
Journal of Energy Storage 63 (2023) 106958

Available online 11 March 2023
2352-152X/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Research papers 

Thermochemical energy storage using calcium magnesium acetates under 
low CO2 pressure conditions 
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A B S T R A C T   

The calcium looping multicycle performance of CaO-based materials, derived from calcium magnesium acetates 
with different Mg content were tested under experimental conditions compatible with thermochemical energy 
storage. In order to reduce the sintering-induced decay in performance, calcination at an absolute CO2 pressure 
of 0.1 bar and 0.01 bar is implemented. CaO carbonation is performed at standard 1 bar CO2 conditions. The 
samples can be fully calcined in short residence times. Samples with MgO present high cycling stability, even 
when the MgO content is as low as 5 mol%. The effective conversion values lie within the range 0.88–0.84 over 
ten calcination/carbonation cycles, which provides an accumulated energy storage density of 90.9 GJ/m3. This 
outstanding reactivity is related with the microstructure of the sample after calcination composed of CaO 
nanoparticles that are highly reactive for carbonation.   

1. Introduction 

Improving the deployment and efficiency of renewable energies is 
currently the most viable solution towards the aim of global decarbon-
ization. Among renewable energies, concentrated solar power (CSP), 
which exploits the energy from the sun to generate electricity, has 
attracted a lot of attention in terms of investment and research in the last 
decades. Thus, a total of 135 concentrated solar power projects have 
been under operation, construction or development from 2006 to 2021 
around the world in 10 countries [1]. They contribute to mitigate the 
environmental impact related to electricity production, as the massive 
reduction in CO2 emissions is one of the main worldwide challenge 
nowadays [2,3]. However, this challenge can only be met if the problem 
of direct solar radiation variability is addressed through the develop-
ment of low-cost solar energy storage technologies based on abundant, 
non-toxic materials that enable the commercial expansion of solar en-
ergy on a large scale [4–6]. 

Currently, molten salts (mixtures of NaNO3/KNO3) are used as sen-
sible heat thermal energy storage system integrated in the first and 
second generation concentrated solar power (CSP) plants [7,8]. It is, 
therefore, a mature technology that allows decoupling production and 
demand [8]. However, molten salts present serious limitations related to 

their cost, corrosiveness, the maximum operation temperatures 
(~560 ◦C to avoid degradation) and the requirement of storing them at 
temperatures over 220 ◦C to avoid their solidification, which penalize 
the CSP plant performance [9–13]. Next generation of CSP plants 
contemplate operation at temperatures over 600 ◦C, which would 
significantly boost the power-to-heat efficiency [14,15]. Furthermore, 
storage concepts with higher energy densities are under consideration. 
Thermochemical energy storage (TCES), while still in the research and 
development phase, has great potential. It is based on the heat 
exchanged in reversible chemical reactions, which inherently high en-
thalpies result in very high energy densities [16–19]. The integration of 
a TCES system in a CSP plant is devised as follows; the heat generated by 
concentrated solar power is used to carry out the endothermic chemical 
reaction whose products would be stored separately. When energy de-
mand requires it, the reverse exothermic reaction is carried out and the 
stored heat released to produce energy. The capability for long-term 
storage of the reaction products without thermal losses is another 
advantage of TCES systems over concepts that rely on latent or sensible 
heat storage [20–23]. 

Several thermochemical energy storage systems have been proposed, 
such as redox reactions of metallic oxides, ammonia decomposition, 
hydration/dehydration reactions, sulphur cycles and carbonation/ 
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Contents lists available at ScienceDirect 

Journal of Energy Storage 

journal homepage: www.elsevier.com/locate/est 

https://doi.org/10.1016/j.est.2023.106958 
Received 26 July 2022; Received in revised form 27 January 2023; Accepted 22 February 2023   

mailto:pedro.enrique@icmse.csic.es
mailto:maqueda@cica.es
mailto:aperejon@us.es
www.sciencedirect.com/science/journal/2352152X
https://www.elsevier.com/locate/est
https://doi.org/10.1016/j.est.2023.106958
https://doi.org/10.1016/j.est.2023.106958
https://doi.org/10.1016/j.est.2023.106958
http://crossmark.crossref.org/dialog/?doi=10.1016/j.est.2023.106958&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Energy Storage 63 (2023) 106958

