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Summary

Assume that a random vector ðX,YÞ is observed in k populations and independent

samples of that random vector are available at each population. Assume that X and Y

have the same dimension. Our purpose is to test the equality of the marginal distribu-

tions of X and Y in the k populations when k is large compared to the sample sizes.

With this aim, we propose and study a test statistic that compares the empirical char-

acteristic functions of the marginal distributions. Under the null, the test statistic is

asymptotically free-distributed. An expression of the asymptotic power is also

derived, which allows to study the consistency of the test. No assumption is made on

the distribution of X and Y, which can be continuous, discrete or mixed; moreover,

no assumption is made about moments. A simulation study investigates the finite

sample performance of the new test. The proposal is applied to study air pollution

levels that are directly related to environmental health, in all countries where obser-

vations are available.
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1 | INTRODUCTION

The two-sample problem is a classical one in statistics. If X and Y are two random vectors of the same dimension with distribution functions FX

and FY , respectively, the two-sample problem consists in testing H01 : FX ¼ FY versus H11 : FX ≠ FY , which is tantamount to H01 : φX ¼φY versus

H11 : φX ≠φY , where for any random vector W �ℝp, φW denotes its characteristic function, that is, φWðtÞ¼Eðeit > WÞ, t�ℝp, with i¼ ffiffiffiffiffiffiffi�1
p

and the

superscript > means transposition of column vectors and matrices. Many approaches have been suggested in the statistical literature to deal with

this problem. A number of them are based on comparing an estimator of a function that characterizes the population calculated at each sample.

Examples are the chi-square test, based on comparing estimators of the probabilities for categorical data (see also Alba-Fernández & Jiménez-

Gamero, 2009; Pardo et al., 1999, which use other divergence measures); tests based on comparing estimators of the cumulative distribution for

univariate continuous data (Kiefer, 1959); tests based on comparing estimators of the quantile distribution for univariate continuous data

(Kosorok, 1999); tests based on comparing estimators of the probability density function for continuous data (Anderson et al., 1994; Martínez-

Camblor & de Uña Álvarez, 2009); tests based on comparing estimators of the characteristic function (Alba-Fernández et al., 2008; Baringhaus &

Franz, 2004; Hušková & Meintanis, 2008; Jiménez-Gamero et al., 2017); and tests based on comparing estimators of the probability generating

function for count data (Alba-Fernández et al., 2017). Most papers (including those previously cited) assume that independent samples are avail-

able from each population. The case where the data at hand are independent copies of a random vector ðX,YÞ has been less frequently consid-

ered. In this setting, the paper by Quessy and �Ethier (2012) proposes procedures based on comparing the empirical distribution functions and the
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characteristic functions of the marginal distributions of X and Y; the paper by Gaigall (2020) proposes procedures based on comparing the empiri-

cal distribution functions adapted to the case where the data have missing components. In both cases, independent and paired samples, the prop-

erties of the existing methods have been studied when the sample sizes increase.

This paper addresses the problem of testing the marginal homogeneity of a random vector ðX,YÞ, but now, we assume that the population is

divided into a large number of subpopulations, say k. The distribution of ðX,YÞ may vary across subpopulations, so we denote ðXj,YjÞ to the target

vector when it is restricted to population j, 1≤ j ≤ k. With this notation, our objective is to build a test of the null hypothesis:

H0 : FXj ¼ FYj , 1≤ j≤ k,

H1 : FXj ≠ FYj , for some j� f1,…,kg,

or equivalently,

H0 :φXj ¼φYj , 1≤ j≤ k,

H1 :φXj ≠φYj , for some j� f1,…,kg:

Notice that if the subpopulations are ignored, H01 may not be rejected, but H0 may be rejected, as differences between the subpopulations could

be compensated when they are considered as a whole.

Assume that X,Y �ℝp, which entails that X ¼ðX1 > ,…,Xk > Þ > , Y ¼ðY1 > ,…,Yk > Þ > �ℝkp. With this notation, we can write

H0 : FX ¼ FY ,
H1 : FX ≠ FY :

This way, H0 can be seen as a two-sample problem for high-dimensional data. Some tests have been proposed in the statistical literature for such

a problem. Examples are the tests in Hall and Tajvidi (2002), Liu and Modarres (2011), Chen and Friedman (2017), Cousido-Rocha et al. (2019)

and Liu et al. (2022), just to cite a few. The tests in all these papers assume that the data consist of two independent samples, one from X , say

X1,…,Xn, and the other from Y, say Y1,…,Ym. To the best of our knowledge, the case of paired samples (that is our setting) has not been dealt

with. Here, we study a special case, in which independent paired samples are available from each of the k components, ðX1,Y1Þ,…,ðXk ,YkÞ of

ðX ,YÞ.
The rest of the paper is organized as follows. Section 2 is devoted to constructing the test statistic. For each subpopulation, an unbiased esti-

mator of the squared of an L2 type distance between the population characteristic functions of X and Y is built. Then, these estimators are com-

bined to get the test statistic. As an approximation to the null distribution of the test statistic, its asymptotic distribution is derived, which turns

out to be normal. Here, by asymptotic, it is meant when the number of groups k increases; the sample sizes of the data from each group can either

stay bounded or grow with k. The asymptotic power of the proposed test is handled in Section 3. Section 4 presents some practical issues to facil-

itate users the application of the proposal. Section 5 reports the main findings of a large simulation study carried out to evaluate the finite sample

performance of the test with critical region based on the asymptotic null distribution, with respect to both the level and the power. This

section also contains a real data set application. Finally, Section 6 concludes. The proofs, some further tables related to the simulation study of

Section 5 and the R code used to calculate the proposed test statistic are deferred to the Supporting Information.

Before ending this section, we introduce some notation: All 0s appearing in the paper represent vectors of the appropriate dimension with all

its entries equal to 0; for z�C, the set of complex numbers, we write z¼ReðzÞþ i ImðzÞ and jzj ¼ ReðzÞ2þ ImðzÞ2
n o1=2

is the modulus of z;

all limits in this paper are taken when k!∞; E and V denote expectation and variance, respectively, and E0 and V0 denote expectation and vari-

ance under the null hypothesis H0, respectively.

