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A B S T R A C T

We explore the inclusion of vaccination in compartmental epidemiological models concerning the delta and
omicron variants of the SARS-CoV-2 virus that caused the COVID-19 pandemic. We expand on our earlier
compartmental-model work by incorporating vaccinated populations. We present two classes of models that
differ depending on the immunological properties of the variant. The first one is for the delta variant, where we
do not follow the dynamics of the vaccinated individuals since infections of vaccinated individuals were rare.
The second one for the far more contagious omicron variant incorporates the evolution of the infections within
the vaccinated cohort. We explore comparisons with available data involving two possible classes of counts,
fatalities and hospitalizations. We present our results for two regions, Andalusia and Switzerland (including
the Principality of Liechtenstein), where the necessary data are available. In the majority of the considered
cases, the models are found to yield good agreement with the data and have a reasonable predictive capability
beyond their training window, rendering them potentially useful tools for the interpretation of the COVID-19
and further pandemic waves, and for the design of intervention strategies during these waves.
1. Introduction

Over the last three and a half years, the COVID-19 pandemic
has been deemed responsible for 770 million confirmed cases, and
nearly 7 million deaths worldwide, as of this writing and according
to the World Health Organization COVID-19 dashboard. As such, its
emergence wreaked havoc in life as we knew it throughout the world
and forced a dramatic modification of our social and economic ac-
tivities during this interval. At the same time, it triggered a global
mobilization of the scientific community to produce vaccines rapidly,
especially through (thankfully, by that time, fairly mature) technology
of mRNA-based methods. This effort led to the remarkable result of
having a vaccine against SARS-CoV-2 within a year of its emergence.
Nevertheless, this was far from the end of the story, as new variants
of the SARS-CoV-2 virus kept emerging within 2020 and 2021. The so-
called delta variant appeared in India in late 2020 and it had spread to
179 countries by November 2021. Subsequently, the delta variant was
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superseded by the so-called omicron variant that was reported in South
Africa on November 2021, which rapidly became the predominant
variant of SARS-CoV-2 thereafter.

The theoretical and mathematical modeling of infectious diseases
such as COVID-19 has a long and time-honored history since the classic
work of Kermack and McKendrick [1]. Relevant efforts have been
summarized in numerous venues in recent years, such as, e.g., [2–4],
to mention only a few. The urgency and severity of the COVID-19
pandemic brought about an intense effort on the side of the mathe-
matical and physical communities to develop analytical models and
computational tools that could be used to examine the unprecedented
volume of available data regarding the temporal (and spatial) evolution
of the pandemic and to make predictions for the weeks (or in some
cases month(s)) ahead. A notable example of comparison of such efforts
can be seen in, e.g., websites such as [5]. Relevant modeling efforts
have now been summarized in a number of reviews such as [6,7],
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including ones of specialized modeling aspects such as the study of
metapopulation network models [8], while other works summarized
the challenges and difficulties of associated modeling [9,10].

Over the last two years, a large portion of the focus of the modeling
efforts has shifted towards the inclusion of vaccination in epidemiolog-
ical models. Alternative, and complementary, modeling efforts include
game-theoretical approaches to evaluate decision strategies of play-
ers involved in vaccine and drug development. The players usually
considered include individuals, drug companies that develop vaccines
and drugs, their sponsors, and nature’s response to disease contraction
(with or without vaccination), recovery or death [11,12]. While a
lot of information is available regarding the effectiveness and effi-
cacy of vaccines [13] (see also websites such as [14]) mathematical
models can still be quite useful in a number of ways, including in
guiding and informing distribution strategies thereof [15,16]. It is in
that light that numerous compartmental epidemiological models with
vaccination strategies have arisen in the literature [17,18], including
some specific to different geographical locations [19] and to different
social infrastructures, such as nursing homes [20]. While the rele-
vant models feature different levels of complexity starting from SIRV
(Susceptible–Infected–Recovered–Vaccinated) extensions of the classic
SIR (Susceptible–Infected–Recovered) [17] model and progressively
extending to multicomponent models such as [21], our aim here is
to build systematically on the earlier modeling attempt of [22] by
considering SARS-CoV-2 variants that differently affect the vaccinated
population. While the previously discussed models, and the ones devel-
oped herein, are at the population level, within-host dynamics have also
been extensively studied, as in the modeling of influenza A dynamics
and its interaction with the immune system [23].

More concretely, our aim is to present a model of the omicron
variant (model A and its two implementations A1 and A2), in which its
highly contagious nature allows for so-called breakthrough infections,
whereby vaccinated individuals may still be infected. In that light,
we account for the standard populations of our earlier work [22],
including exposed, presymptomatics, and asymptomatics [24], as well
as hospitalizations, recoveries and fatalities. It is worth noting here that
the relevance of including presymptomatic populations [25] has been
argued in various models [26] and reviews [27] on the basis of their
different viral load and viral shedding in comparison to asymptomatics.
The latter individuals do not have a ‘‘time zero’’ (time of symptom
appearance), while presymptomatics do, leading in that way to a
change of their contacts and social norms. In addition, we consider
such populations in both the unvaccinated and vaccinated portions of
he population and their interactions. The primary aim of the associated
tudy is to explore the dynamical evolution of the omicron variant from
he end of 2021 to early spring 2022. We also present a simpler model
model B) for the evolution of the earlier delta variant during the fall
f 2021. In that case, vaccination was deemed to protect individuals
rom being infected, and the fraction of breakthrough infections was
uite small, even in groups such as the potentially highly exposed
roup of healthcare workers [28]. Accordingly, we assume that the
accinated population may be effectively removed from the susceptible
ompartment. More generally, our intention in the present work is
o offer an approach which is tuned to both the concrete features of
ifferent variants (their timing and infectivity, the efficacy of vaccines,
he relevance of breakthrough infections, etc.) and the availability of
oncrete datasets that can be used to assess the corresponding models.
e hope that this can help further consideration of such settings,

ncluding in the undesirable, but not unlikely possibility of future
ariants.

We examine two versions of the proposed omicron model in Sec-
ion 2 (models A1 and A2), their difference motivated by data avail-
bility. The population flows in Model A1 terminate at the fatalities
ompartment: as such, the model considers that fatalities in both the
nvaccinated and vaccinated populations provide the most reliable
2

ata. Model A2 is motivated by the existence of systematic data for the
total number of hospitalizations (conventional and in Intensive Care
Units (ICU)): here, population flows terminate at the hospitalizations
compartment, i.e., they do not branch further to the fatalities compart-
ment as in model A1. This is for a number of reasons: in primis, reporting
of fatalities occasionally occurs retroactively (and less reliably). Our
models are applied to two regions with similar populations (approx-
imately 8 million inhabitants): Andalusia and Switzerland (including
the Principality of Liechtenstein). The motivation for this choice arises,
once again, from the availability of suitably stratified data, whereby
both fatalities and hospitalizations are available for vaccinated and
unvaccinated individuals. In Section 3 we propose a model for the
delta variant, model B, in addition to the more detailed model for
the omicron variant presented in Section 2. We use model B in the
same spatial regions. We typically find that numerical results compare
favorably to available data, both in terms of the comparison of the
regression results and also in connection to testing beyond the end of
the training period for the model parameters. Finally, in Section 4, we
summarize our findings and present our conclusions. In the Appendix,
we consider the question of structural identifiability of the models
developed herein from a mathematical perspective.