2

decarbonation reactions [22,24,25]. Among the latter, extensive 
research has been devoted to the calcium looping (CaL) process for 
thermochemical energy storage in CSP plants, due to the high theoret-
ical energy storage density of CaCO3/CaO, 4.82 GJ/(m3 CaCO3), which 
corresponds to a value of 10.62 GJ/(m3 CaO) if the calcined solid is 
considered in the calculations [26–32]. The CaL-CSP integration consists 
in using the concentrated solar energy on a bed or stream of CaCO3 to 
induce its calcination at high temperature (about 750 ◦C in inert gas or 
950 ◦C in CO2) [33–37]. The reaction products, CaO and CO2, are 
transported out of the calciner and stored separately. When demand 
requires energy production, these products are brought back together in 
the carbonator to carry out the exothermic carbonation reaction to 
regenerate the CaCO3. As the process can be carried out at temperatures 
as high as 800 ◦C [33,38], gas turbines could be used for electricity 
production with higher efficiency than the steam turbines used in con-
ventional CSP plants [39–41]. Another advantage of the CaL process is 
that CaO could be exploited in other industrial applications requiring 
heat [38,42]. 

However, the CaL technology presents some drawbacks for its inte-
gration in CSP plants, mainly the high temperature needed to carry out 
the calcination reaction, which promotes the progressive sintering- 
induced deactivation of CaO along the carbonation and calcination cy-
cles [34,43,44]. Previous results from theoretical models and numerical 
simulations estimate that stable sorbent conversion values above 20 % 
are required for CaL-CSP plants to best the efficiencies currently attained 
in CSP plant equipped with molten salt storage systems [29]. 

Two main general approaches have been used to enhance the reac-
tivity of CaO during the multiple carbonation/calcination cycles: (i) 
modifying the operating conditions in terms of temperature and atmo-
sphere in order to attenuate sintering [45–48], and the use of other 
natural or synthetic Ca-based materials with improved structural sta-
bility [49–52]. Among these materials, dolomite, CaMg(CO3)2, exhibits 
very stable CaO multicycle performance [53–55] due to the role of inert 
MgO arising during the first calcination. However, MgO constitutes 41.8 
wt% in calcined dolomite, which significantly reduces the maximum 
attainable energy density. In addition, calcium acetate derived CaO 
shows promising results as its decomposition leads to highly reactive 
CaO particles of small size [56,57]. However, the decay in activity is also 
fast unless structural stability is improved, normally by the use of ad-
ditives [56]. 

Regarding the operating conditions, it has been proposed to carry out 
the calcination under inert gases such as helium, nitrogen or argon, 
allowing the calcination temperatures to be reduced below 750 ◦C, ac-
cording to the thermodynamic equilibrium of the CaCO3/CaO system 
[27,54,58]. However, the use of an inert gas during calcination entails 
implementing a costly separation stage that imposes a significant energy 
penalty on the process [59]. Steam has also proven effective in reducing 
the calcination temperature as it combines high thermal conductivity 
and certain catalytic effects promoting the desorption of CO2 during 
calcination [60–64]. Another alternative is the operation under a closed 
CO2 cycle, in which both carbonation and calcination would be carried 
out in pure CO2 atmosphere [27,45]. This permits avoiding gas sepa-
ration processes or condensation steps but it requires increasing the 
calcination temperature up to 950 ◦C in order to achieve the complete 
calcination of CaCO3 in reasonable residence times. These extreme 
operating conditions severely deteriorate the multicycle activity of CaO 
due to extensive sintering and loss of surface area available for 
carbonation [27,28,45]. 

Very recently, it has been proposed a new operating scheme that 
involves calcination at moderate temperatures under low absolute CO2 
pressures (0.1–0.01 bar) and carbonation at high temperatures under 
CO2 at atmospheric pressure [46,47]. Previous results have shown these 
conditions result in notably enhanced reactivity for limestone derived 
CaO, as compared to previously reported conditions. Thus, it is of the 
most interest to study the multicycle performance of other CaO-based 
materials, with inherently better performance under these milder 

operation conditions. In this work, the reactivity of CaO obtained from 
dolomite and acetate precursors with different CaO/MgO ratios has been 
tested. 

