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Abstract
This paper studies the problem of simultaneously testing that each of k samples,
coming from k count variables, were all generated by Poisson laws. The means of
those populations may differ. The proposed procedure is designed for large k, which
can be bigger than the sample sizes. First, a test is proposed for the case of independent
samples, and then the obtained results are extended to dependent data. In each case, the
asymptotic distribution of the test statistic is stated under the null hypothesis as well as
under alternatives, which allows to study the consistency of the test. Specifically, it is
shown that the test statistic is asymptotically free distributed under the null hypothesis.
The finite sample performance of the test is studied via simulation. A real data set
application is included.

Keywords Goodness-of-fit · Count data · High-dimensional data

Mathematics Subject Classification 62G10 · 62G09

1 Introduction

Univariate count data appear in many real life situations and the Poisson distribution
is frequently used to model this kind of data. Testing the goodness-of-fit of given
observations with a probabilistic model is a crucial aspect of data analysis. Because
of these reasons, a number of authors have proposed tests for the Poisson law. Most
papers on this issue deal with testing Poissonity for a sample, and the properties of
the proposed procedures are studied as the sample size increases. This paper studies
the problem of simultaneously testing Poissonity of k samples, where k can be larger
than the sample sizes.
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Let X1 = {X1,1, . . . , X1,n1}, . . . , Xk = {Xk,1, . . . , Xk,nk } be k independent
samples with sizes n1, . . . , nk , which may be different, where Xi,1, . . . , Xi,ni are
independent and identically distributed (i.i.d.) coming from Xi ∈ N0 = {0, 1, 2, . . .},
1 ≤ i ≤ k. In this setting, we deal with the problem of testing

H0,k : Xi ∼ Pois(λi ), for some λi > 0, 1 ≤ i ≤ k,

were X ∼ Pois(λ) means that the random variable X has a Poisson law with mean
λ, against general alternatives,

H1,k : Xi � Pois(λ), ∀λ > 0, for some 1 ≤ j ≤ k,

where k is allowed to be large (the precise meaning of “large” will be stated in the
following sections). Notice that, under H0,k , the parameter of each Poisson law may
vary across the k populations.

Testing H0,k is relevant in many settings. Just to mention an important exam-
ple, sequencing experiments performed in biological sciences usually report long
sequences of read counts, corresponding to a large number of genes or DNA bases;
see for instance Jiménez-Otero et al. (2019) and references theirein. Such counts are
typically analyzed under the umbrella of the Poisson model, which has been found
particularly well-suited for certain sequencing experiments (see Lander andWaterman
1988). The validity of these analyses critically depends on the goodness-of-fit of the
Poisson distribution to the count data at hand, and here is where our testing problem
comes into play.

The problem of simultaneously testing goodness-of-fit for k populations have been
studied in Gaigall (2021) by using test statistics based on comparing the empirical
distribution function of each sample with a parametric estimator derived under the
null hypothesis. The asymptotic properties studied inGaigall (2021) are for continuous
distribution functions, fixed k and increasing sample sizes. The tests in Gaigall (2021)
are sums of goodness-of-fit test statistics for each of the k populations. For the problem
of simultaneously testing normality of a large number of populations, Jiménez-Gamero
(2023) considered several test statistics, obtaining best overall results for one based
on a sum of statistics for testing normality in each population. Here we will also study
a test based on a statistic of this type.

The paper is organized as follows. Section2 briefly reviews Poissonity tests for
one sample. The review is restricted to consistent tests, with special emphasis on the
test in Baringhaus and Henze (1992). Section 3 studies a test statistic that is based
on sum of statistics for one-sample Poissonity testing. Specifically, the one-sample
statistic considered is a modification of the one proposed in Baringhaus and Henze
(1992). We start by assuming that the samples are independent. It is shown that the
test statistic is asymptotically free distributed, not relying on resampling or Monte-
Carlo methods to obtain critical values. Here by asymptotic we mean as k → ∞,
no assumption is made on the sample sizes, which may remain bounded or increase
with k. Section4 derives the asymptotic power. As the asymptotic approximation to
the null distribution is rather conservative for small to moderate values of k, Sect. 5
studies a bootstrap estimator of the null distribution that gives good results in such
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cases. The finite sample performance of the test was numerically assessed by means
of an extensive simulation experiment, whose results are reported in Sect. 6. Section7
shows that, by assuming suitable mixing conditions, the results in sections 3 and 4
can be extended to the case of dependent data. A real data illustration is provided
in Sect. 8. Section 9 summarizes the paper and comments on extensions and further
research. All proofs and some simulation results can be found in the Supplementary
Material (SM). The computations in this paper have been carried out using programs
written in the R language [39]. The R code for the calculation of the modification of
the test statistic in Baringhaus and Henze (1992) is also available in the SM.

Throughout the paper we will make use of the following standard notation: all
randomvariables and randomelementswill be defined on a sufficiently rich probability
space (�,A, P); the symbols E and V denote expectation and variance, respectively;
P0, E0 and V0 denote probability, expectation and variance under the null hypothesis,

respectively;
D= and

D→ mean equality in distribution and convergence in distribution,

respectively;
P→ denotes convergence in probability; unless otherwise specified, all

limits are taken as k → ∞.

2 Poissonity tests for one sample

2.1 A brief review

This subsection gives a brief, non-exhaustive review of Poissonity tests for one sample,
i.e. tests of the null hypothesis H0,1 v.s. H1,1. The review will be centered on tests
that are consistent against fixed alternatives. Most of them are discussed in Mijburgh
and Visagie (2020), that gives an overview of Poissonity tests, including some non-
universally consistent ones.

Henze (1996) studied tests based on the empirical distribution function for dis-
crete models, that can be applied to test H0,1. The test statistics are functions of
Fn(x)− F(x; λ̂), where Fn denotes the empirical distribution function, F(·; λ) stands
for the cumulative distribution function of the law Pois(λ) and λ̂ is an estimator of
λ, which is taken equal to the sample mean in Sect. 4 of that paper. Specifically, the
Kolmogorov-Smirnov and Cramér-von Mises statistics are studied. A Kolmogorov-
Smirnov type statistic was also proposed by Klar (1999), based on the difference
between the integrated distribution function and its empirical counterpart. Székely
and Rizzo (2004) proposed a Cramér-von Mises type test statistic where the empir-
ical distribution function is replaced by an estimator which is obtained by using a
characterization of the distribution of count variables in terms of mean distances.