2 | THE TEST STATISTIC

Assume that ðX,YÞ�ℝ2d, with X,Y �ℝd. Let φ¼φðX,YÞ, that is, φðt,sÞ, t,s�ℝd, denotes the joint characteristic function of the random vector ðX,YÞ.
Then φXðtÞ¼φðt,0Þ, and φYðtÞ¼φð0,tÞ, t�ℝd. X and Y have the same marginal distribution if and only if φXðtÞ¼φYðtÞ, 8t�ℝd, which is tanta-

mount to ηw ¼0, with

ηw ¼
Z

jφXðtÞ�φYðtÞj2wðtÞdt, ð1Þ

where an unspecified integral denotes integration over ℝd and w is a probability density function (pdf) defined on ℝd, which is positive every-

where. Let ðX1,Y1Þ and ðX2,Y2Þ be two independent copies of ðX,YÞ. Proceeding as in Section 2 of Chen et al. (2022), it can be seen that
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jφXðtÞ�φYðtÞj2 ¼φX1�X2
ðtÞþφY1�Y2

ðtÞ�2φX1�Y2
ðtÞ

¼E cos t > ðX1�X2Þ
� �þ cos t > ðY1�Y2Þ

� ��2cos t > ðX1�Y2Þ
� �� �

:
ð2Þ

From (2) and using Fubini's theorem, we have

ηw ¼E
Z

cos t > ðX1�X2Þ
� �þ cos t > ðY1�Y2Þ

� ��2cos t > ðX1�Y2Þ
� �� �

wðtÞdt
� �

: ð3Þ

Let uðtÞ¼ R cosðt > xÞwðxÞdx, that is, u is the real part of the characteristic function of a random vector with pdf w. With this notation, (3) can

be equivalently written as

ηw ¼E uðX1�X2ÞþuðY1�Y2ÞÞ�2uðX1�Y2Þf g: ð4Þ

Let ðX1,Y1Þ,…,ðXn,YnÞ be a random sample (independent copies) of ðX,YÞ. From (4), ηw can be unbiasedly estimated by means of

η̂w ¼ 1
nðn�1Þ

X
1≤ r ≠ s≤ n

h ðXr ,YrÞ,ðXs,YsÞf g, ð5Þ

with

h ðXr ,YrÞ,ðXs,YsÞf g¼ uðXr �XsÞþuðYr �YsÞ�uðXr �YsÞ�uðXs�YrÞ: ð6Þ

Remark 1. The statistic η̂w is a bit different from that considered in Quessy and �Ethier (2012). First, in that paper, it is assumed that

d¼1; this assumption causes no serious restriction since the extension to d>1 is easy. Second, the test statistic in that paper is built

by replacing the characteristic functions in the expression (1) of ηw with their empirical versions obtaining, say, ~ηw . It can be easily

checked that Eð~ηwÞ! ηw , as n!∞, but Eð~ηwÞ≠ ηw , for each finite n.

Now, assume that there are k populations and that a random sample of size nj , Xj
1,Y

j
1

	 

,…, Xj

nj
,Yj

nj

	 

, is available from ðXj,YjÞ, 1≤ j≤ k. The k

random samples are assumed to be independent. Let η̂j,w denote the statistic in (5) when it is evaluated in the sample from population j, 1 ≤ j≤ k,

and define

Tk ¼
Xk
j¼1

η̂j,w:

Let

ηj,w ¼
Z

jφ
Xj ðtÞ�φ

Yj ðtÞj2wðtÞdt, 1≤ j≤ k:

Notice that EðTkÞ¼
Pk

j¼1ηj,w ≥0, with EðTkÞ¼0 if and only if H0 is true. Thus, it is reasonable to reject the null hypothesis for large values of Tk .

Now, to determine what are large values, we have to calculate its distribution under the null hypothesis, or at least an estimator.

As an approximation to the null distribution of Tk , the next theorem derives its asymptotic null distribution. With this aim, it will be assumed

that the sample sizes of the data from each population are comparable in the following sense:

nj ¼ cjm, m≥1, 0 < c0 ≤ cj ≤C0 <∞, 1 ≤ j≤ k, ð7Þ

where c0 and C0 are two fixed constants. In the above expression, m is allowed to vary with k, so, strictly speaking, it should be denoted as mðkÞ
but, in order to keep the notation as simple as possible, such dependence on k will be skipped.

ALBA-FERNÁNDEZ and JIM�ENEZ-GAMERO 3 of 14
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Theorem 1. Suppose that H0 is true, that nj ≥2, 8j, that (7) holds and that E h2 Xj
1,Y

j
1

	 

, Xj

2,Y
j
2

	 
n oh i
≥ δ, 8j, for some δ>0. Then,

Tk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0ðTkÞ

p !L Z, where Z�Nð0,1Þ.

Therefore, if V0ðTkÞ were a known quantity, the test that rejects H0 when Tk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0ðTkÞ

p
≥ z1�α, for some α� ð0,1Þ, would have (asymptotic)

level α, where z1�α denotes the upper α-percentile of the standard normal distribution. From the independence of η̂1,w ,…, η̂k,w , it follows that

VðTkÞ¼
Xk
j¼1

Vðη̂j,wÞ:

In particular, under H0 (see the proof of Theorem 1),

V0ðTkÞ¼2
Xk
j¼1

1
njðnj�1Þξj,

where ξj ¼E h2 Xj
1,Y

j
1

	 

, Xj

2,Y
j
2

	 
n oh i
, 1 ≤ j≤ k, which are unknown quantities. Hence, for the result in Theorem 1 to be useful in order to get a

critical region for testing H0, a ratio consistent estimator of V0ðTkÞ is needed. We will consider as estimator of ð1=kÞV0ðTkÞ the sample variance of

η̂1,w ,…, η̂k,w ,

S2k ¼
1
k

Xk
j¼1

η̂j,w� η̂:,w
� �2

, η̂:,w ¼1
k

Xk
j¼1

η̂j,w:

Next proposition shows that, under H0, S
2
k is a ratio (strongly) consistent estimator of ð1=kÞV0ðTkÞ.

