(2∕𝛼)
2𝜀2

(

|𝐿𝑖|

2

)2
, (22)

it holds P(|�̂�𝑖 − 𝜋𝑖| ≥ 𝜀) ≤ 𝛼, for each 𝑖 ∈ 𝑁 .
Similarly, let (𝑁, 𝑣awconn) be the additive weighted connectivity
TU game associated with (𝑁, 𝑓,𝐿), by using a superadditive
effectiveness function 𝑓 . If 𝓁 satisfies that

𝓁 ≥
ln(2∕𝛼)
2𝜀2

(

|𝐿𝑖|

2

)2
(𝑓 (𝑁,,))2 , (23)

it holds P(|�̂�𝑖 − 𝜋𝑖| ≥ 𝜀) ≤ 𝛼, for each 𝑖 ∈ 𝑁 .

Note that Castro et al. (2009) guaranteed polynomial complexity for
the case of the Shapley value estimation as long as the characteristic
function of the TU game considered is also obtained in polynomial
time. Polynomial algorithms are also available to detect the connected
components of any graph and thus to obtain the characteristic function
of both TU games under consideration. Thus, when the link game
is obtained in polynomial time, by the nature of our procedure, the
approximation of the position value using simple random sampling
with replacement has polynomial complexity by construction.
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Fig. 4. Graph of the network (𝑁,𝐿) associated with the Spanish national team in the Portugal-Spain match at the 2018 World Cup in Russia.
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5. Position value-based rankings

As mentioned, the importance of the connections between nodes
in a graph can influence the results. Hence, the position value is of
big interest when working with networks represented by a graph. In
the first two subsections, we apply our sampling proposal on two very
different scenarios modeled under the scheme of a network defined by
a graph (𝑁,𝐿) and in which connections among agents are relevant
enough. In both scenarios, we rank the nodes and edges of the graph
according to their influence in the pursuit of the objectives of the
network. The first case is devoted to the analysis of the network arisen
from the passing structure of a football team. The second one analyzes
the case of a well-known terrorist network: The Zerkani network.
The last subsection studies the position value versus the most known
centrality measures in the literature.
9

5.1. The Spanish national football team

First, we analyze the problem of identifying the leading player of
a team by analyzing the network of passes of players in a football
match. To this aim, we consider the approach provided by the position
value where the connections between players (edges) take relevance.
These situations involve a keen interest in determining the relative
importance of network members in terms of their contribution to its
operations.

Consider now the graph (𝑁,𝐿) arisen from the organization and
he performance of football teams. In this sense, a team can be con-
eptualized as a complex network in which the nodes represent players
ho interact with the objective of outperforming the opposing network.
dditionally, the associated graph is derived from the football passing
etworks, with the edges representing the interactions between the
layers.
Table 8
Distribution of passes between players of the Spanish national football team in the Portugal-Spain match of the 2018 World Cup.
Pair of players Number of Pair of players Number of

passes passes

Andrés Iniesta-David Silva 5 Diego Costa-Jordi Alba 7
Andrés Iniesta-Diego Costa 7 Diego Costa-Nacho 1
Andrés Iniesta-Gerard Piqué 6 Diego Costa-Sergio Busquets 4
Andrés Iniesta-Isco 28 Diego Costa-Sergio Ramos 2
Andrés Iniesta-Jordi Alba 27 Gerard Piqué-Isco 3
Andrés Iniesta-Koke 7 Gerard Piqué-Jordi Alba 2
Andrés Iniesta-Nacho 1 Gerard Piqué-Koke 21
Andrés Iniesta-Sergio Busquets 9 Gerard Piqué-Nacho 12
Andrés Iniesta-Sergio Ramos 38 Gerard Piqué-Sergio Busquets 14
David Silva-Diego Costa 3 Gerard Piqué-Sergio Ramos 26
David Silva-Gerard Piqué 5 Isco-Jordi Alba 44
David Silva-Isco 9 Isco-Koke 11
David Silva-Jordi Alba 4 Isco-Nacho 13
David Silva-Koke 17 Isco-Sergio Busquets 10
David Silva-Nacho 11 Isco-Sergio Ramos 26
David Silva-Sergio Busquets 6 Jordi Alba-Koke 1
David Silva-Sergio Ramos 7 Jordi Alba-Nacho 1
David de Gea-Gerard Piqué 5 Jordi Alba-Sergio Ramos 44
David de Gea-Isco 1 Koke-Nacho 21
David de Gea-Jordi Alba 4 Koke-Sergio Busquets 20
David de Gea-Nacho 3 Koke-Sergio Ramos 7
David de Gea-Sergio Busquets 1 Nacho-Sergio Busquets 11
David de Gea-Sergio Ramos 5 Nacho-Sergio Ramos 2
Diego Costa-Gerard Piqué 1 Sergio Busquets-Sergio Ramos 23
Diego Costa-Isco 6
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In this scenario, we examine the football match between Portugal
and Spain during the 2018 World Cup in Russia, which resulted in a
three-goal draw. Fig. 4 illustrates the passing pattern among the 11
players of the Spanish national football team during the match. On
the right side, we present a list of the players involved, along with the
number of passes they were involved in and the total number of goals
they scored in the match (within brackets). For the sake of simplicity,
the set of individual weights for each player in 𝑁 is determined by
the total amount of passes in which he has taken part divided by 10.
Besides, the weights on the links in the network represent the relational
strength between players and are calculated by the number of passes (in
both directions) made between each pair of connected players divided
by 10. Table 8 contains all the information about passes.