2. Materials and methods 

2.1. Materials 

Natural limestone, dolomite and magnesite, provided by Matagallar 
(Pedrera, Spain), Bueres (Asturias, Spain) and Magnesitas Navarras 
(Navarra, Spain), respectively, were used in this work. Acetic acid of 
high purity (99.9 %) from VWR chemicals (CAS: 64-19-7) was used for 
the synthesis of the acetates. 

2.2. Characterization methods 

X-ray diffractograms were collected in the 2θ range from 20◦ to 70◦

for dolomite and from 5◦ to 30◦ for the acetates, using a Rigaku Miniflex 
diffractometer working at 40 kV and 15 mA. Scanning Electron Micro-
scopy (SEM) was used to study the microstructure of the as prepared and 
cycled samples. An ultra-high resolution HITACHI S4800 instrument 
was used. HRTEM and HAADF-STEM micrographs were registered using 
a Talos F200S FEG microscope. For this purpose, the powder samples 
were deposited on copper grids. 

In situ X-ray diffractograms (XRD) during the calcination process 
were acquired in vacuum using a powder diffractometer (Bruker D8 
Advance) fitted with a high-temperature chamber (Anton Paar XRK 900) 
and a fast response/high sensitivity detector (Bruker Vantec 1). The 
temperature during the in situ XRD experiment was increased at 10 ◦C/ 
min from 400 ◦C up to 750 ◦C. XRD scans of 295 s were recorded in the 
range of 20◦ < 2θ < 60◦ (0.03◦ per step), each 25 ◦C. Scans were all 
registered at constant temperature. The BET surface areas and total pore 
volumes (determined from the N2 absorbed at p/p0 = 0.99) of the 
samples were measured in an ASAP2420 Micromeritics instrument. The 
samples were degassed at 400 ◦C in vacuum for 2 h and then measured at 
a temperature of − 196 ◦C. 

2.3. Synthesis of the CaO-based materials 

Magnesite and limestone were calcined in air in a furnace at 800 ◦C 
for 2 h in order to obtain the corresponding calcium and magnesium 
oxides. Three acetates with different Ca/Mg molar ratios were prepared: 
calcium acetate (CaAc) using calcined limestone (CaO) as a precursor, 
Ca80Mg20Ac using a mixture of calcined limestone and calcined 
magnesite (MgO) in a molar ratio of 80%CaO/20%MgO, and Ca95M-
g05Ac from a mixture in a molar ratio of 95%CaO/5%MgO. For the 
synthesis of each acetate, 1 g of the mixtures of CaO and MgO were 
treated with 50 mL of an aqueous solution of acetic acid (25 % in vol-
ume), and stirred for 2 h at room temperature. Then, the solution was 
dried at 120 ◦C for approximately 2 h to obtain the calcium and mag-
nesium acetate crystals. Further details can be found in [56]. Table 1 
includes the molar and mass ratio of CaO and MgO corresponding to the 
four samples used in this work. 

Fig. 1 shows the XRD patterns of the four samples studied in this 
work. From this data, the dolomite sample is a phase pure material, as 

Table 1 
Molar and mass ratio of CaO and MgO for the four samples used in this work. The 
theoretical densities of the corresponding calcined materials are also included.  

Sample CaO 
(mol%) 

MgO 
(mol%) 

CaO 
(mass%) 

MgO 
(mass%) 

ρ calcined 
(kg/m3) 

Dolomite  50  50  58.2  41.8  3440 
CaAc  100  0  100  0  3340 
Ca80Mg20Ac  80  20  84.8  15.2  3377 
Ca95Mg05Ac  95  5  96.4  3.6  3349  
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well as the CaAc sample, composed only of hydrated calcium acetate. On 
the other hand, Ca80Mg20Ac and Ca95Mg05Ac are composed of a 
mixture of calcium acetate and calcium magnesium acetate in different 
proportions, with no other crystalline phases. From the intensity of the 
XRD peaks, a higher amount of calcium magnesium acetate was detected 
for Ca80Mg20Ac, which is consistent with the relative amounts of cal-
cium oxide and magnesium oxide used as precursors. 

