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This study evaluates the efficacy of hyperspectral data for detecting yellow and

brown rust in wheat, employing machine learning models and the SMOTE

(Synthetic Minority Oversampling Technique) augmentation technique to

tackle unbalanced datasets. Artificial Neural Network (ANN), Support Vector

Machine (SVM), Random Forest (RF), and Gaussian Naïve Bayes (GNB) models

were assessed. Overall, SVM and RF models showed higher accuracies,

particularly when utilizing SMOTE-enhanced datasets. The RF model achieved

70% accuracy in detecting yellow rust without data alteration. Conversely, for

brown rust, the SVM model outperformed others, reaching 63% accuracy with

SMOTE applied to the training set. This study highlights the potential of spectral

data and machine learning (ML) techniques in plant disease detection. It

emphasizes the need for further research in data processing methodologies,

particularly in exploring the impact of techniques like SMOTE on

model performance.
KEYWORDS
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1 Introduction

In wheat crop, foliar diseases such as rust are directly related to decreased yield and

grain quality (Figueroa et al., 2018). Yield losses caused by diseases depend on the crop

cultivar’s resistance or susceptibility and the specific type of rust affecting the crop.

Potential losses may reach up to 5% in resistant varieties, but in highly susceptible

cultivars, this value can be 80% under favorable conditions for the disease (Beard et al.,

2005). To reduce the effects of the disease on yield, farmers often make preventive

applications when the first pustules are seen. However, treatments are usually not

effective since the damage caused by the rust has already occurred at the cellular level

(Bauriegel and Herppich, 2014). Consequently, early disease detection is essential to
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optimize their management and maximize crop production

(Salvagiotti et al., 2005; Orchi et al., 2021).

As mentioned, crop disease identification primarily relies on

human visual inspection (Yadav et al., 2019). However, this method

is subjective, time-consuming, and prone to human error (Bock

et al., 2010). As an alternative to visual methods, many technologies

based on remote sensing have been developed to achieve more

accurate, rapid, and cost-effective detection of crop diseases (Zhang

et al., 2019). These technologies offer great potential for early and

non-destructive detection of plant diseases, enabling timely

intervention (Terentev et al., 2022).

From a remote-sensing perspective, disease detection uses

various tools (Yang, 2020). However, in the past years, spectral

information has gained significance, as highlighted by Wan et al.

(2022). The reliance on spectral information is based on the

understanding that each disease induces unique spectral

reflectivity patterns in crops, resulting from the harm inflicted on

plant tissues (Clevers, 1999). The changes can be detected by

hyperspectral sensors (spectroradiometers and cameras), which

are considered state-of-the-art for disease detection in crops

(Khanal et al., 2020). These sensors offer an exceptional level of

spectral resolution, capturing data related to biotic and abiotic

stresses that might not be easily detected by other sensors with

lower spectral resolution (Weiss et al., 2020). Given this scenario,

hyperspectral cameras have emerged as a promising alternative to

spectroradiometers among the hyperspectral sensors. They provide

the unique capability to capture a high-resolution spectrum for each

pixel in an image. Despite their advantages, hyperspectral images

have several limitations, independent of the equipment’s cost, that

should be considered. According to the work conducted by Roberts

et al. (2018), the issues are related to the availability of robust

commercial instrumentation and the large amount of data

generated during the analysis. Due to the large amount of data

generated, hyperspectral images require extensive processing work,

which involves a significant amount of time and complex

algorithms to reduce spectral dimensionality (Paoletti et al.,

2019). In this regard, spectroradiometers offer less detailed

information because they do not produce an image as an

outcome. However, they are a more affordable solution in terms

of equipment cost and data processing.

Many approaches have been derived for data processing of

spectroradiometers and hyperspectral cameras. One of the most

widely used approaches is the application of vegetation spectral

indices obtained from the combination of specific spectral bands

(Giovos et al., 2021). These indices may detect crop diseases by

observing changes in the leaf’s external (i.e., necrosis and chlorosis)

and internal architecture (i.e., chloroplast dysfunction), as

explained by Lin et al. (2017). Extensive research has been

conducted to detect diseases using spectral indices. As an

example, Devadas et al. (2009) showed the suitability of specific

indices like the Anthocyanin Reflectance Index (ARI) to

discriminate between healthy and rust-infected wheat leaves at a

medium-late growth stage and the Transformed Chlorophyll

Absorption in Reflectance Index (TCARI) to detect wheat leaf

rust. Other studies, such as the one conducted by Ashourloo et al.