When dealing with count data, Nakamura and Pérez-Abreu (1993a) argue in favor
of using inferential methods based on the empirical probability generating function
(EPGF). A number of tests use this tool. Rueda and O’Reilly (1999) (see also Jiménez-
Gamero and Batsidis 2017) proposed a test of H0,1 based on an L2 norm of the
difference between the probability generating function (PGF) of the Poisson law, with
λ replaced with the sample mean, and the EPGF. That test was latter extended for the
bivariate (and d-variate) Poisson law in Novoa-Muñoz and Jiménez-Gamero (2014).
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The PFG of the Poisson law is the unique PGF g of a law with finite mean, satisfying
the differential equation,

g′(t) − μg(t) = 0, ∀t ∈ [0, 1], (1)

where g′(t) = d
dt g(t) and μ is a constant, which is necessarily the mean of the

distribution.Baringhaus andHenze (1992) consider an L2 normof an empirical version
of that equation as a test statistic for H0,1. A related test was proposed by Nakamura
and Pérez-Abreu (1993b), that was later generalized in Jiménez-Gamero and Alba-
Fernández (2019) to testing for a family of distributions that contains the Poisson law
as a special case, and in Novoa-Muñoz and Jiménez-Gamero (2016) to the bivariate
Poisson. Puig and Weiss (2020) give a characterization of the Poisson distribution,
based on an identity involving the binomial thinning operator, that is used to propose
some tests of H0,1, whose test statistics replace the PGF in the characterization by the
EPGF.

The last decade has witnessed an increasing interest in the developing of inferential
methods based on Stein’s method (see Anastasiou et al. (2023) for a recent overview).
In this line, Betsch et al. (2022) give a characterization of count variables that is used
to propose a test of H0,1.

As expected from Janssen (2000), in the simulations carried out in Gürtler and
Henze (2000), Székely and Rizzo (2004), Puig and Weiss (2020) and Betsch et al.
(2022), there is no test having the largest power against all considered alternatives.
Nevertheless, the test in Baringhaus and Henze (1992), that will be called the BH test,
is one of those having best overall performance. Next subsection deals in some detail
with its test statistic.

2.2 The BH test statistic

In order to simplify notation, for the one-sample case we will write Y ,Y1, . . . ,Yn and
μ instead of X1, X1,1, . . . , X1,n1 and λ1, respectively. Along this subsection, it will
be assumed that μ = E(Y ) < ∞. Let gn denote the EPGF associated to the sample,

gn(t) = 1

n

n∑

i=1

tYi .

Since the PFG of the Poisson law is the unique satisfying Eq. (1) it follows that, calling

θ = θ(Y ) =
∫ 1

0
{g′(t) − μg(t)}2dt, (2)

where g(t) is the PGF of Y , we have that θ = 0 if and only if Y has a Poisson law.
Baringhaus and Henze (1992), estimate θ by means of θ̃ , obtained by replacing g, g′
and μ with gn , g′

n and Y = (1/n)
∑n

i=1 Yi , respectively, in the expression of θ , where

g′
n(t) = 1

n

n∑

i=1

Yi1(Yi ≥ 1)tYi−1,
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and 1(·) stands for the indicator function. The proposed test rejects the null for large
values of nθ̃ .

θ̃ is a degree-4 V -statistic with symmetric kernel Hsym

θ̃ = 1

n4

n∑

i1,i2,i3,i4=1

Hsym(Yi1 ,Yi2 ,Yi3 ,Yi4),

where

Hsym(Yi1 ,Yi2 ,Yi3 ,Yi4) = 1

24

∑

σ=(σ (1),σ (2),σ (3),σ (4))∈P4

H(Yσ(1),Yσ(2),Yσ(3),Yσ(4)),

P4 is the set of all permutations of (i1, i2, i3, i4) (the four elements are treated as
different, even if there are ties between them), and

H(x, y, u, v) =
∫ 1

0
h(x, y; t)h(u, v; t)dt, h(x, y; t) = x1(x ≥ 1)t x−1 − yt x .

(3)

Clearly, θ̃ is not an unbiased estimator of θ . In our developments, we will work with
the associated U -statistic, denoted as θ̂ ,

θ̂ = θ̂ (Y1, . . . ,Yn) = 1

n(4)

∑

1≤i1 
=i2 
=i3 
=i4≤n

Hsym(Yi1 ,Yi2 ,Yi3 ,Yi4), (4)

where n(4) = n(n − 1)(n − 2)(n − 3), which is unbiased for θ , and thus E0(θ̂) = 0.
In the expression (4), the notation 1 ≤ i1 
= i2 
= i3 
= i4 ≤ n means that the four
indices i1, i2, i3, i4 are all of them different and that their values range from 1 to n.
Notice that the calculation of θ̂ requires n ≥ 4.

For the practical calculation of nθ̂ , it is convenient to use the following expression

nθ̂ = 1

n − 1

∑

i1 
=i2

Yi1Yi2
Yi1 + Yi2 − 1

1(Yi1 ≥ 1)1(Yi2 ≥ 1)

−2
1

(n − 1)(n − 2)

∑

i1 
=i2 
=i3

Yi1Yi2
Yi1 + Yi3

1(Yi1 ≥ 1)

+ 1

(n − 1)(n − 2)(n − 3)

∑

i1 
=i2 
=i3 
=i4

Yi1Yi2
Yi3 + Yi4 + 1

.

The R code we used in the numerical results for the calculation of nθ̂ is provided in
the SM.
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3 Sum of BH test statistics

This section studies a test of H0,k vs H1,k whose associate statistic is a sum of one-
samplemodified BH test statistics. As seen in Subsection 2.2, for nθ̂ to be well-defined
we must assume that the population generating the data has finite expectation and that
the sample size is larger than or equal to 4. Accordingly, the setting is as follows:

Let X1 = {X1,1, . . . , X1,n1}, . . . ,Xk = {Xk,1, . . . , Xk,nk } be k
independent samples with sizes n1, . . . , nk, which may be different,

where Xi,1, . . . , Xi,ni are i.i.d. coming from Xi ∈ N0, with

λi = E(Xi ) < ∞, and ni ≥ 4, 1 ≤ i ≤ k. (5)

Let

Tk =
k∑

i=1

ni θ̂i ,

where θ̂i = θ̂ (Xi,1, . . . , Xi,ni ), 1 ≤ i ≤ k, and θ̂ is as defined in (4). Let θi = θ(Xi ),
where θ is as defined in (2), 1 ≤ i ≤ k. By construction, E(Tk) = ∑k

i=1 niθi ≥ 0
with E(Tk) = 0 if and only if H0,k is true. Thus, it seems reasonable to reject H0,k for
large values of Tk .