Proposition 1. Suppose that assumptions in Theorem 1 hold. Then kS2k=V0ðTkÞ!a:s:1.

As an immediate consequence of Theorem 1 and Proposition 1, we have the following result.

Corollary 1. Suppose that assumptions in Theorem 1 hold. Then Tk=
ffiffiffi
k

p
Sk !L Z:

Let α� ð0,1Þ. For testing H0 versus H1, we consider the test that reject the null when

Tkffiffiffi
k

p
Sk

≥ z1�α: ð8Þ

From Corollary 1, it has asymptotic level α.

Remark 2. Notice that to derive the previous results, it has only been assumed that the sample sizes are comparable, in the sense

of (7), and that nj ≥2, 8j. Hence, the stated results remain true if they increase arbitrarily or remain bounded.

Remark 3. Notice also that to derive the previous results, no assumption has been made on the distribution of X and Y, which could

be continuous, discrete or mixed; moreover, no moment is assumed to exist.

Remark 4. The proof of Theorem 1 uses that V0ðmTkÞ¼
Pk

j¼1V0ðmη̂j,wÞ!∞, and the proof of Proposition 1 uses that V0ðmTkÞ=k is

a positive quantity. The assumption E0 h2 ðX1,Y1Þ,ðX2,Y2Þð Þ
h i

≥ δ, 8i, ensures both requirements. Nevertheless, it can be replaced by

any other assumption whenever those requirements are met, as, for example, that E h2 Xj
1,Y

j
1

	 

, Xj

2,Y
j
2

	 
n oh i
≥ δ, for a positive pro-

portion of cases, for some δ>0.
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Remark 5. All results in this section assume that the same pdf w is used in the definition of ηw in all subpopulations. Nevertheless,

different pdfs could be taken at each population, say wj, 1≤ j≤ k. In such a case, we still can use the critical region (8) with η̂j,w rep-

laced with η̂j,wj
, 1≤ j≤ k. The results in this section remain true whenever all kernels (6) associated to each wj satisfy the required

assumptions. Specifically, if hj stands for the kernel (6) associated to wj, then the assumption E h2 Xj
1,Y

j
1

	 

, Xj

2,Y
j
2

	 
n oh i
≥ δ, 8j, for

some δ>0, in Theorem 1 now becomes E h2j Xj
1,Y

j
1

	 

, Xj

2,Y
j
2

	 
n oh i
≥ δ, 8j, for some δ>0, or at least for a positive proportion of

cases, as observed in Remark 4.

Remark 6. To define Tk , we have chosen the sum of modified one-population test statistics (see Remark 1). The reason to opt for

the sum is that, under the null hypothesis, we get an asymptotic free distributed test statistic (as shown in Corollary 1). The same

is observed in other sum-type test statistics as those in Park and Park (2012), Zhan and Hart (2014), Jiménez-Gamero and Franco-

Pereira (2021), Jiménez-Gamero et al. (2022) and Jiménez-Gamero (2023), just to cite a few. If one instead takes the maximum, the

asymptotic null distribution of the resultant test statistic becomes more complicated, and one has to resort to resampling in order to

approximate its null distribution. See, for example, Kim (2021).

Remark 7. Proposition 1 in Székely and Rizzo (2013) shows that the energy distance between two distributions is of the type con-

sidered in this paper: It is an L2-type distance among the characteristic functions of the populations, as in (1). The main difference is

that while the weight function w used here is a pdf, and thus it has finite integral, the weight function that uses the energy distance

does not have a finite integral. To ensure the finiteness of the energy distance, the populations must have finite expectations. As

observed in Remark 3, the proposal in this paper does not require the existence of any population moment. A similar test to the one

studied in this paper could be designed by using the energy distance, but, as noticed before, its application would need stronger

assumptions.

3 | POWER

This section deals with the asymptotic power of the test with the critical region in (8). With this aim, it will be also assumed w.l.o.g. that

FXj ≠ FYj , 1≤ j≤ v, and FXj ¼ FYj , vþ1≤ j≤ k, ð9Þ

or equivalently that

φXj ≠φYj , 1≤ j≤ v, andφXj ¼φYj , vþ1≤ j≤ k,

for some 1≤ v ≤ k. If v¼ k, then vþ1≤ i≤ k is understood to be the empty set. Here, v is allowed to vary with k, v¼ vðkÞ, but such dependence on

k will be skipped. In order to derive the asymptotic power, we must study the asymptotic behaviour of Tk and S2k under alternatives (9). The next

result shows that, under alternatives and conveniently normalized, Tk also converges in law to a standard normal law.

Theorem 2. Suppose that (7) and (9) hold, that V E h Xj
1,Y

j
1

	 

, Xj

2,Y
j
2

	 
n o
Xj
2,Y

j
2

	 



h i	 

≥ δ, 1≤ j≤ v, and

E h2 Xj
1,Y

j
1

	 

, Xj

2,Y
j
2

	 
n oh i
≥ δ, vþ1≤ j≤ k, for some δ>0, and that either v!∞ or v is bounded and m=k!0. Then

Tk�
Pv

j¼1ηj,w

	 
. ffiffiffiffiffiffiffiffiffiffiffiffi
VðTkÞ

p !L Z:

The next proposition gives the limit in probability, under alternatives, of the variance estimator S2k . With this aim, we first write its expected

value:

E S2k

	 

¼1
k

1�1
k

� �Xk
j¼1

Vðη̂j,wÞþ
1
k

Xk
j¼1

ηj,w�η:,w
� �2

, η:,w ¼1
k

Xk
j¼1

ηj,w:

Notice that, under alternatives, S2k is a biased estimator of ð1=kÞPk
j¼1Vðη̂j,wÞ.

Proposition 2. Suppose that assumptions in Theorem 2 hold. Then S2k=E S2k

	 

!P 1.