For each communication situation (𝑁, 𝑢𝑁 , 𝐿) and (𝑁, 𝑓,𝐿), when
considering the effectiveness function given in Husslage et al. (2015)
in (7), we approximate the position value of each player 𝑖 ∈ 𝑁 , using
our sampling proposal for both TU games (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) and (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛),
with 𝓁 = 107. In practice, we only take a small size of the population
of possible orders of the edges.

Table 9 shows the theoretical errors for the estimation of the
weighted position value for 𝑖 = 11, corresponding to Sergio Ramos and
with |𝐿𝑖| = 10, that Corollaries 4.3 and 4.4, respectively, establish for
this sampling size and for several values of 𝛼.
Table 9
Theoretical errors for the weighted position value by using 𝓁 = 107.

𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01

(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) 0.00350 0.00389 0.00466
(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛) 0.83507 0.92666 1.11056

Table 10, analogously, depicts the theoretical errors that inequali-
ies in (22) and (23) ensure, when 𝓁 = 107, for the estimation of the
osition value for 𝑖 = 11 (Sergio Ramos) and for several values of 𝛼.

Table 10
Theoretical errors for the position value by using 𝓁 = 107.

𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01

(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) 0.00194 0.00215 0.00257
(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛) 0.46149 0.51219 0.61373

Note that, for the case of the additive weighted connectivity TU
ame on the network of passes for the Spanish national football team,
e have that

(

∑

𝑗∈𝑁 𝑤𝑗

)

⋅ max𝑙ℎ∈𝐿𝑘𝑙ℎ = 238.48.
Table 11 shows the positions of players in the rankings specified by

the estimation of the position value, even in its weighted form with
𝓁 = 107, for the 11 players belonging to the team. Recall that the
usage of sampling is justified in this setting since the obtaining of the
position value is based on the determination of the Shapley value for
the link game. In this case, we have a total amount of 49 edges, which
do not allow for computing it in an exact way, in spite of only having
11 players.

In view of the obtained results in Table 11, Sergio Ramos (k) usually
occupies position 1 in the rankings, with the exception of the case of
the position value for the grand coalition connectivity game (see rows
10

1–2). Under such perspective, he goes to position 5. Notice that this
player counts with the larger amount of individual passes and take a
key role as a defender. Jordi Alba (g) and Isco (f) occupy positions 2
and 3 (except for the case of the position value for the TU game 𝑣𝑔𝑐𝑐𝑜𝑛𝑛),
according to the scheme of individual passes that they do. In general,
we check that under the usage of the additive weighted connectivity
game, the position value and the weighted position value provides
a very similar ranking although the numerical results are obviously
different. Only four players differ, with a difference of one position.
The weighted approach of the position value also provide a similar
ranking for the players under the grand coalition connectivity game’s
approach. The main differences are that players (e), Gerard Piqué, and
(i), Nacho, now exchange their positions with respect, for instance, to
the mentioned ranking based on the additive weighted connectivity
game with the weighted position value. From the three considered
rankings, we can state that the strikers do not have a determining role
to play when considering the position value (see the case of Diego
Costa and Nacho, respectively). The ranking based on the position value
for the grand coalition connectivity game (rows 1–2) deserves special
consideration. Here, David de Gea (c), Sergio Busquets (j) and Jordi
Alba (g) occupy the first three positions.