Remark 1 The reason for multiplying θ̂i by ni in the definition of Tk is that, under
H0,k and for large ni , we have that ni θ̂i = OP(1). Specifically, it converges in law to a
linear combination of χ2 variables (see, for example, Chapter 5 of Serfling 2009). For
small to moderate ni we still have that ni θ̂i = OP(1). Therefore, in all cases (small
to large sample sizes), under H0.k , Tk is a sum of zero-mean, non-degenerate random
variables.

To test H0,k wemust calculate upper percentiles of the null distribution of Tk , that is
unknown because it depends on λ1, . . . , λk , which are unknown quantities. Moreover,
even if they were known, it is rather difficult to determine the exact null distribution
of Tk . Because of these reasons, we try to approximate it. The next result shows that,
under H0,k and conveniently normalized, Tk converges in law to a standard normal law,
no matter how large (or small) are the sample sizes n1, . . . , nk . To derive it we only
assume that the means of the populations take values in a compact interval bounded
away from0. This ismainly done to avoid the case inwhich the variance goes to infinity
or to 0. Let τ 20,i = V0(ni θ̂i ) = E0(n2i θ̂

2
i ), 1 ≤ i ≤ k, and σ 2

0k = (1/k)
∑k

i=1 τ 20,i . Let
� denote the cumulative distribution function of a standard normal distribution.

Theorem 1 Suppose that (5) holds and that H0,k is true with λi ∈ [L1, L2], ∀i , for
some fixed 0 < L1 < L2 < ∞, then

1√
k

Tk
σ0k

D→ Z ∼ N (0, 1),
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moreover

sup
x∈R

∣∣∣∣P0

(
1√
k

Tk
σ0k

≤ x

)
− �(x)

∣∣∣∣ ≤ C
1√
k
, (6)

for each k, where C = C(L1, L2) > 0 is a finite constant.

Recall that the test is one-sided, rejecting the null hypothesis for large values of
Tk . If σ0k were a known quantity, in view of Theorem 1, the test that rejects H0,k
when Tk/(

√
kσ0k) ≥ z1−α, for some α ∈ (0, 1), where �(z1−α) = 1 − α, would

have (asymptotic) level α. The assertion remains true if σ0k is replaced by a consistent
estimator.Wewill consider as estimator of σ 2

0k the sample variance of n1θ̂1, . . . , nk θ̂k ,

S21k = 1

k

k∑

i=1

(ni θ̂i − nθ̂ )2, nθ̂ = 1

k

k∑

i=1

ni θ̂i .

Since E0(ni θ̂i ) = 0, ∀i , we can also consider the following estimator of σ 2
0k ,

S22k = 1

k

k∑

i=1

n2i θ̂
2
i .

The next proposition shows that, under H0,k , S21k and S22k are both of them ratio
consistent estimators of σ 2

0k .

Proposition 1 Suppose that the assumptions in Theorem 1 hold, then S2ik/σ
2
0k

a.s.→ 1,
i = 1, 2.

Corollary 1 Suppose that the assumptions in Theorem 1 hold, then Tk/(
√
kSik)

D→ Z ,

i = 1, 2.

Let α ∈ (0, 1). For testing H0,k vs H1,k , we consider the test that rejects the null
when

Ti = Tk/(
√
kSik) ≥ z1−α. (7)

From Corollary 1, it has asymptotic level α, i = 1, 2.

Remark 2 Notice that to derive the above results no assumption has been done on the
sample sizes (apart from ni ≥ 4); hence they are valid whether the sample sizes remain
bounded or increase with k at any rate.

Remark 3 Toestimate the variance ofTk wehave considered nonparametric estimators.
Parametric estimators, that is, estimators obtained by calculating the exact expression
of τ 20,i and then replacing λi with the sample mean of the sample from Xi , or any
other estimator (see, e.g. Jiménez-Gamero and Batsidis 2017, Jiménez-Gamero et al.
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2016), are more involved. In addition, the study of the behavior of such estimators
under alternatives (necessary to study the power of the proposed test) may become
rather complicated.

Remark 4 In simulations we observed that the tests in (7), based on the normal approx-
imation,

P̂1(x) := P̂1 (Ti ≤ x) = �(x), i = 1, 2,

are rather conservative, for small to moderate k (the results will be shown in Sect. 6).
In order to improve the normal approximation one could try a one-term Edgeworth
expansion which, if it exists, should be (see, e.g., display (2.6) in Liu 1988),

P̂2(x) := P̂2 (Ti ≤ x) = �(x) + ς

6
√
k
φ(x)(2x2 + 1),

ς =
1
k

∑k
i=1 E0(n3i θ̂

3
i )

σ 3
0,k

, i = 1, 2, (8)

where φ denotes the probability density function of a standard normal distribution.
For practical application, the term ς must be replaced by some consistent estimator,

such as ς̂1 = 1
k

∑k
i=1(ni θ̂i − nθ̂ )3/S31,k or ς̂2 = 1

k

∑k
i=1 n

3
i θ̂

3
i /S32,k (the proof of the

consistency of these two estimators of ς can be easily derived using the results in
Subsection 1.1 of the SM). Notice that since φ(x)(2x2 +1) is a bounded function and
that, under assumptions in Theorem1, ς is a bounded quantity (this fact is consequence
of Lemma 2 in Subsection 1.1 of the SM), it follows that,

sup
x∈R

∣∣∣P0 (Ti ≤ x) − P̂ j (x)
∣∣∣ ≤ M

1√
k
, i = 1, 2, j = 1, 2,

where M is a positive constant. Thus, one can try both approximations to the null dis-
tribution of the test statistic Ti , i = 1, 2. Typically, one-term Edgeworth expansions
give approximations with error of order o(k−1/2), whenever the involved popula-
tions satisfy certain assumptions related to the existence of certain moments and their
characteristic functions (see, e.g. Bhattacharya and Ranga Rao 1976 and Hall 1992).
According to the results in Subsection 1.1 of the SM, such moment assumptions are
satisfied in our setting. The situation is not so clear for the conditions on the charac-
teristic function. Perhaps, the most popular sufficient condition on the characteristic
function is Cramér condition. See display (20.55) in Bhattacharya and Ranga Rao
(1976) for the case of independent random vectors. We did not succeed to prove it
in our setting. However, if all ni θ̂i are replaced by their limit in law, as ni → ∞
(which are linear combinations of centered independent χ2 variables, as observed in
Remark 1), in the expression of Tk , then it can be checked that under the assumptions
in Theorem 1, the approximation error of P̂2(x) is of order o(k−1/2). This suggests
that the order o(k−1/2) could be valid for large sample sizes.
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Nevertheless, in simulations we observed that when using the approximation (8),
the tests become a bit liberal, specially for small k. Section5 investigates a bootstrap
approximation, that gave really good practical results.

