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22 CAPÍTULO 1. INTRODUCCIÓN

1.1 Introducción

La mayor parte de los sistemas de control que están tratados en la litera-
tura son los pertenecientes a la familia de sistemas lineales, bien porque
son intrı́nsecamente lineales, o bien porque se han linealizado para poder
trabajar mejor con ellos, en la mayorı́a de los casos, las variaciones res-
pecto a esta linealización se toman como errores del modelo.

Este tipo de controladores tienen notables propiedades, pero en la
realidad no existe ningún controlador que se comporte de forma total-
mente lineal, ya que al ser un componente fı́sico, no puede proporcionar
una salida arbitrariamente alta, siempre debe tener un lı́mite tanto supe-
rior como inferior. Por lo tanto, cuando el sistema se comporte de forma
que la realimentación lineal esté en torno a su punto de operación, ésta
realimentación controlará correctamente al sistema. Sin embargo, si el
sistema genera una realimentación que esté fuera de las especificaciones
del controlador, la salida será menor, y el sistema será impredecible. Esta
no linealidad se denomina saturación.

La saturación en la realimentación, es decir, en el controlador, es la
más común de todas las no linealidades,y aunque se puede tratar dentro
de la teorı́a de control no lineal genérica, existe literatura especı́fica para
tratarla (ver [21, 47, 29], en [5] se describe una bibliografı́a cronológica).
El control de sistemas lineales puede considerarse un campo maduro,
donde existen numerosos métodos para diseñar los controladores más
apropiados. La saturación entra dentro de los controladores que tienen
restricciones en la actuación, y este tipo de controladores es un área de
investigación muy dinámico, ver por ejemplo [20, 38, 37] y sus referencias.

Además, cuando el controlador satura, el rendimiento del sistema en
bucle cerrado sin considerar la saturación disminuye seriamente, incluso
se puede perder la estabilidad. Un ejemplo bien conocido es la dismi-
nución de rendimiento al utilizar un compensador PID en un sistema en
bucle cerrado. Durante el tiempo en el que el controlador satura, el error
se integra continuamente incluso cuando el control no responde lo que
deberı́a responder, y por tanto, el controlador produce valores del con-
trolador mayores del lı́mite del controlador. Este efecto se conoce como
windup [18]. Debido a la forma en que el error afecta a los integradores,
la salida del controlador puede no ser la deseada, por lo que a veces es
necesario modificar la referencia del integrador.

A grandes rasgos se puede decir que existen dos estrategias para tratar
con esta no linealidad. La primera es no tener en cuenta la realimentación
en el proceso de diseño del controlador, y posteriormente añadir técnicas
especı́ficas para mitigar los efectos adversos producidos por la saturación.
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Este tipo de técnicas se llama de anti-windup. La idea principal utilizada
en estas técnicas es introducir realimentaciones adicionales de forma que
el actuador permanezca dentro de los lı́mites de linealidad. La mayorı́a
de estas técnicas consiguen una gran eficiencia pero con una zona de esta-
bilidad pequeña. Recientemente algunos investigadores han desarrollado
técnicas sistemáticas para manejarlos (ver [11, 10, 25]).

La segunda estrategia consiste en tener en cuenta la saturación en el
diseño del controlador. Esta es la estrategia que se utilizará en esta tesis.

Dentro de los sistemas lineales con realimentación lineal, se puede di-
vidir en los que son globalmente controlables al origen y los que no lo
son. Se ha demostrado [43, 48, 50] que los sistemas estabilizables lineal-
mente con todos sus polos en el semiplano izquierdo son globalmente
estabilizantes al origen. Por lo tanto, un sistema estabilizable linealmente
con los polos en el semiplano izquierdo es estabilizable al origen con un
controlador saturado en al menos una zona de operación del sistema.
Este tipo de sistemas se denominan asintóticamente controlable al origen
con controles saturados (asymptotically null controllable with bounded con-
trols o ANCBC). Para este tipo de sistemas se pueden ver resultados en
[42] y las referencias allı́ indicadas. Los sistemas que tienen algún polo
en el semiplano derecho no es globalmente controlable al origen con con-
troles saturados, por lo que los sistemas de control diseñados para ese
tipo de sistemas no funcionarán globalmente. En este trabajo solamente
se tratarán sistemas ANCBC.

Por otro lado, de los conceptos relacionados con la estabilidad de un
sistema, dos tienen gran importancia. Éstos son el dominio de atracción
y el conjunto invariante. El dominio de atracción es la región del espacio
de estados desde los que el sistema converge al origen, por lo tanto el
sistema es estable dentro de ese dominio de atracción. El conjunto invariante
representan los estados del sistema controlado en los que el sistema no
evoluciona fuera de ese conjunto invariante.

El dominio de atracción es muy importante ya que es una zona de
operación en la que sabemos que existe al menos un controlador que
hace converger el sistema al origen, por lo que podemos elegir un con-
trolador distinto, siguiendo criterios de optimalidad con la seguridad
de que convergerá al origen una vez utilicemos el controlador nominal
[19, 15, 20, 17].

Este dominio de atracción se puede también utilizar dentro de las
técnicas de control predictivo basado en modelo (MPC) [9]. El MPC con-
siste en predecir según el modelo del sistema cómo va a evolucionar en
función de las entradas y ası́ elegir dichas entradas en función de los
objetivos que se quieran conseguir. En este tipo de técnicas es muy im-
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portante encontrar una zona en la que se tenga la seguridad que existe
un controlador que converge al origen, ası́ se puede utilizar como región
terminal, es decir, obligarle a que en un número determinado de pasos el
sistema evolucione a esa zona, y de esta forma garantizar que el sistema
es estable.

En esta tesis se estudiarán formas de calcular conjuntos invariantes y
estimaciones del dominio de atracción para sistemas en los que afecta, de
una forma u otra, limitaciones en la realimentación. Este tipo de limita-
ciones aparecen en todos los sistemas fı́sicos. Por ejemplo, la potencia del
motor que mueve un brazo robot está limitada, o el aditivo a añadir a una
reacción quı́mica que también está limitada.

El objetivo principal de la tesis es el estudio de las propiedades y
el desarrollo de métodos de implementación de técnicas para el cálculo
de estimaciones de dominios de atracción y de los máximos invariantes
aplicado a sistemas lineales, o lineales a trozos, con una realimentación
que de una u otra forma se contemple la saturación.

1.2 Sistema con realimentación saturada

Tal y como se ha comentado un sistema lineal es un modelo de procesos
que pueden describir su dinámica a través de ecuaciones diferenciales o
a través de ecuaciones en diferencias.

La diferencia entre un tipo de ecuaciones u otros es si el sistema es un
sistema en tiempo continuo o discreto respectivamente.

Todo sistema lineal continuo se puede expresar de la siguiente forma

dx

dt
= Ax + Bu, (1.1)

donde x ∈ IRn corresponde a los estados, u ∈ IRm corresponde a la
actuación y A ∈ IRn×n, B ∈ IRn×m son matrices que definen la dinámica
del sistema.

Por otro lado, si el sistema es en tiempo discreto, se puede formular
en la forma

x+ = Ax + Bu, (1.2)

donde x, A, B y u representa lo mismo que para tiempo continuo, y
x+ se denomina sucesor del estado y representa el estado en el tiempo de
muestreo siguiente, es decir, despues de T segundos.
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La actuación u se suele calcular realimentando el sistema. La reali-
mentación más utilizada es la lineal, que se puede expresar

u = Kx, (1.3)

donde K ∈ IRn×m es la matriz de realimentación y se utiliza tanto para
sistemas en tiempo continuo como en tiempo discreto.

En este caso u está realimentado con el estado x, en caso de que el
controlador no pueda acceder a los valores del estado, se necesitará un
observador, sin embargo, en esta tesis se considerarán sistemas observ-
ables donde los valores de x están accesibles.

Las realimetaciones lineales no son reales, ya que ningún aparato real
puede dar una salida arbitrariamente grande, por lo que un modelo más
realista a la realimentación 1.3 serı́a

u = σ(Kx), (1.4)

donde la función multivariable σ(s) = [σ1(s1) σ2(s2) . . . σi(si) . . . σm(sm)]⊤

es la saturación cuyas componentes están definidas por la expresión

σi(x) =







xi
min if x < xi

min,
x if xi

min ≤ x ≤ xi
max,

xi
max if x > xi

max.

(1.5)

En esta tesis nos restringiremos a las saturaciones simétricas, y sin
pérdida de generalidad, en forma normalizada, por lo que se puede uti-
lizar la definición de σi() siguiente

σi(x) =







−1 if x < −1,
x if − 1 ≤ x ≤ 1,
1 if x > 1.

(1.6)

La figura 1.1 muestra el diagrama que representa un sistema reali-
mentado. El sistema puede ser en tiempo continuo 1.1 como en tiempo
discreto 1.2.

1.3 Técnicas tradicionales

El efecto de la saturación en la realimentación provoca un efecto de windup.
Este efecto es indeseable ya que en caso de tener un controlador con una
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xu
K Sistema

ulin

Figura 1.1: Diagrama representando un sistema realimentado.

parte integradora se está integrando un error que hace que la señal de
control no sea la deseada.

Para evitar el windup el controlador debe de tener en cuenta a través
de una realimentación del error en la entrada. La figura 1.2 muestra como
se gestiona el efecto.

x
K

u

+

−

Sistema
ulin

Figura 1.2: Diagrama representando un sistema realimentado con cor-
rección de la saturación en el controlador.

La idea básica es controlar la diferencia entre la entrada y la salida del
bloque de saturación. Cuando sea cero significa que está actuando den-
tro del rango de operación lineal, y vale distinto de cero fuera, donde
la acción integral u otros estados del controlador producirı́a el efecto
windup. Por lo tanto, el valor error = u − ulin se utilizará para conseguir
que la acción integral no tome valores en exceso.

Estas técnicas se pueden utilizar tanto para sistemas en tiempo dis-
creto como en tiempo continuo (ver [25, 11] y sus referencias).

1.4 Estabilidad

Supongamos que se tiene un sistema como 1.1 con la realimentación ya
definida. Es importante saber si existe o no estabilidad garantizada. En
este trabajo se estudiarán los sistemas que se pueden estabilizar al origen.
Este tipo de sistemas son los que el controlador dado sin la saturación, es
decir el sistema lineal, converge globalmente al origen. Al converger el
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sistema lineal, se puede decir que al menos existe una región alrededor
del punto de equilibrio en el que el sistema saturado converge al origen.

La región, dentro del espacio de estados, que converge al origen se
denomina dominio de atracción. El dominio de atracción es difı́cil de cal-
cular exactamente debido a que es en general una región no convexa y
consume mucho tiempo de proceso en el ordenador, por lo que es con-
veniente tener al menos, de forma rápida, una aproximación de dicho
dominio de atracción.

Para calcular las estimaciones al dominio de atracción, existen técnicas
tradicionales como el criterio del cı́rculo o el criterio de Popov, en este
trabajo se han diseñado otras técnicas para obtener esas estimaciones.

1.4.1 Cálculo iterativo del dominio de atracción

Aunque tal y como hemos comentado anteriormente el cálculo exacto del
dominio de atracción de forma iterativa es una tarea que requiere mucho
tiempo de proceso computacional es también interesante poder calcularla.
Este método se utiliza únicamente en sistemas en tiempo discreto ya que
se basa en propiedades dentro de cada iteración.

El proceso de cálculo es el siguiente, se parte de una región en el espa-
cio de estados estable C0 que converge al origen, y se calculan los estados
que en un paso alcanzan esa región. Dicho subconjunto del espacio de
estados se denota C1. Aplicamos iterativamente este proceso hasta con-
seguir el conjunto C∞. Esa región es el dominio de atracción.

1.5 Cálculos iterativos del dominio de atracción

Este tipo de métodos se aplica en sistemas en tiempo discreto, que una
vez realimentados quedan en la forma

x+ = Ax + Bσ(u), (1.7)

donde x es el vector de estados de cualquier dimensión, x+ es el suce-
sor del estado y A es una matriz de dimensiones adecuadas. σ(·) es
la función de saturación ya comentada. En este apartado se explicará a
groso modo una técnica para obtener el dominio de atracción para este
sistema.

Los sistemas de los que versará este trabajo son los que se pueden
estabilizar al origen localmente, que significa que se puede conseguir una
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región que contenga el origen donde todos los puntos convergen a él.
Note que el origen es un punto de equilibrio.

Existen varias técnicas para conseguir este conjunto inicial, en el capı́tulo
3 se muestran algunas que serán utilizadas en otros capı́tulos. Una posi-
ble técnica es encontrar una función de Lyapunov en la forma f (x) =
xtPx con P definida positiva que sea contractiva, esto nos define una
elipse que es invariante dentro de la zona en la que el sistema se com-
porta con régimen lineal.

Dado que nos interesa encontrar no solo un conjunto inicial, sino un
conjunto inicial poliédrico y convexo, elegimos uno aleatoriamente inclu-
ido dentro de la elipse invariante. Ese conjunto es una estimación interna
al dominio de atracción, y lo llamaremos C0.

Posteriormente definimos el operador a un paso Q(·) como sigue

Q(Ω) = { x : ∃u : Ax + Bσ(u) ∈ Ω }

En la definición 9 del capı́tulo 2 se define formalmente para reali-
mentación lineal.

También podemos definir la iteración Ci+1 = Q(Ci), para i = 0, 1, 2, . . ..
Ci representa el conjunto de estados que en un número de pasos i al-
canzan el conjunto C0, y dado que todos los puntos de C0 convergen al
origen, todos los puntos de Ci también convergen al origen. Es más, el
lı́mite de esta sucesión C∞ es el dominio de atracción del sistema que se
intenta obtener.

1.5.1 Sistemas lineales con restricciones en la actuación

Normalmente los sistemas se controlan de forma lineal, ya que es mucho
más fácil de realizar de forma industrial y existen tablas para ajustarlas
que funcionan muy bien en la práctica, sin embargo para sistemas en los
que es más importante la eficiencia del sistema que la sencillez del con-
trolador se utilizan otro tipo de técnicas. En este tipo de casos lo normal
es que el controlador esté integrado por un ordenador o un controlador
digital programable, por lo que se suelen tratar sistemas en tiempo dis-
creto.

Este es el caso de sistemas lineales con actuación saturada, la formu-
lación de este tipo de sistemas

x+ = Ax + Bσ(u),
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donde se puede observar que la realimentación u es una variable sat-
urada.

Para este tipo de sistemas se puede obtener el máximo dominio de
atracción de la siguiente forma.

Obtengamos una región C0 polihédrica que pertenezca al dominio de
atracción del sistema tal y como se mostró en la subsección 1.4.1, o más
extensamente en el capı́tulo 3.

El sistema que se utilizará para mostrar como calcular este dominio
de atracción será el de aplicar la función a un paso Q(·). Se utilizará esta
función genéricamente, pero su significado depende del contexto. De la
forma mas general está definida por

Q(Ω) = { x : Ax + Bu ∈ Ω }.

Esta función Q(·) se aplicará a la región C0 inicialmente para obtener
la región C1, posteriormente se utilizará la iteración Ci+1 = Q(Ci), para
i = 0, 1, 2 . . .. El lı́mite de esta recursión C∞ será el dominio de atracción
buscado.

Hay que hacer notar que cada uno de las regiones Ci son poliedros.
Esto se puede fundamentar en que al ser C0 un poliedro convexo que
incluye al origen está definido como,

C0 = { x : H0x � g0 }.

supongamos que el conjunto Ci está definido por

Ci = { x : Hix � gi }.

a este conjunto se aplica el operador a un paso Q(·) para este sistema
que viene definido por

Q(Ci) = { x : Ax + Bu ∈ Ci }

con u saturado.

El hecho de que u esté saturado implica que está comprendido en el
poliedro definido por

u ∈ { u : Huu � gu }.

y con esta restricción Ci+1 = Q(Ci) se puede definir como
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Ci+1 = Q(Ci) = { x : Hi(Ax + Bu) � gi ; Huu � gu }

que es un poliedro en (x,u). Proyectando dicho poliedro en x ob-
tendremos el poliedro Ci+1. Es decir, si Ci es un poliedro convexo que
contiene al origen Ci+1 = Q(Ci) también es un poliedro convexo que
contiene al origen.

Utilizando este sistema se puede obtener el dominio de atracción bus-
cado,

Un ejemplo de este sistema es el mostrado en la figura 1.3. En esa
figura se muestra el dominio de atracción del sistema

x+ = Ax + Bσ(u)

con

A =

[

1 1
0 1

]

, B =

[

0.5
1

]

.
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Figura 1.3: Cálculo del dominio de atracción para sistemas con actuadores
limitados

El ejemplo mostrado en la figura 1.3 no representa el dominio de
atracción total, sino una aproximación a 50 pasos (C50) que es la región
obtenida con la potencia de cálculo disponible. Dicha figura es compara-
ble con el mostrado en la figura 1.4. En esa figura el dominio de atracción
es mucho más pequeña que en la figura 1.3, pero en un caso la función de
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realimentación es una saturación lineal, y en el otro es una realimentación
con actuadores limitados genérica. En un caso sabemos cual es la ley de
control y en el otro está indeterminada.

En general, este tipo de dominio de atracción tiene dos problemas
principales

• Es extremadamente costoso computacionalmente hablando el pro-
ceso de proyectar un poliedro sobre unas variables, y este proceso
hay que realizarlo en cada iteración del sistema.

• Aun cuando consigamos calcular este dominio de atracción, no cono-
cemos el valor de u para cada estado, es decir, no conocemos la
función de realimentación que produce dicho dominio de atracción.
Esta función se puede calcular en linea calculando cuales son los
valores de u que dentro de la saturación lo mantiene dentro de C∞.
Este tipo de controlador obliga al sistema a permanecer dentro de
un conjunto, pero no lo obliga a converger al origen, por lo que
puede no ser adecuado.

Sin embargo hay una ventaja, y es que el dominio de atracción calcu-
lado es en general más grande que el real para leyes de control lineales
saturadas. En caso de tener no solo el dominio de atracción sino la se-
cuencia {C1, C2, . . . , C∞}, podemos crear la ley de control siguiente,

U = { u : Ax + Bσ(u) ∈ Ci−1 }

f (x) =

{

σ(u) u ∈ U si x 6∈ C1,
Kx si x ∈ C1.

donde i viene definido por el valor tal que x ∈ Ci, x 6∈ Ci+1, y K es la
solución LQR al sistema lineal sin saturación.

Esta ley de control converge al origen, pero tiene como inconvenientes
que solo puede ser utilizada en linea, requiere tener toda la secuencia
Ci, necesita un gran cálculo computacional fuera de linea y requiere gran
cálculo computacional en linea.

Por estas razones es conveniente calcular el dominio de atracción para
una función de control fija, y una de las más utilizadas es la función de
control lineal saturada ya utilizada

u = σ(Kx),

que veremos seguidamente.
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1.5.2 Sistemas lineales con realimentación lineal saturada

Los sistemas lineales se realimentan normalmente de forma lineal, es el
sistema de realimentación con mejores propiedades y su simplicidad hace
que se utilice mucho en la industria. Sin embargo, el sistema cambia
cuando se trabaja en zonas de saturación. El sistema con realimentación
se puede expresar en la forma

x+ = Ax + Bσ(Kx), (1.8)

donde K es una matriz de las dimensiones adecuadas.

La función Ax + Bσ(Kx) es una función lineal a trozos, y por tanto no
lineal, lo que significa que en caso de que un conjunto Ω sea un poliedro,
Q(Ω) no tiene por que ser un poliedro y en general será un conjunto de
poliedros, que en el caso más desfavorable puede llegar a 3m poliedros
siendo m la dimensión de la actuación.

La estimación del dominio de atracción conseguido será también una
estimación del dominio de atracción el sistema con actuadores saturados
y además con estabilidad garantizada ya que existe una ley de control
conocida u = σ(Kx) para la cual el sistema en ese dominio de atracción
converge al origen.

El valor de K es en principio indeterminado, y se puede calcular de
forma que la estimación del dominio de atracción conseguido sea el mejor
posible.

Sin embargo este cálculo es extremadamente largo computacional-
mente hablando, pero aún cuando podemos obtener dicho dominio de
atracción, éste estará formado en general por un conjunto de poliedros
que puede ser inmanejable. Es interesante obtener una aproximación
poliédrica y convexa de dicho conjunto, que cumpliera dos propiedades
principales, ser una estimación interna del dominio de atracción y ser
un invariante del sistema. Estas propiedades nos indican una región se-
gura de operación y además estará caracterizada por un poliedro que es
computacionalmente manejable.

Cuanto mayor se pueda conseguir para un sistema dado el poliedro
invariante y/o estimador del dominio de atracción, mayor será esa región
segura de operación en la que el sistema se podrá mover.

En este trabajo se estudian métodos para conseguir esa región, y se
obtienen regiones mejores que otros mostrados en la literatura.

El problema de la complejidad computacional y de la complejidad
en la representación se puede observar con un ejemplo. Suponemos el
sistema
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x+ = Ax + Bσ(Kx)

con

A =

[

1 1
0 1

]

, B =

[

0.5
1

]

, K = [−0.6167 − 1.2703] .

el dominio de atracción de este sistema se puede observar en la figura
1.4.
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Figura 1.4: Cálculo exacto del dominio de atracción

La representación del dominio de atracción es muy compleja. La
unión de cada uno de los poliedros interiores de la figura 1.4 produce
ese dominio. Por lo tanto, para ver si un punto pertenece al dominio
de atracción hay que comprobar si pertenece a alguno de los poliedros.
De esta figura se puede justificar la utilización de alguno de los métodos
mostrados en este trabajo para la obtención de aproximaciones del do-
minio de atracción de forma que la representación resultante sea un único
poliedro y por tanto una región convexa.

Para evitar estos problemas en este trabajo se mostrarán estimaciones
conservativas de la función Q(·) que proporciona una estimación del do-
minio de atracción convexa.
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1.6 Objetivos de la tesis doctoral

Tal y como se ha comentado frecuentemente en esta introducción, el
cálculo de aproximaciones de dominios de atracción convexos y de con-
juntos invariantes es muy importante en la teorı́a de control. Esta tesis
tiene por objetivos la obtención de dichas estimaciones de dominios de
atracción para sistemas saturados, tanto en tiempo continuo como en
tiempo discreto y la extensión de los métodos de calculo de dominio
de atracción a sistemas lineales a trozos y también a sintesis de contro-
ladores.

Los objetivos se estructuran en:

• Cálculo de estimaciones de dominio de atracción tipo H para sis-
temas lineales con realimentación saturada. Los dominios de atracción
tipo H son unas estimaciones interiores del dominio de atracción
utilizando una función a un paso Q(·) aproximada. Este método de
cálculo de estimaciones de dominio de atracción está extensamente
detallado en la literatura para sistemas en tiempo continuo donde se
obtienen regiones elipsoidales. Uno de los objetivos de esta tesis es
la utilización de este tipo de métodos para la generación de regiones
convexas poliédricas para sistemas en tiempo discreto. Este método
de cálculo de regiones convexas ha sido publicado en [2, 14].

• Cálculo de estimaciones de dominio de atracción tipo SNS poliédricas
para sistemas lineales con realimentación saturada. Los dominios
de atracción tipo SNS son unas estimaciones interiores del dominio
de atracción utilizando una función a un paso Q(·) aproximada.
Este método de cálculo de dominio de atracción es original en la
literatura y engloba a los dominios de atracción tipo H. Uno de los
objetivos de la tesis es la aplicación de estos métodos para el cálculo
de estimaciones de dominio de atracción poliédricas para sistemas
discretos.

• Cálculo de estimaciones de dominio de atracción tipo SNS para sis-
temas lineales con realimentación saturada en tiempo continuo. Los
métodos SNS se pueden aplicar a sistemas en tiempo continuo para
la obtención de estimaciones de dominio de atracción elipsoidales.
Este método de cálculo es original en este trabajo.

• Cálculo de controladores lineales para sistemas con realimentación
saturada. Los métodos SNS pueden utilizarse también para sintesis,
y ası́ obtener el controlador lineal que una vez saturado obtiene los
mejores estimadores del dominio de atracción. En este trabajo se
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muestra de forma original el cálculo de estos controladores lineales
para sistemas en tiempo discreto con perturbaciones.

• Cálculo de estimaciones de dominio de atracción tipo LNL para
sistemas de Lur’e en tiempo discreto. Los métodos SNS se pueden
extender de sistemas saturados a sistemas de Lur’e. Para ello se crea
el concepto LNL y se utiliza para obtener estimadores de dominio
de atracción poliédricos. Este sistema es original en este trabajo y
ha sido publicado en [13]

• Cálculo de estimaciones de dominio de atracción para sistemas afines
a trozos en tiempo discreto. Se muestra unos métodos originales
para la obtención de estimaciones de dominio de atracción para este
tipo de sistemas. Este método ha sido publicado en [1].

Por lo tanto en este trabajo se espera generar un nuevo sistema de
obtención de estimaciones de dominios de atracción y la extensión de
dicho método para sistemas afines a trozos.

1.7 Estructura de la tesis doctoral

En esta tesis se obtendrán unos conjuntos por un lado invariantes y por
otro estimaciones del dominio de atracción que sean tratables computa-
cionalmente hablando para los sistemas saturados mostrados anterior-
mente. Se calcularán dichos conjuntos para sistemas en tiempo continuo
y en tiempo discreto. Estas estimaciones proporcionarán un resultado
mejor que los obtenidos por técnicas LDI utilizadas en la literatura. Las
técnicas LDI utilizan la propiedad de que si dos sistemas lineales son es-
tables, también lo es, bajo ciertas condiciones, una sistema no lineal con
una dinámica entre esos dos sistemas lineales será también estable.

Por otro lado se tratará la sintesis de controladores para un sistema
dado, y un tratamiento a sistemas de tipo lineales a trozos (piecewise affine
(PWA)).

Por lo tanto los objetivos de este trabajo se centran en

• Generalizar el uso de técnicas LDIs a la obtención de invariantes
polihédricos para sistemas en tiempo discreto.

• Desarrollar una técnica de calculo de regiones invariantes (a la que
se denominará SNS) que mejora las técnicas LDIs, y mostrarla tanto
para sistemas en tiempo continuo como para sistemas en tiempo
discreto.
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• Cálculo de controladores lineales con saturación robustos utilizando
técnicas SNS.

• Generalización de estas técnicas a sistemas más complejos como los
de L’ure.

• Cálculo de regiones invariantes y estimaciones de dominio de atracción
para sistemas lineales a trozos (PWA).

La estructura es la siguiente.

1.7.1 Notación

En el capı́tulo 2 se muestra la notación a utilizar en el resto de los capı́tulos.
Este capı́tulo está dividido en sistemas en tiempo continuo y sistemas en
tiempo discreto ya que esos tipos de sistemas van a tener un tratamiento
totalmente distinto.

En cada uno de estos tipos sistemas se caracteriza la familia de sis-
temas con realimentación lineal saturada, que son los que más se uti-
lizarán durante todo este trabajo, en una familia de sistemas mayor. Se
definen formalmente funciones como σ(·) ya utilizada anteriormente y se
muestran ejemplos de los efectos de la saturación en los sistemas.

Además se muestran teoremas generales que serán utilizadas en el
resto del trabajo sobre estabilidad local y se definen otras variables.

Adicionalmente, para sistemas en tiempo discreto se define formal-
mente el operador a un paso Q(·) y se muestra un ejemplo de su uti-
lización.

Este capı́tulo es un capı́tulo general donde se pone la base sobre la
que se trabajará en los siguientes capı́tulos.

1.7.2 Dominio de atracción H

En la literatura se trata el cálculo de invariantes y de estimadores del
dominio de atracción a través de LDIs tanto para sistemas en tiempo
continuo como en discreto. Los conjuntos obtenidos son invariantes [24,
33]. Sin embargo, para sistemas en tiempo discreto se pueden conseguir
también regiones poliédricas conteniendo al origen utilizando estas téc-
nicas.

En el capı́tulo 3 se muestra la utilización de estas técnicas para la
obtención de regiones poliédricas. Estos conjuntos están incluidos en los
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conjuntos que se obtienen técnicas SNS mostradas en el capı́tulo 4, pero
se muestran aquı́ para generalizar el uso de LDIs a este caso.

Se denominan conjuntos H (invariantes H ó dominios de atracción H)
porque se restringe artificialmente la región a obtener a una región que
viene dada por una matriz H a calcular, que será también utilizada para
el LDI.

En este capı́tulo, después de mostrar sobre qué sistemas se va a tratar,
se define el LDI en función de la anteriormente comentada matriz H, y
se muestran las funciones a un paso hacia adelante GH(·, ·) y hacia atrás
QH(·, ·) en función del LDI.

Seguidamente se explican las caracterı́sticas de los conjuntos invari-
antes y las estimaciones de los dominios de atracción que se van a con-
seguir con este sistema y se obtiene la mejor matriz H a través de un
problema de maximización.

El capı́tulo continua con la propuesta de tres algoritmos distintos para
obtener las regiones deseadas, y concluye con ejemplos con los distintos
algoritmos para un sistema dado.

1.7.3 SNS Discreto

Una vez definido la utilización de técnicas LDI para la obtención de in-
variantes para sistemas en tiempo discreto, se desarrollará una técnica
que mejora dichos conjuntos. Esa técnica se denomina SNS que proviene
de Saturado y No Saturado haciendo referencia a que hay que considerar
tanto el sistema con la saturación, como el sistema lineal sin tener en
cuenta la saturación.

En el capı́tulo 4 se presenta la técnica SNS para sistemas en tiempo
discreto. En él, después de mostrar el problema que se pretende resolver,
se definen los conceptos de invariancia y dominio de atracción utilizando
esta técnica SNS.

Posteriormente se define el operador a un paso QSNS(·, ·), que es más
conservativa que el operador no convexo Q(·), pero menos que el oper-
ador QH(·, ·) mostrado en el capı́tulo 3. Esta relación entre el concepto
SNS y el concepto H es analizada.

Por último se muestra unos ejemplos utilizando los algoritmos real-
izados.
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1.7.4 SNS Elipsoidal

El concepto SNS presentado en el capı́tulo 4 puede ser también aplicado
a los sistemas en tiempo continuos.

En el capı́tulo 5 se muestra esta aplicación de SNS a sistemas en
tiempo continuo para la obtención de invariantes y estimadores del do-
minio de atracción elipsoidales.

Se estructura de la forma siguiente. Después de fijar el tipo de pro-
blema a resolver se definen la caracterización de los elipsoides que se
pretenden obtener. Seguidamente se analiza el concepto de contractivi-
dad, y cómo se introduce dentro de la formulación SNS.

Posteriormente se compara la relación entre el concepto SNS y los
métodos LDIs utilizados en la literatura para obtener invariantes elip-
soidales de sistemas con realimentación saturada. Se estudia el problema
del coste computacional de la resolución del problema de maximización
para obtener el elipsoide invariante y se concluye con ejemplos numéricos
de este sistema.

1.7.5 Sı́ntesis de controladores saturados robustos

En los capı́tulos 4 y 5 se definió el concepto SNS a sistemas con reali-
mentación lineal saturada en tiempo continuo y discreto. Sin embargo, el
controlador para dichos sistemas estaba definido a priori, es decir,

u = σ(Kx)

con K constante. Sin embargo, es posible que nos interese calcular K
para obtener una mayor estimación del dominio de atracción o un mayor
invariante. Es decir, es posible que interese realizar la sı́ntesis de un con-
trolador más que realizar el análisis de un controlador dado. Es más,
generalmente los sistemas no son lineales puros sino que tienen pertur-
baciones aleatorias, por lo que un modelo del sistema en tiempo discreto
con perturbaciones es

x+ = Ax + Bu + Eθ (1.9)

donde θ es una variable aleatoria con restricciones que representa las
perturbaciones.

En el capı́tulo 6 se muestra una técnica para calcular K para sistemas
en la forma 1.9.
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En dicho capı́tulo se presenta el operador Q(·, ·) para este tipo de sis-
temas y se muestra un algoritmo para conseguir el dominio de atracción
conocido K.

Seguidamente se definen los conceptos SNS para este tipo de sistemas,
obteniéndose el operador QSNS(·, ·) en función de K para sistemas con
perturbaciones y se propone un algoritmo para iterativamente modificar
K para conseguir un mayor conjunto invariante.

El capı́tulo finaliza con la aplicación de estas técnicas a un ejemplo
numérico.

1.7.6 Aplicación de LNL a sistemas L’ure

En los capı́tulos anteriores se ha mostrado técnicas para conseguir con-
juntos invariantes y estimadores del dominio de atracción para sistemas
en tiempo continuo y discreto lineales con realimentación saturada.