In a more general manner, Spearman’s and Kendall’s correlations
allow us to analyze the possible association between pairs of variables,
through a coefficient of association between the rankings. Table 12
numerically summarizes both measures. In view of such results, �̂�(𝑁,
𝑣𝑔𝑐𝑐𝑜𝑛𝑛, 𝐿) prescribes the most different ranking, with a no clear associ-
tion with the rest of the rankings, and being it slightly reversed with
espect to the ranking based on �̂�(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛, 𝐿). Besides, the similarities
etween the rankings based on �̂�(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛, 𝐿) and �̂�𝜔(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛, 𝐿) are
reater than those ones based on �̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛, 𝐿) and �̂�𝜔(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛, 𝐿).

Table 12
Spearman’s correlation matrix (upper triangular matrix) and Kendall’s correlation
matrix (lower triangular matrix) for the rankings of the Spanish national football
team.

�̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) �̂�(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿)

�̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) – 0.345 0.018 0.064
�̂�𝜔(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) 0.273 – 0.836 0.882

�̂�(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿) −0.018 0.709 – 0.982
�̂�𝜔(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿) 0.055 0.782 0.927 –

However, unlike the approaches in the literature on centrality mea-
sures, we highlight that this approach implicitly allows us to provide
a measure of the influence of each of the edges in the graph to be
analyzed at the same time, becoming a powerful tool in the network
analysis. It is worth remembering that the position value is obtained,
in practice, from the Shapley value for the link game. The Shapley value
has already been widely considered in the game-theoretical literature
as a measure of node centrality. Thus, this solution applied to the link
game, innovatively provides an edge centrality measure in this context,
which has not been used until now. Table B.1 in Appendix B of the
ORS provides the estimation of the Shapley value for the TU games
(𝐿, 𝑟𝐿𝑣𝑔𝑐𝑐𝑜𝑛𝑛 ) and (𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 ) when using 𝓁 = 107 permutations of edges,
espectively. Next, by simplicity, we only focus on identifying the 10
ost influential edges in our network, included in Table 13.
Table 11
Positions of players using the position value (𝜋) and its weighted version (𝜋𝜔) under the approaches given by (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) and (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛), respectively.

Players (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

(𝑁
,𝑣

𝑔𝑐
𝑐𝑜
𝑛𝑛
) �̂� 0.0821 0.0824 0.1207 0.0865 0.0889 0.0890 0.0927 0.0869 0.0889 0.0929 0.0890

Pos. 11 10 1 9 6 4 3 8 7 2 5

�̂�𝜔 0.0938 0.0675 0.0353 0.0377 0.1055 0.1190 0.1210 0.0827 0.0976 0.1102 0.1297
Pos. 7 9 11 10 5 3 2 8 6 4 1

(𝑁
,𝑣

𝑎𝑤
𝑐𝑜
𝑛𝑛
) �̂� 25.8204 16.7859 10.2529 13.0654 20.1048 27.7678 34.3119 20.1427 18.3471 17.2969 34.5839

Pos. 4 9 11 10 6 3 2 5 7 8 1

�̂�𝜔 27.3438 12.2241 2.7614 5.1719 19.8652 32.8996 39.7137 18.4597 16.3095 17.1850 46.5658
Pos. 4 9 11 10 5 3 2 6 8 7 1
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Table 13
Top-10 edges of the Spanish national team, according to the Shapley value of the link games.

𝑆ℎ(𝐿, 𝑟𝐿𝑣𝑔𝑐𝑐𝑜𝑛𝑛 ) 𝑆ℎ(𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 )

Pair of players Alloc. Pair of players Alloc.

1 David de Gea-Jordi Alba 0.0425 Jordi Alba-Sergio Ramos 11.3596
2 David de Gea-Sergio Busquets 0.0421 Isco-Jordi Alba 10.2668
3 David de Gea-Isco 0.0393 Andrés Iniesta-Sergio Ramos 9.0507
4 David de Gea-Nacho 0.0393 Andrés Iniesta-Jordi Alba 8.4281
5 David de Gea-Sergio Ramos 0.0392 Isco-Sergio Ramos 7.4889
6 David de Gea-Gerard Piqué 0.0389 Jordi Alba-Koke 7.3670
7 David Silva-Koke 0.0235 Andrés Iniesta-Isco 6.9551
8 Andrés Iniesta-Diego Costa 0.0234 Gerard Piqué-Sergio Ramos 6.7874
9 Andrés Iniesta-Koke 0.0233 Sergio Busquets-Sergio Ramos 6.7686
10 David Silva-Diego Costa 0.0233 Gerard Piqué-Jordi Alba 6.7619
In the following, we briefly comment on the results, although we
an already check at a glance the influence of the TU game under
onsideration in the resulting ranking of edges. Fig. 5 provides a
ore comprehensive illustration of these results and partially compare