4 Power

This section studies the asymptotic power of the tests in (7). With this aim, it will be
assumed that the sample sizes are comparable in the following sense:

ni = cim, m ≥ 1, 0 < c ≤ ci ≤ C < ∞, for some constants c and C .

(9)

To be precise,m should be denoted asmk , since it can varywith k. To simplify notation,
the subindex k will be omitted. No restriction is assumed on m (except that m ≥ 1),
so if (9) holds, the sample sizes can either remain bounded or increase arbitrarily. It
will be also assumed w.l.o.g. that X1, . . . , Xr have Poisson laws, while the remaining
populations have alternative distributions, for some 0 ≤ r < k. Here r is also allowed
to vary with k, r = rk , but such dependence on k will be skipped. If r = 0, then
1 ≤ i ≤ r is understood to be the empty set.

The next result, which is similar to Theorem 1, shows that under H1,k and conve-
niently normalized, Tk also converges in law to a standard normal law.

Theorem 2 Suppose that (5) holds, that X1, . . . , Xr have Poisson laws with λi ∈
[L1, L2], 1 ≤ i ≤ r , for some 0 ≤ r < k, and for some fixed 0 < L1 < L2 < ∞,
that Xr+1, . . . , Xk have alternative distributions satisfying 0 < a ≤ V(

√
ni θ̂i ) and

E{|√ni (θ̂i −θi )|2+δ} ≤ A, r +1 ≤ i ≤ k, for some positive constants a, δ and A, and
that n1, . . . , nk satisfy (9). Let pk = (k − r)/k. Assume that either pk → p ∈ (0, 1],
or pk → 0 and k − r → ∞, or pk → 0, k − r remain bounded and m/k → 0. Then

1√
k

Tk − ∑k
i=r+1 niθi√

1
k

∑k
i=1 V(ni θ̂i )

D→ Z .

Remark 5 If Xi has an alternative distribution, then
√
ni (θ̂i − θi ) converges in law, as

ni → ∞, to a normal law; so, it makes sense to impose restrictions on
√
ni (θ̂i − θi )

rather than on ni (θ̂i − θi ), r + 1 ≤ i ≤ k.

Remark 6 Notice that to derive the above result it has been assumed that the sample
sizes satisfy ni ≥ 4, and (9) with m/k → 0 if pk → 0 and k − r remain bounded. In
any case, the result is valid whether the sample sizes remain bounded or increase with
k.

Remark 7 Theorem 2 assumes that 0 < a ≤ V(
√
ni θ̂i ), r + 1 ≤ i ≤ k, for some

fixed constant a. From the proof, we see that it suffices that the variance of
√
ni θ̂i is

bounded away from 0 for a positive proportion of alternatives.
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Under alternatives,

E(S21k) = 1

k

(
1 − 1

k

) k∑

i=1

V(ni θ̂i ) + 1

k

k∑

i=1

(niθi − nθ)2, nθ = 1

k

k∑

i=1

niθi ,

E(S22k) = 1

k

k∑

i=1

V(ni θ̂i ) + 1

k

k∑

i=r+1

n2i θ
2
i ,

and so S21k and S22k are both of them biased estimators of (1/k)
∑k

i=1 V(ni θ̂i ). The
next result shows that S2ik is a ratio (strongly) consistent estimator of its expectation,
i = 1, 2.

Proposition 2 Suppose that the assumptions in Theorem 2 hold. Then S2ik/E(S2ik)
a.s.−→

1, i = 1, 2.

Let pwdik = P(Tk/
√
kSik ≥ z1−α), i = 1, 2. From Theorem 2 and Proposition 2,

pwdik − �
(
coc1/2i1 zα + coc2

)
→ 0, (10)

i = 1, 2, where

coci1 = E(S2ik)
1
k

∑k
i=1 V(ni θ̂i )

, coc2 = 1√
k

∑k
i=r+1 niθi√

1
k

∑k
i=1 V(ni θ̂i )

, (11)

i = 1, 2. The next result gives the asymptotic power of the tests (7), that is, the limit

of �
(
coc1/2i1 zα + coc2

)
in some special cases.

Theorem 3 Suppose that the assumptions in Theorem 2 hold, that kpk → ∞, that
θi ≤ , ∀i , for some positive constant  and that γ̄ = 1

k−r

∑k
i=r+1 ciθi > ε, for

some positive constant ε (at least for large k).

1. If pk → p ∈ (0, 1], then pwdik → 1, i = 1, 2.
2. If pk → p = 0 and mpk → a > 0, then pwdik → 1, i = 1, 2.
3. If pk → p = 0, mpk → 0 and

√
kmpk → ∞, then pwdik → 1, i = 1, 2.

4. If pk → p = 0, mpk → 0 and
√
kmpk → κ ∈ [0,∞), then

pwdik = �

(
zα + κγ̄√

v1

)
+ rik, (12)

with rik → 0, i = 1, 2, where v1 = (1/r)
∑r

i=1 E(n2i θ̂
2
i ).

Theorem 3 assumes that all θi are bounded. If E(Xi ) ≤ M , ∀i , for some positive
constant M , then, from the definition of θ in (2), it follows that θi ≤ , ∀i , for some
positive  = (M). Recall that for the populations obeying the null we are assuming
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that λi = E(Xi ) ≤ L2, so it is not very restrictive to assume that a similar bound is
true for the expectations of the alternative populations.

Theorem 3 reveals that the tests in (7) are consistent in a variety of scenarios. To be
specific: if the proportion of alternative distributions is positive, then the proposed tests
are consistent (this is case 1 in Theorem 3); if the proportion of alternative distributions
goes to 0, then the proposed tests are still consistent provided that the sampling effort
m compensates for the vanishing pk (cases 2 and 3 in Theorem 3); otherwise, the tests
may be still able to detect alternatives (power greater than α), but the power may not
reach 1 (case 4 in Theorem 3). Finally, we point out that there are more cases not
considered in that theorem, which could be studied in a similar way.