2. Omicron variant

2.1. Model A1: Branches terminate at fatalities

The first model for the omicron variant, model A1, extends our
compartmental epidemiological model used to examine the COVID-
19 pandemic evolution in Mexico [22]. Accordingly, the susceptible
population 𝑆 can turn to exposed (𝐸) through interactions with either
symptomatically infected (𝐼), presymptomatic (𝑃 ), or asymptomatic
(𝐴) individuals. The exposed population 𝐸, in turn, can convert to
either 𝑃 , within a time scale 1∕𝜎1, leading to different clinical stages
of the disease or to 𝐴, a compartment that has been recognized to play
a key role in the dynamical evolution of COVID-19 [24]. The asymp-
tomatic population 𝐴 can only lead to undisclosed recoveries (denoted
as 𝑈), over a time scale 1∕𝜇. On the other hand, the presymptomatic
individuals 𝑃 turn to infected with clinical symptoms 𝐼 over a time
scale 1∕𝜎2. The addition of the latent period 1∕𝜎1 and the preclinical
period 1∕𝜎2 constitute the incubation time scale of the disease, 𝜏inc =
𝜎−11 + 𝜎−12 . Subsequently, the symptomatically infected can either turn
to hospitalized 𝐻 at a rate 𝛾ℎ, while the rest may recover (𝑅) at a rate
𝛾𝑟. Finally, those in the hospitalized population of 𝐻 can, again, branch
into two populations: they either recover at a rate 𝜅𝑟, or they lead to
fatalities (𝐷) at a rate 𝜅𝑑 .

While these populations were also present in our earlier work [22],
it is relevant to highlight the differences of the omicron-variant mod-
eling. For the period under consideration (fall 2021 to spring 2022),
vaccines had been deployed extensively in Andalusia and Switzerland.
More importantly, breakthrough infections due to the omicron variant
were substantial within the vaccinated population (contrary to the
case of the delta variant considered in Section 3). In light of that,
we formulated two sets of populations: one representing unvaccinated
individuals, denoted by (the subscript) 𝑢, and the other representing
the substantial population of vaccinated individuals, denoted by (the
subscript) 𝑣. Each population subset had its own set of parameters.
d𝑆𝑢
d𝑡

= −𝛽𝑢𝑢𝑆𝑢(𝐼𝑢 + 𝐴𝑢 + 𝑃𝑢) − 𝛽𝑢𝑣𝑆𝑢(𝐼𝑣 + 𝐴𝑣 + 𝑃𝑣) − 𝜃𝑉 (𝑡), (1a)

d𝐸𝑢
d𝑡

= −𝜎1𝐸𝑢 + 𝛽𝑢𝑢𝑆𝑢(𝐼𝑢 + 𝐴𝑢 + 𝑃𝑢) + 𝛽𝑢𝑣𝑆𝑢(𝐼𝑣 + 𝐴𝑣 + 𝑃𝑣), (1b)

d𝑃𝑢
d𝑡

= (1 − 𝜙𝑢)𝜎1𝐸𝑢 − 𝜎2𝑃𝑢, (1c)

d𝐴𝑢
d𝑡

= 𝜙𝑢𝜎1𝐸𝑢 − 𝜇𝑢𝐴𝑢, (1d)

d𝑈𝑢
d𝑡

= 𝜇𝑢𝐴𝑢, (1e)

d𝐼𝑢 = 𝜎 𝑃 − (𝛾 + 𝛾 )𝐼 , (1f)

d𝑡 2 𝑢 𝑟,𝑢 ℎ,𝑢 𝑢
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Fig. 1. Schematic diagram of population flows according to model A1 (left panel) and susceptible interactions with other population compartments, for both models A1 and A2
right panel). The symbol 𝛿𝑖𝑗 with 𝑖, 𝑗 = 𝑢, 𝑣 is the Kronecker delta.
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d𝐻𝑢
d𝑡

= 𝛾ℎ,𝑢𝐼𝑢 − (𝜅𝑟,𝑢 + 𝜅𝑑,𝑢)𝐻𝑢, (1g)

d𝑅𝑢
d𝑡

= 𝛾𝑟,𝑢𝐼𝑢 + 𝜅𝑟,𝑢𝐻𝑢, (1h)

d𝐷𝑢
d𝑡

= 𝜅𝑑,𝑢𝐻𝑢, (1i)

d𝑆𝑣
d𝑡

= −𝛽𝑣𝑣𝑆𝑣(𝐼𝑣 + 𝐴𝑣 + 𝑃𝑣) − 𝛽𝑣𝑢𝑆𝑣(𝐼𝑢 + 𝐴𝑢 + 𝑃𝑢) + 𝜃𝑉 (𝑡), (1j)

d𝐸𝑣
d𝑡

= −𝜎1𝐸𝑣 + 𝛽𝑣𝑣𝑆𝑣(𝐼𝑣 + 𝐴𝑣 + 𝑃𝑣) + 𝛽𝑣𝑢𝑆𝑣(𝐼𝑢 + 𝐴𝑢 + 𝑃𝑢), (1k)

d𝑃𝑣
d𝑡

= (1 − 𝜙𝑣)𝜎1𝐸𝑣 − 𝜎2𝑃𝑣, (1l)

d𝐴𝑣
d𝑡

= 𝜙𝑣𝜎1𝐸𝑣 − 𝜇𝑣𝐴𝑣, (1m)

d𝑈𝑣
d𝑡

= 𝜇𝑣𝐴𝑣, (1n)

d𝐼𝑣
d𝑡

= 𝜎2𝑃𝑣 − (𝛾𝑟,𝑣 + 𝛾ℎ,𝑣)𝐼𝑣, (1o)

d𝐻𝑣
d𝑡

= 𝛾𝑟,𝑣𝐼𝑣 − (𝜅𝑟,𝑣 + 𝜅𝑑,𝑣)𝐻𝑣, (1p)

d𝑅𝑣
d𝑡

= 𝛾ℎ,𝑣𝐼𝑣 + 𝜅𝑟,𝑣𝐻𝑣, (1q)

d𝐷𝑣
d𝑡

= 𝜅𝑑,𝑣𝐻𝑣. (1r)

This division of the whole population into two almost independent
subgroups (that interact via contacts and through the vaccinated time
series) is reflected in the presentation of the model schematic in Fig. 1.
In fact, Fig. 1 summarizes population flows and interactions: the left
panel illustrates the main population compartments and the corre-
sponding flows, while the right panel shows the interactions of sus-
ceptibles with individuals in other compartments, both for vaccinated
and unvaccinated populations. The model equations are reported as
Eqs. (1).