Este tipo de sistemas es una particularización de un tipo de sistemas
más amplio llamado sistemas L’ure. Un tipo de sistemas L’ure que se
tratará en este trabajo es el sistema lineal con realimentación cóncava-
positiva lineal a trozos. Es decir, el sistema a controlar viene definido por
la fórmula

x+ = Ax + Bφ(kx)

donde φ(·) en lugar de ser una saturación simple como σ(·), es una
función lineal a trozos, con la caracterı́stica de que es simétrica por el ori-
gen y en su parte positiva es cóncava. El sistema a tratar solo considerará
kx ∈ IR. Es decir, la realimentación ha de ser unidimensional.

En el capı́tulo 7 se estudiarán este tipo de sistemas. Inicialmente,
después de indicar el problema a tratar, se divide la no linealidad definida
por φ(·) en un conjunto de no linealidades que se puede representar como
saturaciones σ(·). Posteriormente se mostrará el concepto de invariancia
con el método SNS, al que se llamará LNL (que proviene de Lineal y
No Lineal), por la forma de φ(·). Seguidamente se definirán el operador
a un paso QLNL(·) y se utiliza este operador dentro de un algoritmo
para obtener tanto una estimación del dominio de atracción como un
invariante para el sistema dado.

El capı́tulo termina con un ejemplo de aplicación.
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1.7.7 Invariante de control robusto para sistemas lineales

a trozos

Los métodos mostrados en la literatura para la obtención de máximo con-
junto invariante robusto para un sistema lineal a trozos requieren una
gran complexidad computacional.

En el capı́tulo 8 se presentará un algoritmo que produce estimaciones
del conjunto invariante con menor consumo computacional. El algoritmo
está formado por dos partes, la primera parte se utilizará para la ob-
tención de una estimación exterior del conjunto invariante, y será esta
estimación escalada la que se usará como conjunto inicial en la segunda
parte del algoritmo.

Ejemplos de dicho algoritmo terminan el capı́tulo.
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1.1 Introduction

Most of control system analysed in the literature belong to lineal system
family. Some of them are indeed linear systems, and others are non-linear
systems linearised to be able to work with, and differences regarding this
linearisation are considered as model errors.

This family of controllers has important characteristics, but actually
there are no globally linear controller because, since controllers are phys-
ical items, their output can not be as big as required, there are always
upper and lower limits. Therefore, when the system behaves in a way
that the linear feedback is near the operation point, the feedback will cor-
rectly control the system. But if the system works outside the controller
specifications, the output will be smaller, and the system will be unpre-
dictable. This non-linearity is known as saturation.

The feedback saturation, that is, controller saturation, is the most com-
mon of non-linearities, and although it can be analysed in the general
non-linear control theory, there are specific literature to deal with (see
[21, 47, 29], in [5] there is a chronological bibliography). Control of lin-
ear systems theory has been widely studied, where numerous techniques
provide well designed controllers. Saturation belongs to controllers with
input constraints, and this is a very dynamic research work, see for ex-
ample [20, 38, 37] and their references.

Moreover, when the controller works in the saturation point, the yield
of the closed loop system with a controller that does not consider satu-
ration decreases, it can even lose stability. A well known example is the
decrease of the yield in the use of a PID in a closed loop system. When
the controller work in the saturation point of operation, the error is inte-
grated even when the control does not answer what it should does, and
therefore, the controller provides values higher than the controller limits.
This is known as windup [18]. Due to the way that integrators behave with
this effect, the controller output can be undesirable, and sometimes the
reference of the controller should be reseted.

Roughly speaking, there are two strategies to work with this non-
linearity. The first one is not to take into account the feedback when
designing the controller, and later to add some specific techniques to de-
crease the undesired effects of the saturation. This kind of techniques
are called anti-windup. The main idea used is to introduce additional
feedbacks so that the actuator works within the linearity limits. Most of
these techniques get a good efficiency but with a small stability set. Re-
cently some researchers have developed systematic techniques to work
with them (see [11, 10, 25]).



1.1. INTRODUCTION 43

The second strategy consists in taking into account the saturation in
the controller design. This is the strategy that will be used in this thesis.

Linear systems with linear feedback can be divided into those who
are globally controlled at the origin and those who are not. It has been
proved [43, 48, 50] that globally controlled to the origin systems with
all poles in the left semiplane are stabilizeable at the origin with a satu-
rated controller at least in an operation set of the system. This family of
systems are known asymptotically null controllable with bounded controls o
ANCBC). Results from this family of systems are analysed in [42] and it
references. Systems with any pole in the right semiplane are not globally
null controllable with bounded controls, and therefore control systems
designed to work with this family of systems will not work globally. In
this document only ANCBC systems will be considered.

On the other hand, there are two important concepts related to sys-
tems stability. These are the domain of attraction and the invariant set. The
domain of attraction is the state space set such that the system working in
a point in this set converges to the origin, so the system is stable within
this domain of attraction set. The invariant set is the space state set that if
the system is in the domain of attraction. The invariant set represents the
controlled system states where the system does not evolves outside this
invariant set.

The domain of attraction is very important because it is a safe oper-
ation set in which at least a controller can be used to make that system
converge to the origin, so a different controller can be selected with dif-
ferent optimization criteria, being sure that it will converge to the origin
when the nominal controller is used [19, 15, 20, 17].

This domain of attraction can also be used under model predictive con-
trol techniques (MPC) [9]. MPC consists in the prediction of the system
evolution, according to its model, depending on the input and this way
it can be chosen with the minimisation of a cost function. This kind of
techniques need a terminal set, that is, a region to wich the system can be
forced to converge in a finite number of steps. This guarantees that the
feedback system is stable.

In this thesis it will be analysed different ways to calculate invariant
sets and estimations of the domain of attraction for input constraint sys-
tems. This constraints appear in every physical system. For example, the
power of the motor that moves a robot is limited, or the additive in a
chemical reaction is also limited.

The main purpose of this thesis is the study of properties and the
development of implementation methods of calculation techniques for the
estimation of domains of attraction and maximal invariant sets applied
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to linear systems, piecewise affine systems or systems with a saturation
feedback systems.

1.2 Saturation feedback systems

As previously commented, a linear system is a model for processes whose
dynamics can be described by means of differential or differences equa-
tions.

The difference between both equation types is that in the first case the
system is a continuous time system and in the second it is a discrete time
system.

Every linear system can be expressed as,

dx

dt
= Ax + Bu, (1.1)

where x ∈ IRn are the states, u ∈ IRm are the input of the system and
A ∈ IRn×n, B ∈ IRn×m are matrixes that define the system dynamic.

On the other hand, if the system is a discrete time system, it can be
expressed as,

x+ = Ax + Bu, (1.2)

where x, A, B and u are similar to continuous time systems, and x+

is the successor of the state and is the state in the next step time, that is,
after T seconds.

The actuator variable u is calculated with the feedback of the system.
The most used one is linear, and it can be expressed as,

u = Kx, (1.3)

where K ∈ IRn×m is the feedback matrix and it is used for continuous
time systems and for discrete time systems.

In this case, u is a function of x. If the controller can not access to state
values, it will need an observer, however, in this work only observable
systems will be considered, where values of x are accessibles.

The linear feedback does not exists in real life, because no physical
device can provide an output as large as needed, therefore, a most realistic
model to feedback 1.3 is,
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u = σ(Kx), (1.4)

where the multivariable function σ(s) = [σ1(s1) σ2(s2) . . . σi(si) . . . σm(sm)]⊤

is the saturation whose components are defined as,

σi(x) =







xi
min if x < xi

min,
x if xi

min ≤ x ≤ xi
max,

xi
max if x > xi

max.

(1.5)

In this work symmetric saturation will be considered, and without
loss of generality, they will be normalized, therefore, σi() can be defined
as,

σi(x) =







−1 if x < −1,
x if − 1 ≤ x ≤ 1,
1 if x > 1.

(1.6)

Figure 1.1 shows the design of a feedback system. This system can be
defined in continuous time 1.1 or in discrete time 1.2.

xu
K System

ulin

Figure 1.1: Design of a feedback system.

1.3 Traditional techniques

The feedback saturation generates an undesired effect called windup. This
effect is negative because if the controller has an integrator, the error is
being integrated and the control signal is not the desirable.

In order to avoid the windup, the controller should taking into account
the input error by means of a feedback method. Figure 1.2 shows this
design.

The main idea is to control the difference between the input and the
output in the saturation block. When it is zero, it means that it is working
in the linear operation range, and it is different from zero when saturation
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Figure 1.2: Design of the feedback of the system with a modified controller
saturation feedback.

is reached. In this case, the integral part will produce the windup effect.
Therefore the error = u − ulin value will be used to manage the integral
action does not over.

These techniques can be used as well for continuous time systems as
for discrete time systems (see [25, 11] and the references therein).

1.4 Stability

Let us suppose that the system is 1.1 with a defined feedback. In this
work null controlled systems will be considered. This kind of systems
are such that the controller without the saturation, i.e. the linear feedback
system converges to the origin. The convergence of the linear system can
be extended to the saturated system at least in a set near to the origin.

The state space set, wich converges to the origin is called domain of at-
traction. This domain of attraction is difficult to be exactly determinated
because it is generally a non-convex set and it takes much computer pro-
cess time. Therefore, it is necessary to have a method to obtain a fast
approximation of that domain of attraction.

In order to calculate this estimations of the domain of attraction, there
are some traditional techniques like the circle criteria or the Popov cri-
teria. In this work, it will be designed some techniques to obtain this
estimations.

1.4.1 Iterative computation of the domain of attraction

The exact computation of the domain of attraction in a iterative way is
a task that needs much computational process time but it can be useful
and it is important to have a method to determine it. This method is used
only in discrete time systems due to it uses iteration properties.
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The calculation process is the following, it begins with a stable set C0

in the state space that converge to origin, and it is determined the set that
evolves to this initial set in one step time. This new subset of the state
space is denoted C1. This method is used again in an iterative way in
order to get the C∞ set. This set is called domain of attraction.

1.5 Iterative computation of the domain of at-

traction

This type of methods are applied to discrete time systems, which once
they have the feedback can b defined as follows

x+ = Ax + Bσ(u), (1.7)

where x is the state vector of any dimension, x+ is the successor of the
state and A is a matrix. σ(·) is the saturation function. In this section a
technique will be shown to obtain the domain of attraction of the system.

In this system null controlled systems with bound input constraint
will be considered.

There are some techniques to obtain this initial set, in chapter 3 some
of them will be analysed and they will be used in next chapters. A tech-
nique is to obtain a Lyapunov function like f (s) = x⊤Px with a contrac-
tive positive definite P. It defines an ellipse that it is invariant in the linear
behaviour set.

Note that it is important to obtain an initial set, but it is also important
to obtain a convex polyhedral set, therefore an arbitrary polyhedral set
inside the invariant ellipse is selected. This set is an inner estimation of
the domain of attraction and it will be called C0.

The one-step operator Q(·) is defined as,

Q(Ω) = { x : ∃u : Ax + Bσ(u) ∈ Ω }

This definition will be completed in definition 9 on chapter 2 for linear
feedback.

Iteration can also be defined Ci+1 = Q(Ci) for i = 0, 1, 2, . . .. Ci repre-
sents the space state set that in i steps reach to C0 set, and as C0 converge
to the origin, all states in Ci converge to the origin. Moreover, the limit in
this succession C∞ is the domain of attraction of the system that will be
obtained.
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1.5.1 Linear systems with input bound constraint

Usually, systems are linear controlled, since it is easier to build in the in-
dustry field and there are tables to set up that are widely used in practice.
However, critical systems such their efficiency is more important than the
simplicity of the controller can use different approaches. In this case, the
controller is usually implemented in a computer or in a digital program-
able controller, and therefore systems are commonly analysed in discrete
time.

This is the case of linear systems with bounded input constraints, this
systems can be expressed as,

x+ = Ax + Bσ(u),

where the input u is bounded.

The maximal domain of attraction of this type of systems can be ob-
tained in the following way.

Firstly an initial C0 polihedrical set that belongs to the domain of at-
traction of the system in the way that has been shown in subsection 1.4.1,
or in a more extended way in chapter 3 should be obtained.

The one-step operator function Q(·) will be used to obtain the domain
of attraction of the system. This function is generic, and it depends on
the context. In the most general way, it is defined as,

Q(Ω) = { x : Ax + Bu ∈ Ω }.

This operator will be applied to C0 set to obtain the C1 set, and in an
iterative way it will be used Ci+1 = Q(Ci), for i = 0, 1, 2 . . .. The limit of
this recursion, C∞ set will be the domain of attraction of the system.

Note that each Ci set is a polyhedral set, therefore convex. This can be
explained because C0 is a polyhedral set that includes the origin and it is
defined as,

C0 = { x : H0x � g0 }.

Let us suppose that Ci is defined by

Ci = { x : Hix � gi }.

The one step operator Q(·) is applied to this set for this system and it
is defined as



1.5. ITERATIVE COMPUTATION OF THE DOMAIN OF ATTRACTION49

Q(Ci) = { x : Ax + Bu ∈ Ci }

where u is saturated.

As u is saturated, constraints of u are polihedrical and they can be
defined as,

u ∈ { u : Huu � gu }.

and this restriction shows that Ci+1 = Q(Ci) can be defined as,

Ci+1 = Q(Ci) = { x : Hi(Ax + Bu) � gi ; Huu � gu }.

Note that this is a polihedrical set in (x,u). If this polihedrum is pro-
jected to x the Ci+1 set is obtained, therefore Ci+1 is a convex set. That is, if
Ci is a polihedrical convex set that includes the origin, then Ci+1 = Q(Ci)
also is a polihedrical convex set that includes the origin.

This method can be applied to obtain the domain of attraction of the
system.

Figure 1.3 shows an example of the domain of attraction. This figure
shows the domain of attraction of the system

x+ = Ax + Bσ(u)

where

A =

[

1 1
0 1

]

, B =

[

0.5
1

]

.

Example shown in figure 1.3 does not represent all the whole domain
of attraction, but an approximation in 50 steps (C50) this is the set obtained
with the available computational power.

This figure can be compared with figure 1.4. In that figure the domain
of attraction is smaller than in this one, but in that case the feedback func-
tion is a linear saturation and in the case of figure 1.3, a input bounded
constraint actuator is used. Note that in 1.4 the control law is known but
in 1.3 is unknown.

This type of domain of attraction has two main problems in general,

• The projection of a polihedral set from one dimension to another
needs a lot of computational time, and this process must be used
each iteration of the system.
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Figure 1.3: Domain of attraction for a system with input bounded con-
straints.

• Moreover, when this domain of attraction is obtained, the value of
the control law u is unknown, that is, the function u = f (x) that
provides this domain of attraction is unknown. This control law can
be obtained online just by obtaining values of u such that it main-
tains the system in C∞. This type of controllers make the system
remain inside a set, but do not make it converge to the origin.

However, there is an advantage, and this is that the obtained domain
of attraction is in general larger that the real one for saturated linear
control laws. In case of getting not only the domain of attraction but the
sequence {C1, C2, . . . , C∞} , the following control law can be used,

U = { u : Ax + Bσ(u) ∈ Ci−1 }

f (x) =

{

σ(u) u ∈ U if x 6∈ C1,
Kx if x ∈ C1.

where i is defined by the value such that x ∈ Ci, x 6∈ Ci+1, and K is the
LQR solution of the linear system without saturation.

This control law converges to the origin, but one important disadvan-
tage is that it can only be used online, it needs all the sequence Ci, it
needs much offline computational time and it also needs much online
computational time.
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These disadvantages show that it is important to be able to calculate
the domain of attraction of a fixed control law. One of the most saturated
control law function used is the control law

u = σ(Kx),

that will be seen in the following point.

1.5.2 Linear systems with bounded input

Usually, linear system feedback is linear, this feeback system has very
important properties and this simplicity is important in the design. Nev-
ertheless, system changes when saturation zone is reached. The feedback
system can be shown as,

x+ = Ax + Bσ(Kx), (1.8)

where K is a matrix of suitable dimension.

Function Ax + Bσ(Kx) is a piecewise affine system, and therefore it
is non-lineal, that is if an Ω set is a polyhedral, Q(Ω) can be a non-
polyhedral set. Actually, this set is an union of polyhedral in general, and
in the most unfavourable case, it will be the union of 3m polyhedral set,
where m is the saturation dimension.

The estimation of the domain of attraction obtained by means of this
feedback control will also be an estimation of the domain of attraction
of the bounded actuation system since there exists a known control law
u = σ(Kx) with which the system in this domain of attraction converges
to the origin.

The value of K is undetermined, and can be calculated in a way that
the estimation of the domain of attraction to be obtained optimises a size
measure.

Nevertheless, this calculus spends much computation time, but al-
though this domain of attraction can be obtained, it will be defined as an
union of polihedrical sets that can be unmanageable. It is important to
obtain a polihedrical and convex approximation of this set, provided that
it has got two main properties, to be an inner estimation of the domain of
attraction and to be an invariant set of the system. These properties show
a safe operational set wich will be defined by a polyhedral so computa-
tional definition is simple.

The larger the polihedrical invariant set is for a given system, the
larger this safe operational set will be.
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In this work new methods to obtain this set will be analyzed, and set
obtained by means of these methods provides a larger estimation of the
domain of atraction than shown in the literature.

The computational complexity problem, and the complexity in the
representation of this set can be explained with an example. Let the fol-
lowing system be

x+ = Ax + Bσ(Kx)

where

A =

[

1 1
0 1

]

, B =

[

0.5
1

]

, K = [−0.6167 − 1.2703] .

The domain of attraction of this system can be shown in figure 1.4.
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Figure 1.4: Exact domain of attraction set

This domain of attraction representation is very complex. The union
of every inner polihedrical set in figure 1.4 provides this domain of attrac-
tion. Therefore, just to know if a state belongs to the domain of attraction
of the system, you must test every set of the representation. This fig-
ures justify the use of some of the shown methods in this work to obtain
the approximation of the domain of attraction of the way that the final
representation will be only one polihedrical set and therefore a convex
set.
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In order to avoid these problems, this work will show conservative
estimations of the Q(·) function that provides a convex estimation of the
domain of attraction.

1.6 Objectives of this thesis

Calculus of convex approximations of the domain of attraction for a sys-
tem and convex invariant set for a system is very important for control
theory. This work will be used to obtainning this estimation of the do-
main of attraction for saturated systems, as well continuous time systems
as discrete time systems, and the extension of this calculation methods to
piecewise affine systems and the design of controllers.

The objectives of this thesis are,

• Determination of estimations of H-domain of attraction for linear
systems with saturated feedback. H-domain of attractions are inner
estimations of the domain of attraction using an approximate Q(·)
function. This method is widely analyzed in the literature for con-
tinuous time systems where target sets are ellipsoidal. One of the
objectives is this work is the utilisation of this type of methods in
order to generate polihedrical convex set for discrete time systems.
This method has been published in [2, 14].

• Determination of estimations of polihedrical SNS-domain of attrac-
tion for linear system with saturation feedback. SNS-domain of
attractions are inner estimation of the domain of attraction using an
approximate Q(·) function. this method is new in the literature and
enlarge other estimations of the domain of attractions. One of the
objectives of this work is the use of this methods in order to deter-
mine a polihedrical convex estimation of the domain of attraction.
This method has been analyzed in [3]

• Determination of estimation of SNS-domain of attraction for linear
system with saturation feedback in continuous time. SNS methods
can be applied in continuous time systems in order to get ellipsoidal
estimations of the domain of attraction. This method is new in this
work.

• Determination of linear controllers for linear systems with satura-
tion feedback. SNS methods can also be used in synthesis and to
get linear controllers that can be used with the saturation in order
to get estimations of the domain of attraction. In this work a new
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approach to the determination of linear controllers for discrete time
systems with disturbances is shown.

• Determination of LNL-domain of attraction for Lur’e systems in
discrete time. SNS methods can be extended to Lur’e saturated
systems. This extension is called LNL methods, and can be used
for the determination of polihedrical estimation of the domain of
attraction. This method is new in this work and has been published
in [13]

• Determination of estimation of domain of attraction for piecewise
affine systems in discrete time. This method has been published in
[1].

Therefore a new system in order to determinate estimation of the do-
main of attraction and the extension of that method in piecewise affine
systems.

1.7 Structure of this thesis

In this work invariant sets and estimations of the domain of attraction for
linear systems with a low computational cost will be analyzed. Target
systems will be linear systems with saturation feedback and piecewise
affine systems in both continuous time and discrete time. These estima-
tions will be larger than those obtained by means of LDI methods shown
in the literature. LDI methods use the property that if two different lin-
ear systems are stable, it is also stable, under some conditions, a nonlinear
system with a dynamic between this two linear systems.

Therefore objectives of this work are

• Use of LDI methods in the determination of polyhedrical invariant
set for discrete time systems.

• A new method called SNS to determinate invariant sets that over-
size those obtained by LDI methods, for both discrete and continu-
ous time systems.

• Determination of robust linear controllers with saturation using SNS
methods.

• Determination of this methods to L’ure systems

• Determination of invariant sets and estimations of the domain of
attraction for piecewise affine systems.
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The structure is the following,

1.7.1 Notation

Chapter 2 contains the notation used in other chapters. This chapter is
divided into continuous time systems and discrete time systems since
methods to be applied to both family of systems are different.

Linear systems with saturation feedback are ones of the most used
systems in this work, and therefore they are defined in this chapter. Sat-
uration function and one-step operator are also defined.

Some theorems related with local stability are also shown.

This chapter is general and will be referenced in the following chap-
ters.

1.7.2 H-domain of attraction

Invariant set and estimations of the domain of attraction by means of
LDIs techniques has been shown in the literature for both continuous
time systems and discrete time systems, see [24, 33]. However these meth-
ods can also be used for determination of polyhedral sets.

In chapter 3 they will be applied to the determination of polihedrical
set. These sets are inner to those obtained by means of SNS methods
shown in chapter 4, but they will be shown here in order to extend LDIs
methods.

This methods are called H methods (that is, H invariant set or H do-
main of attraction) because the obtained set will be in a larger set defined
by matrix H. This matrix should be calculated by means of this method,
that will also be used for the LDI.

In this chapter the LDI is defined and depends on matrix H and the
H-one step function is defined that also depends on the LDI.

Properties of invariant sets and estimation of the domain of attraction
defined by means of this method are also commented.

The chapter continues with three different algorithms that provides
these sets and ends with different examples.
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1.7.3 Discrete SNS

LDI methods have been used for the determination of invariant sets for
discrete time systems. Set provided for this method are smaller to other
obtained by means of a new technique called SNS. SNS stands for Sat-
urated and Non Saturated due to both systems are considered, the real
saturated system and the extension of the linear system no taking into
account the saturation.

In chapter 4 this SNS method is presented for discrete time system.
SNS invariance and SNS domain of attraction are defined there after
introducing the problem to solve.

The one step operator QSNS(·, ·), which is more conservative than non
convex operator Q(·) but less conservative than convex QH(·, ·) shown in
chapter 3 is presented. Relationship between SNS and H methods is also
commented.

Some examples using the algorithms ends the chapter.

1.7.4 Ellipsoidal SNS

SNS concept presented in chapter 4 can also be applied to continuous
time systems.

Chapter 5 shows this extension of SNS method to continuous time
systems for the determination of ellipsoidal invariant sets and ellipsoidal
estimations of the domain of attraction.

In this chapter contractivity concept is defined and inserted in SNS
methods.

Relationship between SNS concepts and LDI methods used in the lit-
erature in order to get ellipsoidal invariant set for linear systems with
saturation feedback is analysed. The computational cost of the solution
of the maximisation problem to obtain the ellipsoidal invariant set is com-
mented. It ends with numerical examples of this method.

1.7.5 Synthesis of robust saturated controllers

In chapters 4 and 5, SNS concept has been defined for linear system with
saturation feedback for continuous time and discrete time. However, the
controller of the system was known, that is,

u = σ(Kx)
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where K is constant. Nevertheless K can be determined to maximise
a measure of the size of the estimation of the domain of attraction that
can be got by means of SNS methods. This means that it is possible to
be more interesting to achieve a synthesis of the controller than make an
analysis of it. Actually perturbation in system model can also be added
to the formulation, that is the target system is

x+ = Ax + Bu + Eθ (1.9)

where θ is a variable that is bounded. This boundary is known.

Chapter 6 shows a method to determine K for systems like 1.9.

In this chapter, the operator Q(·, ·) for this family of systems is de-
fined, and an algorithm to get the domain of attraction of the system if
the feedback matrix K is known. A first approximation of K method is
also presented.

Next, the SNS concepts are defined for this type of problems, and
operator QSNS(·) as a function of K for systems with perturbations is
obtained. This value of K is used in a new algorithm to optimise the
invariant set obtained.

A numerical example is shown.

1.7.6 Application of LNL invariance for Lur’e systems

SNS method works in linear systems with saturation feedback. These
systems belong to a larger family of systems called L’ure systems. In this
work an specific family of L’ure system is analyzed, which is the family
of systems that the controller can be written as

x+ = Ax + Bφ(kx)

where φ(·) is an even piecewise affine function where it is concave in
IR+. In this chapter kx ∈ IR will be considered.

Chapter 7 analyzes this family of systems. Non-linearity φ(·) is di-
vided into a set of non-linearities that can be represented as saturations
σ(·). SNS invariant set applied for this set of saturations will be presented
and it will be called LNL that stands for Linear and Non Linear due to the
shape of φ(·). Also QLNL(·) operator is presented and it will be used in
order to get an estimation of the domain of attraction and an invariant set
of the target system.

The chapter ends with an example.
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1.7.7 Robust control invariant set

Methods shown in the literature in order to compute the maximal robust
control invariant set for a piecewise affine system require a large compu-
tational complexity.

Chapter 8 presents an algorithm that generates estimations of the max-
imal invariant set with a smaller computational time. The algorithm con-
sists in two parts, the first part is used to obtain an outer estimation of
the maximal invariant set, and it this set (scaled) will be used as the input
for the second part of the algorithm.

Examples of this algorithm end the chapter.
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2.1 Introduction

The saturation is probably the most commonly encountered nonlinearity
in control engineering.Most of the nonlinear systems and nonlinear actu-
ators are modeled as saturated functions. Linear systems with saturated
actuation are widely used. They have the simplicity of linear systems and
are able to cope with the most common nonlinearities.

In this chapter, some notation will be introduced to work with systems
with saturated feedback. This will be divided in continuous time systems
and discrete time systems although some of the notation can be used in
both types of systems.

59
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2.2 Continuous time systems

Definition 1 A differential equation

ẋ =
dx

dt
= f (x), x = [x1, x2, . . . , xn]

t,

is called a three zone piecewise affine system (denoted 3CPLn), if there exist
three vectors b0,b1,b2, a vector v 6= 0 ∈ Rn, two numbers δ1 < δ2 and three
matrices A0, A1, A2 ∈ Rn×n such that:

ẋ = f (x) =







A0x + b0 if vtx < δ1,
A1x + b1 if δ1 ≤ vtx ≤ δ2,
A2x + b2 if vtx > δ2,

(2.1)

where for all x such that vtx = δi, i = 1, 2,

Ai−1x + bi−1 = Aix + bi.

Definition 2 A 3CPLn is called simetric and denoted S3CPLn if f (x) = − f (−x),
for all x ∈ R.

Note that a 3CPLn system like 2.1 is S3CPLn if and only if A0 = A2,
b0 = −b2, b1 = 0 and δ1 = δ2. Let us define A = A0 = A2, b = b2 = −b0,
k = v/δ1, Continuity property of 3CPLn systems is obtained if and only
if

A1 = A + bkt.

Therefore, S3CPLn systems can be written as

ẋ = f (x) =







Ax − b if ktx < −1,
(A + bkt)x if − 1 ≤ ktx ≤ 1,
Ax + b if ktx > 1.

(2.2)

Definition 3 The normalized saturation function σ(·) is a continuous function
defined by

σ(x) =







−1 if x < −1,
x if − 1 ≤ x ≤ 1,
1 if x > 1,

(2.3)

where x ∈ IR.
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This function is represented in figure 2.1

1

1
σ(·)

Figure 2.1: The normalized saturation function σ(·).

This new definition allows us to write S3CPLn functions like 2.2 as

ẋ = Ax + bσ(kt x), (2.4)

and it will be the notation used in this work.

Note that 2.4 systems are a particular case of a more extended linear
control systems,

ẋ = Ax + bu, (2.5)

where A ∈ IRn×n, b ∈ IRn, and u ∈ IR is the control signal that is
defined by the control law

u = σ(ktx). (2.6)

This control law is the most widely used control strategy (linear plants
or linearized plants controlled by a linear control law). Linear systems
have interesting properties that make them suitable for many aplications.
Saturation restrictions arise mainly because to most control actuators are
limited.

System 2.5 has a monodimensional control law, i.e, u ∈ IR, therefore
they are a particular case of the more general family of systems

ẋ = Ax + Bu, (2.7)
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where B ∈ IRn×m, and u = [u1u2 . . . um]t ∈ IRm. Let us suppose that
this system is controlled by a linear control law u = Kx, where K ∈ IRm×n,
and that components of u are saturated. That is,

u =











σ(k1x)
σ(k2x)

...
σ(kmx)











, (2.8)

where k1, k2, ... kn are columns of matrix K.

This notation can be simplificated with the definition of normalized
saturation function for vectors, that, with an abuse of notation, will also
be denoted as σ(·).

Definition 4 The normalized saturation function σ(·) is a continuous function
defined by

σ(x) =











σ(x1)
σ(x2)

...
σ(xn)











, (2.9)

where x ∈ IRn and x1, x2, ... xn are components of x.

Note that this formulation is not ambiguous because equation 2.9 be-
comes equation 2.3 when x ∈ IR

Therefore control law 2.8 is now defined as

u = σ(Kx). (2.10)

The system given by system 2.7 with control law 2.10 includes de-
scriptions 2.5-2.6 and is one of the most important descriptions analyzed
in this work.

Due to the saturation, closed loop system 2.7-2.10 is non linear. For
example, figure 2.2 shows value of u1 and 2.3 shows value of u2 for x ∈
IR2 and

K =

[

1 1
0 1

]

.

Related to saturated control law 2.10 is the following non-saturated
control law.
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Figure 2.2: Value of the first component of a saturated control law.
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Figure 2.3: Value of the second component of a saturated control law.
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Definition 5 The non-saturated control law associated to a saturated control
law u = σ(Kx) is defined by

u = Kx, (2.11)

where u ∈ IRm, x ∈ IRn and K ∈ IRm×n.

Property 1 A saturated control law 2.10 is equal to a non-saturated control law
2.11 in a set that includes the origin.

Proof :

The proof is trivial hence omited.

This property can be observed in figure 2.4.
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Figure 2.4: Example of the first component of a saturated and the asociated
not saturated control law.

The previous property leads to the following theorem.

Theorem 1 Let φs be a closed loop system like 2.7-2.10 and φns be the associated
non-saturated closed loop system defined as 2.7-2.11. Then there exists Ωs ∈ IRn

inside the domain of attraction of φs if and only if there exists Ωns ∈ IRn that
converges to the origin for system φns.
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Proof :

Let us suppose that there exists Ωs ∈ IRn such that for all x ∈ Ωs converges
to the origin for the closed-loop system 2.7-2.10. That is, for all x(t0) ∈ Ωs, and
for all ǫ > 0 there exists t1 such that for all t > t1, |x(t)|∞ < ǫ. Moreover,
let suppose that ǫ = 1, and let call Ωs(t1) = {x(t1) : x(t0) ∈ Ωs}. Note that
Ωs(t1) is also a set that converges to the origin for the closed-loop system 2.7-
2.10. Then, for all x(t), t > t1 where x(t1) ∈ Ωs(t1), σ(Kx) = Kx, therefore
Ωs(t1) is also a set that converges to the origin for the closed-loop system 2.7-
2.11.

The opposite is proved in the same way.

Throughout this text, some auxiliary notation will be used to denote
closed-loop system 2.7-2.10. This system can be rewritten as

ẋ = Ax + Bσ(Kx). (2.12)

That can also be expressed as

ẋ = Ax +
m

∑
i=1

Biσ(Kix)

where Bi for i = 1, 2, . . . , m are columns of B and Ki for i = 1, 2, . . . , m
are rows of K.

Let M = {1, 2, . . . , m}. the system 2.12 can also be rewritten as:

ẋ = Ax + ∑
i∈M

Biσ(Kix).

Definition 6 Given M, the set V is the set of all subsets of M including the
empty set. That is,

V = { S : S ⊆ M }

Example: If m = 2, then M = {1, 2} and V = {Ø, {1}, {2}, {1, 2}}.