5 A bootstrap approximation to the null distribution

We observed in simulations that neither the normal nor the one-term Edgeworth
approximations to the null distribution of the test statistics T1 and T2 are satis-
factory. Because of this reason, this section studies another approximation based
on bootstrap. Two bootstrap approximations are conceivable. First, since H0,k is a
parametric hypothesis, a parametric bootstrap could be applied: estimate λi through
λ̂i (which can be taken the sample mean of the sample Xi ), generate a sample
of size ni from X�

i ∼ Pois(λ̂i ), say X�
i,1, . . . , X

�
i,ni

, 1 ≤ i ≤ k, evaluate the
test statistic at the bootstrap data X�

1,1, . . . , X
�
1,n1

, . . . , X�
k,1, . . . , X

�
k,nk

, obtaining
say T �

i , and finally, approximate the null distribution of Ti through its bootstrap
distribution, which is the conditional distribution of T �

i , given the original data,
X1,1, . . . , X1,n1 , . . . , Xk,1, . . . , Xk,nk . In practise, the approximation is carried out
by simulation, that is, one repeats B times the above procedure, that way obtaining B
bootstrap replicates of Ti , say T �1

i , . . . , T �B
i , and then the bootstrap distribution of Ti

is estimated through the empirical distribution of the B bootstrap replicates. Although
in simulations we got excellent results (in terms of obtaining a really good approxi-
mation to the null distribution), the main issue with this bootstrap approximation is
that it is very time-consuming, due to the calculation of θ̂ �

i , since it involves a sum
with O(n2i ) terms, 1 ≤ i ≤ k.

Alternatively, a non-parametric bootstrap estimator can be obtained as follows.
First, define

Yi = ni θ̂i − nθ̂ , 1 ≤ i ≤ k.

By construction, Ȳ = (1/k)
∑k

i=1 Yi = 0. Let Y ∗
1 , . . . ,Y ∗

k be a random sample
from the empirical distribution of Y1, . . . ,Yk . Approximate the null distribution of Ti ,
i = 1, 2, through the conditional distribution of T ∗

i = ∑k
i=1 Y

∗
i /(

√
kS∗

ik), i = 1, 2,

given the original data, denoted as P∗(T ∗
i ≤ x), where S∗2

1k = (1/k)
∑k

i=1(Y
∗
i −Y ∗)2,

Y ∗ = (1/k)
∑k

i=1 Y
∗
i and S∗2

2k = (1/k)
∑k

i=1 Y
∗2
i . As before, in practise the approxi-

mation is carried out by simulation, that is, one repeats B times the above procedure,
obtaining T ∗1

i , . . . , T ∗B
i , and then the bootstrap distribution of Ti is estimated through

the empirical distribution of the B bootstrap replicates, i = 1, 2. As this bootstrap
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avoids the calculation (at the bootstrap level) of the most time-consuming part (the
θ̂∗
i , 1 ≤ i ≤ k), its implementation is really fast, even for large k. Because of this
reason, we restrict ourselves to study the consistency of this non-parametric bootstrap
approximation.

Theorem 4 Suppose that either H0,k is true or it is not true and the assumptions in
Theorem 2 hold with m2/k → 0, and that θi ≤ , ∀i , for some positive constant .

Then sup
x

∣∣P∗(T ∗
i ≤ x) − �(x)

∣∣ P→ 0, i = 1, 2.

To get the consistency of the bootstrap null distribution estimator when the data do
not obey H0,k , Theorem 4 requires m2/k → 0, which is used to cope with the bias of
S2ik as an estimator of the variance of (1/

√
k)Tk .

The result in Theorem 4 holds whether H0,k is true or not. In particular, the test that
rejects H0,k when p∗ = P∗{T ∗

i > Ti } ≤ α, is asymptotically correct in the sense that
when H0,k is true, p∗ → α, in probability. Under alternatives, the results in Theorem
3 also apply to that bootstrap test.

6 Finite sample results

Two tests of H0,k have been studied and three approximations to the null distribution
of their test statistics have been proposed. We conducted two simulation experiments,
in order to assess the finite sample performance of the proposed tests, using each
of the three null distribution approximations, under the null hypothesis (level) and
under alternatives (power). Next we describe those experiments and summarize their
outputs. As slightly better results (in the sense of closeness of the empirical levels to the
nominal values under the null, and greater power under alternatives) were obtained for
the test based on the variance estimator S21k , we will only display the results obtained
for such test.
Experiment to study the level To study the level of the tests for a finite value of k, we
carried out the following simulation experiment.We generated a sample from each of k
populations, for k = 10, 20, 100, 200, 1000, 2000. Population i has a Poisson lawwith
mean λi , 1 ≤ i ≤ k, where the values of λ1, . . . , λk were randomly generated from
a continuous uniform distribution in the interval (a, b), U (a, b), for (a, b) = (1, 5),
(5, 10), (10, 15), (15, 20). The size of each sample has been randomly generated
from a discrete uniform random lawUD{N , N + 1, . . . , M}, with (N , M) = (6, 10),
(11, 15), (16, 20), (21, 25), (26, 30). Each case was run R = 10, 000 times and to
calculate the bootstrap approximation, B = 1000 bootstrap samples were generated.
Table 1 displays the percentages of p-values less than or equal to 0.05 and 0.10, which
are the estimated type I error probabilities for nominal significance level α=0.05 and
0.10, respectively. Looking at this table we observe that: for small to moderate k, in
general, the normal approximation gives conservative tests and the one-term Edge-
worth approximation gives liberal tests, better results are observed for the bootstrap
approximation; the sample sizes seems to have no effect on the closeness of these
approximations to the null distribution (for the sample sizes tried); as expected from
the theory, as k increases all approximations yield levels closer to the nominal values.
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Experiment to study the power To study the power, we repeated the above experiment
with 100p% of the samples coming from an alternative distribution with mean μ and
the remaining 100(1 − p)% of the samples were generated from a Poisson law with
the same mean μ, for p = 0.1, 0.2. The considered alternative distributions are

• ALT1: a discrete uniform distribution, UD{0, . . . , 5}, μ = 2.5.
• ALT2: a mixture of two Poisson distributions, 0.5 × Pois(2) + 0.5 × Pois(5),

μ = 3.5.
• ALT3: a zero inflated Poisson distribution, 0.2 × 0 + 0.8 × Pois(2), μ = 1.6.
• ALT4: a binomial distribution, Bin(10, 0.5), μ = 5.
• ALT5: a negative binomial distribution, BN (2, 2/3), μ = 1.
• ALT6: a negative binomial distribution, BN (10, 2/3), μ = 5.

Table 2 displays the power results for k = 100, 200. Looking at this table we see that
power increases with the sample sizes, with k and with p.