We made a number of simplifying assumptions to reduce the num-
ber of parameters and enhance the identifiability of the model (see
also the relevant analysis in the Appendix). We consider a model with
only four transmission rates 𝛽𝑖𝑗 (𝑖, 𝑗 = 𝑢, 𝑣). We assumed that infectious
contacts could only occur between four groups: between unvaccinated
individuals (unvaccinated–unvaccinated contacts denoted by the super-
script 𝑢𝑢), between vaccinated and vaccinated individuals (denoted by
the superscript 𝑣𝑣) and across these two groups (denoted by 𝑢𝑣 for
vaccinated transmitting to unvaccinated and 𝑣𝑢 for the reverse path
of infection). Notice that 𝑢𝑣 and 𝑣𝑢 are not a priori assumed to be
equivalent. Within each subgroup of infection transmission (𝑢𝑢, 𝑣𝑣, 𝑢𝑣,
and 𝑣𝑢), infections induced by the three infectious compartments 𝑃 , 𝐴
and 𝐼 are assumed to occur at the same rate, i.e., the transmission rate
is considered to be independent of whether the infectious individual
exhibits symptoms (𝐼) or not (𝐴, 𝑃 ). While we expect these transmission
ates to differ (in fact, we know that even within a given population
he 𝑆 → 𝐼 transmission rate differs from the 𝑆 → 𝐴 transmission rate,

see for example, Ref. [22]), the identifiability analysis based on the
available time series suggests that they would not be independently
computable in a definitive way. In addition, we introduced a single
3

i

constraint that requires that the incubation period of the disease 𝜏inc =
𝜎−11 +𝜎−12 be a value randomly sampled from a normal distribution with
mean 3.42 and standard deviation 0.2755. This leverages information
about the (shorter) incubation period associated with the omicron
variant [29].

Vaccine efficiency is introduced via the parameter 𝜃, whose vari-
tion bounds were set in the range 75%–95%. This factor multiplied
y the time series of vaccinations 𝑉 (𝑡) effectively ‘‘transfers’’ individ-
als from the unvaccinated susceptible population to the vaccinated
usceptible compartment.

It is important to remark that 𝐻 measures both conventional and
ritical (i.e., ICU) hospitalizations together. While we recognize the
elevance of the ongoing debate of distinguishing deaths ‘‘from COVID’’
s. ‘‘with COVID’’ [30], unfortunately the data available herein do not
llow for a definitive distinction between the two.

We obtained the best-fit parameters and initial conditions by mini-
izing an appropriately chosen norm. For both regions of interest, the

ime period used for the fits was from November 15, 2021 to March
, 2022. The identification of the date a particular variant appeared
n a geographical location is fraught with uncertainties. The choice
f November 15, 2021 as the initial day of fittings stems from a
umber of indirect indications: Ref. [31] reports a surge of cases in
ermany at the beginning of November; Ref. [32] mentions that an
micron-variant case was reported on November 19; and the WHO
ite [33] mentions that in South Africa the first confirmed infection
as reported on November 24, although arising in the sequencing of a

ample collected on November 9. Additionally, inspection of the data
hows a gradual increase starting at November 15, after a plateau.
he effective parameter training period indicated above (till March 1,
022), is followed by a prediction period (with the optimal parameters
nd initial conditions fixed, as determined in the training period).
he predicted time series that terminates on March 29, 2022 is then
ompared to the reported data. Predictions do not go beyond that
ate because the measurement strategy in Andalusia changed, thereby
endering our fixed parameters of limited relevance to the new data.
oreover, around that time Spanish public policy also changed, and

ace masks were no longer required. In Switzerland some restrictions
ere removed in the middle of February. More details are presented in

he appropriate results sections.
We perform two separate fits, i.e., we use two different norms to

ompare predictions to reported numbers depending on data availabil-
ty. First, we fit the predicted total number of fatalities to the reported
umber by minimizing the norm  (i.e., the loss function)

= 1
𝑛

𝑛
∑

𝑖=1

{

log
[

𝐷𝑢,num(𝑡𝑖) +𝐷𝑣,num(𝑡𝑖)
]

− log
[

𝐷obs(𝑡𝑖)
]

}2
, (2)

here the subscript ‘‘num’’ refers to predicted (calculated) numbers and
‘obs’’ to observation (reported numbers), and 𝑛 refers to the number
days) of observations. We use the mean square logarithmic error as the
orm since it is less prone to outliers and, additionally, when multiple
rror contributions (which may be of different size) are independently

ncluded in the minimization procedure, the norm treats them on
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broadly the same scale (due to the properties of the logarithm). This
loss function effectively does not distinguish the compartmental origin
of the fatalities, i.e., whether they arise from the 𝑢 or 𝑣 compartments:
t only accounts for the cumulative number of fatalities. This will,
nevitably, result in the determination of some parameters between the
nvaccinated and the vaccinated populations being not necessarily epi-
emiologically meaningful (as we will see in the detailed comparisons
f our predictions for Andalusia and Switzerland).

Whenever we used norm (2), we also included the waning effect of
he vaccines and booster vaccination effects, in addition to those fully
accinated. It is well-documented that different vaccines have different
aning immunities (see, for instance, the detailed analysis of Ref. [34]).
owever, to be able to account for these effects without adding a

arge number of additional coefficients, we assumed that vaccines are
oughly effective for an interval of about 180 days. Consequently, we
efine 𝑉 (𝑡) as:

(𝑡) = 𝑉𝑓𝑣([𝑡]) − 𝑉𝑓𝑣([𝑡 − 180]) + 𝑉𝑏([𝑡]), (3)

here the subscripts 𝑓𝑣 refers to fully vaccinated, and 𝑏 to booster.
The above optimization via norm (2) is a point estimator, that is, a

ingle set of parameters and initial conditions is obtained. To calculate
heir confidence intervals, and consequently the confidence interval of
he predictions, we follow the bootstrapping method described in [35].
he first step is to generate 250 random, synthetic, time series for
he fatalities based on the reported data. To accomplish this, we first
pply the optimization to find the best fit to the original data set:
e refer to that optimization of the reported fatalities data as the

‘numerical truth’’. In this first optimization, we also included 𝐼𝑢(0),
𝑣(0), 𝐸𝑢(0), 𝐸𝑣(0), 𝐴𝑢(0), 𝐴𝑣(0), 𝐻𝑢(0) and 𝐻𝑣(0) as fitting parameters:
hese parameters were fixed in the subsequent bootstrapping steps.
hen, random noise of a prescribed level, empirically chosen to be
%, was added to the ‘‘numerical truth’’ to generate 250 ‘‘polluted’’
i.e., noisy) time series for the fatalities. Knowledge of the error in data
ollection may be helpful to select an appropriate noise level. In the
econd step, we apply the optimization procedure to find the best fit
o each of the 250 synthetic fatalities time series to obtain 250 sets of
arameters from which the confidence intervals for the parameters and
redictions can be computed. The same bootstrapping procedure was
sed for the hospitalization time series.