hem with the ones in Table 11. The grand coalition connectivity link
ame (𝐿, 𝑟𝐿𝑣𝑔𝑐𝑐𝑜𝑛𝑛 ) highlights the influence of those edges involving the

goalkeeper (David de Gea, (c)), defenders and midfielders, with those
connecting to the goalkeeper being the most influential. However, the
other link game considered, the additive weighted connectivity link
game (𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 ), gives greater weight in the network to those players
on the right side of the football field, as Jordi Alba (g), Sergio Ramos
(k), Andrés Iniesta (a) and Isco (f). Logically, the information contained
in the TU game is vital in the outcomes, so a good choice will give key
information or the possibility of studying the most probable situations.
In any case, the choice of the TU game is up to the user criteria and his
or her needs in the analysis.
11
5.2. The Zerkani network

In this section, we change our perspective completely. The Zerkani
network is a terrorist cell, supported by the Islamic State, that was
considered as responsible for the attacks occurred in Paris in 2015 and
Brussels in 2016. It is considered a representative example of terrorist
group that leads to panic on European society. The Zerkani network
provided personnel, training, planning, attack, escape and evasion.

Fig. 6 shows its associated graph as well as the overall list of its
members. The nodes denote the terrorists and the edges represent the
connections among them. After conducting multiple analysis, it was
determined that Abdelhamid Abaaoud and the recruiter Khalid Zerkani
were identified as the individuals accountable for orchestrating the
tactical operations behind the attacks in Paris and Brussels. Table 14
enumerates the 11 possible types of connections, that has associated
a weight and that is associated to a corresponding edge in the graph.
Fig. 5. Top-10 edges and their nodes (in cyan) under the Shapley value of the link games and top-5 nodes according to the position value (in dark blue) in the Spanish national
football team.
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Fig. 6. Graph of the Zerkani network.
Similarly, to remark their influence on the graph, we also consider extra
weights on the end nodes of these edges according to the relationships.
The third column of Table 14 shows them. Both criteria are considered
in Hamers et al. (2019).

Abdelhamid Abaaoud, Fabien Clain, Khalid Zerkani, Miloud F.,
and Mohamed Belkaid emerged with the largest weights among the
members of the Zerkani network, based on their direct involvement and
active participation. These weights are considered as a measure of the
danger of terrorism, in terms of the capability of attacking or receiving
funding to support new actions. For the case of the edges, the weight
between two members takes a large worth when their communication
is more frequent than the communication of other members of the
network.

Below, we evaluate the performance of our proposals for estimating
the position value in this example. We approximate the position value
of each player 𝑖 ∈ 𝑁 , using our sampling proposal with 𝓁 = 107. In
practice, we only take a small size of the population of possible orders
of edges.
12
Table 14
Relations, weights for edges and for initial nodes.

Relationships Weights Extra weight for
on edges initial nodes

‘‘Associate of’’ 2 0
‘‘Brother of’’ 1 0
‘‘Commander of’’ 2 2
‘‘Family relationship’’ 1 0
‘‘Funded’’ 1 2
‘‘Lived with’’ 2 0
‘‘Nephew of’’ 1 0
‘‘Recruiter of’’ 1 1
‘‘Supporter of’’ 1 1
‘‘Traveled to Syria with’’ 2 0
‘‘Traveled with’’ 2 0
‘‘Associate and traveled with’’ 4 0
‘‘Traveled and lived with’’ 4 0
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Table 15 shows the theoretical errors for the estimation of the
weighted position value for player 𝑖 = 15, that corresponds to Khalid
erkani, with |𝐿𝑖| = 9, when using 𝓁 = 107. Specifically, we obtain the
rrors given by Corollaries 4.3 and 4.4 for several values of 𝛼.

Table 15
Theoretical errors for the weighted position value by using 𝓁 = 107.

𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01

(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) 2.903 ⋅ 10−3 3.221 ⋅ 10−3 3.860 ⋅ 10−3

(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛) 0.871 0.966 1.158

Similarly, we include in Table 16, the theoretical errors that inequal-
ties in (22) and in (23) establish for the estimation of the position value
f player 𝑖, with 𝑖 = 15, when 𝓁 = 107.

Table 16
Theoretical errors for the position value by using 𝓁 = 107.

𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01

(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) 1.742 ⋅ 10−3 1.933 ⋅ 10−3 2.136 ⋅ 10−3

(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛) 0.523 0.580 0.695

We distinguish the two approaches of TU games considered. Notice
hat, for obtaining such values for the case of the additive weighted
onnectivity TU game on Zerkani network, we have that

(

∑

𝑗∈𝑁 𝑤𝑗

)

⋅
max𝑙ℎ∈𝐿𝑘𝑙ℎ = 300.