ALBA-FERNÁNDEZ and JIM�ENEZ-GAMERO 5 of 14
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Remark 8. Recall, as observed in Remark 2, that to derive results under the null hypothesis H0, no condition was assumed on the

sample sizes, except that they are comparable, in the sense of (5). By contrast, under alternatives, if v remains bounded, it is

assumed that m=k!0. This is required because the order of the variance of η̂j,w is different in populations not obeying the null

(which is of order Oðm�1Þ) and in homogeneous populations (which is of order Oðm�2Þ). Such a condition is not severe at all, as it

allows the sample sizes to remain bounded or increase with k, but at a lower rate. This is not a strong assumption, since in practice,

when there is a large number of populations, it does not seem plausible to have many data coming from each population.

As a consequence of Theorem 2 and Proposition 2, the power of the test (8) can be approximated as follows:

pwd¼P
Tkffiffiffi
k

p
Sk

≥ z1�α

� �
¼P

Tk�
Pv

j¼1ηj,wffiffiffiffiffiffiffiffiffiffiffiffi
VðTkÞ

p ≥
Skffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðTkÞ=k
p z1�α�

ffiffiffi
k

p η:,wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðTkÞ=k

p
 !

≈Φ
ffiffiffi
k

p
coc1þcoc1=22 zα

	 

,

where Φ denotes the cumulative distribution function of a standard normal law and

coc1 ¼
η:,wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðTkÞ=k
p , coc2 ¼

E S2k

	 

VðTkÞ=k :

Notice that coc2 ≥ 1�1=k. If the alternative is such that coc2 ≤M, for some positive constant M, and coc1 > ν, for some positive constant ν, then

P Tk=
ffiffiffi
k

p
Sk ≥ z1�α

	 

!1; that is, the test (8) is consistent against this sort of alternatives.

There are many possible configurations of alternative distributions. Next, we study the following particular case: Assume that

n1 ¼…¼ nk ¼m>2, that η1,w ¼…¼ ηv,w :¼ η>0 and that

Vðη̂j,wÞ ¼ m�2
mðm�1Þξ1þ

1
mðm�1Þξ2, 1≤ j≤ v,

Vðη̂j,wÞ ¼ 1
mðm�1Þξ3, vþ1≤ j≤ k,

for some 0< ξ1, ξ2, ξ3. Since juj≤1, and hence jhj≤4, it readily follows that ξ1, ξ2, ξ3 <M, for some positive constant M. The expression of the vari-

ances of η̂j,w has the above form (Serfling, 2009); what we are assuming (in order to make the analysis easier) is that the quantities ξ1 and ξ2 are

the same in all alternative cases and that the quantity ξ3 is the same in all null cases. Assume also that assumptions in Proposition 2 hold. In this

setting,

coc1 ¼ ffiffiffiffi
m

p η
v
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v
k

m�2
m�1

ξ1þ
1

m�1
ξ2

� �
þ 1�v

k

	 
 1
m�1

ξ3

s ,

coc2 ¼1�1
k
þη2m

v
k

1�v
k

	 

v
k

m�2
m�1

ξ1þ
1

m�1
ξ2

� �
þ 1�v

k

	 
 1
m�1

ξ3

:

Next, we consider three cases:

Case 1. Suppose that v=k! p� ð0,1�. Then coc1=
ffiffiffiffi
m

p
is a positive, bounded quantity, which implies that

ffiffiffi
k

p
coc1=

ffiffiffiffi
m

p !∞. We also have that

coc2=m is a positive, bounded quantity. Therefore,

pwd≈Φ
ffiffiffiffi
m

p ffiffiffi
k

p coc1ffiffiffiffi
m

p þ zα
coc2
m

	 
1=2� �� �
!1;

that is, the test is consistent against this sort of alternatives.

Case 2. Suppose now that v=k!0 and that m remains bounded. Then,
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kcoc21
coc2

≈ a2m2k
v
k

	 
2
, a¼ ηffiffiffiffiffi

ξ3
p m�1

m

� �1=2

, coc2 !1,

where the approximation is understood for large k. Therefore,

• if v=
ffiffiffi
k

p
!∞, then pwd!1,

• if v=
ffiffiffi
k

p
! μ� ½0,∞Þ, then pwd!Φðμþ zαÞ.

Case 3. Suppose now that v=k!0 and mv=k! μ� ð0,∞Þ, which implies that m!∞. Then,

ffiffiffi
k

p
coc1 ≈ θ

ffiffiffi
v

p ffiffiffiffi
m

p
, coc2 ≈1þθ2m, θ¼ η=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ1þ ξ3=μ

p
,

and thus, pwd≈Φ θ
ffiffiffiffi
m

p ffiffiffi
v

p þ zα
� �� �

: Therefore, if
ffiffiffi
v

p þ zα >0, then pwd!1.

Summarizing, the test is consistent against alternatives whenever v=k! p� ð0,1�, that is, when the proportion of alternative populations is posi-

tive; if such proportion goes to 0, then the test can be also consistent, have no power or have a power greater than α.

Remark 9. As observed in Remark 5, different pdfs could be taken at each population. The results in this section remain true when-

ever all kernels (6) associated to each wj, say hj, satisfy the required assumptions. Specifically,

V E hj Xj
1,Y

j
1

	 

, Xj

2,Y
j
2

	 
n o
j Xj

2,Y
j
2

	 
h i	 

≥ δ, 1 ≤ j≤ v, and E h2j Xj

1,Y
j
1

	 

, Xj

2,Y
j
2

	 
n oh i
≥ δ, vþ1≤ j ≤ k, for some δ>0.

Remark 10. That the sample sizes are comparable, in the sense of (7), is assumed for ease of exposition. If it is not fulfilled, the

stated results remain true by adding appropriate conditions, which now become rather ugly. For example, to prove the asymptotic

normality in Theorem 1, we show that Linbdeberg's condition is met. Now, if (7) is not supposed, it is difficult to find an easy requi-

site for that condition to hold (see Remark 4). If instead of choosing Tk ¼
Pk

j¼1η̂j,w , one takes Tk,new ¼Pk
j¼1niη̂j,w then it can be easily

checked that Theorem 1 remains true without assuming (7). Nevertheless, when one faces the problem of determining the asymp-

totic distribution of Tk,new under alternatives, the same problem arises again, due to the fact that the order of the variance of η̂j,w dif-

fers under the null and under alternatives.