Notation 1 Given M and S ∈ M, Sc denotes the complementary of S in M.
That is, Sc = { i ∈ M : i /∈ S }.
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In the previous example, m = 2, M = {1, 2}, and if S = 1 then Sc = 2.
If S = {1, 2} then Sc = {Ø}.

This notation allows to express the family

ẋ = Ax + ∑
i∈S

Biσ(Kix) + ∑
i∈Sc

BiKix. (2.13)

Note that system 2.12 is a particular case of family 2.13. That is if
S = M, Sc = {∅} and leads to the same formulation.

Note also that the non-saturated control system 2.7-2.11 is a particular
case of family 2.13. That is if Sc = {∅}, S = M.

In the following chapters it will be presented some properties that will
use the system family 2.13. As far as all properties applies for all systems
in this system family, they also can be used for saturation systems.

2.3 Discrete time systems

Many of the system problems in engineering are discrete time systems.
Many of the previous concepts for continuous time systems can be ap-
plied to discrete time systems.

Definition 7 A discrete time equation

x+ = f (x), x = [x1, x2, . . . , xn]
t,

is called a three zone discrete piecewise affine system (denoted 3DCPLn),
if there exists three vectors b0,b1,b2 and a vector v 6= 0 ∈ Rn, two numbers
δ1 < δ2, three matrices A0, A1, A2 ∈ Rn×n such that:

x+ = f (x) =







A0x + b0 if vtx < δ1,
A1x + b1 if δ1 ≤ vtx ≤ δ2,
A2x + b2 if vtx > δ2,

(2.14)

where for all x such that vtx = δi, i = 1, 2,

Ai−1x + bi−1 = Aix + bi.

In this formulation x is the state vector and x+ is the successor of x.
That is, if x = x(k), x+ = x(k + 1).
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Definition 8 A 3DCPLn is called simetric and denoted S3DCPLn if f (x) =
− f (−x), for all x ∈ R.

Note that a 3DCPLn system as 2.14 is SD3CPLn if and only if A0 = A2,
b0 = −b2, b1 = 0 and δ1 = δ2. Let us define A = A0 = A2, b = b2 = −b0,
k = v/δ1, Continuity property of 3DCPLn systems is obtained if and only
if

A1 = A + bkt.

Therefore, SD3CPLn systems can be written (using the normalized
saturation function σ(·) as

x+ = Ax + bσ(kt x), (2.15)

2.15 systems are a particular case of a more extended linear control
systems,

x+ = Ax + bu, (2.16)

where A ∈ IRn×n, b ∈ IRn, and u ∈ IR is the control signal that is
defined by the control law defined in 2.6.

System 2.16 has a monodimensional control law, i.e, u ∈ IR, therefore
they are a particular case of the most general systems

x+ = Ax + Bu, (2.17)

where B ∈ IRn×m, and u = [u1u2 . . . um]t ∈ IRm. Let us suppose that
this system is controlled by a linear control law u = Kx, where K ∈ IRm×n,
and that the components of u are saturated. That is, u = σ(Kx) as shown
in 2.10.

Note that property 1 can be also applied for discrete time systems
because definition of u does not depend on the system. That property
leads to the following theorem.

Theorem 2 Let φs a discrete closed loop like 2.17-2.10 and φns the associated
non-saturated discrete closed loop system defined as 2.17-2.11. Then there exists
Ωs ∈ IRn that converges to the origin for system φs if and only if there exists
Ωns ∈ IRn that converges to the origin for system φns.

Proof :
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The proof is similar to proof of theorem 1.

Using the same notation that shown for continuous time systems, the
closed loop system 2.17-2.10 can be written as

x+ = Ax + Bσ(Kx). (2.18)

That, using the M notation, can also be expressed as

x+ = Ax + ∑
i∈M

Biσ(Kix). (2.19)

where Bi for i = 1, 2, . . . , m are columns of B and Ki for i = 1, 2, . . . , m
are rows of K.

This notation allows to write the following system family,

x+ = Ax + ∑
i∈S

Biσ(Kix) + ∑
i∈Sc

BiKix. (2.20)

Note that, in the same way that shown for continuous time systems,
system 2.18 and the non-saturated control system 2.17-2.11 are a particu-
lar case of family 2.20.

In the context of set invariance theory, the one-step set plays an im-
portant role [17]. A general definition of the one-step set is given.

Definition 9 Given a set Ω and a discrete-time system

x+ = f (x)

where x ∈ IRn is the state vector and x+ is the successor, it is called one-step
set of set Ω to

Q(Ω) = { x : f (x) ∈ Ω }

where Q(·) is denoted one-step operator.

With an abuse of notation it will be referred Q(·) in general when
saturation system 2.18 is considered. That is,

Q(Ω) = { x : Ax + Bσ(Kx) ∈ Ω }
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When different systems are considered it will be shown explicitaly.

The one step set is the set that in one step reach Ω

For example, consider the matrices

A =

[

0.5 0
0 0.5

]

, B =

[

0.5
1

]

, K =
[

0.4 0.8
]

,

and Ω = { x : |x|∞ ≤ 1 }. Then Q(Ω) referred to x+ = Ax + BKx
is the set shown in figure 2.5. In this figure, Ω set is represented as the
inner yellow set, and Q(Ω) is the outer cyan set. One important property
is that if Ω is a polyhedrical convex set, and f (x) is a linear function then
Q(Ω) is also a polyhedrical convex set. All states that belongs to Q(Ω) in
the figure will reach Ω in one step by x+ = Ax + BKx system.
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Figure 2.5: Example of Q(Ω) for a discrete linear system.

Figure 2.6 represents Q(Ω) referred to saturated system x+ = Ax +
Bσ(Kx). In this figure Ω is also represented as the inner yellow set and
Q(Ω) is the outer cyan set. Note that as σ(·) is a non-linear function,
Q(Ω) can be a non convex set although Ω is a polyhedrical convex set. In
this example, Q(Ω) is represented as the union of polyhedrical sets due
to the piece-wise affine nature of non-linearity σ(·).

It can be useful to use function Q(·) recursively, that it, if C0 = Ω,
apply the recursion Ci+1 = Q(Ci) for i = 0, 1, 2, . . .. This kind of iterations
will be used in most of the following chapters. In this case it is important
to be noted that if system is non-linear or C0 is non-convex, Ci is non-
convex in general. System x+ = Ax + Bσ(Kx) produces sets Ci of the
type of union of convex polihedra, that are in general non-convex.
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Figure 2.6: Example of Q(Ω) for a discrete saturated system.
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3.1 Introduction

The estimation of stability regions of nonlinear systems is important for
many fields in engineering. Regions of asymptotic stability are zones of

71
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safe operation that can avoid unnecessary operational restrictions if they
are non-conservative [15, 20, 17].

The estimation of the domain of attraction of linear systems subject to
control saturation has received the attention of many authors in the last
years (see, for example, [23, 4, 29, 33] and references therein).

One of the most relevant approaches to the analysis of saturated sys-
tems is based on a Linear Difference Inclusion (LDI) of the saturation non-
linearity. For example, in [24, 33], an invariant ellipsoid for the saturated
system is obtained by means of an LDI. This approach has also been used
in [41] to obtain a polyhedral invariant set for a saturated system.

The domain of attraction of a given saturated system can be approx-
imated by means of an ellipsoid. In [33] and [29] an LDI for a linear
saturated systems is presented. Based on that LDI, the authors propose
how to choose simultaneously both the matrix H, that characterizes the
LDI, and the greatest ellipsoid that is invariant under the corresponding
LDI.

This chapter presents an approach to the polyhedric estimation of the
domain of attraction of a saturated linear system. The polyhedric estima-
tion is less conservative but at the expense of an increased representation
complexity. For that purpose, given a system with m saturated control
inputs, a Linear Matrix Inequality (LMI) problem with 2m + m constraints
must be solved. Moreover, given the obtained LDI, The maximum do-
main of attraction provided by the LDI (denoted H-domain of attraction)
is characterized. It is also provided an algorithm that estimates the do-
main of attraction of the nonlinear system. Under mild conditions, the
proposed algorithm obtains the exact H-domain of attraction of the sys-
tem.

3.2 Problem Statement

Only discrete-time saturated systems will be considered in this chapter.
It will be obtained an LDI that provides an estimation of the domain of
attraction and an invariant set of the saturated system. Therefore, the
following system is considered,

x+ = Ax + Bσ(Kx) (3.1)

where x ∈ IRn denotes the state vector, x+ the successor state vector
and A ∈ IRn×n, B ∈ IRn×m, and K ∈ IRm×n are matrices. Function
σ : IRm → IRm is the normalized saturation function and it is defined in
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2.9.

Note that this system is the discrete closed loop system defined in
2.17-2.10 of chapter 2.

Using the notation provided in chapter 2, this formulation can be ex-
pressed as

x+ = Ax + ∑
i∈M

Biσ(Kix) (3.2)

System 3.2 is a non-linear system due to the saturation function, hence
the domain of attraction and the corresponding largest invariant set can
be non-convex. In this chapter it will be provided a convex conserva-
tive estimation of the domain of attraction and a convex invariant set of
the saturated system by means of an LDI. In order to obtain the desired
convex sets the H-domain of attraction and H-invariant concepts will be
used.

3.3 Linear difference inclusion

In the following, the linear difference inclusion (LDI) that is going to be
used in the H-domain of attraction notion will be presented. This LDI
is the one adopted in recent works like [33, 12] and it is a generalization
that improves the one presented in [22] (see also, [24, 41]).

In order to introduce the LDI, some auxiliary definitions will be used.

Notation 2 Given matrix H ∈ IRm×n, and set S ∈ V , GH(x, S) is defined as
follows,

GH(x, S) = (A + ∑
i∈Sc

BiKi + ∑
i∈S

BiHi)x. (3.3)

Note that with these definitions, x+ = (A + BH)x = GH(x,M). Also,
x+ = GH(x,Ø) = (A + BK)x represents the evolution of the system with-
out saturation.

Notation 3 Given matrix H ∈ IRm×n, L(H) denotes the following symmetric
polyhedron:

L(H) = { x ∈ IRn : ‖Hx‖∞ ≤ 1 }
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For example, if

H =





0.5 0.5
0 1

−0.5 0.5



 , (3.4)

L(H) is shown in figure 3.1.
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Figure 3.1: Graphical representation of L(H).

Note that L(H) can be a non-bounded set. Moreover, boundedness of
L(H) is determined by rank of H.

Recall that co {v1, v2, . . . , vp} denotes the convex hull of the vectors
v1, v2, . . . , vp. That is, x ∈ co {v1, v2, . . . , vp} if and only if there exists

scalars λi, i = 1, . . . , p such that λi ≥ 0, i = 1, . . . , p,
p

∑
i=1

λi = 1 and

x =
p

∑
i=1

λivi.

For example, L(H) for H defined like 3.4 can also be defined as

L(H) = { x : x ∈ co {
[

−2
0

]

,

[

−1
1

]

,

[

1
1

]

,

[

2
0

]

,

[

1
−1

]

,

[

−1
−1

]

} }.

This notation can not be used only if L(H) is a non-bounded set.

The following lemma [33, 29] provides, given matrix H, an LDI that
is valid in L(H):
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Lemma 1 Let H ∈ IRm×n be given. If x ∈ L(H) then

Ax +
m

∑
i=1

Biσ(Kix) ∈ co { GH(x, S) : S ∈ V },

where V is defined in 6.

3.3.1 One step operator for the linear difference inclusion

The one step operator has been defined in definition 9 of chapter 2. In
order to obtain an estimation of the domain of attraction of the saturated
nonlinear system, the one-step operator for the LDI is presented in the
following definition.

Definition 10 • Given a set Ω and S ∈ V :

QH(Ω, S) = { x : GH(x, S) ∈ Ω }

• Given a set Ω:
Q̂H(Ω) =

⋂

S∈V
QH(Ω, S)

One of the most important properties of Q̂(·) is that given a convex
polyhedral set Ω and S ∈ V , QH(Ω, S) is a convex polyhedron, hence
Q̂(Ω) is also a convex polyhedron.

When QH(Ω, S) operator is applied to an Ω set, it is obtained the set
that evolves to Ω for system GH(·, S). Moreover, all states included in the
set given by Q̂H(Ω) evolves to Ω for all S ∈ V . Note that if Ω is a convex
set by direct application of Lemma 1, Q̂(Ω) is a conservative convex set
that evolves to Ω for system 3.2.

3.4 H-domain of attraction

H-domain of attraction concept is introduced in this section. H-domain
of attraction is a convex set that estimates the domain of attraction of the
system. Therefore prior to define H-domain of attraction, the definition
of domain of attraction must be given.

Definition 11 It is said that the initial condition x0 belongs to the domain of
attraction of system x+ = Ax + Bσ(Kx) if the recursion
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xk+1 = Axk + Bσ(Kxk)

converges to the origin.

The domain of attraction for a given saturated systems is a set (bounded
or not) that shows what are the states that converge to the origin using
a linear saturated controller. It is a caracterization of the stability of the
system, because only states included in the domain of attraction converge
to the origin.

Prior to the definition of H-domain of attraction, the notion of admis-
sible sequence is introduced.

Definition 12 It is said that a sequence {S0, S1, S2, . . .} is admissible if all the
elements of the sequence belong to V .

Note that an admissible sequence can be open or closed.

Definition 13 Given matrix H, it is said that the initial condition x0 ∈ L(H)
belongs to the H-domain of attraction of system x+ = Ax + Bσ(Kx) if the
recursion

xk+1 = GH(xk, Sk)

satisfies the following two conditions:

1. xk ∈ L(H), for all k ≥ 0 and for every admissible sequence {S0, S1, . . . , Sk−1}.

2. The recursion converges to the origin for every admissible infinite sequence
{S0, S1, S2, . . .}.

It is clear from the linear difference inclusion provided by means of
lemma 1 that any H-domain of attraction constitutes a conservative es-
timation of the domain of attraction of the non-linear system. See, for
example, [41]. That is, any H-domain of attraction of a system is a subset
of the domain of attraction of the saturated system.

3.5 H-invariant sets

This section presents the notion of H-invariant set which is used to obtain
a conservative approximation of the maximal invariant set.



3.5. H-INVARIANT SETS 77

Definition 14 It is said that a set Ω is an invariant set for system x+ = f (x)
if

f (x) ∈ Ω, ∀x ∈ Ω.

Note that the invariance is a concept related to stability. If an invariant
set Ω is obtained then for all x ∈ Ω, system evolves to a state included in
Ω and the system remains in Ω for all the following sample times.

Given a matrix H and a set Ω, It is said that Ω ⊆ L(H) is an H-
invariant set if it is an invariant set for all the systems that compounds
the Linear Difference Inclusion corresponding to H. This notion will be
precisely stated in the following definition.

Definition 15 Given a matrix H, It is said that a set Ω ⊆ L(H) is an H-
invariant set for system x+ = Ax + Bσ(Kx) if

GH(x, S) ∈ Ω, ∀x ∈ Ω, ∀S ∈ V .

The notion of H-invariance is a stronger notion of invariance. That
is, by means of lemma 1, it is easily inferred that H-invariance implies
invariance for the saturated system. However, the reverse is not true.
The largest H-invariant set depends on the value of matrix H. Next sec-
tion provides a method to obtain matrix H by means of a maximization
problem restricted to an LMI.

In order to obtain an estimation of the domain of attraction of the
saturated nonlinear system, the one-step operator for the linear difference
inclusion presented in definition 10 will be used [6, 17].

From the definition of Q̂H(·), the following geometrical characteriza-
tion of H-invariance is obtained:

Property 2 Given matrix H, the set Ω is an H-invariant set for the system
x+ = Ax + Bσ(Kx) if and only if Ω ⊆ Q̂H(Ω) ∩ L(H).

Proof :

It derives directly of the definition of Q̂H(·).

Let x ∈ Ω and Ω ⊆ Q̂H(Ω) ∩ L(H). By definition 10, GH(x, S) ∈
Ω, ∀S ∈ V , therefore Ω is an H-invariant set.

In the other hand, if Ω ⊆ L(H) is an H-invariant set, by notation 2, for all
x ∈ Ω, GH(x, S) ∈ Ω, for all S ∈ V . That is x ∈ QH(Ω, S) for all S ∈ V , and
by definition 10, x ⊆ Q̂H(Ω).
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Definition 16 Given a matrix H, it is said that a set Ω ⊆ L(H) is an H-
contractive set for system x+ = Ax + Bσ(Kx) (with a contraction factor α ∈
[0, 1)) if:

GH(x, S) ∈ αΩ, ∀x ∈ Ω, ∀S ∈ V .

By linearity this is equivalent to say that Ω ⊆ Q̂H(αΩ) ∩ L(H).

3.6 Obtaining matrix H

In section 3.4 it was shown the definition of H-domain of attraction and
in section 3.5 it was shown the definition of an H-invariant set. Both
definitions depend strongly on matrix H. Note that one of the contribu-
tions of this work is a procedure to obtain an estimation of the domain of
attraction and an invariant set of the saturated system 2.18.

Calculation of matrix H is presented in this section. In [33] and [29],
ellipsoidal estimations of the domain of attraction of a saturated system
are given. In order to maximize the size of the ellipsoidal sets, the authors
propose an LMI maximization problem in which both matrix H and the
parameters of the ellipsoid are simultaneously obtained. Inspired in the
afore mentioned work, in this chapter it is proposed to generalize the
results of [33] and [29] to the case of polyhedral invariant sets. The LDI
of lemma 1 is a generalization of the one used previously in the literature.
Therefore, less conservative results are provided.

The greatest H-contractive ellipsoidal set can be obtained by means
of an LMI optimization, and will be obtained in theorem 3. This choice
allows us to maximize the size of a polyhedral H-contractive set that
contains the obtained ellipsoid.

Definition of GH(·, ·) given by notation 2 can be rewritten using ma-
trices.

Definition 17 Given i ∈ M and S ∈ V , the S membership function di(S) is
defined as

di(S) =

{

1 if i ∈ S
0 otherwise.

Definition 18 Given S ∈ V , the diagonal matrices ES and Ec
S are defined as:

ES =











d1(S)
d2(S)

. . .

dm(S)











, Ec
S = I − ES
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For example, if m = 2:

EØ =

[

0
0

]

, E{1} =

[

1
0

]

,

E{2} =

[

0
1

]

, E{1,2} = EM =

[

1
1

]

.

With this definitions, an alternative definition of GH(·, ·) can be shown:

GH(x, S) = Ax + B(Ec
SK + ESH)x

Notation 4 Given a positive definite matrix P, and a positive scalar ρ, E(P, ρ)
represents the following ellipsoid,

E(P, ρ) = { x : x⊤Px ≤ ρ }.

Definition 19 Given matrix H ∈ IRm×n, it is said that the ellipsoid E(P, 1) is
H-contractive if E(P, 1) ⊂ L(H) and there is 0 < α < 1 such that for every
S ∈ V ,

G⊤
H(x, S)PGH(x, S) < αx⊤Px.

Note that matrix H determines the H-domain of attraction of the sys-
tem and the maximal H invariant set. Moreover, a bad election of H can
determine that the maximal H-domain of attraction for systems with an
stable linear part is the empty set. Hence the election of H is determi-
nant. Next property shows that there exists a value of H for systems with
a stable linear part that can be used to obtain a non-empty H domain of
attraction set.

Property 3 If the linear system x+ = (A + BK)x is asymptotically stable then
there exists a matrix H ∈ IRm×n and a matrix P such that E(P, 1) is an H-
contractive ellipsoid.

Proof :

Note that the asymptotically stability of x+ = (A + BK)x implies that there is
P̂ > 0 and α ∈ (0, 1) such that

(A + BK)⊤ P̂(A + BK) < αP̂

Note that if matrix H is equal to K then GH(x, S) = (A + BK)x for every
set S ∈ V . Therefore:
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G⊤
H(x, S)P̂GH(x, S) = x⊤(A + BK)⊤ P̂(A + BK)x ≤ αx⊤P̂x (3.5)

It is always possible to find a scalar ζ such that E(ζP̂, 1) ⊂ L(H) = L(K).
Therefore, if P is equal to ζP̂ then E(P, 1) ⊂ L(H). Moreover, the inequality
(3.5) is also satisfied for the scaled matrix P = ζP̂.

This property demonstrates that the LDI representation of saturated
systems can always be quadratically stabilized, inhering this property
from the not saturated closed-loop system. Moreover, it proves that an
H-contractive ellipsoid can always be found for the saturated system.

The following result (see [33, 29]) states, by means of linear matrix
inequalities (LMIs), a characterization of the H-contractive ellipsoids of a
given system.

Theorem 3 Let us suppose that given α ∈ (0, 1), matrices W ∈ IRn×n and
Y ∈ IRm×n satisfy the following linear matrix inequalities (LMIs):







αW ((A + ∑
i∈Sc

BiKi)W + ∑
i∈S

BiYi)
⊤

(A + ∑
i∈Sc

BiKi)W + ∑
i∈S

BiYi W






> 0, ∀S ∈ V

(3.6)
[

1 Yi

Y⊤
i W

]

> 0, i = 1, . . . , m (3.7)

where Yi denotes the i-th row of Y. Then, denoting H = YW−1 and P = W−1

it results that E(P, 1) is an H-contractive ellipsoid.

In order to obtain the greatest H-contractive ellipsoid, different ap-
proaches can be considered. In [33, 29], the concept of reference set is
applied to give a measure of a given set.

An approach that has a good behaviour in experiments and it is pro-
posed in this work is the maximization of the trace of matrix W. That
is, the following LMI problem can be solved in order to obtain W and
H = YW−1:

max
W,Y

tr W

subject to LMIs (3.6) and (3.7)
(3.8)
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Note that the above LMI problem has 2m + m constraints. Therefore,
the computational burden associated to the LMI problem becomes un-
manageable by solving the previous optimization problem when m grows
beyond a certain limit.

A measure of the size of the H-contractive ellipsoid is maximized.
Note that the ellipsoid is included in the H-domain of attraction. There-
fore, the size of the obtained ellipsoid is a lower bound of the size of the
H-domain of attraction. Denote H∗ the matrix obtained from the solution
of the proposed maximization problem. It will be used the linear differ-
ence inclusion corresponding to matrix H∗. Note that with this choice a
lower bound of the size of the H-domain of attraction is maximized.

3.7 Proposed algorithms

In the previous section a technique to calculate matrix H has been de-
scribed. This matrix H defines a set, L(H), of possible application of
lemma 1.

This matrix H is the first step to obtain an estimation of the H-domain
of attraction or an H-invariant set as large as possible. In order to get this
purpose two different algorithms can be applied.

1. Outer-inner algorithm. The objective of this algorithm is to obtain
the largest H-invariant set of the system. This algorithm is ap-
plied to obtain a sequence of sets that converges to the maximal
H-invariant set. This algorithm also converges to the H-domain of
attraction of the system.

The most important disadvantage of this algorithm is that in gen-
eral, intermediate sets provided by it are not invariant nor conser-
vative estimations of the domain of attraction. If the complexity of
these sets is big enough that they excess computational resources all
work done is useless.

Algorithm 3 proposed will overcome this problem.

2. Inner-outer algorithm. The objective of this algorithm is to obtain
estimations of the H-domain of attraction of the system. The H-
domain of attraction is an H-invariant set, however, estimations ob-
tained by means of this systems are not H-invariant sets in general.

3. Two-phase algorithm. This algorithm works in tho phases. Firstly
it obtains an H-invariant set that it is also a conservative estimation
of the H-domain of attraction and in a second phase it enlarges this
set to converge to the H-domain of attraction.
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3.7.1 Outer-inner algorithm

This subsection presents an algorithm that, using concepts of H-domain
of attraction and H-invariant set, computes an estimation of the domain
of attraction and an invariant set of the nonlinear system: x+ = Ax +
Bσ(Kx). Moreover, this algorithm converges to the maximal H-invariant
set and the H-domain of attraction of the system. This algorithm is based
on the optimal computation of the matrix H previously presented. The
obtained set is a bounded convex polytope under mild assumptions.

Prior to show algorithm, following theorem states some important
properties.

Theorem 4 Given matrix H and a given scalar α ∈ (0, 1] provided the condi-
tions of theorem 3 hold for system x+ = Ax + Bσ(Kx). Set C0 = L(H) and
consider the following recursion,

Ck+1 = αQ̂H(Ck)
⋂

L(H).

Then, the following properties hold for each obtained set Ck:

(i) Ck is a convex polyhedron that can be obtained by means of definition (10).

(ii) There exists a matrix Rk such that Ck = L(Rk).

(iii) Ck+1 ⊆ Ck for all k ≥ 0.

(iv) In the particular case than α < 1, if there exists a T = Hi or T = Ki such
that for all S ∈ V the pair (T, A + B(Ec

SK + ESH)) is observable, then
the recursion is finitely determined.

(v) If x̂ noes not belong to the H-domain of attraction, then x̂ 6∈ Cj, where j is
the smallest integer that satisfies:

j ≥ ln (x̂⊤Px̂)

ln ( 1
α )

.

(vi) The H-domain of attraction is included in every set Ck.

(vii) C∞ is the maximal H-invariant set for the saturated system.

(viii) The sequence C0, C1, C2, . . . , converges to the H-domain of attraction.

Proof :

The proof of this theorem can be derived from [16, 41].
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(i) The first point stems directly from the fact that C0 = L(H) is a polyhedron
and the definition of Q̂H(·).

(ii) This point can be proved if the following can be asserted

(a) For all matrix T there exists matrix Q such that L(Q) = Q̂H(L(T)).

(b) For all matrix T and α > 0 there exists matrix Q such that L(Q) =
αL(T).

(c) For all matrixes T, V there exists matrix Q such that L(Q) = L(T)
⋂L(H).

And this is true because

(a) Note that by definition 10, Q̂H(L(T)) =
⋂

S∈V
QH(L(T), S), and

QH(L(T), S) = { x : GH(x, S) ∈ L(T) }. Note also that by

notation 2, GH(x, S) = (A + ∑
i∈Sc

BiKi + ∑
i∈S

Bi Hi)x where Bi, Ki

and Hi are defined in that notation. Then, matrixes Qi = T(A +

∑
i∈Sc

BiKi + ∑
i∈S

BiHi) are such that L(Qi) = QH(L(T), S). This and

the fact that intersections of sets in the form L(·) can be described in
the form L(·) proves this paragraph.

(b) Q exists indeed and it is defined as Q = Q
α , see notation 3. Note that

α is positive.

(c) Q exists indeed and it is defined as Q =

[

T
V

]

, see notation 3.

Therefore, and by the definition of the recursion, Ck can be expresed as
L(Rk).

(iii) This property stems by definition 10 of Q̂H(·). Note that the recursion Ck

is defined as the set where all states remain in L(H) for k steps. Therefore
all states that remain in L(H) for k + 1 steps, also remain for k steps.

(iv) Note that Cn−1 exists and it is the admisible set in n − 1 steps, that is, the
set of states from which the system evolution remains in L(H) for the next
n − 1 steps.

Note that restrictions

CS
n−1 = {x ∈ ℜn : |T(A + B(Ec

SK + ESH))|i � ρ, ∀i = 0, . . . , n − 1}

is such that Cn−1 ⊆ CS
n−1.

Taking into account that the observability matrix of (T, A + B(Ec
SK +

ESH)) is full rank then CS
n−1 and therefore Cn−1 is compact.
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This and the fact that Ck is contractive proves that the recursion is finitely
determined.

(v) Denote x0 = x̂ where x̂ does not belong to the H-domain of attraction
of the system. Then, from the definition of H-domain of attraction, the
recursion xi+1 = GH(xi, Si) does not remain in L(H) for every admissible
sequence {S0, S1, . . .}. Let us suppose that x0 does belong to the H-domain
of attraction of the system and xi+1 remains in L(H). ThereforeE(P, 1)
is an H-contractive ellipsoid, guarantees that x⊤i+1Pxi+1 ≤ αx⊤i Pxi, for
all i ≥ 0 and all admissible sequence {S0, S1, . . .}. From this it is inferred
that:

x⊤i Pxi ≤ αix⊤0 Px0.

It can be easily seen that if

j ≥ ln (x̂⊤Px̂)

ln ( 1
α )

then x⊤j Pxj ≤ 1. This implies that xj ∈ E(P, 1) or that xj in the H-

domain of attraction. Therefore, or x̂ belongs indeed to the H-domain of
attraction of the system, or for some i < j and some addmisible sequence
{S0, S1, . . . , §i}, , xi 6∈ L(H) and therefore x̂ 6∈ Ci.

(vi) It can be proved as an extension of the proof of the previous point. If x̂
belongs to the H domain of attraction, and it is defined x0 = x̂, then
xj ∈ E(P, 1). Moreover, E(P, 1) is an H-contractive set inside L(H), and

therefore E(P, 1) ⊇ αQ̂H(E(P, 1). That is, for all i > j, xi ∈ E(P, 1). If ĵ
is defined as the maximum j for all x̂ in the H-domain of attraction, then
the H-domain of attraction is included in all sets Ci for all i > ĵ. This and
the fact that Ck+1 ⊆ Ck for all k ≥ 0, proves the claim.

(vii) This is derived from the two previous properties.

(viii) This is derived from the two previous properties.

The finitely determination of the previous recursion is an important
property and the calculation of the determination index is interesting
from a practical point of view. Note that if the H-domain of attraction
is not finitely determined, then the obtained sets Ck, k = 0, 1, . . . , do not
belong to the H-domain of attraction.In the following property a method
for its computation is provided.
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Property 4 Let us suppose that Ck = L(Rk) is such that rank Rk is equal to
n. Suppose also that LMI of theorem 3 is satisfied. Denote UΣV⊤ the singular
value decomposition of matrix Rk. Denote vi, i = 1, . . . , n, a set of n orthogo-
nal eigenvectors of matrix P = W−1 and λi, i = 1, . . . , n, their corresponding
eigenvalues. Under the previous assumptions, Ck+j = C∞, where j is the small-
est integer that satisfies:

j ≥
ln (

n

∑
i=1

λi‖UΣ−1V⊤vi‖2
1)

ln
1

α

(3.9)

Proof :

Note that x⊤Px is equal to
n

∑
i=1

λi|v⊤i x|2. Make τi = UΣ−1V⊤vi, i = 1, . . . , n,

then it results that: |τ⊤
i Rkx| = |v⊤i VΣ−1U⊤Rkx| = |v⊤i x|. Therefore, |v⊤i x| =

|τ⊤
i Rkx| ≤ ‖τi‖1‖Rkx‖∞ ≤ ‖τi‖1 = ‖UΣ−1V⊤vi‖1. Thus, it is inferred that:

|v⊤i x|2 ≤ ‖UΣ−1V⊤vi‖2
1, ∀x ∈ L(Ck). The following bound is then obtained:

max
x∈Ck

x⊤Px ≤
n

∑
i=1

λi‖UΣ−1V⊤vi‖2
1

From the H-contractiveness of the ellipsoid E(P, 1) is inferred that the recursion
xj+1 = GH(xj, Sj), x0 = x is such that x⊤j Pxj ≤ αjx⊤0 Px0 = αjx⊤Px ≤

αj
n

∑
i=1

λi‖UΣ−1V⊤vi‖2
1. Inequality 3.9 is equivalent to: αj

<
1

n
∑

i=1
λi‖UΣ−1V⊤vi‖2

1

.

Therefore, if x ∈ Ck then xj ∈ E(P, 1). This is equivalent to Ck+j ⊆ E(P, 1). It
can be concluded that the maximal H-invariant set is finitely determined.

Theorem 4 justifies the use of the following algorithm to obtain the
maximal H-invariant set and an estimation of the domain of attraction of
a saturated linear system.

Algorithm

1. Obtain matrix H solving the LMI problem proposed in section (3.6)
for some α ∈ (0, 1].

2. Set the initial region C0 equal to L(H).
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3. Ck+1 = Q̂H(Ck)
⋂L(H).

4. Obtain a polyhedral representation of Ck+1 without redundant in-
equalities.

5. If Ck+1 = Ck then Ck is the H-domain of attraction. Stop.
Else, set k = k + 1 and return to step (3).

This is a standard procedure for polytopic systems [16] and it has been
applied for the computation of polyhedral invariant sets for saturated sys-
tems [41]. See also [45] for a related work. However, this algorithm is used
in the context of the LDI proposed in[33]. In this way, it is guaranteed the
quadratic stabilization of all the linear systems that take part in the Linear
Difference Inclusion. Moreover, a lower bound of the size of the obtained
H-invariant set is maximized.

The algorithm is finitely determined if there exists a k∗ < ∞ such that
Ck∗+1 = Ck∗ = C∞. In this case the obtained H-invariant set C∞ is a
polytope and it is the maximal polyhedral H-invariant set (see property
4).