Table 17 partially displays the top-10 of the terrorists belonging to
the Zerkani network based on the position value estimation by using
𝓁 = 107. More details can be found in the complete list of the members
of the Zerkani network in Appendix C of the ORS. As the existing
resources for surveillance of potential terrorists are limited, the task
of identifying the most potentially dangerous members of the network
is key to keeping them under surveillance.

From Table 17, some conclusions can be extracted from the top-
10 of terrorists within the Zerkani network when the position value is
considered.

Under the approach of the grand coalition connectivity game
(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛), Khalid Zerkani now moves up from sixth to fourth position
when the weights are considered in the position value. The top-3 is
occupied by the same people: Reda Kriket, which moves up to the first
position, and Adelhamid Abaaoud and Mohamed Belkaid, that go to
the second and the third position, respectively. The main differences
are the cases of Salah Abdeslam, Fabien Clain, Anis Bari and Y.A. (at
fourth, fifth, seventh, and eighth positions in the non-weighted case),
and of AQI and Miloud F., that are ranked at ninth and sixth positions
13
in the weighted and non-weighted case, respectively. Hamza Attou is
at tenth position under both perspectives. The remaining members of
the ranking are the same, although they occupy different positions.

By considering the additive weighted connectivity game (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛),
halid Zerkani, the considered leader of the terrorist cell, occupies

he fourth and the third position under the estimation of the non-
eighted and weighted position value, respectively. The first position is
ccupied by Abdelhamid Abaaoud, with Salah Abdeslam and Mohamed
elkaid occupying the second positions. As a general comment, note
hat despite not occupying the same positions, the two rankings contain
ostly the same terrorists. The exceptions are Khaled Ledjeradi, who

s ranked tenth in the unweighted case and disappears in the weighted
ase, and Miloud F., who is ranked ninth in the weighted case.

In both cases, those terrorists in the first positions of the rankings
re those ones in Fig. 6 that have the largest number of connections
o other members of the network. In general, this statement can be
ustified by the definition of the position value in terms of the link
ame.

Next, we make an overall analysis of the obtained rankings by using
pearman’s and Kendall’s correlations, that are numerically shown in
able 18. Notice that the most similarities are found between the
ankings prescribed by �̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛, 𝐿) and �̂�𝜔(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛, 𝐿). However,
he rankings associated with the TU games (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) and (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛)
re barely associated with each other (correlations close to zero). Even
o, the correlations between the rankings prescribed by �̂�(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛, 𝐿)
nd the two given rankings for the TU game (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) indicate, by
heir sign, an inverse association.
Table 18
Spearman’s correlation matrix (upper triangular matrix) and Kendall’s correlation
matrix (lower triangular matrix).

�̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) �̂�(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿)

�̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) – 0.978 −0.095 0.018
�̂�𝜔(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) 0.914 – −0.072 0.083

�̂�(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿) −0.150 −0.156 – 0.851
�̂�𝜔(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿) −0.011 0.068 0.702 –

The node centrality analysis prescribed by the position value implic-
itly provides, as in the previous example, a ranking of the influence of
the edges in the Zerkani network. Recall that the position value is based
on the Shapley value of the link game. Table 19 depicts the 10 most
influential edges in the Zerkani network based on the estimation of the
Shapley value for the TU games (𝐿, 𝑟𝐿 ) and (𝐿, 𝑟𝐿 ) with 𝓁 = 107
𝑣𝑔𝑐𝑐𝑜𝑛𝑛 𝑣𝑎𝑤𝑐𝑜𝑛𝑛
Table 17
Top-10 terrorists in the Zerkani network, according to the position value.

�̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿)

Terrorist Alloc. Terrorist Alloc.

1 Reda Kriket 0.1397 Reda Kriket 0.1397
2 Abdelhamid Abaaoud 0.0740 Abdelhamid Abaaoud 0.1183
3 Mohamed Belkaid 0.0697 Mohamed Belkaid 0.1045
4 Salah Abdeslam 0.0404 Khalid Zerkani 0.0618
5 Fabien Clain 0.0376 Fabien Clain 0.0601
6 Khalid Zerkani 0.0371 Miloud F. 0.0466
7 Anis Bari 0.0352 Salah Abdeslam 0.0404
8 Y. A. 0.0351 Anis Bari 0.0352
9 AQI 0.0350 Y. A. 0.0350
10 Hamza Attou 0.0350 Hamza Attou 0.0350

�̂�(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿)

Terrorist Alloc. Terrorist Alloc.