Remark 11. So far, we have assumed that the data at hand consist of nj independent copies of ðXj ,YjÞ, 1≤ j≤ k. Now, assume that

independent data are available from each vector, Xj and Yj; that is, the data consist of Xj
1,…,X

j

njX
, njX independent copies of Xj, and

Yj
1,…,Y

j

njY
, njY independent copies of Yj, with Xj

1,…,Xj

njX
and Y1,…,Y

j

njY
independent, 1≤ j ≤ k. In this setting, an unbiased estimator of

ηj,w is given by

η̂j,w ¼ 1

njX njX �1
	 
 X

1≤ r ≠ s ≤ njX

u Xj
r �Xj

s

	 

þ 1

njY njY �1
	 
 X

1≤ r ≠ s≤ njY

u Yj
r �Yj

s

	 


�2
1

njXn
j
Y

X
1≤ r ≤ njX

X
1≤ s≤ njY

u Xj
r �Yj

s

	 

:

In the case of paired samples, η̂j,w is a one-sample degree 2 U-statistic; while in the case of independent samples, η̂j,w is a two-sample

degree (2, 2) U-statistic. It can be easily checked that the results previously stated for the case of paired data keep on being true for

the case of independent data.

4 | SOME PRACTICAL ISSUES

To calculate the test statistic Tk=
ffiffiffi
k

p
Sk , the user must fix w1,…,wk , where wj is the pdf in (1) for population j, 1 ≤ j≤ k (recall from Remarks 5 and 9

that different pdfs can be taken at each population). Two common choices for w in tests based on the empirical characteristic function are

(Jiménez-Gamero et al., 2017, 2019; Meintanis, 2005):

ALBA-FERNÁNDEZ and JIM�ENEZ-GAMERO 7 of 14
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• Normal weight:

wðt1,…,tdÞ¼ 1

ð2πÞd=2
1Qd

r¼1
ar

exp �0:5
Xd
r¼1

t2r
a2r

 !
, t1,…,td �ℝ,

for some a1,…,ad >0, that is, w is the product of d univariate pdfs of normal laws with mean zero and variance a2r , 1≤ r ≤ d. This choice for w

gives

uðt1,…,tdÞ¼ exp �0:5
Xd
r¼1

a2r t
2
r

 !
, t1,…,td �ℝ:

• Laplace weight:

wðt1,…,tdÞ¼ 1Qd
r¼1

2cr

exp
Xd
r¼1

jtrj
cr

 !
, t1,…,td �ℝ,

for some c1,…,cd >0, that is, w is the product of d univariate pdfs of Laplace laws with mean zero and variance 2c2r , 1 ≤ r ≤ d. This choice for w

gives

uðt1,…,tdÞ¼
Yd
r¼1

1

1þ c2r t
2
r

, t1,…,td �ℝ:

Notice that the choice of the parameter ar for the normal weight in population j, denote it by ar,j, is coupled with the scaling of the rth compo-

nent of ðXj ,YjÞ, say Xj
r ,Y

j
r . So, it seems reasonable to take ar,j ¼ λj=Sr,j,pool, for some positive λj , where S2r,j,pool is the sample variance of the rth

component of ðXj,YjÞ in the pooled sample Xj
1,r ,Y

j
1,r ,…,X

j
nj ,r
,Yj

nj ,r
. The same applies to the choice of the parameter cr for the Laplace weight.

The above observation leads us to the choice of the proportionality constant λj. We have numerically analysed this issue through an extensive

simulation study. We found that the level is not affected by the choice of the proportionality constant, but the power does; moreover, in some

cases, the power increases with it, in other cases decreases, and in some further cases, it has a maximum at λj ¼1 for the normal weight and λj ¼
1=

ffiffiffi
2

p
for the Laplace weight. As for these values of λj, we got reasonable powers in all tried cases, and we recommend taking ar,j ¼1=Sr,j,pool, for

the normal weight, and cr,j ¼1=
ffiffiffi
2

p
Sr,j,pool, for the Laplace weight. The next section shows up part of the simulation study we carried out,

supporting our recommendation.

5 | EMPIRICAL RESULTS

5.1 | Simulated data: level

The test that rejects H0 according to (8) has asymptotic level α. In order to check whether the proposal behaves well, in the sense of reaching the

level for a small or moderate number of groups, an extensive simulation study was carried out for the bivariate case (d¼1). Let ðX,YÞ be a bivari-

ate random vector with joint distribution function FðX,YÞ and let FX , FY be the distribution functions of X and Y, respectively. If X and Y have con-

tinuous marginals, then Sklar's theorem (Nelsen, 2006) ensures that there exists a unique copula C : ½0,1�2 !½0,1� that characterizes the

dependence structure of FðX,YÞ, in the sense that FðX,YÞðx,yÞ¼CðFXðxÞ,FYðyÞÞ, 8x,y�ℝ. Artificial data have been generated from several patterns

of dependence characterized by bivariate copulas. Particularly, we have taken three copulas: the normal copula (denoted in the tables as CN), the

Clayton copula (denoted in the tables as CC) and the Gumbel copula (denoted in the tables as CG). The parameters of the copulas were chosen so

that Kendall's τ coefficient has the same value in all cases (see details in the Supporting Information). For each copula, the following marginals

were considered: the univariate standard normal distribution, Nð0,1Þ, and the exponential distribution with mean 1, Expð1Þ. For the weight func-

tions, we took those in Section 4 with a wide range of values for λj; in what follows, a1,j , c1,j and S1,j,pool will be simply denoted as aj , cj and Sj,pool ,

respectively. Since in simulations, we observed that the level is not strongly affected by the choice of λj , the tables in this section (and those in

the Supporting Information) display the results with λj ¼
ffiffiffi
2

p
,1,1=

ffiffiffi
2

p
, for the normal weight, and λj ¼1,1=

ffiffiffi
2

p
,1=2, for the Laplace weight (these

values correspond to variances 2, 1 and 0.5 of the weight functions).
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For each case, k random samples of size nj, ðXj
1,Y

j
1Þ,…,ðXj

nj
,Yj

nj
Þ were generated by using the R package copula (Hofert et al., 2023) with sam-

ple sizes nj ¼5,10, 1≤ j≤ k, and k¼20,50,100,200,500. After calculating Tk=
ffiffiffi
k

p
Sk , the p-value was computed using the normal approximation in

Corollary 1. The experiment was repeated 10,000 times, and the percentage of p-values less than or equal to α¼0:05 was collected, which esti-

mates the probability of type I error. Table 1 reports the results obtained when the marginal distributions are Expð1Þ and τ¼1=3. The results for

