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Abstract
This article focuses on production planning in the metallurgical sector. This study 
undertakes a detailed comparative study of mixed-integer linear programming 
models using different time representations: continuous and discrete. The analysis 
shows that the continuous model consistently outperforms its discrete counterpart 
in all evaluated scenarios. The key difference between the continuous and discrete 
models is the continuous model’s ability to deliver better makespan results, 
achieving an improvement of up to 15% compared to the discrete model. This 
advantage holds even in complex environments with a high number of tasks and 
machines, where the continuous model consistently outperforms the discrete model 
by over 6% in the scenario with the highest number of tasks and machines. This 
preference extends beyond makespan considerations. The continuous model also 
maintains an edge in terms of runtime efficiency, achieving better times with a 99% 
improvement over the discrete model in all scenarios except one. These findings 
provide concrete evidence for the use of continuous models, which promise more 
effective production planning in analogous manufacturing domains.
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1  Introduction

The last few decades have seen significant advances in computing power, as well as 
increased pressure to optimise the efficiency of all aspects of production processes 
and reduce associated costs. This has naturally led to a significant increase in interest 
in production planning techniques, both in industry and academia.

In general terms, production planning is a decision-making process aimed at 
determining when, where, how, and what to produce from a given set of products 
that have defined characteristics and requirements. This process is carried out by 
managing a set of finite resources and is in most cases subject to time constraints 
from the outset, as indicated in the reference (Floudas and Lin 2004).

Mathematical programming, especially Mixed Integer Linear Programming 
(MILP), is widely used for production scheduling processes due to its rigour, 
versatility, and extensive modelling capabilities (Floudas and Lin 2005). Models 
assessing scheduling for a single station are commonly encountered in this field, 
mainly because they are highly applicable in three primary scenarios. The initial 
challenge lies with intricate multi-stage problems that can be deconstructed 
into simpler, self-reliant, or loosely connected single-stage problems (Pinto and 
Grossmann 1995); thus, handling production planning in a modular manner. The 
second application area is in systems where a station acts as a significant bottleneck. 
In such cases, production planning for the particular station is critical for the entire 
system. Consequently, this planning can be extended to the remaining stations 
(Díaz-Ramírez and Huertas 2018; Elekidis et al. 2019; Marchetti and Cerdá 2009a). 
Ultimately, it is relevant to issues with a solitary station (Aguirre and Papageorgiou 
2018; Méndez and Cerdá 2002).

When developing mathematical models, one of the initial decisions to consider 
is how time should be represented (Floudas and Lin 2005; Sung and Maravelias 
2009). Consequently, three primary classes of MILP models are identified: those 
formulated with a complete planning horizon in discrete time, those formulated in 
continuous time, and hybrid models. Despite the extensive literature dealing with 
such problems, there are no studies that analyse, for the same problem, the response 
of a continuous model and that of a discrete model.

Acknowledging the relevance of such problems and the existing gap in the 
literature to date, this study will introduce two MILP mathematical models to solve 
the same single station problem, one with continuous time representation and the 
other with discrete representation. Both models will be tested using a database 
containing actual time estimates from a factory with these characteristics. The 
results of this experiment will be presented and compared.

The structure of this paper is as follows. Section  2 defines the core problem 
and situates it within the existing literature. Section 3 presents the continuous and 
discrete models and is further divided into two subsections, one dedicated to each 
model. Section  4 presents a comprehensive analysis of the results obtained by 
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applying these models and draws important conclusions. Finally, the last section 
provides a list of all references cited throughout this document.

2 � Problem definition

As noted previously, there exist three categories of models that are established 
on the basis of representative time: continuous, discrete, and hybrid models. In 
the continuous formulation, the planning horizon is partitioned as a component 
of the optimisation process, allowing the placement of tasks at any point in the 
timeline (Roslöf et  al. 2001; Harjunkoski and Grossmann 2002; He et  al. 2017). 
On the contrary, discrete models are founded on dividing the timeline into different 
intervals or time units of generally equal size (Liu et  al. 2010b; Lee et  al. 2002; 
Mouret et  al. 2011). The model is constrained to schedule tasks at specific time 
points due to this discretization. Less frequently, there are mixed formulations 
in which discrete periods, such as weeks, are already predetermined within the 
temporal horizon (Aguirre and Papageorgiou 2018; Liu et  al. 2010a; Chen et  al. 
2008). However, in each of these periods, there is a continuous representation in 
use. However, according to the review of the literature on MILP models of a single 
station conducted by Muñoz-Díaz et  al. (2022), there are no articles that develop 
continuous and discrete representations to solve the same problem. This study 
presents and encodes both versions for future comparison.