(2014), demonstrated remarkable accuracies exceeding 85% in
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Index (LRDSI). While the LRDSI has been successful, it has

limitations in the early detection of symptoms due to the spectral

similarity between affected and healthy leaf areas. Spectral indices

offer valuable insights; however, they may fall short in specific

scenarios as they don’t encompass the comprehensive data required

for in-depth research analysis.

An alternative to employing spectral indices for disease

identification is leveraging the full spectrum of radiation reflected

and captured by hyperspectral sensors. However, given the vastness

of hyperspectral datasets and their intricate processing

requirements, integrating ML models with hyperspectral data for

disease identification has garnered increased interest in recent years.

In this sense, models such as ANN, SVM, RF, and GNB, among

others, have been proposed (Singh et al., 2016; Su, 2020). In light of

these facts, hyperspectral information for disease detection has been

successfully utilized. However, the research often relies on datasets

with limited data volume, particularly concerning the context of

ML. A comprehensive and balanced dataset is essential for broad

generalization when constructing a resilient ML model. However,

field data collection requires considerable effort and resources,

which limits data availability for analysis. Because of this, data

augmentation techniques are expected to be employed to improve

the overall learning procedure and performance of ML models.

Data augmentation is primarily performed on imbalanced datasets,

which exhibit a significant disparity in the number of data instances

in each class (Hadad et al., 2009). This imbalance has consequences

for the learning process by resulting in low predictive accuracy for

the minority class (Daskalaki et al., 2006), as many performance

measures used to guide training penalize minority classes. Rules

that predict minority classes are highly specialized and have low

coverage, which often causes them to be discarded in favor of more

general rules. In addition, the noise treatment may affect the

classification of minority classes, as they may be erroneously

discarded as noise (Pulgar et al., 2017).

According to the literature review by Kamilaris and Prenafeta-

Boldú (2018), 37% of the reviewed articles apply data augmentation

and highlight the importance of such techniques in scientific works

with small hyperspectral datasets (i.e., images). Limited resources

are available concerning the refinement of hyperspectral data from

spectroscopy. Chawla et al. (2002) introduced the Synthetic

Minority Over-sampling Technique (SMOTE), which interpolates

between minority class instances to address data imbalance. This

tool augments the minority class by generating new synthetic data

based on existing examples. From an agriculture perspective,

researchers like Ma et al. (2019) employed SMOTE to balance the

imbalanced training dataset, aiming to develop a model that

distinguishes between powdery mildew and aphid infestations in

winter wheat using bi-temporal Landsat-8 imagery. A recent study

by Divakar et al. (2021) utilized SMOTE to classify areas affected by

wilt disease in bananas.

Based on the above literature review and our knowledge, this

technique has rarely been applied to agricultural tasks, particularly

for detecting wheat yellow and brown rust. Hence, this study aims

to evaluate the feasibility of differentiating cultivars affected by

yellow and brown rust in durum and bread wheat using complete
frontiersin.org
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spectral signatures acquired through spectroscopy. Moreover, it will

assess the impact of the SMOTE algorithm on the development of

ML models for the accurate detection of both types of rust.
2 Materials and methods

2.1 Field experiment and data acquisition

The field experiment was conducted in a greenhouse located at

the School of Agricultural Engineering, University of Seville (37°21′
9″ N, 5° 56 ′ 10.5 ′ W; Datum: WGS84), Spain. The study was

conducted on spring wheat (Triticum aestivum L.) cultivated during

the 2020/2021 growing season. The experiment included three

cultivars of durum wheat, namely ‘Don Ricardo’, ‘Kiko Nick’, and

‘Amilcar’, as well as three cultivars of bread wheat, specifically

‘Conil’, ‘Califa’, and ‘Arthur Nick’. These cultivars were arranged in

a randomized design with six replicates for each cultivar. Half the

pots were inoculated with rust races to have healthy and infected

pots. Pots of bread wheat were inoculated with yellow rust (Puccinia

striiformis f. sp. tritici.), and pots belonging to durum wheat were
Frontiers in Plant Science 03
inoculated with brown rust, also called leaf rust (Puccina triticina).

The inoculation occurred on days 87 and 94 after seeding (DAS) for

bread and durum wheat, respectively (Figure 1).

In addition to the visual score evaluation, each pot was subject

to three spectral measurements captured at a distance of about 0.15

meters from the plant. Before the visibility of symptoms, the

spectral signature was derived from the average of the canopy.