Note that each iteration of the proposed algorithm requires to remove
redundant inequalities of a polyhedron and subset testing. The com-
plexity of these calculations grows with the number of constraints of the
obtained polyhedra. Thus the number of constraints of the maximal H-
invariant is related with the determination index. If the determination
index is high, then the number of constraints of the maximal H-invariant
may be large and the complexity of its calculation, representation and
storage may be too demanding.

In subsection 3.7.2, it is presented another method to compute H-
domain of attraction. This algorithm can also be used to obtain the largest
H-invariant set because it is the H-domain of attraction, however, inter-
mediate set are not H-invariant. Algorithm provided in subsection 3.7.3
provides an H-invariant set from the first stages of the algorithm and
converges to the maximal H-invariant set. Consequently, if the number
of constraints of the maximal H-invariant is too high, an H-invariant set
(contained in the maximal one) can be obtained with a lower complexity.

3.7.2 Inner-Outer algorithm

In this subsection it is proposed an algorithm that provides an estimation
of the domain of attraction of a saturated system. As claims property 3,
if system x+ = (A + BK)x is asymptotically stable then it is possible to
find an H-contractive ellipsoid for the saturated system. Based on the
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existence of such ellipsoid, it is proposed an algorithm that converges to
the H-domain of attraction. Moreover, it is shown that if the H-domain
of attraction is bounded then the algorithm is finitely determined.

The main advantage of this algorithm is that the sequence of sets ob-
tained in the execution of the algorithm belongs to the H-domain of at-
traction of the system.

In order to present the algorithm, it will be used the auxiliary result,

Lemma 2 Let us consider the ellipsoid E(P, 1) ⊂ IRn. Suppose that vi, i =
1, . . . , n, are the orthonormal eigenvectors of matrix P and λi, i = 1, . . . , n their
corresponding eigenvalues. Denote

Γ(P) = L(











√
nλ1v⊤1√
nλ2v⊤2

...√
nλnv⊤n











). (3.10)

Then,

E(P,
1

n
) ⊆ Γ(P) ⊆ E(P, 1).

Proof :

Suppose that vi, i = 1, . . . , n, are the orthonormal eigenvectors of matrix P
and λi, i = 1, . . . , n their corresponding eigenvalues. Then,

P = [v1 v2 . . . vn]











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn





















vT
1

vT
2
...

vT
n











From this equality it is inferred that

x⊤Px =
n

∑
i=1

λi(v⊤i xi)
2.

The lemma is proved if it is shown that E(P, 1
n) ⊆ Γ(P) and Γ(P) ⊆ E(P, 1).

• E(P, 1
n) ⊆ Γ(P):
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Let us suppose that x ∈ E(P, 1
n). That is,

xTPx =
n

∑
i=1

λi(v⊤i xi)
2 ≤ 1

n

This can be rewritten as:

n

∑
i=1

(
√

nλiv
T
i x)2 ≤ 1.

This implies that

|(
√

nλiv
T
i x)| ≤ 1, i = 1, . . . , n.

Therefore it is inferred that x ∈ Γ(P).

• Γ(P) ⊆ E(P, 1):

Let us suppose that x ∈ Γ(P). That is,

|(
√

nλiv
T
i x)| ≤ 1, i = 1, . . . , n.

Thus,

nλi(vT
i x)2 ≤ 1, i = 1, . . . , n

From this:

n

∑
i=1

nλi(vT
i x)2 ≤ n,

and finally,

n

∑
i=1

λi(vT
i x)2 = xTPx ≤ 1,

that is, x ∈ E(P, 1).

The following theorem establishes the theoretical support of the algo-
rithm proposed to obtain an estimation of the domain of attraction of the
saturated system.
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Theorem 5 Let us suppose that E(P, 1) ⊂ IRn is an H-contractive ellipsoid for
a given matrix H and a given scalar α ∈ (0, 1). Set Ĉ0 = Γ(P) and consider the
following recursion:

Ĉk+1 = Q̂H(Ĉk) ∩ L(H),

Each obtained set Ĉk has the following properties:

(i) Ĉk is a convex polyhedron that can be obtained by means of definition (10).

(ii) Ĉk belongs to the H-domain of attraction of system x+ = Ax + Bσ(Kx).

(iii) If x̂ belongs to the H-domain of attraction, then x̂ ∈ Ĉj, where j is the
smallest integer that satisfies:

j ≥ ln (nx̂⊤Px̂)

ln ( 1
α )

(iv) The sequence Ĉ0, Ĉ1, Ĉ2, . . . , converges to the H-domain of attraction.

(v) If the H-domain of attraction is bounded then the H-domain of attraction
is finitely determined. That is, there is a finite integer j∗ such that Ĉj∗

equals the H-domain of attraction.

Proof :

(i) The first point stems directly from the fact that Ĉ0 = Γ(P) is a polyhedron
and the definition of Q̂H(·).

(ii) From the properties of the one-step operator, it is inferred that every x0 in
Ĉk satisfies that the recursion

xi+1 = GH(xi, Si)

is such that xi ∈ L(H), i = 0, . . . , k and xk ∈ Γ(P) for every admissible
sequence S0, S1, . . . , Sk−1. Due to the fact that Γ(P) belongs to the H-
domain of attraction of the system, it is concluded that Ĉk belongs to the
H-domain of attraction.

(iii) Suppose that x0 = x̂ belongs to the H-domain of attraction of the system.
Then, from the definition of H-domain of attraction, the recursion xi+1 =
GH(xi, Si) remains in L(H) for every admissible sequence {S0, S1, . . .}.
Moreover, the fact that E(P, 1) is an H-contractive ellipsoid, guarantees
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that x⊤i+1Pxi+1 ≤ αx⊤i Pxi, for all i ≥ 0 and all admissible sequence
{S0, S1, . . .}. From this it is inferred that:

x⊤i Pxi ≤ αix⊤0 Px0.

It can be easily seen that if

j ≥ ln (nx̂⊤Px̂)

ln ( 1
α )

then x⊤j Pxj ≤ 1
n . This implies, by means of lemma 2 that

xj ∈ E(P,
1

n
) ⊂ Γ(P).

Note that xj ∈ Γ(P) implies that x̂ = x0 ∈ Ĉj.

(iv) It has been proved that if x0 belongs to the H-domain of attraction then
there is j such that x0 ∈ Ĉj. This proves the claim.

(v) If the H-domain of attraction is bounded then the maximum value of x⊤Px
in the H-domain can be bounded by a finite constant. Suppose that ρ is
such a constant. Then, using similar arguments that the ones used in the
proof of claim (iii), it is obtained that the H-domain of attraction is equal
to Ĉj∗ , where j∗ is the smallest integer that satisfies:

j∗ ≥ ln (nρ)

ln ( 1
α )

.

The previous theorem justifies the use of the following algorithm to
obtain an estimation of the domain of attraction of a saturated linear
system.

Algorithm

1. Obtain matrix H and the corresponding H-contractive ellipsoid E(P, 1)
solving the LMI problem proposed in theorem 3.

2. Set the initial region Ĉ0 equal to Γ(P) (see lemma 2).

3. Ĉk+1 = Q̂H(Ĉk)
⋂L(H).
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4. Obtain a polyhedral representation of Ĉk+1 without redundant in-
equalities.

5. If Ĉk+1 = Ĉk then Ĉk is the H-domain of attraction. Stop. Else, set
k = k + 1 and return to step (3).

Note that one of the main advantages of this algorithm with respect
to other existing ones (see, for example, [41]) is that it is not necessary
the finite determinedness of the H-domain of attraction. That is, every
obtained set Ĉk constitutes an estimation of the domain of attraction of
the non-linear system. This allows us to obtain estimations of the domain
of attraction with a given limit of computational burden and complexity
of the polyhedral set representation.

3.7.3 Two-phase algorithm

In this section it is proposed an algorithm that provides an invariant set
that is also an estimation of the domain of attraction of a saturated sys-
tem. As claims property 3, if system x+ = (A + BK)x is asymptotically
stable then it is possible to find an H-contractive ellipsoid for the satu-
rated system. Based on the existence of such an ellipsoid, it is proposed
an algorithm that converges to the maximal H-invariant set. The main
advantage of this algorithm is that all the intermediate sets are invariant,
hence the algorithm can be stopped at any iteration and an H-invariant
set that it is also an estimation of the H-domain of attraction is found.
However, the number of iterations to obtain the H-domain of attraction is
larger than algorithm shown in 3.7.1.

This algorithm is divided into two parts: in the first one, an H-invariant
set is computed by means of an enhanced procedure to reduce its de-
termination index. Based on this, an iterative procedure is used in the
second part.

In the first part of the algorithm, and in order to obtain the most
contractive Lyapunov matrix P̃, the following minimization problem is
solved,

min
α,P

α

s.t. α P − A⊤
H(S) P AH(S) > 0 ∀S ∈ V

P > 0

(3.11)

where AH(S) = A + B(Ec
s K + EsH). Note that the family AH(S) admits

a conve Lyapunov function. This is because it has been conveniently cho-
sen. Based on the obtained matrix, some well known results are applied:
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Lemma 3 Let P̃ and α̂ be the optimal solution of (3.11). Denote τ = max
1≤j≤m

HjP̃
−1H⊤

j ,

then the ellipsoid E(P̂, 1), where P̂ = τP̃ is an H-contractive set for system (3.2)
with contractiveness degree α̂.

Lemma 4 Let us consider the ellipsoid E(P̂, 1) ⊂ IRn. Denote vi, i = 1, . . . , n
a set of n orthogonal eigenvectors of matrix P̂ and λi, i = 1, . . . , n, their corre-
sponding eigenvalues. Denote

Γ(P̂) = L(
1√
n











√
λ1v⊤1√
λ2v⊤2

...√
λnv⊤n











)

Then E(P̂, 1
n ) ⊂ Γ(P̂) ⊂ E(P̂, 1).

The proofs of the the previous two lemmas can be obtained by means
of standard algebraic manipulations.

Theorem 6 Let us suppose system (3.2) and a given matrix H. Let E(P̂, 1)
be an H-contractive ellipsoid with a contraction factor α̂ . Set Ĉ0 = Γ(P̂)
and consider the following recursion: Ĉk+1 = Q̂H(Ĉk) ∩ Ĉ0. Then Ĉk is an

H-invariant set for all k ≥ k̂ >
ln n
ln 1

α̂

.

Proof :

Let us suppose that x ∈ Ĉk̂. From the H-contractiveness of E(P̂, 1) it is

inferred that the recursion xi+1 = GH(xi, Si), x0 = x is such that x⊤
k̂

Pxk̂ ≤
α̂k̂x⊤0 P̂x0 = α̂k̂x⊤Px, for every possible sequence {S0, S1, . . . , Sk̂−1}. Tak-

ing into account that x ∈ Γ(P̂) ⊂ E(P̂, 1), it is concluded that x⊤
k̂

Pxk̂ ≤
α̂k̂x⊤P̂x ≤ α̂k̂. From the inequality k̂ >

ln n
ln 1

α̂

it is inferred that α̂k̂ ≤ 1
n .

Therefore, x ∈ Ck̂ implies xk̂ ∈ E(P̂, 1
n) ⊂ Γ(P̂). The ellipsoid E(P̂, 1

n) is
an H-invariant set. Therefore, x ∈ Ck̂ implies x ∈ Ck̂+1. This is equivalent

to say that Ck̂ ⊆ Q̂H(Ck̂) ∩ C0, which proves the claim.

The H-invariant set proposed in theorem 6 can be computed by means
of the following algorithm:

Algorithm I
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1. Obtain matrix H and the corresponding H-contractive ellipsoid E(P, 1)
solving the LMI problem used in theorem 3.

2. Obtain the H-invariant ellipsoid E(P̃, 1) and the contraction factor α̂
solving the LMI problem proposed in 3.11.

3. Scale the previous H-invariant ellipsoid to obtain E(P̂, 1) by the re-
sults of lemma 3.

4. Set the initial region Ĉ0 = Γ(P̂)

5. For k = 1 to k̂ =
ln n

ln 1
α̂

,

6. Ĉk+1 = Q̂H(Ĉk)
⋂

Ĉ0.

7. Obtain a polyhedral representation of Ĉk+1 without redundant in-
equalities.

8. End for.

Note that the previous f or loop is defined to an upper limit of itera-
tions. This loop can be stopped when an H-invariant set is reached. The
previous algorithm provides a polihedrical invariant set for system (3.2).

In the following algorithm it is shown how to take advantage of the
obtained H-invariant set to obtain a sequence of H-invariant sets that
converges to the maximal one:

Algorithm II

1. Obtain matrix H and a polyhedral invariant set Ĉk̂ by meaning of
Algorithm I.

2. Find the maximum value β such that βĈk̂ ∈ L(H).

3. C0 = βĈk̂.

4. Ck+1 = Q̂H(Ck)
⋂L(H).

5. Obtain a polyhedral representation of Ck+1 without redundant in-
equalities.

6. If Ck+1 = Ck then Ck is the maximal H-invariant set. Stop. Else, set
k = k + 1 and return to step (4).
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Every obtained set Ck is an H-invariant set by construction. Moreover,
Ck ⊆ Ck+1. If the maximal H-invariant set is bounded then the algorithm
obtains the maximal H-invariant set in a finite number of steps. Note
that the linear nature of the systems that compose the Linear Difference
Inclusion and the H-invariance of Ĉk̂ guarantees the H-invariance of the

initial set C0 = βĈk̂.

Note also that one of the main advantages of this algorithm with re-
spect to other existing ones is that the algorithm provides an H-invariant
set also if the maximal H-invariant set is not finitely determined. This
allows us to obtain invariant sets of the nonlinear system with a given
limit on the computational burden required. Moreover, the complexity of
the polyhedral set representation is also reduced.

3.8 Examples

3.8.1 A family of single input systems

Let us consider the discrete time caracterization of the following family
of systems:

G(s) =
1

sn
, n = 2, . . . , 5.

Let the sample time be equal to one. This family of systems has been
used frequently in the literature.

In order to have a representation of algorithms shown earlier, firstly
dimension two of the family of system will be analized and later a general
analysis of all systems will be performed.

For n = 2, the discrete-time state space representation of the system
(sample time equal to one) is given by x+ = Ax + Bu where:

A =

[

1 1
0 1

]

, B =

[

0.5
1

]

.

The closed-loop system is given by x+ = Ax + Bσ(Kx) where gain
matrix

K = [−0.6167 − 1.2703]

corresponds to the discrete LQR controller with Q = I and R = 0.1.

Note that the closed-loop system corresponds to a double integrator
controlled by a saturated linear controller.
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This system will be used to be applied algorithms shown in section
3.7.

The first step for all three algorithms is to obtain matrices H and P
by means of solving the maximization problem proposed in 3.8 with a
contraction factor α. Matrix P defines an inner ellipsoidal set, E(P, 1),
that is a contractive set. An inner polyhedral set is obtained and finally it
is used algorithm shown in 5.

Figure 3.2 shows L(H) set and the ellipsoidal set defined by matrix P.
This matrixes P and H have been obtained by solving the maximization
problem proposed in 3.8. That is,

max
W,Y

tr W

subject to LMIs:








αW

([

1 1
0 1

]

W +

[

0.5
1

]

Y

)⊤

[

1 1
0 1

]

W +

[

0.5
1

]

Y W









> 0,

















αW

([

0.6916 0.3649
−0.6167 −0.2703

]

W

)⊤

[

0.6916 0.3649
−0.6167 −0.2703

]

W W

















> 0,

[

1 Y

Y⊤ W

]

> 0,

where P = W−1 and H = YP.

In this figure L(H) is represented by the dash lines and E(P, 1) is the
solid line ellipsoid. Values of P and H result

P =

[

0.0397 0.0531
0.0531 0.1397

]

H =
[

−0.1142 −0.3674
]

Note that L(H) is unbounded due to rank(H) = 1 < n.

H-domain of attraction and the largest H-invariant sets obtained by
means of these algorithms will be included in L(H). This limitation is
less restrictive than traditional limitation to be included in L(K).
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Figure 3.2: L(H) and the ellipsoidal set

Outer-inner algorithm.

This algorithm uses L(H) as the initial set, and then it applies recur-
sively the operator Q̂(·).

Figure 3.3 shows the H-domain of attraction obtained by means of
this algorithm. Initial set C0 = L(H) is represented by the dash lines, C1

is represented by the outer red polyhedra, and C2 is the inner red poly-
hedra filled in yellow. Note that this algorithm for this specific example
converges in two steps, and note that as E(P, 1) (shown as a dashed el-
lipsoid) is an estimation of the H-domain of attraction, it is included in
C2.

The disadvantage of this procedure is that the intermediate sets are
not H-invariant sets nor estimations of the H-domain of attraction. There-
fore if computation time is finished when obtained C1, no result can be
obtained.

Inner-outer algorithm.

This algorithm uses Ĉ0 = Γ(P) set defined in 3.10 as initial set.

Figures 3.4 shows the initial set Γ(P) in solid red lines obtained by
application of lemma 2.

Note that Ĉ0 ⊂ E(P, 1), and as E(P, 1) converges to the origin, Ĉ0 is
also an estimation of the H-domain of attraction.

Note also that E(P, 1) is an H-invariant set, but Ĉ0 as a subset of
E(P, 1) is not an H-invariant set in general.
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Figure 3.3: Maximal H-invariant set by Algorithm I
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Figure 3.4: H-Contractive ellipsoid.
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Figure 3.5 shows the sequence obtained by means of the algorithm.
Ĉ0 = Γ(P) is represented as the dashed red set, and sequence Ĉ1, Ĉ2, . . .
are represented in solid black lines.
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Figure 3.5: H-domain of attraction.

Note that Ĉk sequence is obtained by recursion of operator Q̂(·) to
Ĉ0, and taking into account that Ĉ0 is a conservative estimation of the H-
domain of attraction, sequence Ĉk is also an estimation of the H-domain
of attraction.

The outer black-lined set is Ĉ7 and represents the H-domain of attrac-
tion of the system, and therefore it is the maximal H-invariant set. This
set results the same that obtained by means of the outer-inner algorithm
explained before, but more iterations are needed.

2 phase algorithm. The first step in this algorithm is to determine H
and P as other algorithm. Therefore, L(H), and E(P, 1) can be shown in
figure 3.2.

For the first phase of the algorithm, H is maintained and a most con-
tractive Lyapunov matrix P̃ is calculated.

Figure 3.6 shows the process applied in this first phase. Original
E(P, 1) is represented as the dashed ellipsoid, and L(H) is the non-
bounded dashed set.

New E(P̃, 1) is shown as the solid black ellipsoid. Note that E(P̃, 1) is
smaller than E(P, 1) because it is a more contractive set.

First phase of the algorithm uses Ĉ0 = Γ(P̃). This set is represented in
this figure as the blue solid set inside E(P̃, 1). The first recursion of the
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Figure 3.6: Inner H-invariant set by Algorithm II

algorithm is Ĉ1 and it is represented as the set filled in yellow.

Note that this first phase of the algorithm for this example converges
in just 1 iteration, however, this number of iteration is limited by α̂.

Ĉ1 set will be used to start the second phase of the algorithm.

Figure 3.7 shows the process used in the second phase of the algo-
rithm.
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Figure 3.7: Maximal H-invariant set by Algorithm III

The initial set of the second phase of the algorithm C0 is the last set
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of the previous phase Ĉ1 scaled to the maximal set included in L(H). In
this figure it is shown as the yellow-filled set.

Recursion of the algorithm provides C1 that it is the inner red-lined set,
and C2 that it is the outer red-lined set. C2 is the H-domain of attraction
of the system obtained by means of this algorithm.

The most important difference between this algorithm and the previ-
ous ones is that C0, C1 and C2 are H-invariant sets and conservative es-
timations of the H-domain of attraction. Therefore if computational time
is finished, or complexity of the caracterization of sets is unmanageable,
an approximation can be taken.

Note that the H-domain of attraction obtained by means of this three
different algorithms obtain the same set.

The domain of attraction of this system has been estimated by means
of a saturation-dependent Lyapunov function in [12]. In that paper, the
authors propose how to obtain matrix H in such a way that a saturation-
dependent Lyapunov function is strictly decreasing for every system x+ =
GH(x, S), S ∈ V . Therefore, the authors are obtaining an estimation of the
H-domain of attraction of the system.

Note that the matrices of this example corresponds to the discretiza-
tion of a double integrator (sample time equal to one). The matrix K
corresponds to the discrete LQR controller with Q = 1, R = 0.1. Some

results are shown for the class of systems: G(s) = Y(s)
U(s)

= 1
sq .

Table 3.1 shows a comparison between the volume of the H-contractive
ellipsoid regions and the polyhedral H-domains of attraction for the fam-
ily G(s) = 1

sn , n = 2, . . . , 5. The corresponding discrete-time closed loop
systems x+ = Anx + Bnσ(Knx), n = 2, . . . , 5 are obtained with sample
time equal to one and u = σ(Knx), where K corresponds to the discrete-
time LQR controller (Q = I, R = 0.1). As it can be observed, the volume
of the H-domain of attraction is considerably greater than the one cor-
responding to the H-contractive ellipsoid. The last column of the table
shows the number of non-redundant linear constraints required to repre-
sent each of the H-domain of attraction.

Note that the number of constraints of the H-domain of attraction ob-
tained increases exponentially with the dimension of the system, there-
fore solutions obtained by means of the inner-outer and the outter-inner
algorithms may not be computationally obtained. Table 3.2 shows the
number of constraints of the H-domain of attraction for each dimension,
and the number of constraints of the last iteration of the first phase of
the 2-phase algorithm. Note that this set is an H-invariant set and an
estimation of the H-domain of attraction of the system.
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Volume Volume Volume Number of
ellipsoid H-Domain increment constraints

n= 2 60.15 77.10 28.18% 8
n= 3 150.87 238.98 58.39% 26
n=4 791.28 1680.9 112.42% 66
n=5 6868.21 19884.17 189.51% 188

Table 3.1: Comparison between the volume of the obtained H-contractive
ellipsoid and the polyhedral H-Domain of attraction (single input systems).

q 2 3 4 5 6
Maximal 8 26 66 188 453

Final 6 18 28 42 88

Table 3.2: Comparison between the inner H-invariant set and the maximal
one.

Let us now consider a family of two-input systems (m = 2) :

Y(s) =
U1(s) + sU2(s)

sn
, n = 2, . . . , 5

The inputs u1 and u2 are supposed to be saturated. The corresponding
closed loop systems x+ = Anx + Bnσ(Knx), n = 2, . . . , 5 are obtained with
sample time equal to one and [u1, u2]

⊤ = σ(Knx), where Kn corresponds
to the discrete-time LQR controller (Q = I, R = 0.1I). Table 3.3 shows
a comparison between the volume of the H-contractive ellipsoid regions
and the polyhedral H-Domains of attraction for this family of two-input
systems.

3.8.2 A multiple input system

Consider system x+ = Ax + Bσ(Kx), where:

Volume Volume Volume Number of
ellipsoid H-Domain increment constraints

n= 2 15429 19367 25.52% 10
n= 3 222.63 384.56 72.74% 24
n=4 372.69 1055.6 183.24% 82
n=5 1208.6 6094.7 404.28% 288

Table 3.3: Comparison between the volume of the obtained H-contractive
ellipsoid and the polyhedral H-Domain of attraction (two-input systems).



102 CHAPTER 3. H-DOMAIN OF ATTRACTION

A =

[

1.2 0
0.4 0.5

]

, B =

[

2 0
0 2

]

K =

[

−0.475 0
0.55 0.075

]

This example has been used in [23]. In that paper, the authors use an
initial contractive polyhedral set Υ ⊆ L(K) and show how to enlarge it in
such a way that the contractiveness of the enlarged polyhedral set is not
lost. That is, they obtain the maximum value of the scalar α such that αΥ

is a contractive polyhedron for the saturated system. In that paper the
authors obtained the box ‖x‖∞ < 10 as an estimation of the domain of
attraction of the saturated system.

Figure 3.8 shows the application of the outer-inner algorithm to the
proposed system.

In this case, the obtained value for matrix H is:

H =

[

−0.1099 −3.68 · 10−9

7.72 · 10−9 −2.69 · 10−9

]

Set L(H) is represented with dashed lines. Note that the dimension
of the input is the same that the dimension of the system and L(H) set
is bounded. The intermediate sets Ck are shown on solid lines. In eight
steps the maximal invariant set is obtained (shaded region).
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Figure 3.8: Maximal H-invariant by means of the outer-inner algorithm
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This algorithm performs an estimation of the domain of attraction that
does not depend on the initial elected set. Therefore it can obtain a good
estimation for degenerated systems like this.

Figure 3.9 shows the application of the inner-outer algorithm to the
proposed system. Central line represents the estimation of the domain
of attraction of the saturated system obtained in [23]. Initial elected set
perform a good estimation for x1, but as the process maintain the shape
of the initial elected set, it has a lack of estimation on x2. Dashed lines
represent L(H) set and red sets represents each iteration of the algorithm.
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Figure 3.9: H-Domain of attraction obtained by means of the inner-outer
algorithm.

Figure 3.10 shows the sequence of intermediate H-invariant sets to
get the maximal H-invariant set (two-phase algorithm). The initial H-
invariant set has six nonredundant constraints. The number of required
steps to obtain the maximal H-invariant set is forty-two.

The domain of attraction of this saturated system can be obtained by
analytical means. It results that the domain of attraction is an unbounded
set: { (x1, x2) : −10 < x1 < 10 }.

3.9 Conclusions

It has been seen that a saturated system is a non-linear system and there-
fore, the domain of attraction of the system might be non-convex. Con-
vexity is a very important property and a convex estimation of the domain
of attraction is needed in many cases.
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Figure 3.10: Maximal H-invariant set by means of the 2-phase algorithm

In this chapter, an alternative approach to the estimation of the do-
main of attraction of a saturated linear system is presented. It is shown
how to choose a linear difference inclusion (LDI) in such a way that the
conservativeness in the estimation is reduced. It is provided an algorithm
that estimates the domain of attraction of the non-linear system. This es-
timation is called H-domain of attraction and it is a polyhedrical convex
set.

Under mild assumptions, the proposed algorithm obtains the greatest
domain of attraction for the linear difference inclusion. It is also shown
how to obtain an invariant set for the saturated system in a finite num-
ber of steps. In this way, the complexity of the obtained invariant set is
reduced.

In this chapter an estimation of the domain of attraction based in an
LDI for discrete time systems has been obtained. In [24, 33] an analysis
for continuous time systems can be seen. In the following chapters a new
method to obtain an estimation of the domain of attraction is presented.
As long as that method includes this one, estimations of the domain of
attraction based in this method are more conservative than others shown
in following chapters and therefore these are prefered.
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4.1 Introduction

As it has already been seen in chapter 3, the domain of attraction of a sat-
urated system can be estimated by means of a linear difference inclusion
(LDI) of the system. The politopic representation provided by the LDI
simplifies the analysis of the non linear system. In [24], an LDI is used to
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obtain invariant ellipsoids for saturated systems.

The linear difference inclusion presented in [24] is generalized in [29]
and [33]. Based on this generalization, the authors propose how to choose
an auxiliary matrix, that characterizes the LDI, in order to obtain the
greatest ellipsoid that is invariant under the corresponding LDI. This LDI
representation has also been used in [12] to obtain a saturation-dependent
Lyapunov function that leads to a less conservative estimation of the do-
main of attraction.

This chapter shows a new notion of invariance, denoted SNS-inva-
riance that provides less restrictive geometrical properties compared to
the H-invariance concept.

Based on its geometrical properties, a simple algorithm to estimate the
domain of attraction of a saturated linear system is proposed. It is shown
that in case of single input systems, any contractive set is a SNS-invariant
set. Moreover, any domain of attraction obtained by means of an LDI
representation of the system is included in the estimation provided by
the proposed algorithm.

4.2 Problem Statement

In this chapter, only discrete time linear systems with saturated feedback
will be addressed, that is, the same family of systems analized in chapter
3.

Recall 2.18 where the following system defines the target system and
can be written like

x+ = Ax + Bσ(Kx) (4.1)

where x ∈ IRn denotes the state vector.

The function σ : IRm → IRm is the vector-valued standard saturation
function defined in definition 4 of chapter 2.

Using the definition of M, system 4.1 can be rewritten as

x+ = Ax +
m

∑
i=1

Biσ(Kix) = Ax + ∑
i∈M

Biσ(Kix).

A more detailed explication can be found in equation 2.19 of chapter
2.
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In this chapter only discrete time system 4.1 will be addressed. For an
analysis of continuous time system see chapter 5.

4.3 Defining the notion of SNS-invariance

In this section, the concept of SNS-invariance is presented. For this pur-
pose, some auxiliary notation is required.

Specifically, M, V , S and Sc concepts shown in definition 6 of chapter
2 will be used.

SNS concepts are related with the family of system shown in 2.20. In
order to examinate this family the following definition is used.

Definition 20 Given a set S ∈ V , F(x, S) is defined as follows,

F(x, S) = Ax + ∑
i∈Sc

BiKix + ∑
i∈S

Biσ(Kix).

Note that with these definitions, x+ = Ax + Bσ(Kx) = F(x,M). Also,
x+ = F(x,Ø) = (A + BK)x represents the evolution of the system without
saturation.

The notion of SNS-invariance is introduced in the following definition,

Definition 21 A set Ω is said to be SNS-invariant for system x+ = Ax +
Bσ(Kx) if x ∈ Ω implies F(x, S) ∈ Ω for every S ∈ V .

It is clear from the previous definition that if Ω is a SNS-invariant set
then Ω is an invariant set for the saturated system x+ = Ax + Bσ(Kx).
That is, if Ω is SNS-invariant then Ax + Bσ(Kx) = F(x,M) ∈ Ω, for all
x ∈ Ω.

For single input systems (m = 1), the SNS-invariance of a given set
Ω is equivalent to the invariance of Ω for the Saturated and Non Saturated
systems: x+ = Ax + Bσ(Kx) and x+ = Ax + BKx. Note that SNS stands
for Saturated and Non Saturated.

This definition is related with H-invariant definition shown in equa-
tion 15 of chapter 3. One of the conservativeness of H-invariance is that it
is limited to L(H), and SNS-invariance has not such a priori limitation.
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4.3.1 Geometric condition of SNS-invariance

In chapter 3 it has been seen that the one-step set plays an important role
in the context of set invariance theory, see also [17]. In that chapter, it has
been extended that concept to the QH(·) operator shown in definition 10
in chapter 3.

Recall Q(Ω) in definition 9 for the saturated system 4.1,

Definition 22 Given system x+ = Ax + Bσ(Kx) and set Ω, the one-step set
Q(Ω) is defined as

Q(Ω) = { x : Ax + Bσ(Kx) ∈ Ω }

It is well known that Ω is an invariant set for system x+ = Ax +
Bσ(Kx) if and only if Ω ⊆ Q(Ω) [17]. Given a convex set Ω, the one-
step set Q(Ω) is not necessarily convex due to the nonlinear nature of
the saturation function. The non convex nature of Q(Ω) makes it difficult
to use of operator Q(·) in the computation of invariant sets for saturated
systems.

In order to provide a geometric condition of SNS-invariance, the fol-
lowing definitions are introduced.

Definition 23 Given a set Ω and S ∈ V :

QS(Ω) = { x : F(x, S) ∈ Ω },

and given a set Ω:

Q
SNS

(Ω) =
⋂

S∈V
QS(Ω)

From the definition of Q
SNS

(·), the following property is directly in-
ferred:

Property 5 A set Ω is SNS-invariant if and only if Ω ⊆ Q
SNS

(Ω).

The most remarkable property of Q
SNS

(·) is that given a polyhedral
set Ω, Q

SNS
(Ω) is a convex polyhedron. This property will be proved in

the following section.
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4.4 Polyhedral representation of Q
SNS

(Ω)

In this section, a polyhedral representation of Q
SNS

(Ω) is provided. Given
a polyhedral set Ω and a set S in V , QS(Ω) is not necessarily a polyhedral
set. Surprisingly,

Q
SNS

(Ω) =
⋂

S∈V
QS(Ω)

is a polyhedral set that can be obtained in a direct way from polyhedron
Ω as it is claimed in the following theorem.

Theorem 7 Let us suppose that Ω is a convex polyhedron in IRn given by Ω =
{ x : Rx � g }. Then:

Q
SNS

(Ω) =
⋂

S∈V
{ x : R(A + ∑

i∈Sc

BiKi)x − ∑
i∈S

|RBi| � g }

where Sc denotes the complementary set of S in M and |RBi| is the vector with
entries equal to the absolute value of the entries of vector RBi.