Once the difference in time representation has been established, the remaining 
characteristics of the issue and models are specified. This will be identical for both 
the continuous and the discrete versions. It is essential to note that the problem 
described in this work is based on a real factory within the metallurgical sector. This 
factory and its processes have already been studied in the literature (Muñoz-Díaz 
et  al. 2024; Lorenzo-Espejo et  al. 2022). Therefore, this research contributes not 
only to the existing scientific literature, but also to the decision-making process for 
production planning in an actual facility.

Starting with the machinery, in the station under consideration there are parallel 
machines, all of which have to perform the same operation. However, these machines 
are not identical, and their production speeds are not proportional. In other words, 
the production speed depends not only on the machine on which a task is performed 
but also on the nature of the specific task being performed. This distinction is a 
key factor that distinguishes single-station models with parallel machines. In this 
scenario, we encounter a problem with Unrelated Parallel Machines (Brucker 2007), 
where all machines are capable of processing all jobs.

In terms of the objectives of the models, the ultimate goal is always to obtain the 
assignment of tasks to machines and the sequencing within each machine. However, 
there are many feasible solutions that fulfil this objective, so it is necessary to 
establish a criterion for optimisation among all the possible options. This criterion 
is the objective function of the model and is generally divided into two categories: 
economic functions and time-based functions (Merchan and Maravelias 2014). 
In this case, it is a time-based function, specifically minimising the maximum 
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completion time or makespan. In other words, the objective is to minimise the time 
that elapses between the start of processing the first task and the completion of the 
last.

At this point, it is important to emphasise that we are not dealing with batches 
but with individual units. This implies that there is no need to include the batch 
formation process in either the model or the objective function, contrary to the 
approach taken by other authors in similar problems (Berber et al. 2007; Méndez and 
Cerdá 2003). With the criterion for selecting a production schedule now established, 
we will proceed to explain the most relevant features in the context of the current 
problem.

The first characteristic to consider is the presence of setups. In production 
planning models, there are different types of setups: those that depend on the 
sequence (Liu et al. 2008; Chen et al. 2008), on the machine where the task is to be 
performed (Sun and Xue 2009; He et al. 2017), on the specific tasks to be processed 
(Mouret et  al. 2011) or on certain resources specific to real plants (Méndez and 
Cerdá 2002). In this case, we will work with task-dependent setups, specifically 
based on the sequence of these tasks.

In addition, there will be specific mandatory precedence, i.e. there will be pairs 
of jobs that must be processed on the same machine and in immediate succession. 
Finally, there will be no consideration of delivery times for jobs, and it will be 
assumed that the machines are fully available.

With all this, we have an Unrelated Parallel Machine Scheduling Problem that 
can be classified according to Graham et  al. (1979) as a R|prec|Cmax , where R 
means that the machines are Unrelated Parallel Machines, prec refers to the fact 
that compulsory precedence relations are specified, and finally, Cmax indicates the 
Objective Function of the problem, minimising the maximum completion time.

3 � Mixed integer linear programming models

In this section we present the mathematical formulation of the problem described 
above. First, for the continuous time representation (subsection 3.1), and second, for 
the discrete representation (subsection  3.2). Before that, the common parameters, 
indices and variables for both models are listed below (Table 1).

3.1 � Continuous model

This section presents the Mixed Linear Programming model in its continuous time 
representation. As mentioned earlier, this formulation splits the time horizon as part 
of the optimisation process. In this representation, there are different approaches, 
typically classified as global-event based (Shaik et  al. 2006), unit-specific-event 
based (Floudas and Lin 2004), slot based (Pan et al. 2009), and precedence based 
(Marchetti and Cerdá 2009b). In this case, we will focus on the last approach, which 
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Table 1   Common parameters, indices and variables in both MILP models

Parameters and indices

indices

Table 2   Specific variables of the continuous MILP model

Table 3   Specific parameters, index and variables of the discrete MILP model
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uses specific variables to represent the start or finish of tasks and binary variables to 
represent direct precedence relationships between different tasks.