Fig. 2 shows the representative SEM images of dolomite (Fig. 2a) and 
Ca95Mg05Ac (Fig. 2b). Dolomite is composed of platelets, while 

Ca95Mg05Ac presents an acicular morphology, which is typical of the 
acetates, with a particle size in the range 200–150 μm. Moreover, the 
microstructure and particle size of the acetate is maintained after 
decomposition to the carbonate (Fig. 2c) and to the oxides (Fig. 2d). The 
same particle sizes were obtained for CaAc and Ca80Mg20Ac. 

2.4. Multicycle experiments 

Multicycle experiments were performed in an in-house 

Fig. 1. XRD patterns of (a) dolomite, and the different acetates prepared in this work: (b) CaAc, (c) Ca80Mg20Ac and (d) Ca95Mg05Ac.  

Fig. 2. SEM micrographs of (a) dolomite, (b) Ca95Mg05Ac, (c) Ca95Mg05Ac after decomposition to the carbonate, and (d) Ca95Mg05Ac after decomposition to 
the oxides. 
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thermogravimetric instrument prepared to work from low pressures 
(0.01 bar) up to 5 bar. Fig. 3 shows a scheme of the instrument. It 
consists of a microbalance and a reactor composed of a furnace and a 
non-porous mullite tube. A flat crucible was used to hold the sample in 
the microbalance in order to facilitate the contact of the sample with the 
gases. The CO2 pressure was controlled by means of a vacuum pump, a 
pressure gauge and a pressure measurement system. Further details of 
the instrument can be found in [46,65]. 

The multicycle calcination/carbonation tests were performed using 
40 mg of the samples in all cases, operating in a closed CO2 cycle in 
which absolute pressures of 0.01 bar and 0.1 bar CO2 were employed for 
calcination. The calcination temperatures were 700 ◦C and 760 ◦C 
respectively, selected according to the thermodynamic equilibrium of 
the CaCO3/CaO system [66,67] and in order to optimize the multicycle 
performance of the materials at different temperatures attainable by 
conventional solar receivers [68]. 

An absolute pressure of 1 bar CO2 was used for carbonation in all 
tests, at 700 ◦C, 760 ◦C and 850 ◦C. Table 2 summarizes the operating 
conditions tested in this work. 

Prior to the start of the multicycle tests, the system was stabilized at 
the selected absolute CO2 pressure, using the vacuum pump. Then, the 
calcination stage was started by increasing linearly the temperature up 
to the corresponding calcination temperature, which was hold for 10 
min to ensure a complete calcination. Then, the temperature was 
changed to the carbonation temperature. Once the temperature was 
stable, the vacuum pump was disconnected and the CO2 pressure was 
then increased to 1 bar to initiate the carbonation reaction, lasting 10 
min. At that point, the temperature was again decreased to the calci-
nation temperature for a new cycle. Heating and cooling rates of 10 ◦C/ 
min were always employed. 

The multicycle performance of the samples was evaluated by means 
of the effective conversion, defined as the mass ratio of calcium oxide 
converted in the carbonation stage at each N-cycle to the total mass of 
the sample before carbonation (mi), including solids inert to carbon-
ation. The term mcarb(t) − mi is therefore the CO2 uptake (mCO2(t)) in 
each cycle: 

Xeff =
(mcarb(t) − mi )

mi

WCaO

WCO2

=
mCO2 (t)

mi

WCaO

WCO2

(1) 

The terms WCaO and WCO2 are the molar masses of CaO and CO2, 

respectively. It is important to remark that the effective conversion takes 
into account the presence of solids that are inert to carbonation under 
the experimental conditions used in this work. This parameter is more 
interesting for practical purposes than the CaO conversion, since the 
inert solids will be also circulated through the system and will influence 
the efficiency of the process. From Eq. (1), the energy storage capacity 
(Dm) of the tested materials in kJ/kg for each cycle can be quantified 
using Eq. (2): 

Dm =
mCO2 (t)⋅ΔHR

mi
(2)  

where mCO2 is CO2 uptake during carbonation, as stated above, and ΔHR 
is the enthalpy of the reaction (4045.5 kJ/kg CO2). The energy storage 
density (Dv) in GJ/m3 was obtained by multiplying the energy storage 
capacity and the density of the calcined materials in kg/m3 (Eq. (3)): 

Dv = Dm × ρ (3) 

As a first approximation, the theoretical densities of the calcined 
materials were considered for the calculations of Dv, included in Table 1. 