Proof :

Denote

P
SNS

=
⋂

S∈V
{ x : R(A + ∑

i∈Sc

BiKi)x − ∑
i∈S

|RBi| � g }

In what follows, it will be proven that P
SNS

⊆ Q
SNS

(Ω). Let us suppose that

there is x̂ ∈ P
SNS

such that x̂ 6∈ Q
SNS

(Ω). That is, there is Ŝ ∈ V such that
x̂ 6∈ QŜ(Ω). In this case, there must be j such that denoting Rj and gj the
j-esime row of R and j-esime component of g respectively:

RjF(x̂, Ŝ) = Rj

(

(A + ∑
i∈Ŝc

BiKi)x̂ + ∑
i∈Ŝ

Biσ(Ki x̂)

)

> gj (4.2)

It will be shown that the above inequality contradicts the fact that x̂ ∈ P
SNS

.
In effect, taking into account that aσ(y) ≤ max {ay,−|a|} (see appendix A,
lemma 10 for a proof):

RjF(x̂, Ŝ) = Rj(A + ∑
i∈Ŝc

BiKi)x̂ + ∑
i∈Ŝ

RjBiσ(Ki x̂)

≤ Rj(A + ∑
i∈Ŝc

BiKi)x̂ + ∑
i∈Ŝ

max {RjBiKi x̂,−|RjBi|}
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Denote:

T = { i ∈ Ŝ : RjBiKi x̂ < −|RjBi| }

From this definition and the previous inequality:

RjF(x̂, Ŝ) ≤ Rj(A + ∑
i∈Ŝc

BiKi)x̂ + ∑
i∈Ŝ,i 6∈T

RjBiKi x̂ − ∑
i∈T

|RjBi|

= Rj(A + ∑
i∈M,i 6∈Ŝ

BiKi + ∑
i∈Ŝ,i 6∈T

BiKi)x̂ − ∑
i∈T

|RjBi|

= Rj(A + ∑
i∈M

BiKi − ∑
i∈Ŝ

BiKi + ∑
i∈Ŝ

BiKi − ∑
i∈T

BiKi)x̂ − ∑
i∈T

|RjBi|

= Rj(A + ∑
i∈M

BiKi − ∑
i∈T

BiKi)x̂ − ∑
i∈T

|RjBi|

= Rj(A + ∑
i∈Tc

BiKi)x̂ − ∑
i∈T

|RjBi|

It is clear that T ∈ V . Thus x̂ ∈ P
SNS

implies:

R(A + ∑
i∈Tc

BiKi)x̂ − ∑
i∈T

|RBi| � g

In particular,

Rj(A + ∑
i∈Tc

BiKi)x̂ − ∑
i∈T

|RjBi| ≤ gj

This inequality contradicts equation (4.2). Therefore, it is inferred that RjF(x̂, Ŝ) ≤
gj and consequently: P

SNS
⊆ Q

SNS
(Ω).

To conclude the prove, it will be shown that Q
SNS

(Ω) ⊆ P
SNS

. In effect, due
to the fact that −|RBi| � RBiσ(Kix), it results that, for every S ∈ V :

R(A + ∑
i∈Sc

BiKi)x− ∑
i∈S

|RBi| � R(A + ∑
i∈Sc

BiKi)x + ∑
i∈S

RBiσ(Kix) = RF(x, S)

(4.3)

Suppose now that x ∈ Q
SNS

(Ω), that is, RF(x, S) � g, ∀S ∈ V . Then,
taking into account equation (4.3), it results that

R(A + ∑
i∈Sc

BiKi)x − ∑
i∈S

|RBi| � RF(x, S) � g, ∀S ∈ V

It is concluded that x ∈ Q
SNS

(Ω) implies x ∈ P
SNS

. This proves the claim.
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4.5 SNS-domain of attraction

This section introduces the notion of SNS-domain of attraction. It is
shown that the SNS-domain of attraction is included in the domain of
attraction of the saturated system. Taking into account the results of the
previous section, a simple algorithm that converges to the SNS-domain
of attraction of the system is proposed. It is also shown that in case of
single input systems any contractive set belongs to the SNS-domain of
attraction.

In the SNS-invariance concept, the admissible sequence is similar that
used in the H-invariance concept in definition 12,

Definition 24 A sequence {S0, S1, S2, . . .} is admissible if all the elements of
the sequence belong to V .

The following definition will define a more conservative concept than
domain of attraction,

Definition 25 The initial condition x0 belongs to the SNS-domain of attraction
of system x+ = Ax + Bσ(Kx) if the recursion

xk+1 = F(xk , Sk)

converges to the origin for any admissible sequence {S0, S1, S2, . . .} = {Sk}∞
0 .

It is clear from the previous definition that the SNS-domain of attrac-
tion is included in the domain of attraction of the saturated system. The
following theorem states that it is possible to obtain the SNS-domain of
attraction by means of a simple recursion.

Note that an invariant set Φ for the linear system is also an invari-
ant set for the saturated system if it is included in the region of linear
behaviour, that is, if Φ ⊆ L(K) = { x ∈ IRn : ‖Kx‖∞ ≤ 1 }.

Theorem 8 Denote L(K) the region of linear behaviour of the saturated system,
that is, L(K) = { x ∈ IRn : ‖Kx‖∞ ≤ 1 }. Suppose that Φ ⊆ L(K) is a
convex polyhedron with non zero volume. Suppose also that Φ is an invariant
set for the asymptotically stable system x+ = (A + BK)x. Denote now C0 = Φ

and consider the following recursion:

Ck+1 = Q
SNS

(Ck).

Then:
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(i) Ck is a convex polyhedron that can be obtained by means of theorem 7,
∀k ≥ 1.

(ii) Ck is a SNS-invariant set for system x+ = Ax + Bσ(Kx), ∀k ≥ 0.

(iii) Ck ⊆ Ck+1, ∀k ≥ 0.

(iv) Ck belongs to the SNS-domain of attraction of system x+ = Ax + Bσ(Kx),
∀k ≥ 0.

(v) The sequence {C0, C1, C2, . . .} converges to the SNS-domain of attraction
of system x+ = Ax + Bσ(Kx).

(vi) The SNS-domain of attraction of the saturated system x+ = Ax + Bσ(Kx)
is a convex set.

Proof :

(i) Theorem 7 states that if Ω is a convex polyhedron then Q
SNS

(Ω) is also a
convex polyhedron. This, and the fact that C0 is a convex polyhedron, prove
that the recursion Ck+1 = Q

SNS
(Ck) always yields convex polyhedrons.

(ii) As C0 belongs to L(K) it results that F(x, S) = (A + BK)x, for all x ∈ C0

and for all S ∈ V . From this and the invariance of C0 it is inferred that
F(x, S) ∈ C0 for all x ∈ C0 and for all S ∈ V ; that is to say, C0 is
SNS-invariant.

Let now suppose that Ck−1 is SNS-invariant, then Ck−1 ⊆ Q
SNS

(Ck−1) =
Ck (see property 5). Therefore, if x ∈ Ck = Q

SNS
(Ck−1) then F(x, S) ∈

Ck−1 ⊆ Ck, for all S ∈ V .

(iii) From the geometric condition of SNS-invariance (see property 5): Ck ⊆
Q

SNS
(Ck) = Ck+1

(iv) From the SNS-invariance of C0 ⊆ L(K) and the asymptotically stability of
the non saturated system it is inferred that C0 belongs to the SNS-domain
of attraction of the system. Note that if Ck−1 belongs to the SNS-domain
of attraction then Ck = Q

SNS
(Ck−1) also belongs to the SNS-domain of

attraction. This is due to the fact that F(x, S) ∈ Ck−1, for all x ∈ Ck and
for all S ∈ V . Therefore, the recursion Ck+1 = Q

SNS
(Ck) with C0 = Φ

yields SNS-invariant sets that belong to the SNS-domain of attraction.
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(v) Suppose now that x belongs to the SNS-domain of attraction of the system.
As Φ is an invariant set with nonzero volume, there exists p such that
the recursion xk+1 = F(xk , Sk) with x0 = x satisfies xp ∈ Φ = C0

for all admissible sequence S0, S1, . . . , Sp. This is equivalent to say that
x is included in Cp and, consequently, x belongs to the SNS-domain of
attraction.

(vi) It suffices to show that given two points x1 and x2 belonging to the SNS-
domain of attraction, λx1 + (1 − λ)x2 belongs to the SNS-domain of at-
traction for every λ ∈ [0, 1]. If x1 and x2 belong to the SNS-domain of
attraction then it is clear from the previous claim that there exists p1 and p2

such that x1 ∈ Cp1
, x2 ∈ Cp2 . Denote now p = max{p1, p2}, taking into

account that Ck ⊆ Ck+1, ∀k ≥ 0, it is inferred that x1 ∈ Cp and x2 ∈ Cp.
From the fact that Cp is a convex set contained in the SNS-domain of at-
traction of the system it is concluded that λx1 + (1 − λ)x2 belongs to Cp

and therefore to the SNS-domain of attraction for every λ ∈ [0, 1].

The recursion presented in theorem 8 requires an invariant set of the
linear system x+ = Ax + BKx, included in L(K). Note that this admissi-
ble invariant set can be obtained by standard algorithms (see [20, 17]).

Let us consider any set Ck obtained from the recursion presented in
theorem 8; any set included in Ck belongs to the SNS-domain of attrac-
tion. For example, an ellipsoidal inner approximation of set Ck serves as
an estimation of the domain of attraction of the saturated system. From
the convexity of the SNS-domain of attraction it is inferred that the con-
vex hull of a given collection of sets belonging to the SNS-domain of
attraction also belongs to the SNS-domain of attraction.

The following property states, for single input systems, that any con-
tractive set of the saturated system belongs to the SNS-domain of attrac-
tion. This means that the maximal contractive set for a given single input
system is characterized, in a non conservative way, by the recursion pro-
posed in theorem 8.

Property 6 Let us suppose that m = 1 (single input case), and that Ω is a
contractive set for system (4.1). That is, there is λ ∈ [0, 1) such that x ∈ ǫΩ

implies Ax + Bσ(Kx) ∈ λǫΩ, ∀ǫ ∈ [0, 1]. Then Ω is a SNS-invariant set that
belongs to the SNS-domain of attraction of the system.

Proof :
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It will be first shown that if x ∈ ǫΩ then F(x, S) ∈ λǫΩ for all S ∈ V = {Ø, 1}.
That is, Ax + Bσ(Kx) ∈ λǫΩ and Ax + BKx ∈ λǫΩ. The first inclusion is
clear from the assumptions of the property. It is now shown that Ax + BKx ∈
λǫΩ. If x ∈ ǫΩ then there exists γ ∈ (0, 1] such that |Kγx| ≤ 1. Moreover, as
x ∈ ǫΩ, it results that γx ∈ γǫΩ. From the assumptions of the property, it can
be now concluded that :

Aγx + BKγx = Aγx + Bσ(Kγx) ∈ λγǫΩ

Note that Aγx + BKγx ∈ λγǫΩ implies Ax + BKx ∈ λǫΩ. It has then been
proved that

x ∈ ǫΩ, ǫ ∈ [0, 1] ⇒ F(x, S) ∈ λǫΩ, ∀S ∈ V = {Ø, 1}. (4.4)

It is clear that this implies that Ω is SNS-invariant.

In what follows it is shown that Ω belongs to the SNS-domain of attraction of
the system. Let us consider the recursion: xk+1 = F(xk , Sk) with x0 = x ∈ Ω.
From the previous discussion it is clear that xk ∈ λkΩ, for every admissible
sequence S0, S1, . . . , Sk−1. Therefore, lim

k→∞
xk = 0, for every admissible sequence

{Sk}∞
0 . This proves the claim.

4.6 Relationship with LDI approaches

The domain of attraction of a saturated system can be estimated by means
of a linear difference inclusion (LDI) of the system [24, 29]. The LDIs are
used to obtain invariant ellipsoids for saturated systems [24, 33]. It has
been shown in [30] that the greatest invariant ellipsoid for a single input
continuous-time saturated system is characterized by means of an LDI. In
this section it is proved that the estimation provided by the SNS-domain
of attraction is less conservative than the estimations provided by LDIs
approaches.

The following notation and lemmas have been shown in chapter 3 and
are only repeated here for the sake of clarity.

Recall notation 2,

Notation 5 Given matrix H ∈ IRm×n, and set S ∈ V , GH(x, S) is defined as
follows:

GH(x, S) = (A + ∑
i∈Sc

BiKi + ∑
i∈S

Bi Hi)x.
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The following lemma, shown in lemma 1 (see [29, 33]), provides an
LDI representation of a given saturated system.

Lemma 5 Let H ∈ IRm×n be given. If x ∈ L(H) then

Ax +
m

∑
i=1

Biσ(Kix) ∈ co { GH(x, S) : S ∈ V }.

where co {·} denotes the convex hull of a set.

Taking into account the previous lemma, it is clear that a given set
Ω is invariant for the saturated system if it is invariant for the family of
linear plants: { GH(x, S) : S ∈ V }. The estimation of the domain of
attraction of the LDI approaches are based on this property. The notion
of H-contractive set is introduced (see definition 16),

Definition 26 Ω ⊆ L(H) is an H-contractive set if it is a convex set contain-
ing the origin and there is λ ∈ [0, 1) such that for every ǫ ∈ [0, 1], x ∈ ǫΩ

implies:
GH(x, S) ∈ λǫΩ, ∀S ∈ V

It is clear that every H-contractive set constitutes an estimation of the
domain of attraction of a saturated system. The following theorem states
that any H-contractive set is included in the SNS-domain of attraction
of the system. That is, the estimation of the domain of attraction of the
saturated system given by theorem 8 is less conservative than the one
obtained by means of H-contractive sets.

An auxiliary lemma is used,

Lemma 6 Let H ∈ IRm×n be given. If x ∈ L(H) then

F(x, T) ∈ co { GH(x, S) : S ∈ V }, ∀T ∈ V (4.5)

Proof :

Suppose that T ∈ V is given. Taking into account the definition of both GH(x, S)
and L(H), equation (4.5) can be rewritten as:

(A + ∑
i∈Tc

BiKi)x + ∑
i∈T

Biσ(Kix) ∈ co { (A + ∑
i∈M,i 6∈S

BiKi + ∑
i∈S

Bi Hi)x : S ∈ V }.
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Denote AT = A + ∑
i∈Tc

BKi. Then lemma 6 implies that if x ∈ { x :

|Hix| ≤ 1, ∀i ∈ T } ⊆ L(H) then

F(x, T) = ATx + ∑
i∈T

Biσ(Kix) ∈ co { (AT + ∑
i∈T,i 6∈S

BiKi + ∑
i∈S

Bi Hi)x : S ∈ VT } =

co { (A + ∑
i∈M,i 6∈T

BiKi + ∑
i∈T,i 6∈S

BiKi + ∑
i∈S

Bi Hi)x : S ∈ VT } =

co { (A + ∑
i∈M

BiKi − ∑
i∈T

BiKi + ∑
i∈T

BiKi −∑
i∈S

BiKi + ∑
i∈S

Bi Hi)x : S ∈ VT } =

co { (A + ∑
i∈M,i 6∈S

BiKi + ∑
i∈S

BiHi)x : S ∈ VT } =

co { GH(x, S) : S ∈ VT } ⊆ co { GH(x, S) : S ∈ V }

Theorem 9 Let us suppose that Ω is an H-contractive set for a given matrix H.
Then Ω is a SNS-invariant set that belongs to the SNS-domain of attraction of
the system.

Proof :

It will be first proved that if x ∈ ǫΩ then F(x, S) ∈ λǫΩ for all S ∈ V . From
the hypothesis of the theorem, there exists λ ∈ [0, 1) such that:

GH(x, S) ∈ λǫΩ, ∀S ∈ V (4.6)

According to lemma 6,

F(x, T) ∈ co { GH(x, S) : S ∈ V }, ∀T ∈ V

Therefore, it is concluded from equation 4.6 that

F(x, T) ∈ co { GH(x, S) : S ∈ V } ∈ λǫΩ, ∀T ∈ V .

It has then been proved that

x ∈ ǫΩ, ǫ ∈ [0, 1] ⇒ F(x, T) ∈ λǫΩ, ∀T ∈ V
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This proves the SNS invariance of Ω. In what follows it will be shown that
Ω belongs to the SNS-domain of attraction of the system. Let us consider the
recursion

xk+1 = F(xk , Sk) with x0 = x ∈ Ω.

From the previous discussion it is clear that xk ∈ λkΩ, for every admissible
sequence S0, S1, . . . , Sk−1. Therefore, lim

k→∞
xk = 0, for every admissible sequence

{Sk}∞
0 . This proves the claim.

4.7 Numerical examples

4.7.1 A single input system

Let us consider the system x+ = Ax + Bσ(Kx) with

A =

[

1 1
0 1

]

, B =

[

0.5
1

]

, K = [−0.6167 − 1.2703] .

This system represents a discrete time caracterization of integrator sys-
tem

Y(s) =
1

s2
X(s)

for sample time equal to one. This system has been used frequently in
the literature (see [29] for an aplication of this system to saturated input
systems).

Figure (4.1) shows the sequence {C0, C1, . . . , C27} provided by the re-
cursion of theorem (8): Ck+1 = Q

SNS
(Ck). The sequence starts with an

invariant set Φ = C0 contained in the region of linear behaviour of the
system (shadowed in the figure). The sequence leads to the SNS-domain
of attraction of the system. The SNS-invariant sets Ck, k = 1, . . . , 27, are
displayed in the figure (note that, as it is claimed in theorem 8, Ck ⊆ Ck+1,
∀k ≥ 0).

The domain of attraction of this system has been estimated by means
of a saturation-dependent Lyapunov function in [12]. In that paper, the
authors propose how to obtain matrix H in such a way that a saturation-
dependent Lyapunov function is strictly decreasing for every system x+ =
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Figure 4.1: Sequence Ck leading to the SNS-domain of attraction.

GH(x, S), S ∈ V . Therefore, the authors are obtaining an estimation of the
domain of attraction of the system by means of the concept of LDI (see
lemma 5).

Figure (4.2) compares the SNS-domain of attraction with the estima-
tion obtained by means of a saturation-dependent Lyapunov function
[12]. This figure shows that the SNS-domain of attraction contains the
estimation provided by the LDI approach (see theorem 9).
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Figure 4.2: SNS-domain of attraction (solid line) and estimation of the
domain of attraction obtained by means of a saturation-dependent Lyapunov
function (dotted line).
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4.7.2 A multiple input system

Consider the system x+ = Ax + Bσ(Kx), with:

A =

[

1.2 0
0.4 0.5

]

, B =

[

2 0
0 2

]

, K =

[

−0.475 0
0.55 0.075

]

This example was introduced in [23] (and it has been used in chapter
3). In that paper, the authors use an initial contractive polyhedral set Υ ⊆
L(K) and show how to enlarge it in such a way that the contractiveness
of the enlarged polyhedron is maintained. That is, the maximum value
of the scalar α such that αΥ is a contractive polyhedron for the saturated
system is obtained. Using this approach, the authors showed that the
region { x : ‖x‖∞ ≤ 10 } is included in the domain of attraction of the
system.

Figure (4.3) shows the sequence {C0, C1, . . . , C25} provided by the re-
cursion of theorem (8). The domain of attraction of the system of this
example is Γ = { x ∈ IR2 : |x1| < 10 }. It can be shown that, in this
particular case, the sequence {Ck} converges not only to the SNS-domain
of attraction of the system but also to the actual domain of attraction.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8
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−4
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0
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8
x 10

5
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x2

Figure 4.3: Sequence Ck leading to the SNS-domain of attraction of the sys-
tem.
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4.8 Conclusions

In this chapter a new notion of SNS invariance is introduced. The geo-
metrical properties of the SNS-invariance concept leads to the definition
of the SNS-domain of attraction of a given saturated system. A recursive
algorithm that converges to the SNS-domain of attraction is presented.
One of the most remarkable properties of the SNS-domain of attraction
is that any contractive set for a saturated single input system is included
in the SNS-domain of attraction. Moreover, it has also been shown that
any estimation of the domain of attraction obtained by means of a linear
difference inclusion is included in the SNS-domain of attraction. Numer-
ical examples demonstrate the effectiveness of the new approach.

In the next chapter, the SNS technique is applied to continuous time
systems.
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5.1 Introduction

Chapters 3 and 4 proposed algorithms to obtain an approximation of the
domain of attraction of a discrete linear system with input saturation.

Chapter 3 presented an LDI method, it has been proved that if a set
Ω belongs to the domain of attraction of a set of linear systems, Ω also
belongs to the domain of attraction of the determined saturated system.
Additionally, due to the linear property of this systems, the largest subset

121
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that belongs to the domain of attraction of this set of linear systems is a
convex set, and an algorithm to obtain this convex set was shown.

Chapter 4 used the a new method to obtain a less conservative ap-
proximation of the domain of attraction. It has been proved that a convex
set Ω that belongs to the domain of attraction of a set of systems, that
includes the target saturation system and other linear and saturated sys-
tems, can be obtained. It also has been shown that the largest set that
belongs to the domain of attraction of all systems of this set, is a convex
set and an algorithm to obtain this set has been shown. Note that this set
is a polihedral convex approximation of the domain of attraction.

Previous algorithms use the Q(·) operator that is very related with the
discretization of the system.

Invariant and approximation of the domain of attraction sets for con-
tinuous time systems can not be obtained by means of this operator Q(·),
and different approaches must be used.

One of the most relevant approaches to the analysis of saturated sys-
tems is based on a linear difference inclusion (LDI) of the saturation non-
linearity (see [24, 52, 14]). In the literature, invariant ellipsoids have
been used to estimate the domain of attraction for nonlinear systems
[17, 7, 27, 28]. The domain of attraction of a given saturated system can
be approximated by means of an ellipsoid. In [52] and [29] a linear differ-
ence inclusion for a linear saturated system is presented. Based on that
LDI, the authors propose how to choose simultaneously both the matrix
H, that characterizes the LDI, and the greatest ellipsoid that is invariant
under the corresponding LDI.

A new algorithm to obtain an estimation of the domain of attraction
of a continuous time saturation system will be presented in this chapter.
The sufficient condition used is less conservative than the one obtained
when a LDI approach is adopted.

5.2 Problem Statement

This chapter will show some methods to obtain approximations of the
domain of attraction and less conservative invariant sets for continuous
time systems. The family of systems under consideration is

ẋ = Ax + Bσ(Kx) (5.1)

where x ∈ IRn denotes the state vector. The function σ : IRm → IRm is
the vector-valued standard saturation function defined in definition 4.
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The following notation defined in chapter 2 will be used. Denote
M = {1, 2, . . . , m}. Denote also Bi, i = 1, . . . , m the columns of matrix B
and Ki, i = 1, . . . , m the rows of matrix K. With this notation, system (5.1)
can be rewritten as:

ẋ = Ax +
m

∑
i=1

Biσ(Kix) = Ax + ∑
i∈M

Biσ(Kix)

In this chapter it will be presented an LMI approach to the computa-
tion of ellipsoidal estimations of the domain of attraction for this class of
saturated control systems.

In order to present the LMI approach to obtain estimations of the
domain of attraction, the following notationis introduced.

Notation 6 Given a positive definite matrix P, and a positive scalar ρ, E(P, ρ)
represents the following ellipsoid:

E(P, ρ) = { x : x⊤Px ≤ ρ }.

This notation is in concordance with notation 4 of chapter 3.

Let V be defined as in definition 6, and Sc as notation 1, both in chapter
2.

5.3 SNS contractiveness

In this section, sufficient conditions for the contractiveness of a given
ellipsoid are presented. The notion of contractiveness is given in the fol-
lowing definition,

Definition 27 An ellipsoidal set E(P, ρ) is said to be contractive for system
ẋ = Ax + Bσ(Kx) if for every x ∈ E(P, ρ), x 6= 0:

d

dt
(x⊤Px) = 2x⊤P(Ax + Bσ(Kx)) < 0

Note that contractiveness is a stronger property than invariance. There-
fore, all contractive sets are invariant sets for the target system. Moreover,
contractiveness is also a stronger property than domain of attraction and
all contractive sets belong to the domain of attraction of the system.

Prior to the presentation of the theorem that shows an LDI that can
be used to obtain a contractive ellipsoid, some properties will be shown.
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Property 7 Suppose that Y ∈ IR1×n and matrix W = W⊤ ∈ IRn×n are such
that:

[

1 Y

Y⊤ W

]

> 0

then

B̄Y + Y⊤B̄⊤ ≥ −αW − B̄B̄⊤

α
, ∀α > 0, ∀B̄ ∈ IRn

Proof :

Given B̄ ∈ IRn and α > 0:

0 ≤ (
√

αY⊤ +
B̄√
α
)(
√

αY⊤ +
B̄√
α
)⊤

= αY⊤Y +
B̄B̄⊤

α
+ B̄Y + Y⊤ B̄⊤

It is then concluded that:

B̄Y + Y⊤ B̄⊤ ≥ −αY⊤Y − B̄B̄⊤

α
(5.2)

Operating with the assumption

[

1 Y

Y⊤ W

]

> 0,

[

0 In

1 0

] [

1 Y

Y⊤ W

] [

0 1
In 0

]

> 0

[

W Y⊤

Y 1

]

> 0,

where In is the n × n unit matrix. Therefore,

[

W Y⊤

Y 1

]−1

> 0.

Applying Schur’s complement 13 to this matrix,

[

In 0
−Y 1

] [

(W − Y⊤Y)−1 0
0 1

] [

In −Y⊤

0 1

]

> 0
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and it results

(W − Y⊤Y)−1
> 0

W > Y⊤Y.

From this and inequality (5.2) it is inferred that:

B̄Y + Y⊤B̄⊤ ≥ −αW − B̄B̄⊤

α
, ∀α > 0

Property 8 Suppose that ǭ > 0. Then, for every a ∈ IR:

sup
ᾱ>0

−ᾱ − a2

ᾱ
+ ǭ > −2|a|

Proof :

Two cases should be taken into account

1. a = 0: In this case:

sup
ᾱ>0

−ᾱ − a2

ᾱ
+ ǭ = sup

ᾱ>0

−ᾱ + ǭ > 0 = −2|a|

2. a 6= 0: It is clear that −ᾱ − a2

ᾱ + ǭ is a concave differentiable function on

α in IR+. Thus, at the supremum:

0 =
d

dᾱ
(−α − a2

ᾱ
+ ǭ) = −1 +

a2

ᾱ2

It is then concluded that the maximal is obtained at ᾱ = |a|. Thus:

sup
ᾱ>0

−ᾱ − a2

ᾱ
+ ǭ = −|a| − a2

|a| + ǭ = −2|a| + ǭ > −2|a|
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Property 9 Given z ∈ IRm:

z⊤σ(Kx) ≤ max
S∈V

{ ∑
i∈Sc

ziKix − ∑
i∈S

|zi|}

where zi denotes the i-th component of vector z.

Proof :

Note that according to the definition of σ· shown in definition 4 on chapter 2,

z⊤σ(Kx) =
m

∑
i=1

ziσ(Kix).

Taking now into account that aσ(y) ≤ max {ay,−|a|} (see lemma 10 in
appendix A for a proof),

m

∑
i=1

ziσ(Kix) ≤
m

∑
i=1

max {ziKix,−|zi|}
,

and finally,

m

∑
i=1

max {ziKix,−|zi|} =

max
S∈V

{ ∑
i∈Sc

ziKix − ∑
i∈S

|zi|}

The following theorem present an LDI that can be used to obtain a
contractive ellipsoid, which, as it will be seen in section 5.4, improves
previous results from the literature.

Theorem 10 The ellipsoid E(W−1, 1) is contractive if for every S ∈ V there
exists YS ∈ IRm×n such that

AW + ∑
i∈Sc

BiKiW + ∑
i∈S

BiY
S
i +

(AW + ∑
i∈Sc

BiKiW + ∑
i∈S

BiY
S
i )⊤ < 0

[

1 YS
i

(YS
i )⊤ W

]

> 0, ∀i ∈ S
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where YS
i denotes the i-th row of YS.

Proof :

Note that the assumptions of the theorem guarantee that for every
S ∈ V there is YS and ǫ > 0 such that

AW + ∑
i∈Sc

BiKiW + ∑
i∈S

BiY
S
i +

(AW + ∑
i∈Sc

BiKiW + ∑
i∈S

BiY
S
i )⊤ < −ǫI

That is,

(A + ∑
i∈Sc

BiKi)W + W(A + ∑
i∈Sc

BiKi)
⊤

+ ∑
i∈S

(BiY
S
i + (YS

i )⊤B⊤
i ) < −ǫI (5.3)

From the assumptions of the theorem:

[

1 YS
i

(YS
i )⊤ W

]

> 0, ∀i ∈ S

and property 7 it is inferred that for every i ∈ S:

BiY
S
i + (YS

i )⊤B⊤
i ≥ −αiW − BiB

⊤
i

αi
, ∀αi > 0

From the previous inequality and equation (5.3):

(A + ∑
i∈Sc

BiKi)W + W(A + ∑
i∈Sc

BiKi)
⊤

− ∑
i∈S

(αiW +
BiB

⊤
i

αi
) < −ǫI, ∀α > 0

where α = [α1, α2, . . . , αm]⊤ > 0 denotes that each of the components of
α is greater than zero. Denoting P = W−1 and pre-multiplying and post-
multiplying both sides of previous inequality by x⊤P and Px respectively:

x⊤P(A + ∑
i∈Sc

BiKi)x + x⊤(A + ∑
i∈Sc

BiKi)
⊤Px
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− ∑
i∈S

(αix
⊤Px +

x⊤PBiB
⊤
i Px

αi
) < −ǫx⊤P2x

∀x 6= 0, ∀α > 0

Taking into account that x⊤Px ≤ 1 for every x ∈ E(P, 1) = E(W−1, 1):

x⊤P(A + ∑
i∈Sc

BiKi)x + x⊤(A + ∑
i∈Sc

BiKi)
⊤Px

− ∑
i∈S

(αi +
x⊤PBiB

⊤
i Px

αi
) < −ǫx⊤P2x

∀x ∈ E(W−1, 1), x 6= 0, ∀α > 0

Note that ǫx⊤P2x ≥ ∑
i∈S

ǫ x⊤P2x
m . Thus, denoting ǭ = ǫ x⊤P2x

m :

x⊤P(A + ∑
i∈Sc

BiKi)x + x⊤(A + ∑
i∈Sc

BiKi)
⊤Px

− ∑
i∈S

(αi +
x⊤PBiB

⊤
i Px

αi
− ǭ) < 0

∀x ∈ E(W−1, 1), x 6= 0, ∀α > 0

Taking into account that the previous inequality is satisfied for every α >

0:
x⊤P(A + ∑

i∈Sc

BiKi)x + x⊤(A + ∑
i∈Sc

BiKi)
⊤Px

+ ∑
i∈S

sup
ᾱ

(−ᾱ − x⊤PBiB
⊤
i Px

ᾱ
+ ǭ) < 0

∀x ∈ E(W−1, 1), x 6= 0

Note that ǭ = ǫ x⊤P2x
m > 0 for every x 6= 0. This and property 8

guarantees that:

x⊤P(A + ∑
i∈Sc

BiKi)x + x⊤(A + ∑
i∈Sc

BiKi)
⊤Px

−2 ∑
i∈S

|x⊤PBi| < 0

∀x ∈ E(W−1, 1), x < 0

Denote z = B⊤Px ∈ IRm. With this notation, the i-th component of
vector z is equal to B⊤

i Px. Using this notation, the previous inequality
can be rewritten as:
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2x⊤PAx + 2 ∑
i∈Sc

ziKix − 2 ∑
i∈S

|zi| < 0

∀x ∈ E(W−1, 1), x 6= 0

This last inequality is satisfied for every S ∈ V . Therefore:

2x⊤PAx + 2 max
S∈V

{

∑
i∈Sc

ziKix − ∑
i∈S

|zi|
}

< 0

∀x ∈ E(W−1, 1), x 6= 0

Taking into account property 9

2x⊤PAx + 2z⊤σ(Kx) < 0

∀x ∈ E(W−1, 1), x 6= 0

Recalling that z = B⊤Px:

2x⊤PAx + 2x⊤PBσ(Kx) = 2x⊤Pẋ =
d

dt
(x⊤Px) < 0

∀x ∈ E(W−1, 1), x 6= 0

This proves the theorem.

5.4 Comparison with the linear difference inclu-

sion approach

One of the most efficient ways of computing ellipsoidal estimations of the
domain of attraction of a saturated control systems relies in the use of a
Linear Differential Inclusion (LDI) of the saturated system. In this sec-
tion it will be shown that theorem 10 yields less conservative ellipsoidal
estimations than the ones provided by the LDI approach.