The variables used exclusively for this formulation are presented below (Table 2). 
This is followed by the MILP model in its continuous formulation and, finally, an 
explanation of each of the constraints.

The objective function to minimize is stated in Constraint (1) and the Makes-
pan is obtained in Constraints (2). A dummy task is introduced in Constraints (3), 
which indicate that the dummy task 0 is placed at the beggining of each machine. 
Constraints (4) ensure that each task has only one immediately previous task, only 
one immediately subsequent task and is assigned to only one machine, except 
task 0, the dummy task. Balance equations are included through Constraints (5). 
Constraints (6) are enforced to guarantee that the mandatory sequences between 
certain pairs of tasks are fulfilled. Constraints (7) and (8) define the completion 

(1)Min Cmax

(2)s.a. Cmax ≥ Ci ∀i = 1, 2, ..., T

(3)
T∑

j=1

y0jk = 1 ∀k

(4)
M∑

k=1

∑

i∈T⟍{j}

yijk = 1 ∀j = 1, 2, ..., T

(5)
∑

i∈T⟍{j}

yijk =
∑

l∈T⟍{j}

yjlk ∀j = 1, 2, ..., T;∀k

(6)
M∑

k=1

yijk ≥ zij ∀i, j = 1, 2, ..., T

(7)Cj ≥ Ci + pjk − E(1 − yijk) ∀j = 1, 2, ..., T;∀i;∀k

(8)C0 = 0

(9)yijk ∈ {0, 1} ∀i, j, k

(10)Ci ≥ 0 ∀i

(11)Cmax ≥ 0
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time of all tasks. Finally, Constraints (9), (10) and (11) are the basic restrictions 
on the decision variables.

In assessing the scale of the mathematical model under consideration, 
the order of magnitude of the number of constraints and variables 
deserves attention. The number of constraints can be expressed as 
T2

⋅M + T2 + 4 ⋅ T ⋅M + 3 ⋅ T + 2 ⋅M + 3 , while the number of variables can 
be given by T2

⋅M + 2 ⋅ T ⋅M + T +M + 2 . This implies a polynomial growth 
pattern where the number of constraints in the model has a complexity of 
O(T2

⋅M) and the number of variables has a complexity of O(T2
⋅M) . Such a 

characterisation illustrates the increase in constraints and variables concerning 
the dimensions T and M within the model.

3.2 � Discrete model

In this section we present the Mixed Linear Programming model in its discrete time 
representation. As mentioned earlier, in these models the partitioning of the time 
horizon is a task that takes place before and outside of the optimisation process. 
This implies constraints on the times at which each job can start (Burkard and Hatzl 
2005), as the points on the horizon where the start of each job can be planned are 
fixed and no intermediate points can be chosen.

In this case, for this discretisation, a practical upper bound ( Wmax ) is used to 
determine the length of the time horizon. In addition, a time period (U) is used to 
define the size of each time interval within the horizon, [U − 1,U] . In this research, 
U corresponds to a time interval of 30 min.

Next, we present the parameters, index and variables used exclusively for this 
discrete formulation  (Table  3). We then present the MILP model in its discrete 
formulation, and finally, an explanation of each of the constraints.

(12)Min Cmax

(13)s.a. Cmax ≥ Ci ∀i

(14)
M∑

k=1

∑

u∈Wik

yiuk = 1 ∀i

(15)
T∑

i=1

u∑

v=u−pik+1

yivk ≤ 1 ∀k;∀u ∈ {1, ...,Wmax}

(16)y(i+1)(u+pik)k ≥ yiuk − E(1 − zi(i+1)) ∀i ∈ {1, ..., T − 1},∀k,∀u;
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The objective function to minimize is stated in Constraint (12) and the Makespan 
is obtained in Constraints (13). Constraints (14) require each task to be started 
exactly once and Constraints (15) ensure that at a given time period u, only one task 
can be executed on each machine. Constraints (16) are enforced to guarantee that the 
mandatory sequences between certain pairs of tasks are fulfilled. Constraints (17) 
define the completion time of all tasks and Constraints (18), (19) and (20) are the 
basic restrictions on the decision variables.