3. Results and discussion 

3.1. Multicycle activity 

Fig. 4 shows, as an example, the evolution of the effective conversion 
during 10 calcination/carbonation cycles as a function of time for a test 
E2 on the sample Ca80Mg20Ac, in which calcination was performed at 

Fig. 3. Scheme of the in-house thermogravimetric instrument used in this work.  

Table 2 
Operating conditions used for calcination and carbonation. The acronyms have 
been used to identify the experimental conditions in the text.  

Test Calcination Carbonation 

Temperature, 
◦C 

Absolute CO2 

pressure, bar 
Temperature, 
◦C 

Absolute CO2 

pressure, bar 

E1  700  0.01  700  1 
E2  760  1 
E3  850  1 
E4  760  0.1  760  1 
E5  850  1  
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700 ◦C and 0.01 bar CO2, whereas calcination was carried out at 760 ◦C 
and 1 bar CO2 (Table 2). In the first calcination, three mass losses are 
observed, ascribed to dehydration, decomposition of the acetate to 
obtain the carbonate, and finally the subsequent decomposition of the 
carbonate to yield CaO. From this point, the successive CaO carbonation 
and CaCO3 calcination stages alternated. As may be observed, under the 

calcination conditions corresponding to test E2, fast calcinations and 
carbonations were attained. The mass gain was similar in each carbon-
ation stage, which is an indication of a stable multicycle performance. 

Fig. 5 shows the values of effective conversion at the end of 
carbonation as a function of the cycle number for the four samples tested 
in this work, under the five type of tests included in Table 2. The 
theoretical maximum effective conversion values are also included as 
horizontal lines in the figure for comparison purposes (Xeff max). For 
each sample, similar conversion values were obtained regardless the 
performed test, with the exception of CaAc, that presented a more 
obvious decrease in effective conversion with the cycle number for the 
experiment E3. 

These results are in contrast with those presented for natural lime-
stone, with a particle size in the range 160–200 μm, tested under similar 
conditions, in which the reactivity strongly depends on the absolute CO2 
pressure used for calcination and the temperature of carbonation [46]. 

Table 3 includes the values of effective conversion in the first 
(Xeff(1)) and tenth cycle (Xeff(10)) for all the test carried out, and the 
differences between them, expressed as ΔXeff. It can be observed that 
ΔXeff values are higher for dolomite and CaAc than for the magnesium 
calcium acetates. 

The low values of effective conversion attained for dolomite 
(Fig. 5a), as compared with the rest of samples, are due to the presence 
of MgO (1 mol per mol of CaO) on the calcined sample that is inert to 
carbonation under the experimental conditions used in this work. The 
amount of MgO in calcined dolomite is approximately 42 wt%. For this 
reason, the maximum value of effective conversion attainable for dolo-
mite is 0.58. It has been amply demonstrated that the MgO grains 

Fig. 4. Time evolution of the mass and temperature for the sample Ca80M-
g20Ac, measured during calcination/carbonation cycles under experimental 
conditions E2. 

Fig. 5. Effective conversion as a function of the cycle number measured for the four samples studied in this work, tested under experimental conditions E1–E5: (a) 
dolomite; (b) CaAc; (c) Ca80Mg20Ac; (d) Ca95Mg05Ac. The Xeff values of limestone calcined at 765 ◦C under 0.1 bar CO2 and carbonated at the same temperature at 
an absolute pressure of 1 bar CO2 is also included for comparison. 
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hampers the sintering of CaO-based materials during the carbonation/ 
calcination cycles, which explains the stable effective conversion 
attained for dolomite [54,69,70]. Thus, ΔXeff is in the range from − 0.11 
to − 0.16, depending on the test. 