7 Dependent data

This section aims to relax the assumption that X1, . . . , Xk are independent. For exam-
ple, X1, . . . , Xk can be seen as a segment of a process (observed at discrete times)
whose randomvariables take values inN0. Along this section, instead of (5), the setting
will be the following:

The available data consist of n independent copies of

(X1, . . . , Xk), say (X11, . . . , Xk1), . . . ,

(X1n, . . . , Xkn), Xi ∈ N0, with E(Xi ) < ∞, and n ≥ 4, 1 ≤ i ≤ k. (13)

Notice that, if the independence assumption is dropped, the expression of the vari-
ance of Tk given in Sect. 3 is not valid; moreover, to derive a result similar to that in
Theorem 1, some mixing conditions have to be added; and finally, adequate variance
estimators must be considered.

As before, let θ̂i = θ̂ (Xi1, . . . , Xin), 1 ≤ i ≤ k. Under the setting (13), we again
have thatE(Tk) = ∑k

i=1 nθi ≥ 0 withE(Tk) = 0 if and only if H0,k is true. Therefore,
it seems reasonable to reject H0,k for large values of Tk . Because of the same reasons
argued in Sect. 3 in the independent setting (5), wewill build a test of H0,k in the current
dependent setting (13), based on the asymptotic null distribution of Tk . As observed
before, some mixing conditions must be assumed with this aim. The definition of the
mixing coefficients in Theorem 5 below can be found in Definition 3.42 of White
(2001). Let

σ̄ 2
0k = V0(Tk/

√
k) = 1

k

k∑

i, j=1

E0(nθ̂i nθ̂ j ).

Theorem 5 Suppose that (13) holds, that {Xi }i∈Z has φ-mixing coefficients of size
−v/2(v − 1) or α-mixing coefficients of size −v/(v − 2), for some v > 2, that
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Table 2 Empirical powers, expressed in percentages at the nominal level α = 5%

ALT1 ALT2
k p (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

100 0.1 8.0 14.1 22.7 31.2 41.4 5.1 11.3 17.8 25.6 34.0

12.6 21.6 33.0 43.2 55.1 12.3 21.1 30.3 40.6 50.2

14.1 23.6 36.0 46.7 58.2 15.4 24.4 33.9 45.2 54.7

0.2 16.9 37.2 58.5 77.0 88.3 9.9 28.4 48.4 67.6 81.7

25.0 48.6 70.0 85.7 93.8 21.7 43.8 64.7 80.4 90.4

27.5 51.6 72.7 87.5 95.0 25.8 48.4 68.8 83.2 91.8

200 0.1 12.9 26.5 43.2 60.3 74.5 8.2 20.5 35.7 51.3 66.9

18.4 34.2 52.0 69.9 82.6 16.5 31.6 48.4 64.5 77.9

19.7 36.0 54.2 71.6 83.9 19.2 34.3 51.3 67.1 80.1

0.2 29.7 65.4 88.6 97.4 99.6 21.5 54.4 81.5 94.2 98.6

38.5 73.2 92.4 98.5 99.8 35.1 67.2 89.0 96.9 99.3

40.4 74.5 93.0 98.6 99.8 38.4 69.6 90.1 97.5 99.4

k p ALT3 ALT4

100 0.1 9.1 16.6 24.6 36.0 45.8 6.7 10.9 17.2 24.6 33.7

13.1 23.5 33.6 46.9 58.4 11.3 17.1 23.8 31.4 40.5

14.2 25.4 36.1 49.8 61.4 13.4 19.3 26.3 33.4 42.2

0.2 20.3 44.5 68.6 86.2 94.8 16.0 35.7 55.7 73.8 86.7

27.6 55.4 78.0 91.5 97.3 21.4 41.4 61.0 77.1 88.6

30.0 58.1 80.0 92.9 97.8 23.6 43.4 62.2 78.0 89.3

200 0.1 14.8 29.2 48.3 65.8 79.9 8.5 17.3 30.6 44.4 58.7

19.1 36.4 56.6 73.4 86.3 14.4 25.3 38.1 51.6 64.2

20.0 37.9 58.0 74.8 87.2 16.4 27.2 39.9 52.7 65.4

0.2 36.3 75.3 94.8 99.2 100 26.3 58.9 84.3 95.5 99.2

43.6 81.0 96.7 99.5 100 34.5 64.1 86.5 96.0 99.3

45.0 82.0 97.0 99.5 100 36.8 65.5 87.3 96.3 99.3

k p ALT5 ALT6

100 0.1 4.8 7.6 9.8 13.1 16.1 3.4 5.4 8.5 11.4 15.2

7.8 11.6 15.7 20.3 24.7 8.4 13.3 18.0 23.0 28.1

8.7 13.0 17.4 22.4 27.1 11.2 16.2 21.7 26.3 32.1

0.2 8.1 13.7 23.2 32.4 44.2 5.1 11.1 19.9 31.9 43.8

12.6 20.8 32.4 43.8 56.5 13.1 23.7 35.7 48.8 60.8

14.0 23.3 35.2 46.9 58.9 16.9 28.1 40.2 53.1 64.6

200 0.1 7.0 11.0 16.6 23.9 30.4 4.5 8.4 15.3 22.9 32.4

10.0 15.8 22.7 31.7 39.9 11.3 17.4 27.0 35.7 46.1

10.8 16.8 24.1 33.2 41.5 13.7 20.2 30.0 38.8 49.2
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Table 2 continued

k p ALT5 ALT6

0.2 11.8 25.6 42.7 60.2 75.9 8.3 22.0 41.6 61.3 76.6

16.9 33.5 51.4 69.2 82.4 18.7 37.0 56.8 74.2 85.5

18.1 34.9 53.0 70.6 83.4 22.2 40.8 60.8 76.4 87.2

In each case, the first line gives the results for the normal approximation, the second line for the bootstrap
approximation, and the third line for the one-term Edgeworth approximation. The case (a) means that
ni ∼ UD{6, . . . , 10}, (b) ni ∼ UD{11, . . . , 15}, (c) ni ∼ UD{16, . . . , 20}, (d) ni ∼ UD{21, . . . , 25}
and (e) ni ∼ UD{26, . . . , 30}

σ̄0k > 0 for all k sufficiently large, and that H0,k is true with λi ∈ [L1, L2], ∀i , for
some fixed 0 < L1 < L2 < ∞. Then Tk/(

√
kσ̄0k)

D→ Z .