When assessing the scale of the mathematical model under consideration, the 
order of magnitude of the number of constraints and variables needs to be examined. 
The number of constraints is expressed as T ⋅M ⋅Wmax + T2

⋅M + 4 ⋅ T + 1 , 
while the number of variables is given by T ⋅M ⋅Wmax + T + 1 . This implies a 
polynomial growth pattern, where the number of constraints has a complexity of 
O(T ⋅M ⋅Wmax) , since Wmax is necessarily greater than T, and the number of 
variables has a complexity of O(T ⋅M ⋅Wmax) . Such a characterisation illustrates 
the increasing constraints and variables concerning the dimensions T, M and Wmax 
within this model.

4 � Results and conclusions

As mentioned above, the problem described is based on a real production planning 
problem in a metallurgical plant. This has allowed the use of time estimations 
derived from the actual historical data of the factory. In addition to the time 
estimations, the priority relationships are also based on a real project, and the 
different configurations represent situations of interest to this industry.

These configurations are characterised by the number of machines available for 
task processing, shown in the column M, and the number of tasks to be scheduled, 
shown in the column T. Configurations with 2, 4 and 6 machines were chosen, and 
for each of these 20, 40, 80 and 160 tasks were considered, giving a total of 12 
configurations. All were run for both models, with the same processing times for 
each task and the same priority relationships for each configuration.

A time limit of 2 h was also implemented as a time constraint for model execu-
tion. When this limit was reached, the model stopped and returned the best solu-
tion achieved up to that point, together with the corresponding makespan. In cases 
where this measure was implemented, the column Runtime in Table 4 contains the 

(17)Ci =

[
M∑

k=1

∑

u∈Wik

yiuk.(u + pik)

]
− 1 ∀i

(18)yijk ∈ {0, 1} ∀i, j, k

(19)Ci ≥ 0 ∀i

(20)Cmax ≥ 0
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abbreviation LR (limit reached). In order to facilitate the interpretation of the results, 
for each of the twelve configurations, the best result in terms of makespan, i.e. the 
lowest maximum completion time between both models, has been highlighted in 
bold.

Both models have been implemented in Python and solved on an Intel® Core™ 
i7-4790 CPU at 3.60 GHz with 12 GB of RAM using Gurobi Optimizer v9.1.1.

These results are analysed in more detail in the following, with the aim of 
responding to as wide a range of situations as possible.

Strictly considering the makespan, which is the only objective in both objective 
functions (Constraints 1 and 12), it is evident that the continuous model gives better 
results in all cases. In fact, the results show that the makespan of the discrete model 
is higher than that of the continuous model, ranging from 3.2% (M = 4, T = 20 and 
M = 6, T = 40) to 18% (M = 2, T = 160). This result is consistent with the implica-
tions of the time discretisation itself, because even if both models were to choose 
exactly the same scheduling, it is highly likely that the discrete model would result 
in a higher makespan. This is due to the losses incurred in assigning tasks with real 
processing times, which may not be multiples of U, to time intervals of duration U. 
In most cases, this will result in idle times in the last interval in which each task is 
assigned in the discrete model. To illustrate this concept, consider a simple example 

Table 4   Comparison of 
Makespans (hours) and runtimes 
(seconds) obtained for the 12 
configurations in the continuous 
and discrete models. LR: limit 
reached (2 h/7200 s)

M T Continuous model Discrete model

Makespan (h) Runtime (s) Makespan (h) Runtime (s)

2 20 47.3897 0.1359 49.5000 3.8118
40 98.6939 0.6057 104.5000 69.3254
80 190.5366 26.2331 204.0000 LR
160 375.4440 LR 443.0000 LR

4 20 40.6574 0.1659 42.0000 2.6155
40 48.0537 0.6876 51.5000 52.6859
80 87.5284 4.4235 91.0000 1686.0407
160 173.8521 LR 202.0000 LR

6 20 31.7948 0.2019 34.5000 3.8138
40 40.6575 0.8925 42.0000 54.7838
80 62.2815 9.0968 69.0000 1070.8293
160 99.4577 LR 106.0000 5148.3380

Fig. 1   Gantt chart of the continuous and discrete models for two identical tasks (A1 and A2) following 
the same sequence
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with only two tasks, A1 and A2. Assuming that the time discretization for the dis-
crete model is one hour (U = 1 h), if tasks A1 and A2 have durations of 3.2 h and 
4 h respectively, the discrete model would give a makespan of 8 h compared to the 
continuous model’s 7.2 h (Fig. 1), despite returning the same actual schedule.