However, once the pustules became completely visible,

measurements were explicitly taken from the affected areas using

a portable spectroradiometer. The sensor used was the

spectroradiometer (UNISPEC-DC, PP-systems, Inc., Amesbury,

MA, USA), which allows the measurement of reflectance from

two optical fibres, channels A and B. One channel records the

incident radiation, while the other records the reflected radiation.

Each channel includes a photodiode detector that covers a spectral

region ranging from 310 to 1100 nm. The sensor offers a spectral

resolution between 3.1 and 3.4 nm. A white reference (99%

reflectance Spectralon panel) calibrated the spectroradiometer.

Hyperspectral data were collected around noon under completely

sunny conditions, with data collection performed for each pot at

intervals of 3-4 days. Seven measurements were made on pots
A

B DC

FIGURE 1

Illustration showing the experimental design (A), the inoculation process (B), a detailed view of leaves with yellow rust (C), and the position of the
spectroradiometer during the measurements (D).
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inoculated with yellow rust on DAS 87, 94, 98, 101, 105, 108, and

112, and six measurements were made on pots inoculated with

brown rust on DAS 94, 98, 101, 105, 108, and 112.
2.2 Data preprocessing

For each wavelength (l), the spectral reflectance (Rl)   was

calculated following Equation 1:

Rl( % ) =
Lrl
Lil

� 100 (Equation 1)

where Lrl denotes the spectral radiance the crop surface reflects

in wavelength l and Lil the spectral radiance the crop surface

receives in wavelength l.
The spectral signature of each pot was obtained by calculating

the mean of the three measurements taken. This resulted in 36

spectral signatures for bread wheat and 36 for durum wheat. These

spectra were classified into three groups: ‘Healthy’ (H) for non-

inoculated plants, ‘Asymptomatic Leaf’ (AL) for inoculated plants

without visible symptoms, and ‘Symptomatic Leaf’ (SL) for

inoculated plants displaying visual symptoms. The selection of

these categories was intentional, serving as target variables for

prediction. Each category was meticulously crafted to include a

diverse range of instances, thereby facilitating the development of

accurate and robust predictive models. Subsequently, the spectra

underwent standardization using the Scikit-learn package version

1.2.2 (Pedregosa et al., 2011), scaling the values from 0 to 1.

Machine learning estimators often need standardization

procedures as they perform optimally when features exhibit an

approximately normal distribution. Following standardization, the

Savitzky-Golay algorithm (Dópido et al., 2012) was applied with the

following parameters: a window frame length of 11, polynomial

order of 4, and the first derivative.

To mitigate the substantial variance in the quantity of data

entries across categories, SMOTE (Synthetic Minority Over-

sampling Technique) was utilized to augment the available data.

The SMOTE technique is grounded in oversampling the minority

class, thereby generating synthetic data for each data point within

this underrepresented class. To generate these synthetic data points,

the feature vector of the sample is subtracted from its nearest

neighbour. This difference is then multiplied by a random number

between 0 and 1 and added to the feature vector. Thus, synthetic

data points are generated along the linear segments connecting any

or all nearest neighbours, chosen randomly and based on the

required oversampling. This study employed a random state of

888 to ensure reproducibility. Table 1 illustrates the data points for

each category before and after applying the SMOTE technique.

Furthermore, the proportion of actual data within each category is

provided after the SMOTE procedure.

Various dataset processing techniques were utilized to assess the

influence of synthetic data generated by SMOTE on the

development of prediction models. Throughout all scenarios, the
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H category was solely composed of actual data. The distinct

processing methods are as follows:
• No SMOTE was applied; no synthetic data was introduced.

• SMOTE was applied to the entire data set: synthetic data were

introduced into the training, testing, and second

validation sets.

• SMOTE applied to the training set only: The testing and

second validation sets consisted exclusively of actual data.
2.3 Training of ML models

After the preprocessing step, the dataset was split into three

parts: 30% for validation, 63% for training, and 7% for testing the

models. The flowchart (Figure 2) provides the workflow associated

with the different stages involved in disease detection.

Determining the best ML model for classification purposes is a

challenging task, and often, the optimal decision is made through

trial and error (Jagtap et al., 2022). This study implemented four

models with the scikit-learn library: ANN, SVM, RF, and GNB.

The RF and GNB models were configured with default

parameters. A second-degree polynomial kernel was employed

for the SVM model, with an independent term value of 2 in the

kernel function.