By means of the concept of LDI, the following sufficient condition for
the contractiveness of a given ellipsoid is obtained (see [29] for a proof):
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Theorem 11 The ellipsoid E(W−1, 1) is contractive if there exists Y ∈ IRm×n

such that

AW + ∑
i∈Sc

BiKiW + ∑
i∈S

BiYi +

(AW + ∑
i∈Sc

BiKiW + ∑
i∈S

BiYi)
⊤

< 0

[

1 Yi

Y⊤
i W

]

> 0, i = 1, . . . , m

where Yi denotes the i-th row of Y.

The sufficient condition for an ellipsoid to be invariant provided by
theorem 11 has been shown to be less conservative than the existing con-
ditions resulting from the circle criterion or the vertex analysis [29, 52].
Moreover, as it is shown in [30], theorem 11 provides not only a suffi-
cient but also a necessary condition for an ellipsoid to be invariant for the
single input case (m = 1).

Note that the above result (theorem 11) can be obtained directly from
theorem 10. It suffices to make Y = YS for every S ∈ V . Therefore, it is
concluded that the results presented in this chapter provide an alternative
proof of theorem (11) (in this case without using the concept of Linear
Difference Inclusion).

The sufficient conditions provided by the main result of this chapter
are less conservative than the ones corresponding to theorem 11 (this is
due to the greater number of decision variables considered in theorem 10).
It is concluded then that the approach proposed in this chapter improves
the results obtained when a linear differential approach is adopted. The
computational complexity of the ellipsoidal estimation of the domain of
attraction presented in this chapter is greater than the one corresponding
to the linear differential approach. This is due to the greater number
of matrices involved in theorem 10. An analysis of the computational
complexity will be presented in the following section.

5.5 Computational complexity

Theorem 10 can be applied to the computation of ellipsoidal estimation
of the domain of attraction of a saturated system. However, the direct
application of theorem 10 implies the solution of a convex optimization

problem with 2(m+1) constraints and 2m + 1 decision variables. Although
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the exponential number of constraints does not imply an excessive com-
putational burden for practical values of m (there are convex algorithms
in which the computational burden grows only linearly with the number
of constraints), the same can not be affirmed for the number of decision
variables: if m grows beyond a certain limit, the direct application of the-
orem 10 can be limited because of the exponential number of decision
variables.

Fortunately, theorem 10 can be recast into an equivalent form in which
the number of decision variables is reduced to only one, W. In this section
it will be proved that the result provided in theorem 10) can be applied
to the estimation of the domain of attraction by means of the solution of
a convex problem with a reduced number of variables. For that purpose,
the following definition is introduced.

Definition 28 Given W > 0 and S ∈ V , the function γS(W) is defined as,

γS(W) = min
Y∈ IRm×n

λ̄

(

AW + ∑
i∈Sc

BiKiW + ∑
i∈S

BiYi +

(AW + ∑
i∈Sc

BiKiW + ∑
i∈S

BiYi)
⊤
)

s.t.

[

1 Yi

Y⊤
i W

]

> 0, ∀i ∈ S

where Yi denotes the i-th row of Y and λ̄(·) denotes the matrix function greatest
eigenvalue.

In what follow, it is shown that γS(W) is a convex function on W for
every S ∈ V . The function

g(W, Y) = λ̄

(

AW + ∑
i∈Sc

BiKiW + ∑
i∈S

BiYi+

(AW + ∑
i∈Sc

BiKiW + ∑
i∈S

BiYi)
⊤
)

is cleary a convex function on W and Y, as AW + ∑
i∈Sc

BiKiW + ∑
i∈S

BiYi)
⊤ is

an affine function hence convex and λ̄(·) is a convex function. Moreover,
the constraint

[

1 Yi

Y⊤
i W

]

> 0, ∀i ∈ S
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can be rewritten as

h(W, Y) = max
i∈S

λ̄

(

−
[

1 Yi

Y⊤
i W

])

< 0

Therefore, γS(W) can be rewritten as

γS(W) =
minY∈ IRm×n g(W, Y)
s.t. h(W, Y) < 0

As both g(W, Y) and h(W, Y) are jointly convex in W and Y, it is inferred
that γS(W) is convex with respect W (see [8]). For this class of optimiza-
tion problems it is possible to find a subgradient of γS(W) with respect
W at any given W0 (see also [8]).

Note that with the definition of γS(W), theorem 10 can be rewritten
as,

Theorem 12 The ellipsoid E(W−1, 1) is contractive if

γS(W) < 0, ∀S ∈ V

As the trace of W is a measure of the size of ellipsoid E(W−1, 1), the
maximization problem

max
W>0

trace (W)

s.t. γS(W) < 0, ∀S ∈ V
yields to the maximization of the ellipsoidal estimation of the domain
of attraction of the saturated system ẋ = Ax + Bσ(Kx). The proposed
maximization problem has the following properties.

• It is a convex optimization problem. This convexity stems from the
already proved fact that γS(W) is convex on W.

• The evaluation of γS(W) can be achieved solving an LMI problem
with a unique decision variable: Y ∈ IRn×m.

• The computation of a subgradient of γS(W) with respect W can
also be done solving an LMI problem. This makes it possible the
application of any cutting plane algorithm to the solution of the
proposed optimization problem [8].
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5.6 Numerical examples

In this section two different examples are presented. The first example
shows the application of the presented approach to a two dimensional
system. In the second example higher dimensional systems are consid-
ered.

5.6.1 Two dimensional system

Let us consider the system ẋ = Ax + Bσ(Kx) where

A =

[

2 1
1 2

]

, B =

[

2 2
1 0

]

,

K is obtained as the solution of the LQR problem with Q = I and
R = 0.1 · I. That is,

K =

[

−2.0506 −5.9715
−3.1458 2.1906

]

.

In order to maximize the size of the ellipsoidal estimation of the do-
main of attraction of the system, the trace of matrix W is maximized.

Figure 5.1 shows how the conservativeness in the computation of the
ellipsoidal estimation of the domain of attraction is reduced by means of
the main result of the chapter. In this figure, two different contractive
ellipsoids are drawn. The ellipsoid represented by means of a dotted line
corresponds to the ellipsoid obtained when an LDI approach is adopted
(theorem 11). The outer ellipsoid represented by a solid line corresponds
to the application of the result of theorem 10. In both cases, the trace of
matrix W is maximized.

It can be seen in the figure that the ellipsoid obtained by the sufficient
condition presented in this chapter is greater than the other one. This
is not surprising because it has been proved in section 5.4 that theorem
(10) provides less conservative results of the estimation of the size of the
domain of attraction ellipsoid than provided by theorem (11).

5.6.2 Higher dimensional systems

In order to provide some measure of the improvement obtained when
using the proposed sufficient condition, a family of random systems have
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Figure 5.1: Contractive ellipsoidal sets.

been considered. Each of the considered examples belong to the following
class of systems:

ẋ = Ax + Bσ(Kx)

where A ∈ IRn×n and B ∈ IRn×n. Given A and B, matrix gain K corre-
sponds to the solution of the LQR problem with Q = I and R = I. The
entries of matrices A and B are obtained from a uniform distribution in
the interval [0, 1]. That is, Aij ∈ [0, 1], Bij ∈ [0, 1] for every 1 ≤ i ≤ n,
1 ≤ j ≤ n. In order to obtain a bounded domain of attraction, only
matrices A that satisfy that all their eigenvalues have positive real part
are considered. In this way, a total of 1200 (open-loop unstable) sys-
tems have been obtained in a randomized way for different values of n
(n = 1, 2, . . . , 6).

A comparison between the sufficient condition provided in this chap-
ter (denoted in what follows method A) and the one corresponding to
the LDI approach (denoted method B) have been done. Table 5.1 shows
the mean improvement both in terms of trace of W and volume of the
obtained ellipsoids when using the results of this chapter with respect
the ones obtained with the LDI approach. Dimensions n = 1, 2, . . . , 6
have been considered. For each dimension, 200 examples are considered
and only the mean value of the improvement is displayed. Dimension 1
shows the same results using both methods. In this case both methods
provide the same sufficient condition and therefore the results are identi-
cal. The observed improvement depends on the dimension of the system.
It increases with the dimension (more decision variables are considered
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Dimension
Mean

improvement
Trace W

Mean
improvement

Volume
ellipsoid

Mean
computational
time method A

(seconds)

Mean
computational
time method B

(seconds)
n=1, m=1 0% 0% 0.14 0.14
n=2, m=2 9.9 % 38.8 % 0.11 0.10
n=3, m=3 20.7 % 148.5 % 0.19 0.15
n=4, m=4 42.0 % 492.3 % 0.63 0.34
n=5, m=5 48.7 % 1225.3 % 5.21 1.22
n=6, m=6 57.2% 3615.7 % 94.59 5.72

Table 5.1: Improvement and computational time of the proposed method
(method A) with respect to the one corresponding to the LDI approach
(method B)

in the proposed approach). It is worth noting than in dimension 6, the
obtained ellipsoids are, in average, 36.1 times greater in volume than the
ones corresponding to the LDI approach.

The LMI problems corresponding to both methods A and B have been
solved using the LMI-toolbox of MATLAB. The computational time re-
quired in the obtainment of the ellipsoidal estimation of the domain of
attraction is greater when using the proposed approach. Note that the
computational burden depends on the number of decision variables and
constraints of the LMIs. The number of decision variables grows in an
exponential way in the proposed approach. From the computational time
corresponding to method A (shown in table 5.1) it is inferred that when
the system has few control inputs the required time is moderate. How-
ever, for larger dimensions, the use of alternative approaches to the so-
lution of the optimization problem (like the one presented in section 5.5)
are required. The great enlargement of the obtained estimation of the do-
main of attraction justifies the greater computational time of the proposed
approach.

5.7 Conclusions

In previous chapters, algorithms to obtain an estimation of the domain of
attraction for discrete time systems have been presented.

In this chapter, an approach to the estimation of the domain of attrac-
tion of a saturated linear system is presented. A new sufficient condi-
tion for the contractiveness of a given ellipsoid has been presented and
it provides estimations of the domain of attraction of a continuous time
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saturated system. This approach is less conservative than the one corre-
sponding to the use of the concept of LDI. The computational complexity
of the characterization of the proposed ellipsoidal estimation of the do-
main of attraction has been analized.

The adventadges of the proposed ellipsoidal estimation have been il-
lustrated by means of a family of randomly chosen systems.



6
Synthesis of robust saturated

controllers

6.1 Introduction . . . . . . . . . . . . . 138
6.2 Problem Statement . . . . . . . . . 138
6.3 Geometric condition of robust in-

variance . . . . . . . . . . . . . . . 139
6.4 Greatest robust ellipsoidal set ob-

tained with a non-saturated con-
trol law . . . . . . . . . . . . . . . . 140

6.5 Defining the notion of robust
SNS-invariance . . . . . . . . . . . 144

6.6 Capturing the geometry of the
greatest robust control invariant set 147

6.7 Proposed algorithm . . . . . . . . . 148
6.8 Numerical example . . . . . . . . . 152
6.9 Conclusions . . . . . . . . . . . . . 155

137



138 CHAPTER 6. SYNTHESIS OF SATURATED CONTROLLERS

6.1 Introduction

One of the most relevant approaches to the estimation of the domain of
attraction of a saturated system consists in the use of a linear difference
inclusion (LDI) of the system. This method has been presented in chapter
3 for discrete time systems. Polytopic representation provided by the LDI
simplifies the analysis of the non linear system [51]. In [24, 29], an LDI is
used to obtain invariant ellipsoids for saturated systems.

In chapter 4 (see also [3]), a new notion of invariance, denoted as SNS-
invariance, is presented. Based on its geometrical properties, a simple al-
gorithm to estimate the domain of attraction of a saturated linear system
is proposed. It is shown that in case of single input systems, any contrac-
tive set for the saturated system is an SNS-invariant set. Moreover, any
domain of attraction obtained by means of an LDI representation of the
system is included in the estimation provided by the proposed algorithm.

In this chapter, the analysis of saturated control laws for an uncer-
tain linear system is addressed. It is well known that, under certain as-
sumptions, the greatest invariant ellipsoidal set for a given system can be
obtained by means of a control law that does not saturate in the corre-
sponding ellipsoid. For example, for single nominal input systems (m=1),
the greatest invariant ellipsoid is obtained by means of a control law of
the form: u = KLx, where |KLx| ≤ 1 for every x in the ellipsoid. The
synthesis of such a controller can be recast as an LMI problem [30]. An
algorithm that improves the results obtained when only ellipsoidal sets
are considered will be proposed in this chapter. This algorithm uses a
generalization of the SNS-stability notion that allows to deal with sys-
tems with additive uncertainty. This generalization yields to polyhedric
estimations of the domain of attraction of an uncertain system. Based on
this, an algorithm suitable for the synthesis of saturated control laws is
presented. The results improves previous results in the following sense,
given a robust control ellipsoidal invariant set obtained by means of a
non saturated control law, the algorithm yields an improved controller
that contains the afore-mentioned ellipsoid.

6.2 Problem Statement

Consider the following discrete-time system

x+ = Ax + Bu + Eθ (6.1)

where x ∈ IRn denotes the state vector and x+ is the successor state.
Vector u ∈ IRm denotes the control input to the system and θ ∈ IRnw
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denotes an additive uncertainty to the system. It is assumed that θ ∈
Θ = { θ ∈ IRnw : ‖θ‖∞ ≤ 1 }. Note that Θ can be described as Θ =
L(Enw) where Ei is the identity matrix in dimension i. The control input
u is supposed to satisfy the following amplitude constraint, ‖u‖∞ ≤ 1.
Moreover, the state vector should be confined in the convex and bounded
polyhedron X, which is assumed to contain the origin.

Note that equation 6.1 is a robust generalization of system family 2.17.

The purpose of this chapter is to obtain a matrix gain K such that
the saturated control law u = σ(Kx) maximizes the robust domain of
attraction of the closed loop system.

The function σ : IRm → IRm is the vector-valued normalized saturation
function defined in 4.

6.3 Geometric condition of robust invariance

In the context of set invariance theory, the one-step set plays an important
role [17]. This concept has been used in 3 and 4 for determinating an
estimation of the domain of attraction of the system. In order to take
account of the dependence on K, an extension of the one-step operator is
defined here.

Definition 29 Given system x+ = Ax + Bσ(Kx) and set Ω, the one-step set
Q(Ω, K) is defined as

Q(Ω, K) = { x : Ax + Bσ(Kx) ∈ Ω }

It is well known that a geometric condition for robust invariance can
be expressed by means of the one-step set and the Pointriagin difference.

Notation 7 Given set Ω and set Θ, set Ω ∼ EΘ denotes the Pointriagin differ-
ence of Ω and EΘ, that is:

Ω ∼ EΘ = { x ∈ Ω : x + Eθ ∈ Ω for all θ ∈ Θ }

It is well known that Ω is a robust invariant set for system x+ =
Ax + Bσ(Kx) + Eθ if and only if Ω ⊆ Q(Ω ∼ EΘ, K) [17].

Note that the domain of attraction corresponding to a given gain ma-
trix K can be obtained (theoretically) by means of the following algorithm,

1. C0(K) = X
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2. Cj+1(K) = Cj
⋂

Q(Cj(K) ∼ EΘ, K)

3. j = j + 1. Go to step 2

It is easy to see that if x ∈ Cj(K) and the sequence of disturbances
{θ0, θ1, . . . , θj−1} satisfies that θk ∈ Θ, k = 0, . . . , j − 1 then the recursion:

xk+1 = Axk + Bσ(Kxk) + Eθk, x0 = x

is such that xk ∈ X, k = 0, . . . , j. Therefore, the set of initial conditions
that correspond to trajectories always remaining in X (in spite of the dis-
turbances) is equal to C∞(K) = limk→∞ Ck(K).

Given a convex set Ω, the one-step set Q(Ω, K) is not necessarily con-
vex due to the nonlinear nature of the saturation function. The non con-
vex nature of Q(Ω, K) makes it difficult to use operator Q(·) in the analy-
sis and synthesis of saturated control laws for the system. Therefore, the
computation of Cj(K) can be extremely difficult for sufficiently large j.

6.4 Greatest robust ellipsoidal set obtained with

a non-saturated control law

Under certain assumptions, the greatest invariant ellipsoidal set for a
given system can be obtained by means of a control law that does not
saturate in the corresponding ellipsoid.

In case of systems with additive uncertainties, it is possible to charac-
terize the non-saturated control laws that guarantee that a given ellipsoid
is a robust invariant set for the the closed-loop system. This caracteriza-
tion is an ellipsoidal set, that are defined in notation 6, but as all the el-
lipses considered in this chapter have an unitary radius, notation changes
to use only one parameter,

Notation 8 Given a definite positive matrix P,

E(P) = { x : x⊤Px ≤ 1 }.

Note that E(P) = E(P, 1), and E(P, ρ) = E(P/ρ).

The following property provides the characterization commented above,

Property 10 Suppose that there exists a scalar γ ∈ IR+ and matrices Y ∈
IRm×n and W = W⊤ ∈ IRn×n such that the following matrix inequalities are
satisfied,
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



1 − γ 0 θ⊤E⊤

0 γW WA⊤ + Y⊤B⊤

Eθ AW + BY W



 > 0, ∀θ ∈ vert(Θ)

[

1 Yi

Y⊤
i W

]

> 0, i = 1, . . . , m

where vert(Θ) denotes the vertices of Θ and Yi, i = 1, . . . , m denotes the i-th
row of matrix Y. Denote K = YW−1, then

• ‖Kx‖∞ ≤ 1 for all x ∈ E(W−1).

• The ellipsoid E(W−1) is a robust invariant set of the system x+ = Ax +
Bσ(Kx) + Eθ.

Proof :

It will be proved by items,

• ‖Kx‖∞ ≤ 1 for all x ∈ E(W−1), Note that previous statement can be
written as,

‖Kx‖∞ ≤ 1 for all { x : x⊤W−1x ≤ 1 },

and if it is defined y = W− 1
2 .

‖KW
1
2 y‖∞ ≤ 1 for all { y : y⊤y ≤ 1 },

‖YW− 1
2 y‖∞ ≤ 1 for all ‖y‖2 ≤ 1.

Previous inequality can be written as

|YiW
− 1

2 y| ≤ 1 for all ‖y‖2 ≤ 1, i = 1, . . . , m.

The worst situation for previous statement is if y is in direction of YiW
− 1

2 .
Note that as all inequalities must hold, worst condition of y can change
among inequalities.

∣

∣

∣

∣

∣

YiW
− 1

2 W− 1
2 Y⊤

i

‖W− 1
2 Y⊤

i ‖2

∣

∣

∣

∣

∣

≤ 1, i = 1, . . . , m.
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taking squares,

(YiW
−1Y⊤

i )2

YiW−1Y⊤
i

≤ 1, i = 1, . . . , m,

that is

YiW
−1Y⊤

i ≤ 1, i = 1, . . . , m.

And aplying Schur lemma (see 13 in appendix A),

[

1 Yi

Y⊤
i W

]

> 0, i = 1, . . . , m.

• The ellipsoid E(W−1) is a robust invariant set of the system x+ = Ax +
Bσ(Kx) + Eθ.

The proof consists in the determination of a Lyapunov function, L(x) =
x⊤W−1x, and to prove that for all x in E(W−1), the following statement
hold

L(x+)− L(x) < 0.

The first assumption claims that,





1 − γ 0 θ⊤E⊤

0 γW WA⊤ + Y⊤B⊤

Eθ AW + BY W



 > 0, ∀θ ∈ vert(Θ)

Therefore, aplying Schur lemma 13 in appendix A,

[

1 − γ 0
0 γW

]

−
[

θ⊤E⊤

WA⊤ + Y⊤B⊤

]

W−1[Eθ AW + BY] > 0, ∀θ ∈ vert(Θ),

this inequality can be extended,

[

1 − γ 0
0 γW

]

−
[

θ⊤E⊤W−1Eθ θ⊤E⊤W−1(AW + BY)
(WA⊤ + Y⊤B⊤)W−1Eθ (WA⊤ + Y⊤B⊤)W−1(AW + BY)

]

> 0, ∀θ ∈ vert(Θ),

and joining both terms,
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[

(1 − γ)− θ⊤E⊤W−1Eθ −θ⊤E⊤W−1(AW + BY)
−(WA⊤ + Y⊤B⊤)W−1Eθ γW − (WA⊤ + Y⊤B⊤)W−1(AW + BY)

]

> 0,

∀θ ∈ vertΘ.

This inequality can be pre and post multiplied by

[

1 0
0 W−1

]

,

and taking into account that K = YW−1, it is obtained,

[

(1 − γ)− θ⊤E⊤W−1Eθ −θ⊤E⊤W−1(A + BK)
−(A⊤ + K⊤B⊤)W−1Eθ γW−1 − (A⊤ + K⊤B⊤)W−1(A + BK)

]

> 0,

∀θ ∈ vertΘ.

A matrix inequality means that this matrix multiplied by any vector before
and after the matrix must be greater than zero, that is,

[1 x⊤]

[

(1 − γ)− θ⊤E⊤W−1Eθ −θ⊤E⊤W−1(A + BK)
−(A⊤ + K⊤B⊤)W−1Eθ γW−1 − (A⊤ + K⊤B⊤)W−1(A + BK)

] [

1
x

]

> 0,

∀x ∈ IRn, ∀θ ∈ vert(Θ).

Multiplying,

x⊤(A⊤ + K⊤B⊤)W−1(A + BK)x + x⊤(A⊤ + K⊤B⊤)W−1Eθ+

+θ⊤E⊤W−1(A + BK)x + θ⊤E⊤W−1Eθ < 1 − γ(1 − x⊤W−1x),

∀θ ∈ vertΘ, ∀x ∈ IRn.

Note also that x⊤W−1x ≤ 1, therefore γ(1− x⊤W−1x) ≥ 0 and it implies

(x⊤(A⊤ + K⊤B⊤) + θ⊤E⊤)W−1((A + BK)x + Eθ) < 1,

∀θ ∈ vert(Θ), ∀x : x⊤W−1x = 1.

Previous inequality is a linear inequality in θ, and taking into acount that
it holds for all θ ∈ vert(Θ) and the convex nature of linear functions, it is
inferred that
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(x⊤(A⊤ + K⊤B⊤) + θ⊤E⊤)W−1((A + BK)x + Eθ) < 1,

∀θ ∈ Θ, ∀x : x⊤W−1x = 1.

Moreover, x+ = (A + BK)x + Eθ for all x ∈ E(W−1), note that first
claim of this property shows that ‖Kx‖∞ ≤ 1 for all x ∈ E(W−1), and
therefore σ(Kx) = Kx,

x+⊤
W−1x+ − 1 < 0, ∀x : x⊤W−1x = 1,

that is L(x+)− L(x) < 0 for all x ∈ bound(E(W−1)).

6.5 Defining the notion of robust SNS-invariance

The concept of (nominal) SNS invariance, which was first proposed in
[3] and shown in chapter 4, is extended here to encompass the possi-
bility of additive uncertainties. This concept, along with its geometrical
properties, allows to obtain a convex estimation of the (robust) domain of
attraction of a given saturated system. This avoids the complexity associ-
ated to the computation of sets Cj(K). As it will be seen in the following
sections, it is possible not only to analyze the domain of attraction of a
system using the SNS concept but also to obtain an appropriate matrix
gain K maximizing the domain of attraction of the system.

Let consider the following closed-loop system,

x+ = Ax + Bσ(Kx) + Eθ (6.2)

Following the notation presented in chapter 2, denote M = {1, 2, . . . , m}.
Denote also Bi, i = 1, . . . , m the columns of matrix B and Ki, i = 1, . . . , m
the rows of matrix K. With this notation, system 6.2 can be rewritten as,

x+ = Ax +
m

∑
i=1

Biσ(Kix) + EΘ = Ax + ∑
i∈M

Biσ(Kix) + Eθ.

Definition 6 on chapter 2 defines V for a given M. However, a gen-
eralization of this set is needed to introduce the concept of robust SNS-
invariance,
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Definition 30 Given a set of integers T, set VT is the set of all subsets of T.
That is,

VT = { S : S ⊆ T }

Example: If T = {1, 2} then VT = {Ø, {1}, {2}, {1, 2}}. Note that the
empty set Ø belongs to VT. Note also that in this work, Sc denotes the
complement of S in the reference set, in this case T. That is, Sc = { i ∈
T : i /∈ S }. Throughout this text, when no subset is defined, M is
assumed. That is, V = VM.

Definition 31 Given a set S ∈ V , F(x, S) is defined as follows:

F(x, S) = Ax + ∑
i∈Sc

BiKix + ∑
i∈S

Biσ(Kix)

The notion of robust SNS invariance is introduced in the following
definition. Note that this is an extension of the SNS invariance shown in
chapter 4 for robust invariance.

Definition 32 A set Ω is said to be robust SNS-invariant set for system x+ =
Ax + Bσ(Kx) + Eθ if x ∈ Ω implies F(x, S) + Eθ ∈ Ω for every S ∈ V and
for every θ ∈ Θ.

For single input systems (m = 1), the SNS invariance of a given set
Ω is equivalent to the robust invariance of Ω for the Saturated and Non
Saturated systems, x+ = Ax + Bσ(Kx) + Eθ and x+ = Ax + BKx + Eθ.

In order to provide a geometric condition of robust SNS invariance,
the one step function is defined. This function has been used in chapters 3
and 4 to obtain an estimation of the domain of attraction (and an invariant
set). Definition shown here is an extension of that definition that allows
to explicitily consider K as a design parameter.

Definition 33 Given a set Ω, K and S ∈ V :

Q
SNS

(Ω, K) = { x : F(x, S) ∈ Ω for all S ∈ V }

where F(x, S) depends on K and it is defined in 31.

From the definition of Q
SNS

(·), the following property is directly in-
ferred,

Property 11 A set Ω is robust SNS invariant set for system 6.2 if and only if
Ω ⊆ Q

SNS
(Ω ∼ EΘ, K).
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The most remarkable property of Q
SNS

(·) is that given a polyhedral set
Ω, Q

SNS
(Ω, K) is a convex polyhedron. Given a convex polyhedral set Ω,

Q(Ω, K) is not necessarily convex. However, Q
SNS

(Ω, K) is a polyhedral
set that can be obtained in a direct way from polyhedron Ω as claimed in
the following theorem.

Theorem 13 Let us suppose that Ω is a convex polyhedron in IRn given by
Ω = { x : Rx � g }. Then:

Q
SNS

(Ω, K) =

⋂

S∈V
{ x : R(A + ∑

i∈Sc

BiKi)x − ∑
i∈S

|RBi| � g }

where Sc denotes the complement of S in M and |RBi| is the vector with entries
equal to the absolute value of the entries of vector RBi.

Proof :

This is the same theorem than 7 in chapter 4, with the only modification
of explicit dependence on K. Proof can be seen there.

The following algorithm can be used to obtain an estimation of the
domain of attraction corresponding to a given gain matrix K. Given a
contracting factor λ ∈ (0, 1), consider the following recurrence,

1. CSNS
0 (K, λ) = X.

2. CSNS
j+1 (K, λ) = Q

SNS
(λCSNS

j (K, λ) ∼ EΘ, K)

3. If CSNS
j+1 (K, λ) ⊆ Q

SNS
(CSNS

j+1 (K, λ) ∼ EΘ, K) then CSNS
j+1 (K, λ) is a

robust SNS-invariant set. Else, j = j + 1. Go to step (2)

Note that λΩ denotes the set { x : x
λ ∈ Ω }. It is clear that

Q
SNS

(λΩ, K) ⊆ Q
SNS

(Ω, K) ⊆ Q(Ω, K), ∀λ ∈ (0, 1). Therefore, CSNS
j (K, λ) ⊂

Cj(K), ∀j ≥ 0, ∀K, ∀λ ∈ (0, 1). It can be concluded that CSNS
∞ (K, λ) =

lim
j→∞

CSNS
j (K, λ) serves as an estimation of the robust domain of attraction

of the closed loop system, x+ = Ax + Bσ(Kx) + Eθ. Moreover, as the size
of the elements of the sequence CSNS

j (K, λ) is monotonically decreasing

with j ( CSNS
j+1 (K, λ) ⊆ CSNS

j (K, λ) , ∀j ≥ 0) it can be concluded that there

is j∗ such that CSNS
j∗+1(K, λ) ⊆ Q

SNS
(CSNS

j∗+1(K, λ) ∼ EΘ, K). This fact can be

proved using the same arguments as in [6] (and assuming that CSNS
∞ (K, λ)

is not the empty set).
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6.6 Capturing the geometry of the greatest ro-

bust control invariant set

Definition 34 Given system 6.1 and constraints x ∈ X, u ∈ U, we say that Ω

is a robust control invariant set if for every x ∈ Ω there is u = u(x) ∈ U such
that Ax + Bu(x) + Eθ ∈ Ω, for all θ ∈ Θ.

Throughout this chapter the greatest control invariant set is denoted
X∞. The objective of this chapter is to find a saturated control law u =
σ(Kx) in such a way that the domain of attraction corresponding to the
application of such a saturated control law is maximized. If possible, gain
matrix K should be obtained in order to obtain a domain of attraction
equal to X∞. As this is not always possible, a measure of the size of
the obtained domain of attraction should be maximized. In this chapter,
it will be maximized the size of the greatest ellipsoid contained in the
domain of attraction.

One of the theoretical approaches to the synthesis problem consists in
trying to obtain K in such a way that the size of C∞(K, λ) is maximized.
However, as C∞(K) is not necessarily a convex set the dependence of
the size of C∞(K) with respect to K is generally non-convex. In order to
simplify the synthesis problem, consider the following operator:

Definition 35 Given set Ω = { x : Rx � g }, set QM(Ω) is defined as the
following polyhedral set:

QM(Ω) = { x : RAx − ∑
i∈M

|RBi| � g }

From theorem 13 it is clear that Q
SNS

(Ω, K) ⊆ QM(Ω) for every K,

note that QM(Ω) restrictions are in Q
SNS

(Ω, K) when S = M. Consider
now the following algorithm,

1. CM
0 (λ) = X.

2. CM
j+1(λ) = QM(λCM

j (λ) ∼ EΘ)

3. If CM
j+1(λ) = QM(CM

j+1(λ) ∼ EΘ) then ΓM(λ) = CM
j+1(λ), stop. Else,

j = j + 1. Go to step (2)

In this algorithm, λ ∈ (0, 1) constitutes a contracting factor.

It is clear that CSNS
∞ (K, λ) ⊆ ΓM(λ) for every K. That is, set ΓM(λ)

yields an outer bound of the maximal SNS robust invariant set that can
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be obtained by means of any gain matrix K. In this sense, it captures
the geometry of the greatest robust control invariant set. Thus, it can be
said that ΓM(λ) is a good starting point when considering the synthesis
problem.

6.7 Proposed algorithm

Suppose that E(PL) is a robust control invariant set (obtained by means of
a control law u = σ(KLx) that does not saturate in E(PL) ). This ellipsoid
can be obtained by means of property 10 maximizing a measure of the

size of E(PL) (for example the trace of P−1
L ). Suppose also that λ ∈ (0, 1)

(λ can be chosen arbitrarily close to 1). In this chapter we proposed the
following algorithm to obtain gain matrix K.

1. Ĉ0 = ΓM(λ), j = 0,

2. Obtain K(j) from the following optimization problem:

max
K(j),P

trace P−1

s.t. E(P) ⊂ Q
SNS

(λĈj ∼ EΘ, K(j))

E(P) ⊂ Ĉj

E(PL) ⊆ E(P)

P − (A + BK(j))⊤P(A + BK(j)) > 0

3. Ĉj+1 = Ĉj
⋂

Q
SNS

(λĈj ∼ EΘ, K(j))

4. If Ĉj+1 ⊆ Q
SNS

(Ĉj+1 ∼ EΘ, K(j)) then K = K(j), stop. Else, j = j + 1.
Go to step 2.

The following property states that the optimization problem required
for the implementation of the algorithm can be recast as an LMI opti-
mization problem,

Property 12 Let us consider that Ĉj = { x : Rx � g } where R ∈ IRnr×n and
g ∈ IRnr . Then

1. The constraint E(P) ⊂ Ĉj is equivalent to,
[

g2
l RlW

WR⊤
l W

]

≥ 0, l = 1, . . . , nr

where W = P−1, Rl are rows of R and gl are components of g.
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2. λĈj ∼ EΘ = { x : Rx � λg −
nw

∑
i=1

|REi| }

3. Q
SNS

(λĈj ∼ EΘ, K(j)) =
⋂

S∈V
{ x : R(A + ∑

i∈Sc
BiKi(j))x − ∑

i∈S
|RBi| �

λg −
nw

∑
i=1

|REi | }

4. The constraint E(P) ⊂ Q
SNS

(λĈj ∼ EΘ, K(j)) is equivalent to:





(λgl + ∑
i∈S

|Rl Bi| −
nw

∑
i=1

|RlEi|)2 Rl AW + ∑
i∈Sc

RlBiYi(j)

∗ W



 > 0,

l = 1, . . . , nr, ∀S ∈ V
where Yi(j) = Ki(j)W, i = 1, . . . , m.