We also fitted separately, if the reported data allowed us, the vac-
inated and unvaccinated fatalities time series using them as separate
nputs to our minimization objective. In that case, the relevant norm is

= 1
𝑛

𝑛
∑

𝑖=1

{

log
[

𝐷𝑢,num(𝑡𝑖)
]

− log
[

𝐷𝑢,obs(𝑡𝑖)
]

}2

+
{

log
[

𝐷𝑣,num(𝑡𝑖)
]

− log
[

𝐷𝑣,obs(𝑡𝑖)
]

}2
. (4)

ith this norm, we are genuinely treating the vaccinated compartment
eparately: we expect its fraction of fatalities (proportionally to the
orresponding susceptible population) to be reflected in the obtained
arameters. It should be added that in this case, given the way that the
ata are obtained, the vaccinated status corresponds to people who had
eceived the full doses, independently of antibodies waning, boosting,
r efficacy of vaccines. Consequently, 𝜃 was fixed to 1 in every fit, and
(𝑡) is defined as

(𝑡) = 𝑉𝑓𝑣([𝑡]). (5)

We mention here that an important consideration pertinent to the
odel concerns the identifiability of its coefficients (and initial con-
itions). This pertains to whether, based on the time series given,
he unknown model parameters can be uniquely identified [36]. In
ddition to the question whether all parameters can be uniquely identi-
ied (global identifiability) or some may have multiple possible values
local identifiability), there are also practical issues concerning whether
ifferent sets of parameters lead to similar (although not necessarily
dentical) observations; see, e.g., the discussion of [37]. Here, following
4

Fig. 2. Omicron-variant model A1: Fit and prediction for the total number of fatalities
in Andalusia (norm of Eq. (2)). The calculated curve is plotted in red, while the yellow
shade corresponds to the 95% confidence interval comprised between the 2.5 and 97.5
percentiles. Reported data for the total number of fatalities are given by the black
points. The vertical line, the beginning of the prediction interval, is March 1, 2022.

the approach presented in the Appendix (see also [38–41]), we find that
all the parameters are globally identifiable, except

𝛾ℎ,𝑢, 𝛾𝑟,𝑢, 𝛾ℎ,𝑣, 𝛾𝑟,𝑣, 𝜅𝑑,𝑢, 𝜅𝑟,𝑢, 𝜅𝑑,𝑣, 𝜅𝑟,𝑣.

For these eight parameters, the following combinations are globally
identifiable:

𝛾ℎ,𝑢 + 𝛾𝑟,𝑢, 𝛾ℎ,𝑣 + 𝛾𝑟,𝑣, 𝜅𝑑,𝑢 + 𝜅𝑟,𝑢, 𝜅𝑑,𝑣 + 𝜅𝑟,𝑣, 𝛾ℎ,𝑢𝜅𝑑,𝑢, 𝛾ℎ,𝑣𝜅𝑑,𝑣.

As concerns the initial conditions, 𝐻𝑢(0) and 𝐻𝑣(0) are not identifiable,
in addition to the initial conditions for the terminal compartments
𝑈𝑢, 𝑈𝑣, 𝑅𝑢, 𝑅𝑣.

The identifiability analysis suggests that 𝜙𝑢, 𝜙𝑣 and many other
parameters are globally identifiable, i.e., they have a unique value
given the functions 𝐷𝑢(𝑡) and 𝐷𝑣(𝑡). However, these theoretical-analysis
results do not exactly transfer to numerical calculations for various
reasons. A globally identifiable parameter may not necessarily have
a sharp estimate due to the potential sloppiness [42] of the model.
When the output functions are not sensitive to a particular parameter,
a sharp estimate will not be expected, even though the parameter may
be globally identifiable. Many other factors, e.g., the reliability and
accuracy of the reported time series, may exacerbate the situation.
The identifiability analysis assumes that both functions 𝐷𝑢(𝑡) and 𝐷𝑣(𝑡)
are outputs, which includes much more information than the simple
loss term Eq. (4) can provide. It is an open question how close these
estimates are to the actual parameters. Interestingly, however, we
find that these estimates still give fairly accurate predictions, even
though certain parameter estimates may not be as sharp as desired.
When the total death, 𝐷𝑢(𝑡) + 𝐷𝑣(𝑡), is the only output, we cannot
btain any identifiability results. The implications of there remarks on
odel identifiability are further elaborated in our comments of best-fit
arameters.

.1.1. Andalusia
As mentioned, the fitting time window we used to obtain the

ptimized parameters and initial conditions was from November 15,
021 to March 1, 2022. The prediction interval ended on March 29,
022. The time series for Andalusia is available from the Spanish
ealth Ministry, but we used the series compiled at [43]. Note that

n Andalusia the reported values of 𝐷(𝑡), and the total number of
ospitalizations 𝐽 (𝑡), the latter discussed in Section 2.2, correspond to
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Table 1
Optimal parameters and initial conditions for the omicron-variant models in Andalusia: Model fits to the total number of fatalities, discussed in Section 2.1.1 (model A1, third
column) and to the total number of hospitalizations, discussed in Section 2.2.1 (model A2, right column). Population 𝑁And = 8.4𝑀 .

Parameter Symbol Median (interquartile range) Median (interquartile range)

Fit to total number of deaths Fit to total number of hospitalizations
[Model A1, norm Eq. (2)] [Model A2, norm Eq. (7)]