The deve lopment of the ANN enta i l ed ut i l i z ing

RandomizedSearchCV to optimize the parameter settings. A total of

50 interactions were performed, with a random state set to 42. The

parameters considered during the optimization process were alpha,

hidden layer sizes, and learning rate init. For yellow rust, alpha was set

to 0.0001, hidden layer sizes were 20 and 20, and the learning rate was

set to 0.001. Conversely, alpha was set to 0.1 for brown rust, the hidden

layer size was 30, and the learning rate was set to 0.01. The solver

employed for the yellow rust dataset was Adam, while for brown rust,

LBFGS was selected due to its better suitability for the data structure.

All other parameters retained the default configuration of Scikit Learn.

The ANN models developed using the dataset without the SMOTE

application served as a reference because they achieved the highest

accuracy results (see Table 2).
TABLE 1 Comparative data on bread wheat and durum wheat cultivars.

Categories Bread wheat Durum wheat

Number
of
actual
data

Actual
data
(%)

Number
of
actual
data

Actual
data (%)

H 125 100 107 100

AL 44 35.2 54 50.46

SL 64 51.2 36 33.64
fr
The table presents the number and percentage of actual data for each category: Healthy (H),
Asymptomatic Leaf (AL), and Symptomatic Leaf (SL).
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2.4 Matrics for model evaluation

The data processing was conducted using Google Collaboratory,

which provides the necessary Python environment and libraries for

data analysis and visualization. Regarding statistical assessment, the

classification models were compared based on their network

classification accuracy. Accuracy (Equation 2) quantifies the

percentage of instances in which the model has made correct

predictions, and it is defined as follows:

Accuracy =
Number of correct predictions
Total number of predictions

(Equation 2)

For each category with balanced data, evaluation was performed

using the F1_score (Equation 3) derived from the confusion matrix,

and it is defined as:

F1 _ score =
2x precision x recall
precision + recall

(Equation 3)

where precision (Equation 4) and recall (Equation 5) are

defined as follows:

Precision =
TP

TP + FP
(Equation 4)

Recall =
TP

TP + FN
(Equation 5)
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,where TP represents True Positive, FP stands for False Positive,

and FN represents False Negative. For models trained with

imbalanced categories, precision was employed for their evaluation.
3 Results

3.1 Spectral reflectance analysis

As can be observed in Figure 3, the mean values can vary

between categories, especially for yellow rust (Figure 3A). However,

in brown rust (Figure 3B), the mean values exhibit a higher degree

of overlap between categories. Overall, the mean reflectance values

obtained for brown rust are higher than for yellow rust. In both

cases, the most significant overlap occurs in the visible spectrum

region, although it also occurs between the “H” and “AL” categories

for brown rust. Both types of rust show considerable standard

deviations, leading to significant overlap across all categories. To

address this issue, specific classification models have been

developed for each rust type to enhance accuracy in

categorization. Notably, for yellow rust, the mean value of the

healthy category exceeds that of the asymptomatic leaf category,

while the reverse is true for brown rust.

Upon close examination of each plot at the rust level, it is

observed that for yellow rust (Figure 3A), the category with the

lowest mean reflectance value is the asymptomatic leaf, followed by
TABLE 2 F1-scores achieved by the SVM (Support Vector Machine) model for wheat disease classification are presented for the categories Healthy
(H), asymptomatic leaf (AL), and Symptomatic Leaf (SL) across datasets for both yellow rust and brown rust.

Categories Yellow rust Brown rust

Without SMOTE SMOTE SMOTE on trainning Without SMOTE SMOTE SMOTE on trainning

H 0.75 0.77 0.68 0.70 0.64 0.74

AL 0.54 0.87 0.50 0.46 0.75 0.54

SL 0.67 0.89 0.63 0.29 0.94 0.44
The table compares model performance without using SMOTE, with SMOTE, and with SMOTE applied during the training phase.
FIGURE 2

Workflow of hyperspectral data processing for disease classification in wheat. The process begins with hyperspectral data acquisition, followed by data
pre-processing, including standardization and Savitzky-Golay filtering, with increased data points. The dataset is split into 63% for training, 30% for
validation, and 7% for testing. Subsequently, the training of classification models is conducted, culminating in the evaluation of the model’s performance.
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the healthy category. In contrast, the symptomatic leaf category

displays the highest mean reflectance value. This trend remains

consistent in the visible spectrum (400-700 nm) and NIR regions

(700-800 nm). All categories exhibit a standard deviation wide

enough to cause overlap, although the healthy category displays the

highest variability. In the visible spectrum region, the similarity in

mean reflectance values between the healthy and asymptomatic leaf

categories is noteworthy, with the symptomatic category achieving a

higher mean value than both. In the NIR region, the mean

reflectance difference increases between the healthy and

asymptomatic leaf categories while it decreases between the

healthy and symptomatic leaf categories.