In CaAc (Fig. 5b), the calcined sample is composed only of CaO and 
serves as a reference of a sample with no MgO addition. The values of 
effective conversion in the first cycle (Xeff(1)) are obviously much higher 
than that of dolomite, but, in contrast, the decay in reactivity is signif-
icant as can be observed from the values of ΔXeff (Table 3). It has been 
previously observed that the CaO obtained from the decomposition of 
CaAc is very reactive to carbonation, but at the expense of intense 
sintering-induced deactivation in the presence of CO2 [56,71,72]. As 
compared to CaAc, the Ca80Mg20Ac sample (Fig. 5c) presents only 
slightly smaller initial values of Xeff(1), attributed to its 20 % molar 
content of MgO. This corresponds to a mass percentage of 15.2 % in 
MgO, which is inert to carbonation and thereby reduce the maximum 
Xeff attainable. However, the deactivation along the calcination/ 
carbonation cycles is almost completely suppressed, as can be inferred 
from the values of ΔXeff, independently of the type of test carried out. 

Taking into account the promising results obtained for Ca80Mg20Ac, 
a sample with even lower content in MgO was prepared, Ca95Mg05Ac. 
The aim was to reduce the load of inert MgO while still preserving its 
stabilizing role. The sample was cycled under the all test conditions 
(E1–E5). As may be seen in Fig. 5d, very high and stable values of 
effective conversion were obtained during 10 cycles regardless the test 
performed, with Xeff(1) in the range 0.84–0.90 and Xeff(10) above 0.78. 
This material presents an outstanding multicycle performance with 
ΔXeff of − 0.04 for tests E2 and E4. For tests E3 and E5, in which car-
bonations were carried out at 850 ◦C, the values of ΔXeff are − 0.08 and 
− 0.10, respectively. The effective conversion of natural limestone, 
calcined at 765 ◦C under 0.1 bar CO2 and carbonated at the same tem-
perature at an absolute pressure of 1 bar CO2 is also included for com-
parison [46]. A marked decrease on the effective conversion is observed 
with the cycle number for limestone, in contrast with Ca95Mg05Ac. 

In order to assess the influence of the composition on carbonation 
kinetics, Fig. 6 compares the effective conversion obtained for different 
samples during the first 90 s of carbonation, those comprising the most 
relevant part of the carbonation process: the fast reaction-controlled 
phase. In the subsequent diffusion-controlled phase, the conversion of 
CaO into CaCO3 is characterized by very slow kinetics [73]. This is clear 
in Fig. 6, where a sharp increase of the mass in very short times can be 
observed, followed by the plateau. Carbonation profiles recorded on the 

first, fifth and tenth carbonation stage are compared to evaluate any 
changes produced due to the repeating carbonation and calcination 
cycles. The tests were carried out under experimental conditions E4, but 
similar behavior was observed in tests run under the experimental 
conditions corresponding to E1–E5. It is concluded that, although the 
carbonation rate is not significantly affected by the cycles, it is higher for 
the MgO-containing samples. 

Considering carbonations take place in the fast reaction-controlled 
phase, the characterization of the surface area (BET) and the pore 

Table 3 
Effective conversion in the first and tenth cycle, and the difference between them 
(ΔXeff) for the four samples studied in this work under experimental conditions 
E1–E5.  

Test Sample Xeff(1) Xeff(10) ΔXeff 

E1 Dolomite  0.50  0.34  − 0.16 
E2  0.49  0.35  − 0.14 
E3  0.40  0.34  − 0.06 
E4  0.54  0.39  − 0.15 
E5  0.51  0.40  − 0.11 
E1 CaAc  0.86  0.67  − 0.19 
E2  0.86  0.67  − 0.19 
E3  0.89  0.53  − 0.36 
E4  0.89  0.68  − 0.21 
E5  0.88  0.66  − 0.22 
E1 Ca80Mg20Ac  0.77  0.68  − 0.09 
E2  0.78  0.70  − 0.08 
E3  0.79  0.67  − 0.12 
E4  0.79  0.74  − 0.05 
E5  0.77  0.68  − 0.09 
E1 Ca95Mg05Ac  0.84  0.79  − 0.05 
E2  0.86  0.82  − 0.04 
E3  0.90  0.83  − 0.08 
E4  0.88  0.84  − 0.04 
E5  0.88  0.78  − 0.10  