Transmission rate 𝑢𝑢 [per day] 𝛽𝑢𝑢 0.6437 (0.6313–0.6532) 0.1279 (0.1134–0.1491)
Transmission rate 𝑢𝑣 [per day] 𝛽𝑢𝑣 0.3687 (0.3040–0.4044) 0.0209 (0.0166–0.0270)
Transmission rate 𝑣𝑢 [per day] 𝛽𝑣𝑢 0.0679 (0.0591–0.0822) 0.2400 (0.1775–0.2855)
Transmission rate 𝑣𝑣 [per day] 𝛽𝑣𝑣 0.1939 (0.1839–0.2168) 0.4516 (0.4381–0.4637)
Latent period [days] 1∕𝜎1 1.7923 (1.6999–1.8935) 1.8143 (1.7266–1.9164)
Preclinical period [days] 1∕𝜎2 1.6467 (1.5513–1.7496) 1.6300 (1.5038–1.7509)
𝐴𝑢∕𝑃𝑢 partitioning 𝜙𝑢 0.3689 (0.3639–0.3832) 0.3592 (0.3486–0.3743)
𝐴𝑣∕𝑃𝑣 partitioning 𝜙𝑣 0.3363 (0.3311–0.3457) 0.3933 (0.3816–0.4063)
Infectivity period (𝐴𝑢) [days] 1∕𝜇𝑢 2.9185 (2.8497–2.9433) 3.1540 (3.0764–3.2333)
Recovery rate 𝐼𝑢 → 𝑅𝑢 [[per day] 𝛾𝑟,𝑢 0.1999 (0.1958–0.2103) 0.1998 (0.1871–0.2082)
Transition rate 𝐼𝑢 → 𝐻𝑢 [per day] 𝛾ℎ,𝑢 0.0056 (0.0050–0.0060) 0.0068 (0.0062–0.0072)
Infectivity period (𝐴𝑣) [days] 1∕𝜇𝑣 3.2038 (3.1581–3.2467) 3.3018 (3.1663–3.6227)
Recovery rate 𝐼𝑣 → 𝑅𝑣 [per day] 𝛾𝑟,𝑣 0.1728 (0.1692–0.1802) 0.2088 (0.2023–0.2153)
Transition rate 𝐼𝑣 → 𝐻𝑣 [per day] 𝛾ℎ,𝑣 0.0057 (0.0051–0.0064) 0.0015 (0.0014–0.0017)
Recovery rate 𝐻𝑢 → 𝑅𝑢 [per day] 𝜅𝑟,𝑢 0.3436 (0.3314–0.3576) –
Death rate 𝐻𝑢 → 𝐷𝑢 [per day] 𝜅𝑑,𝑢 0.0090 (0.0080–0.0106) –
Recovery rate 𝐻𝑣 → 𝑅𝑣 [per day] 𝜅𝑟,𝑣 0.3354 (0.3198–0.3506) –
Death rate 𝐻𝑣 → 𝐷𝑣 [per day] 𝜅𝑑,𝑣 0.0097 (0.0092–0.0101) –
Vaccine efficiency [-] 𝜃 0.8825 (0.8767–0.8885) 0.8510 (0.8436–0.8598)

Initial condition

Initial unvaccinated Exposed (𝐸𝑢) population [#] 𝐸𝑢(0) 641 1485
Initial unvaccinated Presymptomatic (𝑃𝑢) population [#] 𝑃𝑢(0) 2217 1541
Initial unvaccinated Asymptomatic (𝐴𝑢) population [#] 𝐴𝑢(0) 2273 1124
Initial unvaccinated symptomatically Infected (𝐼𝑢) population [#] 𝐼𝑢(0) 2677 2438
Initial unvaccinated Hospitalized (𝐻𝑢) population [#] 𝐻𝑢(0) 60 –
Initial vaccinated Exposed (𝐸𝑣) population [#] 𝐸𝑣(0) 840 3218
Initial vaccinated Presymptomatic (𝑃𝑣) population [#] 𝑃𝑣(0) 2902 3339
Initial vaccinated Asymptomatic (𝐴𝑣) population [#] 𝐴𝑣(0) 2976 2435
Initial vaccinated symptomatically Infected (𝐼𝑣) population [#] 𝐼𝑣(0) 3504 5281
Initial vaccinated Hospitalized (𝐻𝑣) population [#] 𝐻𝑣(0) 370 –
the event day, whereas for Switzerland they correspond to the report
day.

The vaccination data were extracted from the Regional Govern-
ment of Andalusia (Junta de Andalucía, Ref. [44]). We ignored the
vaccinations for kids under 12 years old, as there were many data
anomalies, resulting in a time series that appears to be problematic.
Irrespective of that, this population segment corresponds to only ≲
4% of the total vaccinations. The fatalities time series we used did
not report how many fatalities could be attributed to vaccinated or
unvaccinated individuals. Therefore, for the region of Andalusia we
used only norm (2), coupled to the modified vaccination time series
as described in Eq. (3), to perform the optimizations.

Fig. 2 shows the calculated fatalities time series (both fitting and
prediction intervals) and the reported numbers. Table 1 (model A1
in column 3) presents the optimized parameters and initial condi-
tions. The reported interquantile range arises from 250 fits in the
bootstrapping step, as discussed above.

We observe that the overall trend of the fatalities seems to be
reasonably well captured by the model within its prediction intervals
(and their associated uncertainty). We do note, however, a slight over-
prediction towards the end of the time series, during March 2022.
The transmission rates 𝛽𝑖𝑗 (𝑖, 𝑗 = 𝑢, 𝑣) with at least one member of
the unvaccinated population 𝑢𝑢 and 𝑢𝑣 are clearly higher than the 𝑣𝑣
ate between members of the vaccinated population. In fact, 𝛽𝑢𝑢 is

more that three times higher than 𝛽𝑣𝑣. The lowest transmission rate
is predicted to be 𝛽𝑣𝑢, even lower than 𝛽𝑣𝑣. At this point it is important
to recall our discussion about the use of the total number of deaths
and the resulting inability to identify definitively the model parameters.
Hence, the above numbers, even when they appear to be intuitively
relevant, should be taken with a grain of salt. The latent period is
approximately 3.5 days, as imposed by our constraint, and in agreement
with [29]. The role of asymptomatics, as reflected by the fraction 𝜙𝑖
f exposed who become asymptomatics, is considerable, approximately
5

1/3 and independent of whether the population is vaccinated or not.
The calculated fraction of asymptomatics is in reasonable agreement
with Ref. [45] who reported a pooled fraction of asymptomatics for
the omicron variant of 25.5% (95% confidence interval 17.0%–38.2%).
The vaccinated and unvaccinated infectivity period for asymptomatic
infections 1∕𝜇𝑖 (𝑖 = 𝑢, 𝑣) is approximately constant, at about three days,
again independent of whether the 𝑢 or 𝑣 compartment is considered.

We also find that some parameters are more difficult to justify,
Specifically, we find that the recovery rates of symptomatically infected
individuals 𝐼𝑖 → 𝑅𝑖 and that of the hospitalized individuals 𝐻𝑖 → 𝑅𝑖 are
almost independent of whether the population is vaccinated or not. The
same holds for the transition rates 𝐼𝑖 → 𝐻𝑖 and the death rates 𝐻𝑖 → 𝐷𝑖:
all four of them are found to have weak variations. The independence of
these rates on the administration of the vaccine might be related to the
norm we used that does not distinguish between fatalities of vaccinated
or unvaccinated individuals. We will return to this point in our analysis
of the Switzerland data.

2.1.2. Switzerland
We chose to perform model calculations for a territory with a pop-

ulation similar in number to that of Andalusia, and for which adequate
data are available. As such, we chose a region that contains Switzerland
and the Principality of Liechtenstein (data are jointly reported) since
the total population of this aggregate territory is 8.7M, (compared to
8.4M for Andalusia). Overall, we followed a procedure very similar to
what we used for Andalusia, with a few minor changes. Identical fitting
and prediction intervals are used as those for Andalusia. We do note,
however, that starting February 17, 2022 most restrictions were lifted
in Switzerland. We believe this is one of the reasons we observe a model
under-prediction of the number of fatalities in Figs. 3 and 4.