Figure 3B presents the mean reflectance and standard deviation

values for the various categories of wheat leaves infested with brown

rust. The mean reflectance values and standard deviations are

similar across the categories in the visible spectrum region.

However, in the NIR region, there is a noticeable increase in the

mean reflectance value for the symptomatic leaf category compared

to the others, indicating that the spectral signatures of H and

asymptomatic plants are very similar, which presents challenges

in early detection. Similar to yellow rust, the data obtained for

brown rust also exhibit significant standard deviations, resulting in

an overlap among categories.
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3.2 Models’ performance

The classification models were constructed using the training

dataset, encompassing labelled data from all wheat varieties. The

models were fine-tuned using the validation dataset. Subsequently,

the developed models were tested for performance using the test set,

comprising spectral data from all varieties within each wheat type.

The corresponding accuracy (%) of each model used in this study,

based on their respective datasets, is presented in Table 3.

The results show that the model’s accuracy is consistently

higher for classifying yellow rust than brown rust. Among the

models, the GNB model displayed the least accuracy in both yellow

and brown rust contexts. Consequently, our analysis will primarily

concentrate on the outcomes achieved by the ANN, SVM, and

RF models.

The SVM model obtained the highest accuracy for the dataset

where SMOTE was not applied, followed by the ANN model for

brow rust and the RF model for yellow rust. Similarly, in cases

where the dataset was augmented using SMOTE, the highest

accuracy values were obtained by SVM models. The accuracy

achieved in this dataset is the highest among all models compared

to the results obtained in the remaining datasets. Furthermore,

these models also excel in the dataset where the SMOTE algorithm
TABLE 3 Performance comparison of Machine Learning (ML) models for yellow and brown rust classification.

Models Yellow rust Brown rust

Without
SMOTE

SMOTE SMOTE
on training

Without
SMOTE

SMOTE SMOTE
on training

ANN 65.71 76 60 57 76.3 55

SVM 68.6 85 62.86 58 78.35 63

RF 70 81.5 68.5 53 73.2 55

GNB 64 61 57 37 60 38
The table presents the accuracy percentages of Artificial Neural Networks (ANN), Support Vector Machines (SVM), Random Forests (RF), and Gaussian Naive Bayes (GNB) with and without the
application of Synthetic Minority Over-sampling Technique (SMOTE) during training.
A B

FIGURE 3

Reflectance spectra are presented for healthy (H), asymptomatic (AL), and symptomatic leaf (SL) categories, illustrating the spectra of wheat leaves
affected by yellow rust (A) and brown rust (B). Mean reflectance values and standard deviations have been computed for these predefined
categories. The spectra are displayed in an unnormalized format.
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was exclusively applied during training. Nevertheless, it is

noteworthy that the accuracy obtained in the SMOTE dataset

during training decreased compared to the datasets where

SMOTE was and was not applied for all models. However, the

exception to this trend is observed for the SVM and RF models in

the case of brown rust. In the SVM model, the accuracy of the

model trained with the original dataset increased by five percentage

points when SMOTE was applied in training. For the RF model, this

increase was two percentual points.

Table 4 shows the F1-scores achieved by the ANN model for

yellow and brown rust prediction. Regarding yellow rust, it can be

observed that in the dataset without SMOTE, the “H” category,

characterized by a more substantial number of data points, achieved

higher values. In contrast, the “AL” category displayed the lowest

value. It is worth noting that this category was composed of fewer

data than the others. In the dataset where the algorithm was fully

implemented, notable enhancements were observed in the “AL” and

“SL” categories, which incorporated synthetic data. However, the

“H” category, comprised solely of actual data, obtained a lower

score than the dataset where SMOTE was not applied. Conversely,

in the dataset where SMOTE was only applied to the training

dataset, it was observed that the “H” category maintained an

outcome similar to that of the dataset with complete SMOTE

application and a decrease relative to the original dataset.

However, the “SL” and “AL” categories obtained similar and

slightly higher F1-scores than the dataset where the SMOTE

algorithm was not applied.

A similar trend is observed for brown rust as for yellow rust.