5. The constraint E(PL) ⊆ E(P) is equivalent to

[

PL I
I W

]

> 0

6. The constraint P − (A + BK(j))⊤P(A + BK(j)) ≥ 0 is equivalent to





W WA⊤ +
m

∑
i=1

Y⊤
i (j)B⊤

i

∗ W



 > 0

Proof :

The proof will be shown in items, consider Ĉj = { x : Rx � g },

1. Constraint E(P) is defined as E(P) = { x : x⊤Px ≤ 1 }, aplying the
change of variable

y = P
1
2 x,

E(P) is defined as E(P) = { x : y = P
1
2 x, y⊤y < 1 }, this change of

variable can be also applyed in definition of Ĉj, therefore, Ĉj = { x : y =

P
1
2 x, RW

1
2 y � g }, where W = P−1. Actually the constraint E(P) ⊂ Ĉj

is equivalent to,

RW
1
2 y � g for all ‖y‖2 ≤ 1
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previous restriction can be divided in rows,

RlW
1
2 y ≤ gl for all ‖y‖2 ≤ 1, l = 1, . . . , nr.

The worst case of previous inequality is when y is in the direction of

W
1
2 R⊤

l , and therefore inequalities can be written like,

0 ≤ RlW
1
2 W

1
2 R⊤

l

|W 1
2 R⊤|

≤ gl, l = 1, . . . , nr,

note that as W > 0, left part of the previous inequality is greater than cero.
Taking squares,

RlWR⊤
l RlWR⊤

l

RlWR⊤
l

≤ g2
l , l = 1, . . . , nr,

and finally,

g2
l − RlWR⊤

l ≥ 0, l = 1, . . . , nr,

aplying Schur lemma (see 13 in appendix A),

[

g2
l RlW

WR⊤
l W

]

≥ 0, l = 1, . . . , nr.

2. λĈj ∼ EΘ = { x : Rx � λg −
nw

∑
i=1

|REi | }.

Note that λĈj = { x : Rx � λg }, therefore λĈj ∼ EΘ = { x :
R(x + Eθ) � λg, ‖θ‖∞ ≤ 1 }. That is

λĈj = { x : Rx + REθ � λg, ∀‖θ‖∞ ≤ 1 },

REθ can be written as sumatory of componets,

λĈj = { x : Rx +
nw

∑
i=1

REiθi � λg, ∀‖θ‖∞ ≤ 1 },

where Ei are columns of E and θi are components of θ. This inequalities
can be separated as in previous item,

λĈj = { x : Rl x +
nw

∑
i=1

RlEiθi ≤ λgl , ∀‖θ‖∞ ≤ 1, l = 1, . . . , nr },
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where Rl are rows of R. Note that as all inequalities must hold, value of θ
that provides the worst condition is different for each inequality. Note also
that RlEi ∈ IR and θi = ±1, therefore worst condition for each inequality
is such that RlEiθi = |RlEi|, that is,

λĈj = { x : Rl x +
nw

∑
i=1

|RlEi| ≤ λgl , l = 1, . . . , nr },

and joinning all inequalities,

λĈj ∼ EΘ = { x : Rx � λg −
nw

∑
i=1

|REi| }.

3. Q
SNS

(λĈj ∼ EΘ, K(j)) =
⋂

S∈V
{ x : R(A + ∑

i∈Sc
BiKi(j))x − ∑

i∈S
|RBi| �

λg −
nw

∑
i=1

|REi | }

In theorem 13 it have been shown that

Q
SNS

(Ω, K) =
⋂

S∈V
{ x : R(A + ∑

i∈Sc

BiKi)x − ∑
i∈S

|RBi| � g }

and by subtitution of definition of λĈj ∼ EΘ of previous item,

Q
SNS

(λĈj ∼ EΘ, K(j)) =

=
⋂

S∈V
{ x : R(A + ∑

i∈Sc

BiKi(j))x − ∑
i∈S

|RBi| � λg −
nw

∑
i=1

|REi | }.

4. Previous item shows that the constraint E(P) ⊂ Q
SNS

(λĈj ∼ EΘ, K(j))
is equivalent to

E(P) ⊂
⋂

S∈V
{ x : R(A + ∑

i∈Sc

BiKi(j))x − ∑
i∈S

|RBi| � λg −
nw

∑
i=1

|REi| }.

This constraint is similar to the first item one, hence, with similar analysis
it is obtained that this constraint is equivalent to





(λgl + ∑
i∈S

|Rl Bi| −
nw

∑
i=1

|RlEi|)2 Rl AW + ∑
i∈Sc

RlBiYi(j)

∗ W



 > 0,

l = 1, . . . , nr, ∀S ∈ V
where Yi(j) = Ki(j)W, i = 1, . . . , m.
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5. E(PL) ⊆ E(P) if and only if PL ≥ P. Using the Schur complement,

[

PL I
I W

]

≥ 0.

6. The constraint P − (A + BK(j))⊤P(A + BK(j)) ≥ 0 is equivalent to
WPW − W(A + BK(j))⊤P(A + BK(j))W ≥ 0, hence, W − (AW +
BY(j))⊤P(AW + BY(j)) ≥ 0 and by application of Schur lemma 13 in
appendix A,





W WA⊤ +
m

∑
i=1

Y⊤
i (j)B⊤

i

∗ W



 > 0.

Previous property shows that the sequence Ĉj is monotonically de-
creasing. Moreover, the LMI problem is always feasible (setting λ arbi-
trarily close to 1) as K = KL and P = PL constitutes a feasible solution to
the problem. Therefore, the sequence converges and a domain of attrac-
tion containing E(PL) is obtained. In this way, the proposed algorithm
potentially yields a better control.

6.8 Numerical example

To illustrate the proposed method, the following uncertain system is con-
sidered

x+ = Ax + Bu + Eθ,

where

A =

[

−0.9554 −1.2250
0.6014 −1.0125

]

, B =

[

1
0

]

E =

[

0.1 0.0
0.0 0.1

]

and θ ∈ Θ = { θ : ‖θ‖∞ ≤ 1 } and u ∈ U = { u : ‖u‖∞ ≤ 1 }. The
states of the system must be confined in the polyhedron X = { x ∈ IRn :
‖x‖∞ ≤ 3 }.
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First, the maximal ellipsoidal robust invariant set for a non-saturating
linear control law is calculated using the result of property 1. Thus the
following matrices are obtained

PL =

[

1.6662 −1.0249
−1.0249 1.9645

]

KL =
[

0.7830 0.4364
]

The ellipsoid E(PL) is therefore robust invariant under the control law
u = σ(KLx).

The proposed algorithm to design the saturated controller begins with
the calculation of set ΓM(λ), where the contraction factor is taken as
λ = 0.98. The obtained sequence of sets CM

j (λ) is shown in figure 6.1

where it can be seen that it converges to a polyhedral set ΓM(λ).

Using this polyhedron as initial set, the iterative procedure to com-
pute the gain matrix K is executed. This requires the solution of an LMI
optimization problem at each iteration. In two iterations the algorithm
converges to the solution. The obtained Lyapunov matrix P and con-
troller gain matrix K are the following:

P =

[

0.6957 −0.3541
−0.3541 1.1287

]

K =
[

1.2154 0.7872
]

The sequence of sets Ĉj and ellipsoids E(P) for each iteration are
shown in figure 6.2 in solid line; the maximal robust invariant ellipsoid
corresponding to the ellipsoid-based controller law u = σ(KLx) is de-
picted in dashed line.

Figure 6.3 shows the robust SNS-invariant set obtained by means of
the proposed algorithm. This domain of attraction is compared with the
maximal robust invariant ellipsoid obtained with a non-saturated linear
control law. As it can be observed, the new synthesis approach clearly
improves the results obtained when the controller is calculated by means
of non-saturated control laws.
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−3 −2 −1 0 1 2 3
−3

−2

−1

0

1
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3

Figure 6.1: Sequence of sets CM
j (λ)

−1.5 −1 −0.5 0 0.5 1 1.5
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0
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Figure 6.2: Sequence of sets Ĉj and ellipsoids E(P)
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Figure 6.3: Robust SNS-invariant set

6.9 Conclusions

In chapters 4, a new method to obtain a conservative aproximation of
the domain of attraction was presented. This approximation includes the
estimation obtained by means of an LDI that it was shown in chapter
3. In this chapter it is shown how saturated control laws yield to greater
domain of attractions when polyhedric invariant sets are considered. That
is, the algorithm proposed in this chapter provides a controller with a
domain of attraction that contains any pre-specified ellipsoidal control
invariant set obtained by means of a non saturated control law.
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7.1 Introduction

The importance of Lur’e systems in the context of control theory stems
from the fact that different control schemes appearing in practical appli-
cations can be formulated using the Lur’e systems structure [49].

In this chapter, Lur’e systems in which the non-linearity appearing in
the feedback path has a piecewise affine nature will be analized.

The stability analysis of a Lur’e system can be done, for example, by

157
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means of Popov and circle criterions (see [53]). A novel approach to this
problem can be found in [31] where a procedure to compute invariant
ellipsoids for Lur’e systems with piecewise affine nonlinearity is given.

In this chapter, a new notion of invariance (LNL invariance) very re-
lated to the notion of SNS invariance presented in chapters 4 and 5 is
used. Based on its geometrical properties, a simple algorithm to obtain
the largest LNL-invariant set is proposed. LNL-invariance is a more con-
servative concept than traditional invariance, but its geometrical proper-
ties allows us to obtain a polyhedric estimation of the domain of attrac-
tion of the non-linear system. It is shown that any contractive domain of
attraction for the Lur’e system is included into the domain of attraction
provided by the application of the algorithm proposed in this chapter.

7.2 Problem statement

In chapter 4, the discrete-time system envolved was 4.1. This system can
be extended to the more general Lur’e systems.

Consider the following discrete-time Lur’e system:

{

xk+1 = Axk − Bφ(yk)
yk = Fxk

(7.1)

where xk ∈ IRn represents the state vector and yk = Fxk ∈ IR the
output of the system. The nonlinear function φ(·) is assumed to satisfy
the following conditions

(i) φ(y) is piecewise-affine.

(ii) φ(y) is a continuous odd function.

(iii) φ(y) is concave in IR+ (convex in IR−).

The following property characterizes all the functions φ(.) that satisfy
the previous assumptions.

Property 13 [31] The piecewise-affine function φ(y) is a continuous odd func-
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tion, concave in IR+ if and only if it can be expressed as

φ(y) =











































kNy − cN if y ∈ (−∞,−bN)
...

k1y − c1 if y ∈ [−b2,−b1]
k0y if y ∈ [−b1, b1)

k1y + c1 if y ∈ [b1, b2)
...

kNy + cN if y ∈ [bN , ∞)

, ∀y ≥ 0 (7.2)

where the scalars ki, i = 0, . . . , N, bi, i = 1, . . . , N and ci, i = 1, . . . , N
satisfy,

0 < b1 < b2 < . . . < bN

k0 > k1 > k2 > . . . > kN

ci =

{

(k0 − k1)b1 if i = 1
ci−1 + (ki−1 − ki)bi if 2 ≤ i ≤ N

See figure 7.1 for an example of piecewise-affine concave in IR+ func-
tion with N = 3.

Note that the results presented in this chapter can also be applied to
systems of the form:

xk+1 = Âxk − B̂φ̂(yk)

where φ̂(·) is an odd piecewise-affine function convex in IR+ (it suffices
to define φ(·) = −φ̂(·), A = Â and B = −B̂).

7.3 Analysis of the non-linear function

In the following some properties of function φ(·) are presented. For that
purpose the following definition is introduced.

Definition 36 Given the piecewise-affine odd function:

φ(y) =



















k0y if y ∈ [0, b1)
k1y + c1 if y ∈ [b1, b2)

...
kNy + cN if y ∈ [bN, ∞)

, ∀y ≥ 0,

the odd functions φi(y), i = 1, . . . , N are defined as:

φi(y) =

{

k0y if y ∈ [0, di)
kiy + ci if y ∈ [di, ∞)

, ∀y ≥ 0, (7.3)
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c1

c2

c3

b1 b2 b3
y

φ(y)

φ(y)

k0y

k0y k1y + c1
k2y + c2

k3y + c3

−c1

−c2

−c3

−b1−b2−b3

k1y − c1
k2y − c2

k3y − c3

Figure 7.1: An example of a piecewise-affine concave in IR ∗ + function
φ(·).
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where di =
ci

k0 − ki
, i = 1, . . . , N.

Note that they are define in IR+ for clarity, but as long as they are
odd functions, they are defined in all IR. That is, φ(x) = −φ(−x) and
φi(x) = −φi(−x) for i = 1, . . . , N.

Figure 7.2 depicts functions φi(·), i = 1, . . . , 3 for the function φ(·)
corresponding to figure 7.1.

c1

d1
y

φ(y)

φ1(y)

c2

d2
y

φ(y)

φ2(y)

c3

d3
y

φ(y)

φ3(y)

Figure 7.2: Three φi(·) functions related to the previous φ(·) function.

The following lemma shows how function φ(·) can be expressed in
terms of functions φi(·), i = 1, . . . , N.

Lemma 7 [31] Suppose that φ(·) is an odd piecewise-affine function concave in
IR+. Then:

φ(y) = min
1≤i≤N

φi(y), ∀y ≥ 0

φ(y) = max
1≤i≤N

φi(y), ∀y < 0

Proof :

The proof comes from the convex property of the φ(·) function. Firstly the proof
will show that ∀y ≥ 0, φ(y) = φi(y) for some i ≤ N, later it will be shown that
there is no j such that φj(y) < φ(y).

Let x ≥ 0 ∈ IR, j ≤ N such that bj ≤ x ≤ bj+1, then, taking in notice that
bi ≥ di, the equation φ(y) = kiu + ci = φj(y) holds.
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In the other hand, let us suppose that there exists x ∈ IR and j ≤ N such
that bj ≤ x ≤ bj+1, and φj(x) < φ(x). If x ≤ dj, by the definition of φj(·),
φj(x) = k0x, that is a line tangent to φ(y) function for all y ∈ [0, b1], therefore,
by the convexity property of φ(·), φ(x) ≤ φj(x). Otherwise, if x > dj, the value
of φj(·) is defined as φj(x) = kjx + cj, that is a line tangent to φ(y) function
for all y ∈ [bj, bj+1] (or y ∈ [bN , ∞] if j = N), and, by the convexity property of
φ(·), φ(x) ≤ φj(x).

In other words, φ(x) ≤ φj(x), which contradicts φj(x) < φ(x). Therefore,
φ(x) ≤ φj(x) for all j = 1, . . . , N.

Similar analysis can be done if y < 0 and this proves the claim.

The previous lemma can also be justified from a graphical point of
view (see figure 7.2). It can be observed in that figure that φ(·) can be
obtained from the minimum of φ1(·), φ2(·) and φ3(·).

7.4 The LNL-invariance notion

The SNS-invariance notion has been presented in chapter 4. This con-
cept can be extended to LNL-invariance. This new notion of invariance is
stronger than the classical one. However, the LNL-invariance enjoys from
a number of geometrical properties that makes it possible the computa-
tion of the greatest LNL-invariance set by means of a simple algorithm.
Moreover, as it will be shown in this later in this chapter, every contrac-
tive convex set for the non-linear system under study is contained into
the greatest LNL-invariant set provided by the proposed algorithm.

Definition 37 Consider system xk+1 = Ax − Bφ(Fx) and let function φ(·) be
defined as in equation (7.2), f (x) and fL(x) are defined as:

f (x) = Ax − Bφ(Fx)
fL(x) = Ax − Bk0Fx

(7.4)

The notion of LNL-invariance is introduced in the following defini-
tion:

Definition 38 A set Ω is said to be LNL-invariant for system xk+1 = Ax −
Bφ(Fx) if x ∈ Ω implies:

f (x) = Ax − Bφ(Fx) ∈ Ω

fL(x) = Ax − Bk0Fx ∈ Ω
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This concept is stronger than simple invariance, that is, if Ω is LNL-
invariant it is also invariant, but a invariant set may not be LNL-invariant.

LNL stands for Linear and Non− Linear. Note that the new constraint
fL(x) ∈ Ω added to LNL-invariance is not a very strong condition as there
is a neighbourhood of the origin where f (x) equals fL(x).

The next definition shows the admissible sequence concept. This con-
cept is similar to one defined on definition 12 on chapter 3 or definition
24 on chapter 4 but adapted to this special case of m = 1.

Definition 39 It is said that S0, S1, . . . , Sk is an admissible sequence if Si ∈
{1,−1}, i = 0, . . . , k.

Definition 40 Given x and S ∈ {1,−1}, function G(x, S) is defined as follows,

G(x, S) =

{

f (x) if S = 1
fL(x) if S = −1

Definition 41 It is said that x belongs to the LNL-domain of attraction of sys-
tem xk+1 = Ax − Bφ(Kx) if the recursion:

xk+1 = G(xk, Sk), x0 = x

converges to the origin for every admissible infinite sequence {S0, S1, S2, . . .}.

7.4.1 The one step function

Definition 42 Given a set Ω, the one step function for system xk+1 = Axk −
Bφ(Fxk) is defined as,

Q(Ω) = { x : Axk − Bφ(Fxk) ∈ Ω }. (7.5)

Given functions φi(·), i = 1, . . . , N, defined as in equation (7.3), sets
Qi(·), i = 1, . . . , N are defined as:

Qi(Ω) = { x : Ax − Bφi(Fx) ∈ Ω }.

Q(·) is a non-convex operator, hence, it is very difficult to operate due
to the computational caracterization method. To avoid this problem, a
conservative operator QLNL(·) will be used,

QLNL(Ω) = {x : such that Ax − Bφ(Fx) ∈ Ω

and Ax − Bk0Fx ∈ Ω}.
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Although this operator is non-convex at first glance due to the non
convexity function φ(·), the following theorem will show that it is, in fact,
convex.

The convexity theorem consists in showing that QLNL(·) operator is in
fact the same than a new convex operator P(·).

Definition 43 Let Ω be a polyhedrical set, i.e. Ω = {x : Hx ≤ g}. The
operators Pi(·) and P(·) are defined as,

Pi(Ω) = {x : such that H(A − Bk0F)x ≤ g
H(A − BkiF)x ≤ g + |ci HB|}

P(Ω) =
N
⋂

i=1
Pi(Ω).

The following lemma will be used to prove that property,

Lemma 8 Every φi(·) defined like 7.3 has the following property,

aφi(b) ≤ max(ak0b, akib − |aci |)

Proof :

There are two different possibilities.

If |b| ≤ di, then the value of φi(b) = k0b, hence, the lemma holds.

Otherwise, if |b| > di, it can be obtained φi(b) = kib + sign(b)ci where
ki < k0 and ci > 0. Note that ci > 0 is a direct consequence of continuous
condition of 7.3 and that di ≥ 0.

There are now four different possibilities:

• a > 0 and b > di. The value is aφi(b) = akib + aci < ak0b. Note that
k0b ≥ kib + ci, ∀b > di due to concave definition of 7.3.

• a > 0 and b < −di. The value is aφi(b) = akib − aci = akib − |aci |.

• a < 0 and b > di. The value is aφi(b) = akib + aci = akib − |aci|.

• a < 0 and b < −di. The value is aφi(b) = akib − aci < ak0b.

For all cases the lemma holds.
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Following theorem shows operators QLNL,i(·) and Pi(·) are equivalent
with some conditions.

Theorem 14 Let Ω be a polyhedrical set in the form Ω = {x : Hx ≤ g}. x
belongs to QLNL,i(Ω) if and only if x belongs to Pi(Ω).

Proof :

Let us suppose that there exists a value of x 6∈ QLNL,i(Ω) such that x ∈
Pi(Ω), that is, there exists a value of j such that Hj(Ax − Bφi(Fx)) ≤ gj.
The direct part of the proof consists in showing that x 6∈ Pi(Ω).

Using the lemma 8,

Hj(Ax − Bφi(Fx)) ≤
≤ HjAx + max(HjBk0Fx, HjBkiFx − |HjBci|).

There are two possible cases. If HjBk0Fx > HjBkiFx − |HjBci|, then

gj < Hj(Ax − Bφi(Fx)) ≤
≤ HjAx + HjBk0Fx = Hj(A − Bk0F)x.

This contradicts that H(A − Bk0F)x ≤ g in the definition of P(Ω).

In case that HjBk0Fx < HjBkiFx − |HjBci|, the previous expression
leads to,

gj < Hj(Ax − Bφi(Fx)) ≤ HjAx + HjBk1Fx − |HjBci|,

that contradicts that H(A − Bk1F)x ≤ g + |ci HB| in the definition of
Pi(Ω).

There is no x 6∈ Qi(Ω) such that x ∈ Pi(Ω). That proves the first part
of the claim.

To conclude the proof it will be shown that QLNL,i(Ω ⊆ Pi(Ω). That
is, due to the fact that − |ciHB| � HBφ(Fx),

HAx − |ci HB| � H(Ax − Bφ(Fx)) � g.



166 CHAPTER 7. LNL INVARIANCE FOR LUR’E SYSTEMS

The equality between QLNL,i(·) and Pi(·) operators has been shown.
This property is also hold for QLNL(·) and P(·) operators, and will be
shown in the theorem 15. Prior to this, a new lemma are needed.

Lemma 9 Let Ω be a polyhedrical set in the form Ω = {x : Hx ≤ g}, then

QLNL(Ω) =
N
⋂

i=1

QLNL,i(Ω)

Proof :

First it will be shown that QLNL(Ω) ⊆
N
⋂

i=1
QLNL,i(Ω). Let us suppose that

x ∈ QLNL(Ω) and Fx ≥ 0. Then

Ax − Bφ(Fx) ∈ Ω

Ax − Bk0Fx ∈ Ω.

Note that by lemma 7, φ(Fx) ≤ φi(Fx) ≤ k0Fx for all i in 1, . . . , n.
From this and the fact that Ω is a convex set, it can be shown that

Ax − Bφi(Fx) ∈ Ω,

for all i = 1, . . . , n. That is, x ∈ QLNL,i(Ω).

To prove that
N
⋂

i=1
QLNL,i(Ω) ⊆ QLNL(Ω) let us suppose that x ∈

N
⋂

i=1
QLNL,i(Ω)

and Fx ≥ 0. Let j be such that

φj(Fx) = min(φi(Fx) : i ∈ 1, . . . , N).

then as x ∈ QLNL,j(Ω), it is obtained that

Ax − Bφi(Fx) = Ax − Bφ(Fx) ∈ Ω.

Therefore this and the fact that Ax−Bk0Fx ∈ Ω leads to x ∈ QLNL(Ω),
that proves the claim.

Similar analysis can be made if Fx < 0.
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Theorem 15 Let Ω be a polyhedrical set in the form Ω = {x : Hx ≤ g}. x
belongs to QLNL(Ω) if and only if x belongs to P(Ω).

Proof :

The proof is direct application of theorem 14, previous lemma and defi-
nition of P(·).

7.5 LNL-domain of attraction

In this section, it is proposed a recursion and shown it properties that
allows to create an algorithm to obtain an LNL-invariant set that it is
also LNL-domain of attraction. This invariant set is cartacterized by a
polyhedral.

Theorem 16 Denote L(F) the region of linear behaviour of system 7.1, that is,
L(F) = {x ∈ IRn : |Fx| ≤ b1}. Suppose that Φ ∈ L(F) is an invariant set
for the asymptotically stable system x+ = (A − BF)x with non zero volume.
Denote now C0 = Φ and consider the following recursion:

Ck+1 = QLNL(Ck).

Then:

1. Ck for all k ≥ 1 is a convex polyhedron.

2. Ck is a LNL-invariant set and belongs to the LNL-domain of attraction of
system 7.1, ∀k ≥ 0.

3. The sequence {C0,C1, . . .} converges to the LNL-domain of attraction of
system 7.1.

4. The LNL-domain of attraction of system 7.1 is a convex set.

Proof :
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1. This is inferred to the fact that C0 is a convex polyhedron and theo-
rem 16. Note that in the recursion law, the QLNL(·) operator is used,
QLNL(·) = P(·) by theorem 16 and P(·) is a convex operator.

2. Suppose that Ck is an LNL-invariant set and belong to the LNL-
domain of attraction. Note that, by LNL-invariant set properties,
Ck ⊆ QLNL(Ck), that is, Ck ⊆ Ck+1. Therefore, Ck+1 is an LNL-
invariant set.

Let us suppose that x ∈ Ck+1, using the recursion it is obtained that
x+ ∈ Ck, for systems 7.1 and

{

xk+1 = Axk − Bmini(φi(yk)) = Ax + Bφ(yk)
yk = Fxk

.

Therefore, by the supposition that Ck belongs to the LNL-domain
of attraction, it is inferred that Ck+1 belongs to the LNL-domain of
attraction.

This and the fact that C0 is an LNL-invariant set and belongs to the
LNL-domain of attraction holds the claim.

3. Suppose that x belongs to the LNL-domain of attraction. Then as C0

has a non zero volume, there exists p such that all recursions xk+1 =
Gk(xk) where Gk defined in 41 are such that xp ∈ C0. Therefore,
x ∈ Cj, ∀j ≥ p.

4. This is directly inferred of the fact that Ck,∀k ≥ 0 is a convex set,
and that the sequence {C0, C1, . . .,} converges to the LNL-domain
of attraction.

The recursion presented in the previous theorem, requires an invariant
set of the linear system x+ = (A − Bk0F)x, included in L(F). This admis-
sible invariant set can be obtained by standard algorithms (see [20, 17]).

7.6 Numerical example

In this section a LNL-invariant set for a numerical example is obtained.
This set will be compared with a new approach shown in [32].
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Let us consider the system x+ = Ax − Bφ(Fx) with

A =

[

1 1
0 1

]

, B =

[

0.5
1

]

,

F = [−0.6167 − 1.2703] .

(7.6)

and φ(·) function defined as

φ(y) =























−1, if y ∈ (−∞,−1.5)
0.5y − 0.25, if y ∈ [−1.5, 0.5)

y, if y ∈ [−0.5, 0.5)
0.5y + 0.25, if y ∈ [0.5, 1.5)

1, if y ∈ [1.5, ∞)

. (7.7)

Figure 7.3 shows the φ(·) function.

0.25

0.5 y

1

1.5

φ(y)

Figure 7.3: φ(·) function of the example

Theorem 7.5 shows a sequence of polihedrals that are both LNL-
invariant set and LNL-domain of attraction. This sequence has been cal-
culated for system 7.6 and it is shown on figure 7.4.

In that figure, the inner set is a invariant set of the linear system that
it is in the linear behaviour of the control law, and the outside set is the
LNL-domain of attraction of the system.

This is not the only method to determinate invariant sets for piecewise-
affine feedback systems. In [32], the authors propose an algorithm to de-
terminate ellipsodial invariant sets for saturated feedback systems that
had been generalized in [12] to this type of systems. The polyhedrical set
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Maximal LNL−invariant set of the system
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Figure 7.4: LNL-invariant set of the system

shown in this chapter is always greater than the ellipsodial, but at the risk
of a greater caracterization complexity.

Figure 7.5 shows the comparison between the ellipsodial invariant set
proposed in [32] (the inner region), and the polyhedrical LNL-invariant
set proposed (the outer polyhedrum).

−15 −10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

8
Comparison between two invariant sets
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2

Figure 7.5: LNL-invariant set and ellipsodial invariant set.

In order to obtain an invariant set for this class of Lur’e systems, it will
be firstly considered the simplified scenario in which the nonlinearity
of the feedback path is given by means of an odd piecewise-function,
concave in IR+, consisting of only two different slopes in IR+. That is, it
will be considered systems of the form:

{

xk+1 = Axk − Bφi(yk)
yk = Fxk

(7.8)
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where

φi(y) =

{

k0y if y ∈ [0, di)
kiy + ci if y ∈ [di, ∞)

, ∀y ≥ 0,

and φi(−y) = −φi(y).

Theorem 17 A convex set Ω scaled-invariant for system 7.1, that is, αΩ for all
0 < α ≤ 1 is an invariant set for system 7.1, if and only if Ω is also a scaled
invariant set for systems 7.8 for all i = 1, . . . , N.

Proof :

Let Ω be an convex scaled-invariant set for system 7.1. Let also β be

β = max(Fx : ∀x ∈ Ω).

and α be

α = min(
b1

β
, 1).

The definition of α is such that 0 < α ≤ 1, therefore, αΩ is an invariant set,
and |Fx| ≤ b1 for all x ∈ αΩ. This means that φ(x) = k0x for all x ∈ αΩ.
This linear feedback function can be extended thoughout a change of
variable to Ω, that is, Ω is an invariant set for closed loop system

{

xk+1 = Axk − Bk0yk

yk = Fxk

(with similar analysis γΩ for all 0 < γ ≤ 1 is also an invariant set) .

As it has been shown in this section, k0x ≥ φi(x) ≥ φ(x) for x ∈ IR,
and due to the convexity and invariance of Ω set, Ω (and therefore γΩ

for all 0 < γ ≤ 1) is also invariant for system 7.1, that holds the right part
of the claim.

The left part of the proof is simple, let Ω be an scaled invariant set for
all systems 7.8 for all i ∈ 1, . . . , N, then Ω is also a scaled invariant for the
system

{

xk+1 = Axk − Bmini(φi(yk)) = Ax − Bφ(yk)
yk = Fxk

,

that holds the claim.
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This invariant set is widely used in order to use the Minkowski func-
tion of Ω as a Lyapunov function of the system [6]. In this case a new
λ-contractive condition must be assumed, that can be easily added to this
formulation.

7.7 Conclusions

In this chapter the stabilization of a piecewise-affine Lur’e system has
been considered. A simple algorithm for determining an estimation of the
domain of attraction and an invariant set of the system is provided. It has
also been exposed that invariant sets obtained by means of this algorithm
belong to an special and more conservative class of invariants denoted
LNL-invariants. This invariants are convex and the conservativeness can
be reduced with some assumptions on the system.
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8.1 Introduction

In the context of nonlinear Model Predictive Control (MPC), the stable and
admissible closed-loop behavior is typically based on the addition of a
terminal constraint and cost [44, 39]. The terminal constraint is chosen to
be an admissible robust control invariant set of the system. The size of

173
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this control invariant set determines, in much cases, the feasibility region
of the nonlinear MPC controller [40]. It is shown in [40] that the domain
of attraction of MPC controllers can be enlarged by means of a sequence
of controllable (not necessarily invariant) sets.

The stability analysis of piecewise affine systems plays an important
role in the context of hybrid systems control. This is mainly due to the fact
that piecewise affine systems can model a broad class of hybrid systems
(see [26, 46]). Therefore, it is of paramount relevance in the context of hy-
brid MPC the computation of controllable sets for this class of nonlinear
systems.

The estimation of the domain of attraction of piecewise affine systems
has been addressed by a number of authors. Piecewise quadratic Lya-
punov functions for hybrid systems have been proposed in [35]. In [34] a
quadratic estimate of the domain of attraction is obtained. A polyhedric
approach is presented in [36].

It is well-known (see again [36]) that the computation of the maxi-
mal robust control invariant set for a piecewise affine system requires a
computational complexity that grows exponentially with the number of
partitions of the state space. In this chapter an algorithm that circum-
vents the huge computational complexity associated to the obtainment of
the maximal robust control invariant set is provided. A two-phase algo-
rithm is proposed. In the first phase of the algorithm, a polyhedric outer
bound of the maximal control invariant set for the piecewise affine sys-
tem is obtained. This outer estimation is used, in the second phase of
the algorithm, to obtain a robust control invariant set for the system (not
necessarily the maximal one). The algorithm is based on inner and outer
approximations of a given non-convex set.

8.2 Problem Statement

Let us suppose that X is a bounded convex polyhedron. Suppose also
that the convex polyhedrons Xi, i = 1, . . . , r form a partition of X. That
is,

X =
r
⋃

i=1

Xi, Xi

⋂

Xj = ∅ if i 6= j

We consider the following piecewise affine system,

x+ = f (x, u, w) = Aix + Biu + Eiw + qi if x ∈ Xi (8.1)
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where x ∈ IRn is the state vector, x+ denotes the successor state; u ∈
U = { u ∈ IRm : ‖u‖∞ ≤ umax } is the control input; w denotes a
bounded additive uncertainty: w ∈ W = { w ∈ IRnw : ‖w‖∞ ≤ ǫ }.