τ¼2=3 and those for standard normal marginals can be found in the Supporting Information. Looking at this table (and the tables in the

Supporting Information), one can see that the empirical levels become closer to the nominal value α¼0:05 as k increases. This finding does not

seem to be significantly affected by the weight function.

5.2 | Simulated data: power

The power of the proposal has also been investigated by simulations. Artificial data were generated under the following conditions: (i) normal and

Laplace weight functions with values aj and cj chosen proportional to 1=Sj,pool, (ii) normal, Clayton and Gumbel copulas with parameters so that

τ¼1=3, (iii) nj ¼5,10 and k¼50,100 for the sample sizes and the number of groups, respectively, (iv) 100ð1�pÞ% of groups with Nð0,1Þ marginal

distributions, and the rest of 100p% of groups with different marginals chosen from logistic, beta, gamma, Laplace, normal and uniform distribu-

tion functions for a great variety of parameters, for p¼0:2,0:4,0:6. As before, each case was repeated 10,000 times, and the percentage of

p-values less than or equal to α¼0:05 was calculated.

From the battery of alternatives tried, we found three patterns for the power: For a first set of cases (setting 1), the powers increase with λj ,

for a second one (setting 2), they decrease with it, and in the third group of cases (setting 3), the higher estimated powers were obtained for λj ¼1

and λj ¼1=
ffiffiffi
2

p
for the normal and Laplace weight functions, respectively. Table 2 displays the results of an instance of the first set, with alternative

cases X�Uð�1,1Þ and Y�Uð�0:75,1:25Þ; Table 3 displays the results of an instance of the second set, with alternative cases X�Uð0,1Þ and
Y� βð2,2Þ; and Table 4 displays the results of an instance of the third set, with alternative cases X�Nð0,1Þ and Y�Uð�1,1Þ. These tables show

TABLE 1 Estimated type I errors for nominal value α¼0:05, τ¼1=3 in all copulas and Expð1Þ marginals.

Normal weight

aj ¼
ffiffiffi
2

p
=Sj,pool aj ¼1=Sj,pool aj ¼1=

ffiffiffi
2

p
Sj,pool

k n CN CCL CG CN CCL CG CN CCL CG

20 5 3.2 3.2 3.2 3.4 2.8 3.4 3.0 2.4 3.1

10 2.9 3.2 3.0 2.9 2.8 2.9 2.9 3.2 2.9

50 5 3.5 3.4 3.6 3.3 3.3 3.5 3.2 3.1 3.0

10 3.4 3.4 3.5 3.2 3.3 3.4 2.9 3.1 3.0

100 5 4.0 3.9 3.9 3.6 3.8 3.7 3.7 3.6 3.6

10 3.7 3.9 3.8 3.6 3.8 3.6 3.7 3.6 3.6

200 5 4.2 3.9 4.1 4.3 3.8 3.7 4.2 3.7 3.6

10 4.2 3.8 4.4 4.1 3.8 4.3 4.1 3.7 4.0

500 5 4.5 4.3 4.3 4.5 4.3 4.5 4.3 4.1 4.1

10 4.4 4.3 4.4 4.3 4.3 4.3 4.3 4.1 4.2

Laplace weight

cj ¼1=Sj,pool cj ¼1=
ffiffiffi
2

p
Sj,pool cj ¼1=2Sj,pool

k n CN CCL CG CN CCL CG CN CCL CG

20 5 3.3 3.2 3.4 3.2 2.8 3.4 3.1 2.5 3.0

10 2.9 3.2 3.2 2.8 2.8 3.0 2.7 2.5 3.1

50 5 3.6 3.4 3.6 3.7 3.4 3.6 3.3 3.1 3.2

10 3.4 3.4 3.5 3.3 3.4 3.6 3.0 3.1 3.3

100 5 3.9 3.9 3.8 3.9 3.8 3.7 3.7 3.7 3.6

10 3.6 3.9 4.0 3.5 3.8 3.7 3.3 3.7 3.5

200 5 4.5 3.8 4.1 4.4 3.9 3.7 4.2 3.7 3.6

10 4.0 3.8 4.3 4.0 3.9 4.2 4.0 3.7 4.1

500 5 4.5 4.3 4.2 4.5 4.2 4.3 4.3 4.2 4.2

10 4.3 4.3 4.2 4.2 4.2 4.3 4.2 4.2 4.1

ALBA-FERNÁNDEZ and JIM�ENEZ-GAMERO 9 of 14
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up the power results for the normal weight; the results for the Laplace weight exhibit the same pattern and can be found in the Supporting Infor-

mation. From the whole simulation experiment, it can be highlighted that the estimated power increases with the sample size, the proportion of

groups with different marginals and the number of groups. Besides, as in any practical situation users do not know the distribution of the data, we

recommend using aj ¼1=Sj,pool when the normal weight function is taken to apply the proposal, and cj ¼1=
ffiffiffi
2

p
Sj,pool for the Laplace weight func-

tion, as for these choices, we got reasonable powers in all cases.