Case reporting was slightly different. The Swiss government through
the Federal Office of Public Health provides daily the status (vacci-
nated, unvaccinated or unknown) of each hospitalized/deceased person
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Fig. 3. Omicron-variant model A1: Fit and prediction for the total number of fatalities
in Switzerland (norm Eq. (2)). The calculated curve is plotted in red, while the yellow
shade corresponds to the 95% confidence interval comprised between the 2.5 and 97.5
percentiles. Reported data for the total number of fatalities are given by the black
points. The vertical line, the beginning of the prediction interval, is March 1, 2022.

at Ref. [46]. In the absence of a concrete metric on how to partition
unknown fatalities to vaccinated and unvaccinated individuals, we used
the following procedure to convert these three time series into two,
one associated with vaccinated 𝐷𝑣(𝑡𝑖) and the other to unvaccinated
individuals 𝐷𝑢(𝑡𝑖). Let 𝑑𝑣(𝑡𝑖), 𝑑𝑢(𝑡𝑖) and 𝑑⋆(𝑡𝑖) denote the number of daily
reported fatalities with vaccinated, unvaccinated, and unknown state,
respectively. We randomly sample an integer number 𝛿𝑖 ∈ [0, 𝑑⋆(𝑡𝑖)],
following a uniform distribution, and then we define the daily number
of vaccinated/unvaccinated deceased as 𝑑𝑣(𝑡𝑖) = 𝑑𝑣(𝑡𝑖) + 𝛿𝑖 and 𝑑𝑢(𝑡𝑖) =
𝑢̄(𝑡𝑖) + [𝑑⋆(𝑡𝑖) − 𝛿𝑖]. The total number of deaths is the cumulative sum,

i.e. 𝐷𝑣(𝑡𝑖) =
∑𝑖

𝑗=1 𝑑𝑣(𝑡𝑗 ) and 𝐷𝑢(𝑡𝑖) =
∑𝑖

𝑗=1 𝑑𝑢(𝑡𝑗 ). Note that we followed
the same procedure to generate the hospitalizations 𝐽𝑣 and 𝐽𝑢 used
n model A2, in Section 2.2.2. As mentioned earlier, 𝐷(𝑡) and 𝐽 (𝑡) for
witzerland correspond to the report day.

Given the reconstructed time series 𝐷𝑖(𝑡) we used norm (4), in
ddition to the norm (2) used in the case of Andalusia, to fit and
redict the fatalities time series for the territory of Switzerland (and
he Principality of Liechtenstein). We attempted to fit separately the
accinated and unvaccinated deceased, using them as separate inputs
o our minimization objective. As mentioned earlier, since we consider
hat vaccinated individuals have received the full dose (neglecting
mmunity waning, boosting, of vaccine efficiency) we take 𝜃 = 1 in
very fit, and 𝑉 (𝑡) is defined as described in Eq. (5). Our results for
he fit to the total number of fatalities are shown in Fig. 3, whereas
hose for the separate fits to vaccinated and unvaccinated deaths are
resented in Fig. 4. Table 2, columns two and four, presents the fitting
arameters and initial conditions.

We can see a clear model under-prediction of the fatalities (within
he prediction interval), for both optimizations (norm (2) and (4)),
espite an accurate following of the time-series trend throughout the
eriod over which regression is performed. The under-prediction is
ore severe in the case of the total number of fatalities, Fig. 3, and

n the vaccinated death time series of the right panel in Fig. 4. As
entioned earlier, we attribute the under-prediction to the fact that

fter the end of the fitting period, restrictions were considerably relaxed
eading to more cases, and eventually more fatalities, a feature that was
ot explicitly factored in the model.

As regards the parameters of the model, we observe very similar
rends to what we obtained for Andalusia. A notable exception is that
n the total-deaths fit 𝛽𝑢𝑣 is the highest transmission rate, retaining
owever 𝛽𝑢𝑢 ≫ 𝛽𝑣𝑣 in the case of norm (2). The latent period is
6

ell reproduced (as expected due to the constraint and Ref. [29]), a
and the fraction of asymptomatics is approximately 25% (again in
agreement with [45]) irrespective of vaccination or not. The remaining
parameters follow similar trends as reported in Table 1 for Andalusia.
It is noteworthy that in both cases recovery, transmission, and death
rates seem to depend relatively weakly on whether the vaccine had
been administered or not.

A comparison of the parameters predicted by the two optimization is
in order. When the two distinct populations are used in the regression,
we observe, fourth column in Table 2, that the transition rate 𝛽𝑣𝑣

becomes the largest one with 𝛽𝑣𝑢 being the smallest. While a calculated
higher viral transmissivity of vaccinated individuals could, in principle,
be attributed to taking fewer measures to limit pathogen transmission
via behavioral changes, e.g., higher contact rates, negligence to use
face masks, etc, it is not obvious that such an attribution is meaningful,
rather than the potential outcome of the sloppiness of the model. An-
other surprising feature is that we do not find a significant dependence
of the parameters on the norm used (apart from the noted difference
in the transmission rates). The asymptomatic fraction is predicted to
be slightly larger, approximately 30%, the 𝐻𝑢 → 𝑅𝑢 (𝜅𝑟,𝑢) is slightly
smaller, and the death rate is slightly larger (𝜅𝑑,𝑣).

2.2. Model A2: Branches terminate at hospitalizations

We now consider model A2, an omicron-variant model similar to
A1, but where the population branches terminate at the total number
of hospitalizations (see Fig. 5). The total hospitalization data appear,
in our gauge, to be more reliable than fatalities, as the latter (at least
in Andalusia) include deceased by any cause that may have recently
generated a positive test. That is to say, we believe that numerous
fatalities were attributed to COVID even though the primary reason for
these events had not been COVID [47]. By considering the reported
(total, namely conventional and critical) hospitalizations, this possible
misattribution of fatalities to COVID-19 may be diminished. Model A2
is the same as model A1 described by Eqs. (1), differing only in the
terminal compartments of hospitalizations. This implies that the ODEs
Eqs. (1a)–(1f) and Eqs. (1j)–(1o) form part of the model A2 equations,
as well. However, Eqs. (1g)–(1i) and Eqs. (1p)–(1r) are to be replaced
by
d𝐽𝑖
d𝑡

= 𝛾ℎ,𝑖𝐼𝑖, 𝑖 = 𝑢, 𝑣,

d𝑅𝑖
d𝑡

= 𝛾𝑟,𝑖𝐼𝑖, 𝑖 = 𝑢, 𝑣
(6)

where 𝐽 (𝑡) in the total number of hospitalizations, and 𝛾𝑖𝑗 is the rate
ymptomatically infected individuals 𝑢, 𝑣 become hospitalized 𝛾ℎ,𝑖 or
ecovered 𝛾𝑟,𝑖.