For the result in Theorem 5 to be useful to construct a test of H0,k , a ratio consistent
estimator of σ̄ 2

0k is needed. With this aim we consider the following estimator, called
in the literature the HAC estimator,

ˆ̄σ 2
0k = ĉ0 + 2

�k∑

i=1

ω(i, �k)ĉi , ĉi = n2

k

k−i∑

j=1

(θ̂ j − ¯̂
θ)(θ̂ j+i − ¯̂

θ),
¯̂
θ = 1

k

k∑

j=1

θ̂ j .

Several papers have dealt with the consistency of theHAC estimator for non-stationary
sequences (see e.g. Andrews 1988, Andrews 1991, Newey and West 1987, White
2001). The next proposition shows that, for adequate choices of the weights ω(i, �k)
and of �k , and under some mixing conditions, ˆ̄σ 2

0k is ratio consistent when σ̄0k > 0.

Proposition 3 Suppose that (13) holds, that {Xi }i∈Z has φ-mixing coefficients of size
−2v/(2v − 1) or α-mixing coefficients of size −2v/(v − 1), for some v > 1, that
σ̄0k > 0 for all k sufficiently large, that H0,k is true with λi ∈ [L1, L2], ∀i , for some
fixed 0 < L1 < L2 < ∞, that the weights are bounded, |ω(i, �k)| ≤ �, for some
� > 0, that �k → ∞, that ω(i, �k) → 1 for each i , and that �k/k1/4 → 0. Then,
ˆ̄σ 2
0k/σ̄

2
0k

P→ 1.

Corollary 2 Suppose that the assumptions in Proposition 3 hold. Then Tk/(
√
k ˆ̄σ0k) D→

Z .

Remark 8 Notice that to derive the above results no assumption has been done on the
sample size n (apart from n ≥ 4); hence they are valid whether n remains bounded or
increases with k at any rate.

Let α ∈ (0, 1). For testing H0,k vs H1,k , in the setting (13), we consider the test
that rejects the null when

Tk/(
√
k ˆ̄σ0k) ≥ z1−α. (14)

From Corollary 2, it has asymptotic level α.
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Remark 9 The condition �k/k1/4 → 0 can be relaxed in the sense that �k can be chosen
larger (see Andrews (1988), Andrews (1991)). Nevertheless, in our simulations we
found no practical advantage when taking larger values of �k .

Remark 10 Theorem 1 gives a Berry-Esseen type bound for the normal approximation
in the independent setting (5) and Remark 4 gives the expression of the one-term
Edgeworth expansion. We are only aware of Berry-Essen type bounds for stationary
sequences of weakly dependent data (see, e.g. Rio 1996, Bentkus et al. 1997, Jirak
2016), and the same apply to Edgeworth expansions (see, e.g. Lahiri 2010), which are
more involved than in the independent setting. Recall that in our setting, the means of
the components of the sequence X1, . . . , Xk may differ, therefore the sequenceswe are
dealing with are not stationary, and hence the aforementioned bounds and expansions
do not apply.

To study the power, as in the independence setting (5), we will assume that
X1, . . . , Xr have Poisson laws, while the rest of the data have alternative distribu-
tions. Let

σ̄ 2
k = n

k

k∑

i, j=1

E

{
(θ̂i − θi )(θ̂ j − θ j )

}
.

Theorem 6 Suppose that (13) holds, that {Xi }i∈Z has φ-mixing coefficients of size
−v/2(v − 1) or α-mixing coefficients of size −v/(v − 2), for some v > 2, that
X1, . . . , Xr have Poisson laws with λi ∈ [L1, L2], 1 ≤ i ≤ r , for some r < k, that
Xr+1, . . . , Xk have alternative distributions satisfying E(|√n(θ̂i − θi )|2+δ) ≤ A <

∞, r + 1 ≤ i ≤ k, for some constants A, δ > 0, and that σ̄ 2
k > 0 for all k sufficiently

large. Then,

1√
k

Tk − n
∑k

i=r+1 θi√
nσ̄k

D→ Z .

Remark 11 The observation in Remark 5, made for the setting (5), also applies here
in the setting (13).

The next proposition gives the expectation and the limit in probability of ˆ̄σ 2
0k under

alternatives.

Proposition 4 Suppose that (13) holds, that {Xi }i∈Z has φ-mixing coefficients of size
−v/(v − 1) or α-missing coefficients of size −2v/(v − 2), for some v > 2, that
X1, . . . , Xr have Poisson laws with λi ∈ [L1, L2], 1 ≤ i ≤ r , for some r < k,
that Xr+1, . . . , Xk have alternative distributions satisfying E(|√n(θ̂i − θi )|2+δ) ≤
A < ∞, r + 1 ≤ i ≤ k, for some positive constants A, δ, that that θi ≤ , ∀i , for
some positive constant , that |ω(i, �k)| ≤ �, for some � > 0, that �k → ∞, that
ω(i, �k) → 1 for each i , that �k/k1/4 → 0, that n/

√
k is a bounded quantity, at least
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for large k, and that σ̄k > 0 for all k sufficiently large. Then,

1

n
E

( ˆ̄σ 2
0k

)
= σ̄ 2

k + n

k

k∑

j=1

(θ j − θ̄ )2 + 2
�k∑

i=1

ω(i, �k)
n

k

k−i∑

j=1

(θ j − θ̄ )(θ j+i − θ̄ ) + rk

(15)

where θ̄ = (1/k)
∑k

i=1 θi and rk → 0 as k → ∞. Assume also that (1/n)E
( ˆ̄σ 2

0k

)
≥

a > 0, at least for large k. Then,

ˆ̄σ 2
0k/E

( ˆ̄σ 2
0k

)
P→ 1. (16)

Finally, from Theorem 6 and Proposition 4, the power of the test (14) can be
approximated by means of

�
(
coc.d1/21 zα + coc.d2

)
,

where

coc.d1 = 1

n

E

( ˆ̄σ 2
0k

)

σ̄ 2
k

, coc.d2 =
√
n

∑k
i=r+1 θi√
kσ̄k

.

In particular, the test is consistent against alternatives for which coc.d1 remains
bounded and coc.d2 → ∞.

7.1 Finite sample results for simulated data

We conducted two simulations experiments, in order to assess the finite sample per-
formance of the test in (14) under the null hypothesis (level) and under alternatives
(power). Next we describe those experiments and summarize their outputs.
Experiment to study the level To generate a sequence of k dependent Poisson data, we
first generated k+2m independent Poisson data, and then calculated the moving sums
of each 2m + 1 consecutive elements. To generate the independent Poisson data, we
considered the following three cases:

• Case inc: the means of the data form an increasing sequence from 0.25 to 1
• Case ran: the means of the data are a random sample from a uniform law in the
interval (0.25, 1).