1 Abdelhamid Abaaoud 23.2243 Abdelhamid Abaaoud 33.5083
2 Salah Abdeslam 22.4601 Mohamed Belkaid 32.0624
3 Mohamed Belkaid 22.4579 Khalid Zerkani 28.6614
4 Khalid Zerkani 17.7802 Fabien Clain 20.7469
5 Reda Kriket 14.4410 Salah Abdeslam 19.0163
6 Fabien Clain 13.7486 Reda Kriket 12.5198
7 Mohamed Bakkali 10.7938 Mohamed Bakkali 9.5819
8 Najim Laachraoui 10.7547 Najim Laachraoui 8.3530
9 Mohamed Abrini 7.9700 Miloud F. 8.1037
10 Khaled Ledjeradi 7.7340 Mohamed Abrini 7.9700
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Table 19
Top-10 edges of the Zerkani network, according to the Shapley value of the link games.

𝑆ℎ(𝐿, 𝑟𝐿𝑣𝑔𝑐𝑐𝑜𝑛𝑛 ) 𝑆ℎ(𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 )

Pair of terrorists Alloc. Pair of terrorists Alloc.

1 Anis Bari - Reda Kriket 0.0704 Mohamed Belkaid - Identity Unknown 7.6692
2 Fabien Clain - AQI 0.0702 Mohamed Belkaid - Tawfik A. 7.6504
3 Y. A. - Reda Kriket 0.0701 Miloud F. - AQIM 7.2270
4 Salah Abdeslam - Hamza Attou 0.0700 Fabien Clain - AQI 6.4286
5 Khalid Zerkani - Soufiane Alilou 0.0699 Khalid Zerkani - Soufiane Alilou 6.2271
6 Miloud F. - AQIM 0.0699 Abd. Abaaoud - Ayoub el Khazzani 5.6688
7 Abd. Abaaoud - Reda Hame 0.0698 Abd. Abaaoud - Reda Hame 5.5547
8 Khaled Ledjeradi - Djamal Eddine Ouali 0.0698 Mohamed Belkaid - Salah Abdeslam 5.5518
9 Mohamed Belkaid - Tawfik A. 0.0697 Salah Abdeslam - Hamza Attou 5.5228
10 Abd. Abaaoud - Ayoub el Khazzani 0.0695 Khaled Ledjeradi - Djamal Eddine Ouali 5.4095
Fig. 7. Top-10 edges and their nodes (in cyan) under the Shapley value of the link games and top-10 nodes according to the position value (in dark blue) in the Zerkani network.
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permutations of edges. Table C.3 of Appendix C.1 in the ORS provides
the comprehensive estimation of the Shapley value for all edges in the
network.

In view of the obtained rankings, 8 of the 10 edges in both rankings
are the same although their positions differ. Only one of the 10 edges
in each ranking involves Khalid Zerkani, who is considered to be the
network’s top leader. Fig. 7 provides a graphical comparison of these
results and compare them with the ones in Table 17. Moreover, the
most influential edges under the grand coalition connectivity link game,
(𝐿, 𝑟𝐿 ), involved terrorists in the first 10 positions of the rankings
14

𝑣𝑔𝑐𝑐𝑜𝑛𝑛
prescribed by the position value (in its weighted and non-weighted
version) and shown in Table 17. The exceptions are the edges Khaled
Ledjeradi-Djamal Eddine Ouali (in both scenarios) and Miloud F.-AQIM
for the case of �̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛, 𝐿). Even more, the most relevant edge
nvolves Reda Kriket, who occupies the first position in the ranking
f the most influential nodes. However, there exist some terrorists in
he 10 most influential edges under the additive weighted connectivity
ink game (𝐿, 𝑟𝐿𝑣𝑎𝑤𝑐𝑜𝑛𝑛 ) who do not belong to the top-10 of the most
nfluential nodes. The most powerful edge deserves special mention,
hich corresponds to the Mohamed Belkaid - Identity Unknown edge.
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This unidentified person plays a key role in the Zerkani network, under
the focus on edges that brings us the position value. Therefore, with
this approach, it is possible to obtain significant and complementary
information about the relations between nodes in a network, which
otherwise can go unnoticed with the existent centrality measures only
based on ranking nodes in a graph.

5.3. The position value versus other centrality measures

To conclude our analysis, we study how our proposal performs
with other classical centrality measures in the literature as well as the
Shapley value of the TU games (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) and (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛).