The category “H” results were consistent across all three datasets. In

the categories “AL” and “SL,” higher F1-scores were obtained in the

dataset where SMOTE was fully applied. In contrast to the trend

observed in yellow rust, in the dataset where SMOTE was only used

in the training, categories SL and AL increased their accuracy by 26

and 14 points, respectively, compared to the dataset where SMOTE

was not applied. The F1-scores obtained by the SVM models show

behaviour similar to that of the ANN model (Table 2). The “H”

category demonstrates consistent performance across all three

datasets with slight variations. For the “AL” and “SL” categories, a

notable enhancement is observed when SMOTE is applied to the

entire dataset, contrasting the performance of the non-SMOTE

dataset. However, in the dataset where SMOTE was solely used

during training, the accuracy obtained decreases by 3-4 percentual

points for yellow rust and increases for brown rust. In the latter
Frontiers in Plant Science 07
case, the 15-point increase in the “SL” category is worth noting

compared to the original dataset.

Table 5 displays the F1-scores results of the RF model. In the

case of yellow rust, the “H” category maintains consistency across

all datasets, with a slight advantage in the non-SMOTE dataset. The

“AL” category shows improvement with SMOTE applied during

training, while “SL” remains unchanged. A similar pattern is

observed for the “H” category in the context of brown rust.

Interestingly, the dataset containing actual data yielded the lowest

values for “AL” and “SL”, but the application of SMOTE during

training increased their values by 12 and 20 points, respectively.

When comparing the results obtained for each model, it can be

observed that the best accuracies are achieved by the models that

used datasets augmented with the SMOTE algorithm. However, the

presence of synthetic data in the test dataset may raise concerns

about the reliability of the results. Regarding the dataset for the

category consisting solely of actual data, RF was the best model for

yellow rust classification. The SVM model performed better for

brown rust when the same dataset was used.

The SVMmodel achieved the highest F1-score for yellow rust in

the “AL” category. In the case of brown rust, the best model was

ANN for the same category. Conversely, the highest accuracy for

the “AL” category in yellow rust was found in the original dataset,

and for brown rust, it occurred in the dataset where SMOTE was

applied during training. Finally, the best F1-score for the “SL”

category in yellow rust was achieved by the RF model, and for

brown rust, it was the SVM model, both using the dataset with

SMOTE applied during training.
3.3 Confusion matrix

For the set of confusion matrices shown in Figure 4, it was

observed that both models had a similar total number of errors in the

dataset where SMOTE was not applied. However, the number of

classification errors by categories differs significantly between the two

models. In the SVM model, the category with the highest number of

errors was “H” particularly when distinguishing it from the “AL”

category. Notably, there were many mistakes in classifying the “SL”

and “H” categories. On the other hand, in the RF model, there is a

drastic decrease in the error rate for classifying the “H” category,

representing an improvement compared to the SVM model.

However, an increase in misclassifications in the “AL” and “SL”
TABLE 4 F1-scores achieved by the ANN (Artificial Neural Network) model for wheat disease classification are presented for the categories Healthy
(H), asymptomatic leaf (AL), and Symptomatic Leaf (SL) across datasets for both yellow rust and brown rust.

Yellow rust Brown rust

Categories Without
SMOTE

SMOTE SMOTE
on training

Without
SMOTE

SMOTE SMOTE
on training

H 0.73 0.63 0.65 0.66 0.66 0.67

AL 0.45 0.77 0.50 0.47 0.81 0.61

SL 0.62 0.87 0.59 0.37 0.82 0.63
The table compares model performance without using SMOTE, with SMOTE, and with SMOTE applied during the training phase.
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categories was observed, especially when distinguishing them from

the “H” category. In the dataset where SMOTE was applied entirely,

both models exhibited the highest number of correct predictions in

the categories “AL” and “SL,” which included synthetic data.
Frontiers in Plant Science 08
However, most errors occurred in the category “H”, consisting

entirely of actual data, particularly in distinguishing between “H”

and “AL”. Notably, the number of errors in this distinction is higher

in this dataset than in the original data.
A B

D

E F

C

FIGURE 4

Confusion matrices were obtained by SVM (Support Vector Machine) and RF (Random Forest) models to predict “H”, “SL”, and “AL” yellow rust
categories. SVM for the dataset without SMOTE (A), RF for the dataset without SMOTE (B), SVM for the dataset with SMOTE (C), RF for the dataset
with SMOTE (D), SVM for the dataset with SMOTE on training (E), RF for the dataset with SMOTE on training (F).
TABLE 5 F1-scores achieved by the RF (Random Forest) model for wheat disease classification are presented for the categories Healthy (H),
asymptomatic leaf (AL), and Symptomatic Leaf (SL) across datasets for both yellow rust and brown rust.