This phenomenon occurs to a minor extent if the size of the individual time 
intervals (U) is reduced, because the unallocated times generated will have a 
shorter maximum duration. However, using smaller U intervals will also result 
in longer execution times. Furthermore, these unallocated times will always 
be present, and with a greater number of tasks, the probability of generating 
unallocated times increases. This can be clearly seen in the results: as the number 
of tasks increases, the difference between the makespans of the continuous and 
discrete models increases significantly (Table 4).

In order to better study the influence of the number of tasks and machines 
on the difference between the results of the two models, Table  5 is presented. 
In this table, the first two columns again give the number of machines (M) and 
the number of tasks (T) for each configuration run. The third column (Makespan 
difference) shows the difference between the makespans, with the continuous 
model consistently giving smaller makespans. The fourth column (Runtime 
difference) shows the difference between the runtimes obtained, where LR 
indicates when one of the models reached the time limit. Finally, the fifth column 
(Best Runtime Performance Model) indicates which model delivered the better 
runtime performance. In this last column, a dash (-) appears when both models 
reached the time limit. In cases where only one model reached the time limit, LR 
is displayed in the Runtime Difference column, and the Best Runtime Performance 
Model column indicates the model that did not reach the time limit and therefore 
provided the best runtime.

With these results in mind, it is easy to see that the difference between the 
makespans of the two models does indeed grow as the number of tasks increases. 
Furthermore, when we increase the number of available machines, this growth 

Table 5   Difference between the 
performance of the two models 
in terms of makespan and 
execution times

M T Makespan 
difference

Runtime difference Best runtime 
performance 
model

2 20 2.11 3.68 Continuous
40 5.81 68.72 Continuous
80 13.46 LR Continuous
160 67.56 LR -

4 20 1.34 2.45 Continuous
40 3.45 52.00 Continuous
80 3.47 1681.62 Continuous
160 28.15 LR -

6 20 2.71 3.61 Continuous
40 1.34 53.89 Continuous
80 6.72 1061.73 Continuous
160 6.54 LR Discrete
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is significantly mitigated. This confirms that the problem of time discretization 
becomes more pronounced as more tasks are assigned to the same machine, lead-
ing to an accumulation of unallocated times.

It is important to note that the solution returned by the discrete model does 
not have a higher makespan solely due to unallocated times. Additionally, the 
assignment and sequencing of tasks does not always coincide with that of the 
continuous model. Therefore, if the term net makespan refers to the makespan 
resulting from removing unallocated times from the schedule returned by the 
discrete model, the net makespan of the discrete model is equal to or higher than 
that of the continuous model in all configurations studied. This is also due to the 
loss of accuracy caused by the discretisation of time.

Finally, regarding the makespan, it’s worth noting that the continuous model 
reaches the time limit for the first and only time with 6 machines and 160 tasks. 
However, its makespan is still lower than that of the discrete model, which does 
not reach the time limit. This again emphasises the loss of efficiency in the discrete 
model due to the inherent discretisation of the time horizon.

On the other hand, if we now turn our attention to the execution times, the 
continuous model again delivers better results than the discrete model in all but one 
configuration. Furthermore, if we look at the runtimes in Table 4, we can see that 
the model does not take more than half a minute in any of the configurations with 
20, 40 and 60 tasks. However, when the number of tasks increases to 160, the time 
limit of 2 h is reached in all cases. On the other hand, the discrete model reaches 
the time limit in problems with fewer machines and does not do so as the number of 
machines increases.

In conclusion, for environments with these characteristics, the use of continuous 
models is clearly more advantageous, as they provide solutions with better 
makespans and runtimes. However, an interesting line of future research would be 
to extend both mathematical models to other industries where the number of tasks 
is higher, as the performance of the discrete model suggests that it could give better 
results in such environments compared to the continuous model.
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