Let (𝑁,𝐿) be an undirected graph and take an agent 𝑖 of 𝑁 . From the
classical approach to social network analysis, we consider the following
three centrality measures on the set of nodes of (𝑁,𝐿).

• The normalized degree centrality of 𝑖 is specified by

𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) =
𝑑(𝑖)

|𝑁| − 1
, (24)

where 𝑑(𝑖) denotes the amount of direct connections impinging
on 𝑖.

• The normalized betweenness centrality of 𝑖 is prescribed by

𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠(𝑖) = 2
(|𝑁| − 1)(|𝑁| − 2)

∑

𝑘,𝑗∈𝑁⧵{𝑖}∶𝑘<𝑗

𝑝𝑘𝑖𝑗
𝑝𝑘𝑗

, (25)

where 𝑝𝑘𝑗 prescribes the amount of shortest paths between agents
𝑘 and 𝑗, and 𝑝𝑘𝑖𝑗 the amount of shortest paths between 𝑘 and 𝑗
that include agent 𝑖.

• The normalized closeness centrality of agent 𝑖 is formally given by

𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑖) =
|𝑁| − 1
∑

𝑗∈𝑁 𝑠𝑖𝑗
, (26)

where 𝑠𝑖𝑗 denotes the shortest distance between agents 𝑖 and 𝑗.

Once determined, the decreasing order of each of these classical cen-
trality measures in social network analysis also determines a ranking
for the nodes. The corresponding rankings to these three indices for the
examples of the Spanish team and the Zerkani network are included in
Appendix D of the ORS.

By the Shapley value-based nature of the position value, it is inter-
esting to compare our results with the ranking specified by the Shapley
value for the two considered TU games, (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) and (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛).5
These rankings can be found in Appendix E of the ORS.

According to these results, we study the similarities of the rank-
ings in terms of the associated correlations. We omit the case of the
Shapley value corresponding to the grand coalition connectivity game,
i.e., 𝑆ℎ(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛), since as expected, it is constant in its components
and its variance is zero. However, it is worth noting that unlike the
position value for the grand coalition connectivity game, the Shapley
value of this TU game does not capture the topology of the graph
and as a result, it assigns the same value to each node. In the case
of the Spanish national football team with respect to the three classical
measures, from Table 20, the ranking specified by the weighted position
value for the grand coalition connectivity game (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) is most
similar to those provided by the classical measures of centrality. In
the case of normalized degree centrality, normalized betweenness cen-
trality and normalized closeness centrality, Spearman’s and Kendall’s
correlations are greater than 0.5, with the first being slightly higher.
The same conclusions can be drawn for the two rankings based on the
additive weighted connectivity game (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛), where the Kendall’s
correlations are around 0.5 and the Spearman’s correlations are greater

5 Note that the Shapley value of the TU games (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛) and (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛)
corresponds to the Myerson value (Myerson, 1977) associated to the
communication situations (𝑁, 𝑢 , 𝐿) and (𝑁, 𝑓,𝐿), respectively.
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Table 20
Spearman’s correlation matrix (rows 1–3) and Kendall’s correlation matrix (rows 4–6)
for the rankings of the Spanish national football team.

�̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) �̂�(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿)

Sp
ea

rm
an degree 0.005 0.731 0.569 0.597

betweenness 0.227 0.798 0.557 0.599
closeness 0.005 0.731 0.569 0.597
Shapley value – – 0.992 0.988

Ke
nd

al
l degree −0.042 0.624 0.499 0.499

betweenness 0.081 0.650 0.488 0.488
closeness −0.042 0.624 0.499 0.499
Shapley value – – 0.963 0.963

than 0.55. As for the rankings based on the position value of the grand
coalition connectivity game, �̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛, 𝐿), there are no similarities as
heir correlations are close to zero (or even negative).

Next, we consider the case of the Zerkani network. The rankings
sing the TU game (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛) indicate the largest correlations, being
hose ones associated with the position value greater than those pre-
cribed by the weighted version of the position value. We even check
hat Spearman’s correlations are always larger than Kendall’s corre-
ations when considering the TU game (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛). However, under
he grand coalition connectivity game (𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛), the correlations are
sually negative (except in the case of betweenness for the weighted
osition value) and close to zero, so no similarities can be justified (see
able 21).

Table 21
Spearman’s correlation matrix (rows 1–3) and Kendall’s correlation matrix (rows 4–6)
for the rankings in the Zerkani network.