Fig. 6. Effective conversion during the first 90 s of carbonation at the first, fifth 
and tenth cycle for the samples tested under experimental conditions E4. 
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volume (Vp) of the samples after calcination was performed in order to 
correlate the reactivity with the microstructure. The surface area and the 
pore volume of the samples after a first calcination under experimental 
conditions E4 (0.1 bar CO2) are shown in Table 4. The samples present 
relatively similar surface areas and pore volumes after calcination. The 
addition of magnesium helps to increase the surface area of the calcined 
sample, which would be available for carbonation in a high concentra-
tion of CO2. 

Fig. 7 presents the values of accumulated energy storage density (Dv), 
calculated as the sum of Dv for the ten cycles carried out under experi-
mental conditions E4. The value of Dv for limestone is also included, 
calculated from the data presented in Fig. 5d [46]. 

As may be seen, dolomite, due to its high content in MgO, has the 
lower accumulated Dv, but it is just slightly smaller than that of lime-
stone. This again demonstrates how MgO hinders the sintering of the 
CaO grains, improving its reactivity for carbonation. 

Calcium acetate shows a similar value of accumulated Dv than 
Ca80Mg20Ac despite the decrease in effective conversion of calcium 
acetate with the cycle number (Fig. 5b). This is because the effective 
conversion for calcium acetate is very high in the first cycles, giving rise 
to high values of Dv according to Eq. (3). 

On the other hand, Ca95Mg05Ac presents the highest accumulated 
Dv, since the effective conversion of this sample is in the range 0.88–0.84 
over the ten cycles (Fig. 5d). Thus, Dv in the tenth cycle is as high as 9 
GJ/m3. Interestingly, accumulated Dv for Ca95Mg05Ac increases up to 
approximately 70 % with respect to limestone. 

3.2. In-situ X-ray diffraction and microstructural analysis 

Considering the results presented above, which demonstrate the 
outstanding multicycle performance of Ca95Mg05Ac, a microstructural 
and in-situ X-Ray diffraction analysis was performed in this sample. 
Fig. 8 presents the in-situ XRD diffractograms measured from 400 ◦C to 
750 ◦C in vacuum, in order to get a grip on the structural trans-
formations experienced for Ca95Mg05Ac during calcination. Note that 
the decomposition of the calcium magnesium acetate (deacetylation) to 
give the mixture of CaCO3 and MgO is not considered, since the products 
(water and acetone) may damage the device. As expected, at 400 ◦C, 
CaCO3 is the main compound. Diffraction peaks corresponding to MgO 
are under detection limits due to its small molar amount in the sample. 
As the temperature increases, the diffraction peaks of CaCO3 decrease in 
intensity and those of CaO become noticeable from 525 ◦C. At 600 ◦C, 
CaO is already the main compound and CaCO3 diffraction peaks are 
almost negligible. Moreover, at this temperature, the main reflection of 
MgO at 2θ = 43◦ starts to appear, albeit weakly. At 625 ◦C, the sample is 
only composed of CaO and MgO, which is in agreement with the ther-
modynamic equilibrium of the CaCO3/CaO system [66,67]. 

Fig. 9a and b show the micrographs of the Ca95Mg05Ac sample after 
a first calcination at 0.1 bar CO2. It may be seen that the microstructure 
drastically changes after the acetate decomposition, and consists of 
small CaO grains that are aggregated and mixed with the MgO grains. 
Fig. 9c, d and e present the EDX analysis of the sample subjected to 10 
calcination/carbonation cycles, ending in calcination, performed under 
experimental conditions E4. It is well-known that the MgO grains, which 
hamper the aggregation and sintering of the CaO grains, eventually 
segregate from the CaO matrix during the calcination/carbonation cy-
cles, which gives place to a loss of CaO reactivity as the number of cycles 

increases. Some segregation of the MgO grains in Ca95Mg05Ac sub-
jected to 10 cycles is clear in Fig. 9d–e, although it is still well dispersed 
in some areas of the sample, which justifies the high effective conversion 
values obtained (Figs. 5–6). 