The problem of testing H0 can also be dealt with by testing each hypothesis that composes it, that is, testing H0j : FXj ¼ FYj , against

H1j : FXj ≠ FYj , 1≤ j≤ k, obtaining p1,…,pk , the p-values for each test, and then applying some method to adjust them, as for example, the

Bonferroni method, which controls the family-wise error rate, or the Benjamini-Hochberg method (Benjamini & Yekutieli, 2001), which controls

the false discovery rate when the k tests are independent. Both procedures agree in rejecting H0 if min1≤ j≤ kpj ≤ α=k. Another method is the higher

criticism (HC), introduced by Tukey (Donoho & Jin, 2004), that rejects H0, at the level α¼0:05, for large values of

HC0:05,k ¼
ffiffiffi
k

p
fðfraction ofpj ≤0:05Þ�0:05g= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:05�0:95
p

. In our simulations, we rejected H0 when HC0:05,k > z0:95. The point is that p1,…,pk can-

not be exactly calculated. Two methods to approximate them are the bootstrap and the permutation. In simulations, we observed that for small

sample sizes, both methods give rather conservative p-value estimators, especially the bootstrap. Hence, when applied the above methods to

adjust the obtained p-values, the procedures were very liberal. Table 5 displays the empirical levels obtained when p1,…,pk were approximated

with permutation, obtained by generating 1000 artificial samples in each case, with normal copula, τ¼1=3, standard normal marginals, with the

recommended values for aj and cj for the normal weight and the Laplace weight, respectively, and the whole experiment was repeated 1000

times. Looking at this table, one can see that, in most cases, the procedures are rather liberal, only for k¼200 and nj ¼20,25 (the sample sizes in

TABLE 2 Estimated power for alternative cases X�Uð�1,1Þ and Y�Uð�0:75,1:25Þ with normal weight.

aj ¼
ffiffiffi
2

p
=Sj,pool aj ¼1=Sj,pool aj ¼1=

ffiffiffi
2

p
Sj,pool

p k n CN CCL CG CN CCL CG CN CCL CG

0.2 100 5 8.2 8.3 8.5 9.7 10.1 9.9 12.2 12.8 12.4

10 17.5 17.0 17.5 22.3 22.4 22.5 31.3 30.8 31.6

200 5 12.1 12.2 11.9 15.2 15.3 15.4 19.8 20.5 20.0

10 28.3 29.2 29.0 37.9 38.2 38.6 53.5 52.7 54.1

0.3 100 5 11.0 11.6 11.6 14.1 14.9 14.5 19.5 20.2 19.9

10 29.3 29.0 30.0 38.2 38.5 39.4 53.4 52.3 53.5

200 5 17.8 18.6 18.2 23.7 24.0 24.3 34.2 33.5 34.2

10 48.9 49.8 50.6 63.7 63.3 64.9 82.3 80.9 82.4

0.4 100 5 14.8 15.7 16.0 19.6 20.5 20.4 27.9 28.3 29.3

10 43.5 43.4 44.2 56.5 55.8 56.4 73.1 72.7 73.2

200 5 24.9 26.0 25.9 34.8 34.8 34.9 49.3 49.3 49.6

10 68.9 70.4 70.9 84.0 83.4 84.2 95.0 95.0 95.0

TABLE 3 Estimated power for alternative cases X�Uð0,1Þ and Y� βð2,2Þ with normal weight.

aj ¼
ffiffiffi
2

p
=Sj,pool aj ¼1=Sj,pool aj ¼1=

ffiffiffi
2

p
Sj,pool

p k n CN CCL CG CN CCL CG CN CCL CG

0.2 100 5 8.6 9.2 9.2 8.2 8.9 8.7 7.1 7.3 7.1

10 18.8 19.7 19.8 18.1 18.9 19.1 13.9 14.6 14.3

200 5 13.1 13.4 13.1 12.4 12.7 12.6 9.8 10.5 10.1

10 31.2 32.8 32.5 30.9 31.5 31.7 23.6 23.3 23.3

0.3 100 5 12.2 13.5 12.8 11.6 12.6 12.6 9.3 10.1 9.9

10 31.6 33.1 33.6 31.1 32.4 32.9 23.2 23.7 24.6

200 5 20.3 20.8 20.4 19.1 19.7 19.4 14.3 15.1 14.3

10 53.5 55.7 56.3 56.0 54.3 55.6 40.2 40.6 41.7

0.4 100 5 16.8 18.5 17.8 15.9 17.4 17.0 11.9 13.1 12.9

10 47.0 48.6 49.1 46.7 47.8 48.7 35.4 35.7 36.3

200 5 28.9 29.5 29.9 27.6 27.8 28.3 20.1 20.1 20.0

10 74.9 76.3 77.3 74.8 75.6 76.3 59.8 60.0 61.8
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all populations were taken equal to nj) with the HC method the estimated type I errors are close to the nominal value, α¼0:05. In these cases, we

compared the power with our proposal, in the same settings explored in Tables 2–4, but only for p¼0:2. Table 6 displays the empirical powers

obtained. Looking at this table, one can see that, in all tried cases, the new procedure exhibits greater power.

5.3 | A real data set application

Air is one of the main elements for the continuation of human life, and its growing deterioration, mainly caused by pollution, has become a serious

challenge in most countries. In this worry, the US Environmental Protection Agency defined and promoted a standard index of air quality called

TABLE 4 Estimated power for alternative cases X�Nð0,1Þ and Y�Uð�1,1Þ with normal weight.

aj ¼
ffiffiffi
2

p
=Sj,pool aj ¼1=Sj,pool aj ¼1=

ffiffiffi
2

p
Sj,pool

p k n CN CCL CG CN CCL CG CN CCL CG

0.2 100 5 13.0 13.3 13.3 12.9 13.7 13.5 10.8 11.4 11.5

10 32.3 32.4 33.7 37.0 36.5 38.4 34.4 33.8 35.2

200 5 20.2 20.9 20.9 21.2 21.9 21.9 17.9 18.1 18.0

10 53.8 54.7 56.2 61.2 61.0 63.0 57.8 57.1 59.0

0.3 100 5 20.1 21.0 21.2 21.2 22.1 22.7 17.4 17.8 18.2

10 56.2 57.7 58.6 63.4 63.7 65.6 60.7 60.4 62.3

200 5 34.1 35.5 35.7 36.3 37.1 37.3 29.8 30.1 30.4

10 83.6 84.4 85.1 89.1 90.1 90.6 87.3 87.3 88.6

0.4 100 5 29.9 31.0 31.5 31.9 32.8 33.7 25.6 26.6 27.3

10 77.4 78.5 79.2 83.6 84.6 85.6 82.3 82.2 83.4

200 5 50.6 52.3 53.5 53.5 54.6 56.0 44.0 45.1 45.7

10 96.6 96.8 97.3 98.5 98.5 98.7 98.0 98.0 98.2

TABLE 5 Estimated type I errors with Normal copula, Nð0,1Þ marginals, for the normal weight (N) and the Laplace weight (L), when p1,…,pk
are estimated with 1000 permutation samples in each case, and the global decision is taken by using HC criterion (HC) and the Benjamini-
Hochberg method (BH).