• Case alt: the means of the data form a sequence with the first and third quarters
equal to 0.25, and the remaining equal to 1.

We tried m = 2, 3, the case m = 3 inducing a stronger dependence compared to
m = 2. As for �k , we took ξlog(k)�, with ξ = 1, 2, 3, where x� is the smaller
integer greater than or equal to x . This ensures in particular �k = o(k1/4), as requested
in Proposition 3. We considered several weights ω(i, �k). Specifically we considered
the weights generated by the following kernels (see, for example, Andrews 1991)
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• Truncated kernel, which gives ωT (i, �k) = 1, 1 ≤ i ≤ �k ,
• Bartlett kernel, which gives ωB(i, �k) = 1 − i/(�k + 1), 1 ≤ i ≤ �k ,
• Tukey-Hanning kernel, which gives ωT H (i, �k) = 0.5{1+ cos(π i/�k)}, 1 ≤ i ≤

�k ,
• Parzen kernel, which givesωP (i, �k) = 1−6(i/�k)2+6(i/�k)3, for 1 ≤ i ≤ �k/2,
and ω(i, �k) = 2(1 − i/�k)3, for �k/2 < i ≤ �k .

The weights ωT and ωP do not always generate positive variance estimators in finite
samples. In our simulations we got negative variance estimators in many instances
when using ωT , and in less cases with ωP (only for k = 50). As for the other weights,
with the use of ωB we got, in general, level results closer to the nominal values than
those given by ωT H . Because of these reasons, we will only show up the results for
ωB . Table 1 in the SM displays the percentages of p-values less than or equal to 0.05
and 0.10, which are the estimated type I error probabilities for nominal significance
level α=0.05 and 0.10, respectively. Each of those percentages were calculated over
R = 10, 000 runs. Looking at this tablewe see that, in contrast to the independent case,
here the sample size has an effect on the closeness of the actual level to the nominal
value; in general, better results (in the sense of getting closer values) are obtained for
n = 10, 15, than for n = 5. As expected from the theory, as k increases, the observed
levels stick to the nominal values.
Experiment to study the power To generate a sequence of dependent data, we proceed
as before: first generate k+2m independent data, and then calculate the moving sums
of each 2m + 1 consecutive elements; the difference lies in the way of generating the
independent data: the first 100p% come from an alternative law, and the remaining
100(1 − p)% come form a Poisson law with the same mean μ as the alternative, for
p = 0.2, 0.4. The considered alternatives were

• ALTD1: a zero inflated Poisson distribution, 0.2 × 0 + 0.8 × Pois(2), μ = 1.6,
• ALTD2: a binomial distribution, Bin(5, 0.3), μ = 1.5,
• ALTD3: a negative binomial distribution, BN (2, 5/7), μ = 0.8.

Because of the same reasons given for the level, we will only show up the results for
ωB . Table 2 in the SM displays them. Looking at this table, the same conclusions given
for the independent case apply here.

8 Real data illustration

In order to illustrate the proposed test, we consider the results of theMAQC-2 mRNA-
Seq experiment in Bullard et al. (2010). In this experiment, two types of biological
samples (Brain and UHR) were analyzed, each using n = 7 lanes. As a result, seven
sequences of read counts were obtained for each group along k = 52, 580 genes.
In sequencing experiments, the Poisson has been suggested as a suitable model for
the read counts; see for instance Lander and Waterman (1988). In this setting, the
Poisson distribution is often used to calculate p-values from the read counts, so genetic
disorders or other features can be detected (Jiménez-Otero et al. 2019). Therefore,
verification of this assumption is important in practice in order to validate the Poisson-
based inference.
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Fig. 1 BH local test statistics against log-overdispersion rates along the genes for the MAQC-2 experiment:
Brain group (left) and UHR group (right). Horizontal and vertical lines are located at zero

The null hypothesis of Poissonity was tested separately for the two biological sam-
ples by applying criterion (14). We used the weigths ωB(i, �k) with �k = 11, 22 and
33, corresponding to the choice �k = ξ log(k)�, with ξ = 1, 2, 3 respectively. The p-
valueswere very small for the Brain group (2.36×10−9, 3.63×10−9 and 5.29×10−9),
leading to the rejection of the Poisson model. The p-value obtained for the UHR type
was 0.076 for the three choices of �k . The very small p-values obtained for the Brain
group can be explained from the overdispersion of the read counts. In order to see this,
in Fig. 1, left, the modified BH test statistics nθ̂i , 1 ≤ i ≤ k, are plotted against the
log-ratio of sample variance and mean. Note that this log-ratio is zero for the Poisson
model. From Fig. 1, left, it is seen that the overdispersion is clearly present for many
of the genes, which report a relatively large value of the modified BH test statistic
too. This figure also reveals that the modified BH statistic may be large even when
mean and variance are in well agreement; this is not surprising, since the absence of
overdispersion does not guarantee Poissonity. The situation is less critical for the UHR
group, see Fig. 1, right; this is why the p-value is several orders of magnitude greater
compared to the Brain group. In this case, the log-overdispersion rate roughly ranges
between −2 and 2, with only few genes reporting values larger than 2. The modified
BH statistics are smaller for the UHR group too.

For comparison purposes, the p-values were re-calculated by using the tests based
on the independence assumption; the results were very similar to those reported by the
test for dependent data. Specifically, the p-values reported by T1 were 1.17 × 10−9

and 0, obtained with the normal and the non-parametric bootstrap approximations,
respectively, for the Brain group; and similarly 0.078 and 0.015 for the UHR group.
The similarity among the results obtained with the normal approximation in each
group suggests that the dependence among the read counts is not strong.
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9 Concluding remarks and further research

This paper proposes and studies procedures for simultaneously testing that k samples
from a count variable come from Poisson laws, which can have different means. The
samples can be independent or dependent. The proposed tests are based on the BH test
and allow k to increase. The normal approximation to the null distribution of the test
statistics works reasonably well for large k. The tests have been shown to be consistent
against a wide range of possible configurations for the alternatives, including cases
where the proportion of alternative distributions goes to 0.

The methods in this paper are based on the test in Baringhaus and Henze (1992)
for one sample. As seen in Subsection 2.1, there are other Poissonity tests designed
for the one-sample setting. Each of them could be used to build similar procedures to
those developed here. Moreover, parallel strategies could be tried for simultaneously
testing that k samples come from other parametric families.
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org/10.1007/s11749-023-00883-w.
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