�̂�(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑔𝑐𝑐𝑜𝑛𝑛 , 𝐿) �̂�(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿) �̂�𝜔(𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛 , 𝐿)

Sp
ea

rm
an degree −0.187 −0.165 0.944 0.871

betweenness 0.047 0.084 0.845 0.883
closeness −0.060 −0.076 0.730 0.567
Shapley value – – 0.969 0.965

Ke
nd

al
l degree −0.246 −0.224 0.851 0.740

betweenness −0.010 0.015 0.717 0.743
closeness −0.067 −0.083 0.549 0.424
Shapley value – – 0.957 0.912

It is important emphasize that the largest correlations indicate a
high degree of similarity between the rankings given by the Shapley
value of the TU game (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛) and the position value in both
scenarios. It is due mainly to that the TU game (𝑁, 𝑣𝑎𝑤𝑐𝑜𝑛𝑛) takes
into consideration the main features of the graph. However, these
differences between the rankings can be explained by the fact that
the position value adds even more additional and relevant information
about nodes and edges indicating that these variations must be taken
into account since it may lead to big differences in the results. Even
so, the information available and the potential user’s own criteria will
determine which ranking to use. This does not preclude their being
obtained simultaneously, so that different scenarios can be evaluated
at the same time.

6. Concluding remarks

In this work, we have introduced the position value as a useful
tool to rank nodes and edges of a network defined by a graph. To
achieve these rankings, we have provided a procedure to approximate
the position value for communication situations based on simple ran-
dom sampling with replacement. This approach is particularly valuable
when handling communication situations with a large amount of con-
nections, even if the number of players involved is not excessively large,
as its exact computation becomes intractable. We have provided some
theoretical results to ensure that our proposal correctly approximates
the position value for any communication situation and, consequently,
to determine the adequate sampling size in the estimation. The perfor-
mance of our sampling proposal has been evaluated as application in
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two real examples that can be modeled in terms of a communication
situation, showing that this measure is specially advantageous when
dealing with networks represented by a graph. In fact, the advantage
and strength of this approach compared to other measures of centrality
is revealed by integrating the particular and specific features of the
network nature, independently whether it is taken into account in the
original game and by allowing us to obtain, not only a ranking of the
nodes but also of the edges of the graph. Therefore, with the position
value as a new centrality measure, we can get significant and more
realistic information about the most influential nodes and, at the same
time, the stronger relations between them.

The theoretical analysis of the properties of the position value for
communication situations (cf. Borm et al., 1992) has already had suf-
ficient impact on cooperative game literature because of its interesting
properties over the last decades. However, the difficulties of its exact
calculation in general has not been addressed due to the enormous
computational complexity associated. This fact has undoubtedly limited
its practical application as a solution for many of the real-life situations
that could be modeled in the form of a network structure represented
by a graph. The position value is obtained from the Shapley value
(Shapley, 1953) for the TU game defined over the set of edges commu-
nicating the existing nodes. Hence, in addition to the effort required
to handle the corresponding link game, the computational problems
arisen from the Shapley value computation can now be extended to this
context as well. As in the estimation of solution concepts for TU games
(Fernández-García & Puerto-Albandoz, 2006 and Castro et al., 2009; for
the Shapley value approximation), the use of sampling methodologies
(Cochran, 2007) to approximate the position value in this work solves
these drawbacks. Its usage is justified by its formulation in terms of
a population mean. From a purely statistical approach, a thorough
analysis of the properties of the resulting estimator for the position
value was covered. Moreover, the task of bounding the estimation error
was also addressed through the establishment of specific results for
the position value estimation. From a computational perspective, it
is important to emphasize that the proposed procedure can be easily
computed in parallel.

With this work, the scope of application of the position value
estimation procedure is extended to any multi-agent situation that can
be modeled as a communication situation, even with a very large
number of edges involved. As illustration, we first focus on the analysis
of football passing networks to establish rankings of the players of the
Spanish national football team based on the estimated position value
as well as a ranking of the pairs of players with the best performance
during this football match according to the Shapley value of the link
game. Second, we address the well-known problem of ranking terrorists
in networks, in this case, under the approach given by the position
value, obtaining, likewise, valuable information through the ranking
of the stronger relations between the terrorists of the Zerkani network,
which constitutes a big distinction with all the others existent centrality
measures. Moreover, with these applications have been highlighted that
independently of the initial TU game considered, the position value
always takes into account the topology of the graph. Therefore, when
dealing with networks defined by a graph, it is another important
aspect to consider with respect to the centrality measures existent in
the literature. Note that we have applied it in three very different
fields such as transport, sports and security, although, as mentioned,
communication situations also arise in other many contexts as far apart
as economics, health or logistics, among others.
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