Categories Yellow rust Brown rust

Without SMOTE SMOTE SMOTE on training Without SMOTE SMOTE SMOTE on training

H 0.78 0.70 0.73 0.66 0.59 0.64

AL 0.32 0.84 0.50 0.34 0.71 0.46

SL 0.71 0.88 0.74 0.17 0.89 0.37
The table compares model performance without using SMOTE, with SMOTE, and with SMOTE applied during the training phase.
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Finally, in the dataset where SMOTE was exclusively applied to

the training set, a similar pattern was observed compared to the

dataset without SMOTE. The category with the highest number of

correct predictions was “H,” which showed better results with RF

than SVM. For this category, the SVM model exhibited a more

significant number of incorrect predictions with the “SL” category.

On the other hand, for the “AL” category in the SVM model, the

number of errors was balanced with the “SL” and “H” categories.

However, in the RF model, it is observed that most incorrect

predictions were made mainly concerning the “H” category.

Based on the data obtained in Figures 4A, B, E, F, it is evident

that the RF model is better at classifying the predominant category

“H” consisting exclusively of real data. All models exhibit similar

behaviour regarding the “SL” category, whose spectral

characteristics differ the most from the other categories. Finally,

for the “AL” category, it is noteworthy that both SVM and RF

models perform well when SMOTE is applied during training.

However, they misclassify instances differently, with the RF model

standing out. This is attributed to its ability, within the margin of

error, to more accurately approximate two categories with similar

spectral characteristics, namely “AL” and “H”.

The confusion matrices obtained with the SVM model for each

dataset with the highest accuracy for brown rust are displayed

in Figure 5.

For the set of confusion matrices shown in Figure 5, it was

observed that, in the dataset in which SMOTE was not applied, the

category with the highest number of correct predictions is ‘H.’

Within this category, it is noteworthy that the highest number of

errors was made with the ‘AL’ category. The same pattern is

repeated for the ‘AL’ category, with all incorrect predictions made

with the ‘H’ category. The ‘SL’ category showed the most significant

errors, evenly distributed among the remaining categories.

The same behaviour was observed for yellow rust in the dataset

where SMOTE was applied entirely. Finally, the trend observed for the

‘H’ category without data augmentation repeats itself in the dataset

where SMOTE was exclusively applied to the training set. However,

for the ‘SL’ and ‘AL’ categories, there is a slight increase in the number

of correct predictions, and the error ratio remains consistent

compared to the original dataset. Therefore, this latter model

demonstrates the highest efficiency in category distinction, although

it also shows notable deficiencies in classifying the ‘SL’ category.
Frontiers in Plant Science 09
4 Discussion

This study examines the spectral reflectance signatures for three

different disease categories. It explores the application of the

SMOTE algorithm across various hyperspectral datasets for

predicting wheat rust, specifically focusing on its impact on

model accuracy and F1-scores.

Regarding leaf rust classification, the present study yields results

similar to those obtained by Ruan et al. (2021), who achieved an

accuracy of 86.2% using an SVMmodel to classify healthy and rust-

infected wheat leaves. While they also employed SMOTE to balance

the data, they did not examine its effects. However, our findings

demonstrate a significant improvement in model performance by

applying the SMOTE algorithm. Specifically, we observed accuracy

improvements ranging from 16% to 20% for yellow rust and 11% to

20% for brown rust when SMOTE was applied across the entire

dataset. These results align with previous studies, such as those by

Uğuz and Uysal (2021) and Singh and Arora (2020), which utilized

a dataset of 3400 hyperspectral images to distinguish between two

diseases and healthy plants across three categories. Nevertheless,

our study offers a detailed analysis, particularly concerning the

category comprised solely of original data, where no accuracy

improvement was noted. This highlights the complex effects of

data augmentation techniques like SMOTE on model accuracy.

Similarly, Su et al. (2019) reported a 3.36% improvement in model

performance when comparing outcomes on imbalanced versus

balanced standard datasets, underscoring the beneficial impact of

data-balancing techniques.