k¼100 k¼200

HC BH HC BH

nj N L N L N L N L

5 21.0 20.9 100 99.9 26.2 23.6 100 100

10 7.3 7.8 20.2 20.9 6.8 7.2 37.3 36.1

15 7.1 7.4 10.1 9.4 5.8 6.2 18.2 17.0

20 7.0 6.9 8.7 9.2 5.1 5.8 19.9 19.3

25 6.2 6.8 10.4 10.4 5.0 5.4 17.5 17.6

TABLE 6 Estimated powers with normal copula, Nð0,1Þ marginals, for the normal weight (N) and the Laplace weight (L), p¼0:2, k¼200,
when using the new proposal (New) and when p1,…,pk are estimated with 1000 permutation samples in each case, and the global decision is
taken by using HC criterion (HC).

Setting 1 Setting 2 Setting 3

HC New HC New HC New

nj N L N L N L N L N L N L

20 59.0 68.2 85.5 90.5 59.1 55.7 75.1 72.7 94.7 92.9 98.1 97.6

25 78.3 87.0 94.6 97.0 75.0 70.3 89.9 87.6 99.6 99.2 99.8 99.6

Note: In setting 1, the alternative cases are X�Uð�1,1Þ and Y�Uð�0:75,1:25Þ; in setting 2, the alternative cases are X�Uð0,1Þ and Y� βð2,2Þ; in setting

3, the alternative cases are X�Nð0,1Þ and Y�Uð�1,1Þ.
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‘Air Quality Index’ that is mostly used by the rest of Environmental Protection Agencies to inform people about the quality of the air registered in

big cities around the world. Details about how the AQI is calculated can be found in technical reports by the US Environmental Protection Agency

(https://www.airnow.gov/).

The bulk of environmental agencies calculates AQI and makes it available to the general public through newspapers, web pages, apps or social

networks. Readers are invited to visit the web page (https://aqicn.org/map/world/es/) to look for the available AQI values. Here, we consider

AQI values of two pollutants: carbon monoxide ðCOÞ and nitrogen dioxide ðNO2Þ, two toxic substances produced as a result of the incomplete

combustion of hydrocarbons and fossil fuels in industry, the combustion engines of vehicles and heating boilers, mainly. Both substances are

largely responsible for the effect of traffic on pollution in large cities. The pair ðCO,NO2Þ was observed in a set of 23,036 big cities in 175 countries

all over the world. The dataset is free (taken on 17 November 2022 from https://www.kaggle.com/datasets/hasibalmuzdadid/global-air-

pollution-dataset).

Before applying the proposal, the dataset was cleaned up as follows: We started by removing those countries for which the sample variance

of any pollutant is zero. So, from the initial 175 countries and 23,036 entries, we retained 121 countries and 22,070 entries.

In order to compare the results of the new proposal with the HC method, we did a further screening of the data. According to the findings in

Section 5.2, we should have sample sizes greater than or equal to 20 to correctly apply the HC method to the p-values p1,…,pk (approximated by

permutation as in the mentioned simulations). Attending to this requirement, the data set used ultimately consists of 93 countries with 21,768

entries. The median and mean of the sample sizes are 68 and 234.1, respectively. Figure 1 shows the histogram of the retained sample sizes. Then

we tested H0 versus H1 for ðX,YÞ¼ ðCO,NO2Þ. To calculate the value of the test statistic in (8), the normal and Laplace weight functions were con-

sidered with the suggested tuning parameters (aj ¼1=Sj,pool and cj ¼1=
ffiffiffi
2

p
Sj,pool, 1≤ j ≤ k, respectively), obtaining 9.81 and 11.17, respectively. Their

associated p-values (calculated using the asymptotic null distribution) are 0 for both weight functions.

We also applied the HC method. With this aim, we first calculated the p-values p1,…,pk that were approximated with permutation

(using 1000 artificial samples in each country). This procedure rejects H0, at the level α¼0:05, if HC0:05,k ¼
ffiffiffi
k

p

fðfraction ofpj ≤0:05Þ�0:05g= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05�0:95

p
> z0:95. In the case of ðCO,NO2Þ, HC0:05,93 ¼�2:2124 for both weight functions, which is lower than

1.96. Therefore, according to this method, H0 cannot be rejected. This is not surprising since, in line with the results in Table 6, the new procedure

is more powerful than the HC method. In addition, after obtaining the permutation p-values for each weight function, we adjusted them using the

Benjamini-Hochberg method. No hypothesis was rejected.

6 | CONCLUSIONS

This paper deals with the equality of marginals of a random vector ðX,YÞ when the target population is divided into k subpopulations or groups.

Because the differences between marginals in some subpopulations could be compensated with others when they are considered as a whole pop-

ulation, we propose to test simultaneously the homogeneity of marginals in all groups. A procedure for carrying out that testing problem has been

studied and analysed both theoretically and numerically.

F IGURE 1 Histogram of sample sizes.
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It is worth mentioning that the requirement of independence between marginals is not needed. Furthermore, the proposal is very easy to

implement, not requiring the use of complicated resampling methods to obtain the p-value. It applies whenever the sample sizes are comparable,

allowing them to remain bounded or increase with k. These advantages of the proposal make it an attractive option to consider from a practical

point of view.
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