The objective of this chapter consists in providing a procedure to ob-
tain a convex outer approximation of the maximal robust control invariant
set of the piecewise affine system (denoted C∞). This outer bound has a
number of practical and relevant applications,

(i) It captures the geometry of C∞ and makes it easier the computation
of a robust control invariant set for the system (this use is explored
in section 8.5).

(ii) The constraints that define the outer bound can be included as hard
constraints in an hybrid MPC scheme. Moreover, the inclusion of
the afore mentioned constraints can be used to improve the convex
relaxations of the nonlinear optimization problems that appear in
the context of hybrid MPC.

(iii) The outer bound can be used as a measure of the controllable region
of an hybrid system. This can be used in the design of the hybrid
system itself.

(iv) The obtained convex region can be also used to induce a control
Lyapunov function.

In order to present the results of this chapter it is important to refer to
the notion of one step set [36] applied to this specific family of systems.
This is an extension of the general definition of Q(·) given in definition 9
on chapter 2.

Definition 44 (one step set) Given a region Ω, and the system x+ = f (x, u, w),
the one step set is given by:

Q(Ω) = { x ∈ X : there is u ∈ U such that f (x, u, w) ∈ Ω, ∀w ∈ W }

Based on this definition, the maximal robust control invariant set can
be obtained by means of the following algorithm.

Algorithm 1

(i) Set the initial region C0 equal to X, k = 0.

(ii) Ck+1 = Q(Ck).
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(iii) If Ck+1 = Ck then Ck is the greatest control invariant set. Stop. Else,
set k = k + 1 and return to step (ii).

Note that the evolution of any initial condition belonging to set Ck

can be robustly maintained in X at least k sample times. Therefore,
C∞ = lim

k→∞
Ck constitutes the set of initial conditions where the system

is robustly controllable in an admissible way, that is, the maximal invari-
ant set. In order to apply previous algorithm to a piecewise affine system
the operators Qi(·), i = 1, . . . , r are defined:

Definition 45 Given a region Ω, set Qi(Ω) denotes the following set,

Qi(Ω) = { x ∈ Xi : ∃u ∈ U such that Aix + Biu + Eiw + qi ∈ Ω, ∀w ∈ W }.

The following well-known properties allow us to compute Q(Ω) for a
piecewise affine system [36]:

Property 14 Given a convex polyhedron Ω, set Qi(Ω) is a convex polyhedron.

Proof :

Definition 45 can be written in this way,

Qi(Ω) = { x ∈ Xi : ∃u ∈ U such that Aix + Biu + qi ∈ Ω ∼ EiW },

where ∼ operator is the Pointriagin difference defined in notation 7 of chapter 6.

Note that if Ω is a convex polihedron and W is also a convex polihedron,
Ω ∼ W is also a convex polihedron (see proof of property 12 item 2).

Note also that { x ∈ Xi, u ∈ U : Aix + Biu + qi ∈ Ω ∼ EiW } is a convex
polihedron in dimension IRn+m, therefore the projection of this set in Xi is also a
convex polihedron in dimension IRn.

Property 15 Given a convex polyhedron Ω: Q(Ω) =
r
⋃

i=1
Qi(Ω).

Proof :

This property stems from the fact that X =
r
⋃

i=1
Xi and for all Xi there exist a

Qi(·) operator.
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It is possible, in principle, to compute the maximal robust control in-
variant set C∞ by means of algorithm 1. However, it is well known (see
for example [36]) that the computational burden of algorithm 1 grows
exponentially with the number of regions. Moreover, the complexity of
the representation of each of the obtained sets Ck also grows exponen-
tially with k. In this chapter we propose an algorithm (based on convex
outer (and inner) approximations of the one step set) that can be used
to compute a convex robust control invariant set for the piecewise affine
system.

8.3 Complementary of Q(Ω)

The outer and inner approximations presented in this chapter for Q(Ω)
rely on the computation of the complementary of Q(Ω). In this section
it will be shown how to compute the complementary of Q(Ω) in X. For
that purpose, the following definitions are required:

Definition 46 Given set Ω, Qc(Ω) denotes the complementary of Q(Ω) in X.
That is, Qc(Ω) = { x ∈ X : x 6∈ Q(Ω) }.

Definition 47 Given set Ω, Qc
i (Ω) denotes the complementary of Qi(Ω) in Xi.

That is, Qc
i (Ω) = { x ∈ Xi : x 6∈ Qi(Ω) }.

The following property stems directly from previous definitions,

Property 16 Given set Ω: Qc(Ω) =
r
⋃

i=1
Qc

i (Ω).

Therefore, in order to compute Qc(Ω) it suffices to compute Qc
i (Ω),

i = 1, . . . , r. The following property shows how to compute Qc
i (Ω).

Property 17 Suppose that Qi(Ω) = { x ∈ Xi : Gix ≤ gi }, where Gi ∈
IRnx×Li and gi ∈ IRLi . Then,

Qc
i (Ω) =

Li
⋃

j=1

Si,j(Gi, gi)

where Si,j(Gi, gi) = { x ∈ Xi : Gi(j)x > gi(j), Gi(l)x ≤ gi(l) for l =
1, . . . , j − 1 }, and Gi(j) is the j-eseme row of Gi and gi(j) is the j-eseme com-
ponent of gi..
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Proof :

Suppose that x ∈ Qc
i (Ω). Then, by definition, x ∈ Xi and x 6∈ { x : Gix ≤

gi }. That is, from the constraints Gi(k)x ≤ gi(k), k = 1, . . . , Li there is at least
one of them that is not satisfied. Denote j the index corresponding to the first
inequality that is not satisfied. Then, Gi(j)x > gi(j) and Gi(l)x ≤ gi(l) for
l = 1, . . . , j − 1. That is, x ∈ Si,j(Gi, gi). From this it is inferred that Qc

i (Ω) ⊆
Li
⋃

j=1
Si,j(Gi, gi). On the other hand, it is easy to see that Si,j(Gi, gi) ⊆ Qc

i (Ω),

j = 1, . . . , Li. That is, Qc
i (Ω) ⊇

Li
⋃

j=1
Si,j(Gi, gi).

8.4 Outer bound of the maximal robust control

invariant set

A procedure to obtain an outer bound of the maximal robust control
invariant set is proposed in this section. The outer bound is obtained
in a recursive way. Suppose that Ω is an outer bound of C∞, then a
sharper outer bound is obtained intersecting Ω with a number of semi-
planes of the form { x : c⊤x ≤ 1 }. These semi-planes are obtained in
such a way that they do not exclude any point contained in C∞. That is,
C∞ ⊆ Ω

⋂{ x : c⊤x ≤ 1 }. The construction of such semi-planes relies
on the notion of outer supporting constraint:

Definition 48 Given sets S and R, we say that { x : c⊤x ≤ 1 } is an
outer supporting constraint of S over R if c is the solution of the following
maximization problem

max
c,ρ

ρ

s.t. c⊤x > 1, ∀x ∈ 1

ρ
S

c⊤x ≤ 1, ∀x ∈ R

As it will be shown later, the algorithm that computes the outer bound
of C∞ relies on the computation of outer supporting constraints of each

of the subsets of Qc(Ω) over Q(Ω). Suppose that Qc(Ω) =
nc
⋃

j=1
Sj and
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Q(Ω) =
r
⋃

i=1
Ti where Sj, j = 1, . . . , nc and Ti, i = 1, . . . , r are polyhedrons;

then the following property allows us to compute an outer supporting

constraint of each subset Sj over Q(Ω) =
r
⋃

i=1
Ti by means of the solution of

a linear optimization problem. In this way nc outer supporting constraints
are obtained.

Property 18 Consider the polyhedron S = { x : Fx ≤ f } and the polyhe-
drons Tl = { x : Mlx ≤ ml }, l = 1, . . . , r. Suppose that the scalar ρ and the
vectors c, λ, and βl , l = 1, . . . , r satisfy the following constraints:

ρ > 0 (8.2)

λ ≥ 0 (8.3)

βl ≥ 0, l = 1, . . . , r (8.4)

ρ + f⊤λ < 0 (8.5)

−1 + m⊤
l βl ≤ 0, l = 1, . . . , r (8.6)

c + F⊤λ = 0 (8.7)

c − M⊤
l βl = 0, l = 1, . . . , r (8.8)

then

c⊤x > 1, ∀x ∈ 1

ρ
S (8.9)

c⊤x ≤ 1, ∀x ∈
r
⋃

l=1

Tl (8.10)

Proof :

First, inequality (8.9) will be proved. From constraints (8.2-8.3) it is inferred

that
λ

ρ
≥ 0. Taking now into account that

1

ρ
S = { x : ρFx ≤ f } it results

that

(

λ

ρ

)⊤
(ρFx − f ) ≤ 0, ∀x ∈ 1

ρ
S

From this:
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c⊤x − 1 ≥ c⊤x − 1 + λ⊤(Fx − f

ρ
) (8.11)

= (c + F⊤λ)⊤x − 1 − f⊤λ

ρ
, ∀x ∈ 1

ρ
S (8.12)

From constraints (8.7) and (8.5) it is inferred that c + F⊤λ = 0 and ρ +
f⊤λ < 0. Therefore, from equation (8.12) it is finally concluded that:

c⊤x − 1 ≥ −1 − f⊤λ

ρ
= −1

ρ
(ρ + f⊤λ) > 0, ∀x ∈ 1

ρ
S

c⊤x > 1, ∀x ∈ 1

ρ
S

In order to prove inequality (8.10) it suffices to show that

c⊤x ≤ 1, ∀x ∈ Tl, l = 1, . . . , r

Note that Tl = { x : Ml x ≤ ml }, l = 1, . . . , r. From this and constraint
(8.4) it is inferred that β⊤

l (ml − Mlx) ≥ 0, for all x ∈ Tl. Therefore:

c⊤x − 1 ≤ c⊤x − 1 + β⊤
l (ml − Mlx) (8.13)

= (c − M⊤
l βl)

⊤x − 1 + m⊤
l βl , ∀x ∈ Tl, l = 1, . . . , r (8.14)

From constraints (8.8) and (8.6) it is inferred that c − M⊤
l βl = 0 and −1 +

m⊤
l βl < 0. Therefore, from equation (8.14) it is finally concluded that:

c⊤x − 1 ≤ −1 + m⊤
l βl ≤ 0, ∀x ∈ Tl, l = 1, . . . , r

c⊤x ≤ 1, ∀x ∈
r
⋃

l=1

Tl.

8.4.1 Outer bound of the maximal control invariant set:

proposed algorithm

The following algorithm provides a convex polyhedron that serves as an
outer bound of the maximal robust control invariant set of a piecewise
affine system:
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Algorithm 2

(i) k = 0, Ĉ0 = X.

(ii) Given Ĉk = { x : Hx ≤ h }, obtain Ti = Qi(Ĉk), i = 1, . . . , r.

(iii) Obtain Qc(Ĉk) =
r
⋃

i=1
Qc

i (Ĉk) =
nc
⋃

j=1
Sj by means of property 17.

(iv) For every j = 1, . . . , nc obtain { x : c⊤j x ≤ 1 }, the outer supporting

constraint of Sj over Q(Ĉk) =
r
⋃

i=1
Ti. This can be achieved by means

of property 18.

(v) Ĉk+1 = Ĉk

nc
⋂

j=1
{ x : c⊤j x ≤ 1 }.

(vi) Go to step (ii).

Note that the algorithm can be finished when there is no significant
improvement of the outer bound. That is, when Ck is almost identical to
Ck−1.

Property 19 Each one of the polyhedrons Ĉk obtained by means of algorithm
2 constitutes an outer bound of the maximal robust control invariant set of the
piecewise affine system. That is, C∞ ⊆ Ĉk, for all k ≥ 0.

Proof :

Note that C∞ ⊆ X = Ĉ0. It suffices to show that C∞ ⊆ Ĉk implies C∞ ⊆ Ĉk+1.
Assume that C∞ ⊆ Ĉk. Then:

C∞ = Ĉk

⋂

C∞ = Ĉk

⋂

Q(C∞) ⊆ Ĉk

⋂

Q(Ĉk) (8.15)

By definition, the outer supporting constraints satisfy: c⊤j x ≤ 1, for all x ∈

Q(Ĉk) and for all 1 ≤ j ≤ nc. Therefore Q(Ĉk) ⊆
nc
⋂

j=1
{ x : c⊤j x ≤ 1 }. Thus,

from equation (8.15) it is finally inferred that:

C∞ ⊆ Ĉk

⋂

Q(Ĉk) ⊆ Ĉk

nc
⋂

j=1

{ x : c⊤j x ≤ 1 } = Ĉk+1.
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8.5 Inner approximation of the maximal robust

control invariant set

In this section a recursive procedure to obtain an inner bound of the
maximal robust control invariant set is proposed. The procedure uses
as initial approximation of C∞ the outer bound obtained by means of
algorithm 2. In this way, the geometry of C∞ is captured in some sense.
The construction of the inner approximation relies on the notion of inner
supporting constraint:

Definition 49 Given sets S and R, we say that { x : c⊤x ≤ 1 } is an
inner supporting constraint of S over R if c is the solution of the following
minimization problem

min
c,ρ

ρ

s.t. c⊤x > 1, ∀x ∈ S

c⊤x ≤ 1, ∀x ∈ 1

ρ
R

The following property (its proof is similar to the one of property 18)
allows to compute an inner supporting constraint of a polyhedron S over

Q(Ω) =
r
⋃

i=1
Ti by means of the solution of a linear optimization problem.

Property 20 Consider polyhedron S = { x : Fx ≤ f } and the polyhedrons
Tl = { x : Mlx ≤ ml }, l = 1, . . . , r. Suppose that the scalar ρ and the vectors
c, λ, and βl , l = 1, . . . , r satisfy the following constraints:

ρ > 0 (8.16)

λ ≥ 0 (8.17)

βl ≥ 0, l = 1, . . . , r (8.18)

1 + f⊤λ < 0 (8.19)

−ρ + m⊤
l βl ≤ 0, l = 1, . . . , r (8.20)

c + F⊤λ = 0 (8.21)

c − M⊤
l βl = 0, l = 1, . . . , r (8.22)

then
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c⊤x > 1, ∀x ∈ S (8.23)

c⊤x ≤ 1, ∀x ∈
r
⋃

l=1

1

ρ
Tl (8.24)

8.5.1 Robust control invariant set: proposed algorithm

The following algorithm serves to compute a robust control invariant set
for a piecewise affine system:

Algorithm 3

(i) k = 0,

(ii) Choose a contracting factor λ̃ ∈ (0, 1).

(iii) Make C̃0 equal to the outer approximation of C∞ obtained by means
of algorithm 2.

(iv) Given C̃k = { x : Hx ≤ h }, obtain Ti = Qi(λ̃C̃k), i = 1, . . . , r.

(v) Obtain Qc(λ̃C̃k) =
r
⋃

i=1
Qc

i (λ̃C̃k) =
nc
⋃

j=1
Sj by means of property 17.

(vi) For every j = 1, . . . , nc obtain { x : c⊤j x ≤ 1 }, the inner supporting

constraint of Sj over Q(λ̃C̃k) =
r
⋃

i=1
Ti. This can be achieved by means

of property 20.

(vii) C̃k+1 =
nc
⋂

j=1
{ x : c⊤j x ≤ 1 }.

(viii) If C̃k+1 ⊆ Q(C̃k+1) then C̃k+1 is a robust control invariant set. Stop.
Else, go to step (ii).

Note that algorithm 3 finishes only if C̃k+1 ⊆ Q(C̃k+1). This is the geo-
metrical condition of robust invariance [17]. That is, if algorithm 3 finishes
then a robust control invariant set is obtained. This set serves as an inner
approximation of C∞. It is not guaranteed that algorithm 3 converges to
a robust control invariant set. Note, however, that it can be shown that
each one of the obtained sets C̃k constitutes an inner approximation of
Ck. The proof of this statement is based on the fact that, by definition,

Qc(λ̃C̃k)
⋂{ x : c⊤j x ≤ 1 } = ∅. That is,

nc
⋂

j=1
{ x : c⊤j x ≤ 1 } ⊆ Q(λ̃C̃k).
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Proof :

First, inequality (8.23) will be proved. From the definition of S and
constraint (8.17) it is inferred that λ⊤(Fx − f ) ≤ 0, for all x ∈ S.

From this,

c⊤x − 1 ≥ c⊤x − 1 + λ⊤(Fx − f ) (8.25)

= (c + F⊤λ)⊤x − 1 − f⊤λ, ∀x ∈ S. (8.26)

From constraints (8.21) and (8.19) it is inferred that c + F⊤λ = 0 and
1 + f⊤λ < 0. Therefore, from equation (8.26) it is concluded that,

c⊤x − 1 ≥ −1 − f⊤λ = −(1 + f⊤λ) > 0, ∀x ∈ S,

c⊤x > 1, ∀x ∈ S.

In order to prove inequality (8.24) it suffices to show that

c⊤x ≤ 1, ∀x ∈ 1

ρ
Tl, l = 1, . . . , r.

From constraints (8.16) and (8.18) it is inferred that
βl

ρ
≥ 0, l = 1, . . . , r.

Taking now into account that
1

ρ
Tl = { x : ρMl x ≤ ml } it results that

(

βl

ρ

)⊤
(ml − ρMl x) ≥ 0, ∀x ∈ 1

ρ
Tl, l = 1, . . . , r.

From this,

c⊤x − 1 ≤ c⊤x − 1 + β⊤
l (

ml

ρ
− Ml x) (8.27)

= (c − M⊤
l βl)

⊤x − 1 +
m⊤

l βl

ρ
, ∀x ∈ 1

ρ
Tl, l = 1, . . . , r.(8.28)

From constraints (8.22) and (8.20) it is inferred that c − M⊤
l βl = 0 and

−ρ + m⊤
l βl ≤ 0, l = 1, . . . , r. Therefore, from equation (8.28) it is finally

concluded that,
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c⊤x − 1 ≤ −1 +
m⊤

l βl

ρ
=

1

ρ
(−ρ + m⊤

l βl) ≤ 0, ∀x ∈ 1

ρ
Tl , l = 1, . . . , r

c⊤x ≤ 1, ∀x ∈ 1

ρ
Tl, l = 1, . . . , r.

8.6 Numerical example

In this example, region X = { x : ‖x‖∞ ≤ 15 } is subdivided into the
subregions X1, X2 and X3. These subregions are defined as follows:

X1 = { x ∈ X : x1 − x2 ≤ 0 }

X2 = { x ∈ X : x1 − x2 > 0 and x1 + x2 ≥ 0 }

X2 = { x ∈ X : x1 − x2 > 0 and x1 + x2 < 0 }

Consider the following piecewise affine system:

x+ =















































[

1 1
0 1

]

x +

[

0
1

]

u +

[

1
0

]

w if x ∈ X1

[

1 1
0.5 1.5

]

x +

[

0
1

]

u +

[

1
0

]

w if x ∈ X2

[

1 −0.5
0 1.5

]

x +

[

1
1.5

]

u +

[

1
0

]

w if x ∈ X3

In this example it is assumed that U = { u ∈ IR : ‖u‖∞ ≤ 2 } and
W = { w ∈ IR : ‖w‖∞ ≤ 0.1 }. The contracting factor for algorithm 3
has been set equal to 0.95. In figure 8.1 the sequence of outer bounds Ĉk

is displayed. The most inner polyhedron is used in algorithm 3 as initial
guess for the obtainment of a robust control invariant set.

In figure 8.2 a sequence of sets C̃k leading to a robust control invariant
set is displayed. The most inner polyhedron is a robust control invariant
set for the piecewise affine system.
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Figure 8.1: Sequence of outer bounds Ĉk
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Figure 8.2: Sequence of sets C̃k leading to a robust control invariant set.
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8.7 Conclusions

In this chapter two approximation operators are introduced. They pro-
vide an outer and inner approximation of the one step set. Based on them,
two algorithms are presented. One of them obtains an outer approxima-
tion of the maximal robust control invariant set. The other one uses the
outer approximation to compute a sequence of inner approximations of
the maximal robust control invariant set. These sets are an extension of
control invariant sets for saturated systems or lure systems applied to
PWA systems.
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9
Conclusion

9.1 Overview . . . . . . . . . . . . . . . 189
9.2 Future lines of work . . . . . . . . 192

9.1 Overview

Most of the work shown in this thesis is related to the saturation func-
tion. Saturation is the most commonly analyzed non-linearity in control
engineering. All fisical controllers are saturated and many times this sat-
uration should be taken into account if controllers are supposed to be
working near the saturation. In the other hand, the domain of attraction
of a system is the set of states of the system for which the controller leads
the system to the origin (or in a generalized point of view to a set that
includes the origin). This set is very useful because it gives an idea of
the performance of the controller, the bigger domain of attraction is, the
greater the fraction of the state space that can be controlled to the origin.

The exact domain of attraction of linear systems subject to control sat-
uration is usually very difficult for systems in continuous time and very
computational time demanding for discrete time systems. Even more,
the domain of attraction of these systems is non-convex in general and

189
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the characterization of this set is complex. Due to these difficulties, an
estimation of the domain of attraction set is usually obtained [29, 33].

For these reasons, the estimation of the domain of attraction of linear
systems subject to control saturation has been studied in the last years,
see for example, [23, 4, 29, 33] and references therein.

This work describes new methods to obtain estimations of the domain
of attraction (and invariance sets) for linear systems subject to control sat-
uration. It also extends this new methods to different family of systems,
as Lur’e systems or piecewise affine systems. These methods are divided
in methods to be applied on continuous time systems, and methods to be
applied on discrete time systems. Note that the estimation of the domain
of attraction for continuous time systems obtained in the literature are
ellipsoids or based in ellipsoidal sets. However, estimations of the do-
main of attraction for discrete time systems can be ellipsoidal based sets
or polihedrical sets. Ellipsoidal sets are usually easily characterized but
polihedrical sets are larger sets (ellipsoidal sets are included in polihedri-
cal sets if enough computation time is provided).

One of the most relevant approaches to the analysis of saturated sys-
tems is based on a linear difference inclusion (LDI) of the saturation non-
linearity. For example a linear difference inclusion is used to obtain an
invariant ellipsoid in [24, 33] for this type of systems. In [41] this ap-
proach is also used to obtain a polyhedral invariant set for a saturated
system.

The domain of attraction of a given saturated system can be approx-
imated by means of an ellipsoid. In [33] and [29], the authors present a
Linear Difference Inclusion for a linear saturated system. Based on that LDI,
the authors also propose how to choose simultaneously both the matrix
H, that characterizes the LDI, and the greatest ellipsoid that is invariant
under the corresponding LDI.

This work presents an unified approach to the polyhedric estimation
of the domain of attraction of a saturated linear system based in [29].
This generalization provides a polyhedric estimation that it is less conser-
vative but at the expense of an increased representation complexity and
the expense of computing time.

Moreover, given the obtained LDI, it is characterized the maximum
domain of attraction provided by the LDI (denoted H-domain of attrac-
tion). This H-domain of attraction is an estimation of the domain of at-
traction of the nonlinear system. And under mild conditions, the pro-
posed algorithm obtains the exact H-domain of attraction of the system.

This H-domain of attraction is analyzed in chapter 3. As continuous
time systems are analyzed in [29] and discrete time systems are analyzed
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in this chapter, no more LDI method analysis are studied.

Estimations of the domain of attraction based in a LDI have an arti-
ficial limitation. This set must be included in L(H) set (see Notation 2).
A new concept can be used to overpass this limitation. This concept is
called SNS and it is presented in chapter 4 for discrete time systems and
in chapter 5 for continuous time systems.

SNS concept are based only in geometrical properties, and in chapter
4 it is presented a simple algorithm to estimate the domain of attraction
of a discrete time saturated linear system. Any domain of attraction ob-
tained by means of an LDI representation of the system is included in the
estimation provided by this proposed algorithm.

LDI methods to obtain an estimation of the domain of attraction for
continuous time saturated systems shown in [29] are based in the solu-
tion of a optimization problem subject to Linear Matrix Inequalities (LMIs),
constraints. In chapter 5 an optimization problem subject to LMIs con-
straints with the SNS method is presented. Estimations of the domain
of attraction based in a LDI are feasible sets in the optimization problem
with the SNS method, and in concordance, the estimation of the domain
of attraction is greater than the one obtained by means of an LDI ap-
proach

As far as SNS methods are presented for discrete time and continuous
time saturated systems, chapters 4 and 5 fills an objective of this work, the
design of a new concept to be applied in linear systems with saturated
controller that yields better results than LDI methods.

In chapter 6, the SNS methods are extended to robust synthesis. It is
provided an algorithm to determinate what K provides the best estima-
tion of the domain of attraction in the controller

u = σ(Kx)

where σ(·) is the saturation function.

The algorithm presented provides a robust estimation of the domain
of attraction, that is, the target system is the discrete time system

x+ = Ax + Bu + Eθ

where x+ is the successor of the state and θ are the constrained uncer-
tain. This algorithm uses the SNS method shown in chapter 4 to get better
estimations of the domain of attraction than provided by LDI methods.

Chapter 7 applies SNS methods to L′ure systems. Therefore, it shows
an extension to a different non-linearity of the controller. There exists in
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the literature a LDI based estimation of the domain of attraction. The
estimation obtained by means of the algorithm shown in this chapter
improves the obtained by means of the LDI.

This work finishes with an algorithm to obtain estimations of the do-
main of attraction to robust piecewise affine systems. This algorithm is
presented in chapter 8.

9.2 Future lines of work

SNS methods has multiple possibilities that go out of the scope of this
work. Some of them are:

• Systems analyzed in chapters 4 and 5 are not robust. Robustness
can be included in a similar way that used in chapter 6.

• SNS methods are related to saturated linear controllers. This satura-
tion function is an even function. Some modifications can be made
to the SNS methods to manage non simetrical saturation functions
and even different non-linearities than saturation. Union of this
non-linearities can be addressed to obtain estimations of the domain
of attraction for a different class of piecewise affine systems.

• SNS methods are only applied for obtaining estimations of the do-
main of attraction (and/or invariant sets). However this tool is even
more powerful, and can also be applied in MPC controllers or non-
linear controllers.
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Appendix

A.1 Schur’s complement . . . . . . . . 197

In this appendix it will be shown some lemmas that have not been in-
cluded in previous chapter for clarity.

Lemma 10 Given a ∈ IR and y ∈ IR,

aσ(y) ≤ max {ay,−|a|}

Proof :

1. |y| ≤ 1: max {ay,−|a|} = ay = aσ(y)

2. |y| > 1 and ay ≥ 0: max {ay,−|a|} = ay ≥ a sign (y) = aσ(y)

3. |y| > 1 and ay < 0: max {ay,−|a|} = −|a| = a sign (−a) =
a sign (y) = aσ(y)
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Lemma 11 Given two sets {a1, a2, . . . , am}, and {b1, b2, . . . , bm}, V like defini-
tion 6, and Sc like in notation 1, both in chapter 2,

m

∑
i=1

max {ai , bi} = max
S∈V

{ ∑
i∈Sc

ai + ∑
i∈S

bi}

Proof :

Let Ŝ ⊆ V the subset such that, for all i ∈ Ŝ, bi ≥ ai , and i ∈ V , i 6∈ Ŝ, ai > bi.
Then

m

∑
i=1

max {ai, bi} = ∑
i∈Ŝc

ai + ∑
i∈Ŝ

bi.

It can be concluded that

∑
i∈Ŝc

ai + ∑
i∈Ŝ

bi = max
S∈V

{ ∑
i∈Sc

ai + ∑
i∈S

bi},

note that for all S ∈ V ,

∑
i∈Sc

ai + ∑
i∈S

bi = ∑
i∈Ŝc

ai + ∑
i∈Ŝ

bi + ∑
i∈Sc,i 6∈Ŝc

ai − ∑
i∈Ŝc,i 6∈Sc

ai + ∑
i∈S,i 6∈Ŝ

bi − ∑
i∈Ŝ,i 6∈S

bi.

Subset Sc ⋂(V − Ŝc) is equal to Ŝ
⋂

(V − S) and Ŝc ⋂(V − Sc) is equal to
S
⋂

(V − Ŝ), therefore

∑
i∈Sc

ai + ∑
i∈S

bi = ∑
i∈Ŝc

ai + ∑
i∈Ŝ

bi − ∑
i∈Ŝc,i 6∈Sc

(ai − bi)− ∑
i∈Ŝ,i 6∈S

(bi − ai),

and taking into account that for all i ∈ Ŝ, bi ≥ ai, and for all i ∈ V , i 6∈ Ŝ,
ai > bi, then

∑
i∈Sc

ai + ∑
i∈S

bi ≤ ∑
i∈Ŝc

ai + ∑
i∈Ŝ

bi.
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A.1 Schur’s complement

Definition 50 Suppose matrix M ∈ IR(n+m)×(n+m) defined as

M =

[

A B
C D

]

where A ∈ IRn, B ∈ IRn×m, C ∈ IRm×n and D ∈ IRm. Suppose also that D is
invertible. Then the Schur’s complement is the expression

A − BD−1C.

Lemma 12 (Schur) Suppose matrix M ∈ IR(n+m)×(n+m) defined as

M =

[

A B
C D

]

where A ∈ IRn, B ∈ IRn×m, C ∈ IRm×n and D ∈ IRm and D is invertible.
Then M−1 can be expressed as

M−1 =

[

In 0
−D−1C Im

] [

(A − BD−1C)−1 0
0 D−1

] [

In −BD−1

0 Im

]

,

where Ip denotes a p × p unit matrix.

Proof :

Let us define

T =

[

In 0
−D−1C D−1

]

,

note that T is invertible because D is invertible.

Multplicating M times T,

MT =

[

A − BD−1 BD−1

0 Im

]

.

And the inverse is

(MT)−1 =

[

(A − BD−1C)−1 −(A − BD−1C)−1BD−1

0 Im

]
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(MT)−1 =

[

(A − BD−1C)−1 0
0 Im

] [

In −BD−1

0 Im

]

.

In the other hand,

(MT)−1 = T−1M−1

M−1 = T(MT)−1.

Therefore,

M−1 =

[

In 0
−D−1C D−1

] [

(A − BD−1C)−1 0
0 Im

] [

In −BD−1

0 Im

]

,

and finally,

M−1 =

[

In 0
−D−1C Im

] [

(A − BD−1C)−1 0
0 D−1

] [

In −BD−1

0 Im

]

,

Last property can be applied in positive definite matrixes.

Lemma 13 (Schur) Suppose matrix M ∈ IR(n+m)×(n+m) defined as

M =

[

A B

B⊤ D

]

where A ∈ IRn, B ∈ IRn×m and D ∈ IRm and D > 0. Then M ≥ 0 is
equivalent to

A − BD−1B⊤
> 0

Proof :

Note that M > 0 is equivalent to M−1
> 0. This positive definite property of

M−1 means that for all x ∈ IRm+n, x⊤M−1x > 0. As long as D is invertible,

x⊤M−1x = x⊤
[

In 0

−D−1B⊤ Im

] [

(A − BD−1B⊤)−1 0
0 D−1

] [

In −BD−1

0 Im

]

x ≥ 0,
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and with the change of variable

y =

[

In −BD−1

0 Im

]

x,

results that
[

(A − BD−1B⊤)−1 0
0 D−1

]

≥ 0.

Note that D−1
> 0, therefore A − BD−1B⊤

> 0.
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B
Acronyms

In this work the following notation and acronyms have been used

IR := the set of real numbers,
IR+ := the set of possitive real numbers, including

zero,
IRn := the set of n-dimensional real vectors,

IRn×m := the set of n × m real matrices,
IN := the set of natural numbers,

IN+ := the set of possitive natural numbers, ex-
cluding zero,

[a, b] := the closed real interval,
(a, b) := the open real interval,

|x| := the Euclidean norm, or 2-norm, of x ∈ IRn,
‖x‖∞ := ∞-norm of x ∈ IRn,
|X| := a matrix with elements equal to the abso-

lute values of the elements of matrix X,
Ik := an identity matrix of dimension k × k,

det(X) := the determinant of a square matrix X,

X⊤ :=

E(P, ρ) := the ellipsoid { x : x⊤Px ≤ ρ },

201
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E(P) := the ellipsoid E(P, 1),
1̄n := a vector in IRn with all its components

equal to 1,
Ω ∼ Θ := Pointriagin difference of Ω and Θ. That is,

Ω ∼ Θ = { x ∈ Ω : x + θ ∈ Ω, ∀θ ∈ Θ },
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