In contrast to our findings, Singh and Arora (2020) reported an

increase in overall accuracy across all categories when applying the

SMOTE algorithm, with 75% of their dataset comprising synthetic

data. This discrepancy highlights the varied outcomes that can

occur based on the dataset’s composition, particularly the

proportion of synthetic data introduced. This variability in results

highlights the complex relationship between dataset characteristics

and the efficacy of data augmentation techniques, prompting a

more thorough investigation into the factors influencing model

performance. Furthermore, our study adds to the extensive

l i t e ra ture on l eve rag ing the comple t e spec t rum of

spectroradiometers for plant disease detection. Works such as

Naidu et al. (2009) and Khosrokhani and Nasr (2022) have
A B C

FIGURE 5

The SVM (Support Vector Machine) model obtained confusion matrices to predict Healthy (H), Symptomatic Leaf (SL), and Asymptomatic (AL) brown
rust categories. SVM for the dataset without SMOTE (A), SVM for the dataset with SMOTE (B), and SVM for the dataset with SMOTE on training (C).
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demonstrated the potential of combining spectral data with

machine learning models, yielding high accuracy rates. Our

findings are consistent with these studies, particularly in revealing

more significant classification errors for categories with analogous

spectral characteristics.

Sun et al. (2024) utilized SMOTE to assess the severity of peanut

blight. They concluded that while SMOTE serves as a valuable

approach for tackling data imbalance, it is important to mention

that SMOTE generates synthetic samples containing noise. This

observation could explain why, in our study, no notable differences

were found in the “H” class upon applying the algorithm. The

spectra of healthy leaves closely resemble those generated by

SMOTE. However, the algorithm exhibited better performance

for the other classes, as it is more common to encounter noise in

infected leaves, primarily due to pustules.

In conclusion, our research enhances the understanding of the

role of data augmentation in machine learning for plant disease

detection. It underscores the importance of large, diverse datasets

and the careful consideration of the balance between actual and

synthetic data. The choice of machine learning models should be

tailored to the specific characteristics of the dataset and the disease

under investigation. This study contributes to academic knowledge

and holds practical implications in agricultural technology,

especially in developing robust, accurate systems for early disease

detection and management.
5 Conclusion

This study investigated the efficacy of various ML models in

detecting yellow and brown rust in wheat crops using hyperspectral

data, emphasizing the role of SMOTE in enhancing model accuracy.

SMOTE significantly improved model accuracy, particularly in

training datasets, especially for minority categories with synthetic

data. However, this might affect real-world applicability due to

potential accuracy distortion. The RF model showed 70% accuracy

for yellow rust using only actual data. The SVM model achieved

63% accuracy for brown rust when SMOTE was applied to the

training set, highlighting these models’ ability to discern features

effectively. However, similarity in spectral characteristics between

specific categories, like ‘H’ and ‘AL’, posed challenges. The

application of SMOTE generally decreased the performance of the

‘H’ class in both RF and SVMmodels. Still, it improved accuracy for

minority classes ‘AL’ and ‘SL’, achieving 61% accuracy for the ‘AL’

category in brown rust detection. These findings underline the

importance of data augmentation for enhancing category-specific

accuracy and advocate for further research into data processing and

augmentation techniques to refine ML model performance in

hyperspectral data analysis.
Frontiers in Plant Science 10
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Efecto de la fertilización con potasio y cloro sobre el rendimiento y severidad de las
enfermedades foliares en trigo. Informaciones Agronómicas del Cono Sur 26, 16–19.
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Uğuz, S., and Uysal, N. (2021). Classification of olive leaf diseases using deep
convolutional neural networks. Neural Computing Appl. 33, 4133–4149. doi: 10.1007/
s00521-020-05235-5

Wan, L., Li, H., Li, C., Wang, A., Yang, Y., and Wang, P. (2022). Hyperspectral
sensing of plant diseases: principle and methods. Agronomy 12, 1451. doi: 10.3390/
agronomy12061451

Weiss, M., Frédéric, J., and Grgory, D. (2020). Remote sensing for agricultural
applications: A meta-review. Remote Sens. Environ. 236, 111402. doi: 10.1016/
j.rse.2019.111402

Yadav, R., Kumar Rana, Y., and Nagpal, S. (2019). Plant leaf disease detection and
classification using particle swarm optimization. Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 11407 LNCS, 294–306.
doi: 10.1007/978-3-030-19945-6_21

Yang, C. (2020). Remote sensing and precision agriculture technologies for crop
disease detection and management with a practical application example. Engineering
6.5, 528–532. doi: 10.1016/j.eng.2019.10.015
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