The optimal parameters (and initial conditions) are obtained by a
rocedure similar to what we used in model A1 with 𝐽 (𝑡) playing the
ole of 𝐷(𝑡). Accordingly, the norms change: Eq. (2) becomes

= 1
𝑛

𝑛
∑

𝑖=1

{

log
[

𝐽𝑢,num(𝑡𝑖) + 𝐽𝑣,num(𝑡𝑖)
]

− log
[

𝐽obs(𝑡𝑖)
]

}2
, (7)

hile Eq. (4) becomes

= 1
𝑛

𝑛
∑

𝑖=1

{

log
[

𝐽𝑢,num(𝑡𝑖)
]

− log
[

𝐽𝑢,obs(𝑡𝑖)
]

}2

+
{

log
[

𝐽𝑣,num(𝑡𝑖)
]

− log
[

𝐽𝑣,obs(𝑡𝑖)
]

}2
. (8)

.2.1. Andalusia
The results of fitting the total hospitalizations (arising from both

accinated plus unvaccinated populations using norm (7)) are shown in
ig. 6. The optimal parameters and initial conditions are summarized
n Table 1, last column.

As in the case of the cumulative optimization of both the vaccinated
nd the unvaccinated fatalities, the results of Fig. 6 appear quite

ccurate, including the forward prediction for the month of March
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Fig. 4. Omicron-variant model A1: Separate fits of unvaccinated and vaccinated fatalities in Switzerland (norm Eq. (4)). Left panel: Fatalities of unvaccinated individuals. Right
panel: Fatalities of vaccinated individuals. Calculated curves are plotted in red, whereas the yellow shade presents the 95% confidence interval comprised between the 2.5 and
97.5 percentiles. Reported data for the total number of vaccinated and unvaccinated fatalities are given by the black points. The vertical line, the beginning of the prediction
interval, is March 1, 2022.
Table 2
Optimal parameters and initial conditions for the omicron-variant models in Switzerland: Model fits to (a) the total number of fatalities (model A1, second column from the left),

(b) the total number of hospitalizations (model A2, third column), (c) to the 𝑢, 𝑣 total number of fatalities separately (model A1, fourth column), and (d) to the 𝑢, 𝑣 total number
f hospitalizations separately (model A2, fifth column). Population 𝑁CHL = 8.7𝑀 . Parameters descriptions are as defined in Table 1.
Parameter Median (interquartile range) Median (interquartile range) Median (interquartile range) Median (interquartile range)

Fit: total number of deaths Fit: total hospitalizations Fit: 𝑢, 𝑣 deaths separately Fit: 𝑢, 𝑣 hospitalizations separately
[Model A1, norm Eq. (2)] [Model A2, norm Eq. (7) ] [Model A1, norm Eq. (4)] [Model A2, norm Eq. (8)]

𝛽𝑢𝑢 0.1682 (0.1491–0.1915) 0.2563 (0.2241–0.2855) 0.1607 (0.1339–0.1862) 0.3418 (0.3300–0.3539)
𝛽𝑢𝑣 0.2450 (0.2088–0.2840) 0.2084 (0.1798–0.2328) 0.2023 (0.1840–0.2235) 0.1509 (0.1216–0.1846)
𝛽𝑣𝑢 0.0780 (0.0541–0.0979) 0.0709 (0.0357–0.0995) 0.0261 (0.0158–0.0399) 0.0500 (0.0453–0.0551)
𝛽𝑣𝑣 0.0977 (0.0790–0.1144) 0.1422 (0.1123–0.1711) 0.2266 (0.1917–0.2625) 0.1885 (0.1737–0.2037)
1∕𝜎1 1.7558 (1.6627–1.8545) 1.7605 (1.6190–1.9650) 1.7811 (1.6837–1.8945) 1.7169 (1.6315–1.8140)
1∕𝜎2 1.6798 (1.5660–1.8040) 1.6690 (1.4572–1.8302) 1.6384 (1.5075–1.7495) 1.7085 (1.5905–1.8255)
𝜙𝑢 0.2469 (0.2333–0.2588) 0.2659 (0.2472–0.2865) 0.3125 (0.2885–0.3366) 0.3360 (0.2880–0.3803)
𝜙𝑣 0.2551 (0.2465–0.2617) 0.2680 (0.2546–0.2834) 0.3346 (0.3063–0.3535) 0.3161 (0.2936–0.3337)
1∕𝜇𝑢 3.1794 (3.0941–3.2628) 3.1836 (3.0829–3.3157) 3.2599 (3.1700–3.4231) 3.4953 (3.2164–3.9040)
𝛾𝑟,𝑢 0.1509 (0.1335–0.1661) 0.1845 (0.1678–0.2006) 0.1386 (0.1263–0.1511) 0.1731 (0.1562–0.1867)
𝛾ℎ,𝑢 0.0115 (0.0091–0.0133) 0.0037 (0.0034–0.0042) 0.0107 (0.0093–0.0121) 0.0039 (0.0038–0.0041)
1∕𝜇𝑣 3.2920 (3.2141–3.4560) 3.3012 (3.1761–3.4442) 3.0606 (2.8636–3.2685) 3.2347 (3.0419–3.4284)
𝛾𝑟,𝑣 0.1607 (0.1431–0.1707) 0.1679 (0.1357–0.1892) 0.1627 (0.1469–0.1892) 0.1424 (0.1315–0.1571)
𝛾ℎ,𝑣 0.0106 (0.0095–0.0120) 0.0028 (0.0025–0.0031) 0.0105 (0.0095–0.0118) 0.0029 (0.0028–0.0029)
𝜅𝑟,𝑢 0.2521 (0.2216–0.2852) – 0.1882 (0.1515–0.2290) –
𝜅𝑑,𝑢 0.0185 (0.0162–0.0207) – 0.0186 (0.0178–0.0193) –
𝜅𝑟,𝑣 0.1886 (0.1314–0.2738) – 0.1688 (0.1576–0.1808) –
𝜅𝑑,𝑣 0.0071 (0.0060–0.0084) – 0.0109 (0.0102–0.0116) –
𝜃 0.8483 (0.8417–0.8552) 0.8662 (0.8529–0.8871) 1 1

Initial condition

𝐸𝑢(0) 5648 8234 2690 6483
𝑃𝑢(0) 4767 4340 2677 5530
𝐴𝑢(0) 3609 3762 988 3110
𝐼𝑢(0) 11 318 12 759 5189 12 655
𝐻𝑢(0) 295 – 278 –
𝐸𝑣(0) 9401 8642 10 330 6477
𝑃𝑣(0) 7936 4555 10 278 5524
𝐴𝑣(0) 6007 3949 3795 3107
𝐼𝑣(0) 18 839 13 392 19 925 12 644
𝐻𝑣(0) 381 – 200 –
(despite a slight under-prediction of hospitalizations). Note that model
A1 predictions (see Fig. 2) were slightly above reported fatalities.
However, a more careful inspection of the obtained parameters suggests
that some of them may not be epidemiologically realistic. Inspection of
the optimized transmission rates shows that the 𝑣𝑣 rate is larger than
he 𝑢𝑢 rate (specifically, we note 𝛽𝑣𝑣 > 𝛽𝑢𝑢, 𝛽𝑣𝑢 > 𝛽𝑢𝑣, and 𝛽𝑣𝑢 > 𝛽𝑢𝑢).