Further insights about the microstructure of the sample were ob-
tained by the transmission electron microscopy analysis, as shown in 
Figs. 10 and 11. Fig. 10a–d illustrate HRTEM micrographs of Ca95M-
g05Ac after the first calcination at 0.1 bar CO2. It is confirmed that the 
sample is composed of nanometric CaO grains aggregated in particles of 
several microns. The grain size is in the order of 100 nm and the MgO 
grains are much smaller. Fig. 10e–h present HRTEM the micrographs of 
the sample subjected to 10 calcination/carbonation cycles ending in 
calcination. As expected, the microstructure changes in such a way that 
CaO grain size looks more heterogeneous and increases, due to sintering. 
The small spots seen in Fig. 10e–h may be attributed to MgO segregated 
from the CaO matrix. 

Fig. 11 shows the HRTEM micrographs and the corresponding 
HAADF-STEM mappings of Ca95Mg05Ac subjected to a first calcination 
(Fig. 11a–d) and subjected to 10 calcination/carbonation cycles 
(Fig. 11e–h). The HAADF-STEM mappings of the sample after the first 
calcination illustrate a homogeneous distribution of the MgO nanograins 
in the CaO matrix. On the other hand, segregation and aggregation of the 
MgO nanograins is evident in Fig. 11f, which are located in the CaO 
grain boundaries. This justifies again the small decrease in reactivity on 
this sample along the cycles (Figs. 5–6). 

4. Conclusions 

The CaL multicycle performance of CaO-based materials, obtained of 
the decomposition of dolomite and calcium-magnesium acetate, has 
been studied under reaction conditions involving calcination under an 
absolute CO2 pressure of 0.1 bar or 0.01 bar and carbonation under 1 bar 
CO2. These conditions imply lower calcination temperatures that mini-
mize the sintering-induced deactivation of CaO. At absolute CO2 pres-
sures of 0.01 bar and 0.1 bar, the starting carbonates can be fully 
calcined in short residence times at 700 ◦C or 760 ◦C, respectively. 
Furthermore, the nascent CaO particles obtained under these calcination 
conditions are nanometric size and highly reactive towards subsequent 
carbonation. Different temperatures were studied for carbonation 
(700 ◦C, 760 ◦C and 850 ◦C) as depending on the calcination tempera-
tures, to obtain the five types of operating conditions explored. In all 
cases, CaO carbonation takes place in <1 min, which is a very relevant 
result for the practical application of the process. 

Samples with different MgO content were tested under these novel 

Table 4 
Surface area and pore volume of the samples after calcination at 0.1 bar CO2.  

Sample SBET (m2/g) Vp (cm3/g) 

Dolomite  30.2  0.135 
CaAc  20  0.084 
Ca80Mg20Ac  29.7  0.121 
Ca95Mg05Ac  24.7  0.111  

Fig. 7. Accumulated Dv for dolomite, CaAc, Ca80Mg20Ac and Ca95Mg05Ac. 
The value for limestone is also included, calculated from the data reported 
in [46]. 
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process conditions. Overall, high cycling stability for the active mate-
rials was achieved, save for the CaAc samples that show a slight decay 
trend due to the absence of MgO which proves very effective in avoiding 
the CaO deactivation. The accumulated energy density of the sample 
derived from the calcium‑magnesium acetate Ca95Mg05Ac is higher 
than that of dolomite, CaAc and Ca80Mg20Ac. In particular, Ca95M-
g05Ac presents an exceptional multicycle performance even after sub-
jected to 10 calcination/carbonation cycles, which yields an 
accumulated energy storage density of 90.9 GJ/m3. It is demonstrated 
by surface area measurements, SEM and TEM that the excellent results of 

Ca95Mg05Ac are related with the microstructure of the sample after 
calcination, and that just 5 mol% addition of MgO is enough to prevent a 
marked sintering of the CaO grains. 

The significant reduction of the calcination temperature and the 
avoidance of gas separation systems makes this CaL concept attractive 
for thermochemical energy storage applications. 
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[56] P.E. Sánchez Jiménez, A. Perejón, M. Benítez Guerrero, J.M. Valverde, C. Ortiz, L. 
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