Whereas these inequalities may be related to changes in the behavior
of vaccinated individuals, (for example, vaccinated individuals may
7

take fewer precautions and socialize more) we believe instead that this
aspect points to the non-identifiability of the model. It is also likely
that the origin of these transmission rates stems from our regression’s
inability to expressly distinguish between the two 𝑢, 𝑣 compartments,.
More concretely, and similarly to model A1, the only available output
is the cumulative number of hospitalizations 𝐽𝑢(𝑡) + 𝐽𝑣(𝑡). However, for
such an output we could not obtain any identifiability results following
the procedure described in the Appendix. The model is too complex and

beyond the capability of the current identifiability-analysis packages.
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Fig. 5. Schematic diagram of the population flows according to model A2. The
usceptible interactions are as in model A1, shown in the right panel of Fig. 1. The
ymbol 𝛿𝑖𝑗 with 𝑖, 𝑗 = 𝑢, 𝑣 is the Kronecker delta.

Fig. 6. Omicron-variant model A2: Fit and prediction for the total number of
hospitalizations in Andalusia (norm of Eq. (7)). The calculated curve is plotted in red,
whereas yellow shade corresponds to the 95% confidence interval comprised between
the 2.5 and 97.5 percentiles. Reported data for the total number of hospitalizations are
given by the black points. The vertical line, the beginning of the prediction interval,
is March 1, 2022.

2.2.2. Switzerland
We followed the same procedure to generate the model A2 fits

and predictions for Switzerland (including the Principality of Liechten-
stein). As for model A1, we fitted both the total number of hospitaliza-
tions via norm (7) and the two vaccination-identified compartments via
norm (8). We followed the same procedure as that used to determine
𝐷𝑢(𝑡) and 𝐷𝑣(𝑡) to obtain estimates for 𝐽𝑢(𝑡) and 𝐽𝑣(𝑡).

Fig. 7 presents our results for the fit to total number of hospitaliza-
tions. Fig. 8, instead, corresponds to the vaccinated and unvaccinated
populations considered separately in the regression. Table 2, third
and fifth column, summarizes all the fitting parameters and initial
conditions.

We can see a clear model under-prediction of hospitalizations in
the prediction interval, despite an accurate following of the time-
series throughout the period over which regression is performed. The
under-prediction is more pronounced in the case of the fit to the total
number of hospitalizations. In the case of the separate fittings, the
hospitalizations of the vaccinated population are more under-predicted
than the hospitalizations of unvaccinated individuals. We attribute this
to the fact that, as also discussed in the context of fatalities, towards
the end of the fitting period, restrictions were considerably relaxed
leading to more cases, and eventually more fatalities. As regards the
parameters of the model, we find the transmission rates to be more in
8

Fig. 7. Omicron-variant model A2: Fit and prediction of the total number of hospi-
talizations in Switzerland (norm of Eq. (7)). The calculated curve is plotted in red,
whereas the yellow shade presents the 95% confidence interval comprised between the
2.5 and 97.5 percentiles. Reported data for the total number of hospitalizations are
given by the black points. The vertical line, the beginning of the prediction interval,
is March 1, 2022.

line with what one might typically expect. In particular, 𝛽𝑢𝑢 > 𝛽𝑣𝑣 for
both fittings (with the two different norms), but 𝛽𝑢𝑣 > 𝛽𝑣𝑣 for the fitting
to the total hospitalization, whereas the reverse is true for the fitting
to the two separate populations (although in both cases, the rates are
fairly similar, even more so when considering the interquartile ranges).
The fraction of asymptomatics varies from approximately 27% to 33%,
again in reasonable agreement with [45]. The remaining parameters do
not seem to significantly depend on the norm chosen.

In our identifiability analysis of model A2 with the two vaccination
compartments treated separately we considered, as in the case of
model A1, that 𝐽𝑢(𝑡) and 𝐽𝑣(𝑡) are separately and continuously known.
Moreover, we took 𝜃 = 1. Following the procedure described in the
Appendix, we can show that all parameters and initial conditions are
globally identifiable. This implies that, in principle, all initial conditions
and parameters can be determined from the output 𝐽𝑢(𝑡) and 𝐽𝑣(𝑡).
Practically speaking, however, only the discrete time series 𝐽𝑢(𝑡) and
𝐽𝑣(𝑡) are known: we do not have the full information of the continuous
changes of 𝐽𝑢(𝑡) and 𝐽𝑣(𝑡) as the identifiability analysis supposes. Hence,
the loss function used in the parameter estimation is based on a
discrete time series reflecting a finite number of observations. Given the
complexity of the model and the large number of parameters involved,
the optimization package often fails to find a minimum. To alleviate
the situation, we chose to fix certain initial conditions, even though
such a choice is inconsistent with being globally identifiable. Combined
with the possible sloppiness of the model, the result of such a choice
may be that the estimates for some of the parameters may not be as
sharp. We indicate the above to mitigate a potential impression (to the
reader) that the mathematically obtained global identifiability of the
model should be expected to translate into the most definitive model
results.

3. Delta variant

Having explored the more elaborate model setting of the omicron
variant we now turn to the simpler case of the delta variant. What
simplifies the model considerably is that it is sufficient to consider a
single susceptible population since infection of vaccinated individuals
was rare. The SARS-CoV-2 vaccines were highly effective against the
delta variant, leading to rather few breakthrough infections. Conse-
quently, susceptible individuals who are vaccinated are added to a
‘‘withdrawn’’ population. An alternative option is to add them to the
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Fig. 8. Omicron-variant model A2: Separate fits of unvaccinated and vaccinated hospitalizations in Switzerland (norm Eq. (8)). Left panel: Hospitalizations of unvaccinated
individuals. Right panel: Hospitalizations of vaccinated individuals. Calculated curves are plotted in red, whereas the yellow shade presents the 95% confidence interval comprised
between the 2.5 and 97.5 percentiles. Reported data for the total number of vaccinated and unvaccinated hospitalizations are given by the black points. The vertical line, the
beginning of the prediction interval, is March 1, 2022.
Fig. 9. Schematic diagram of population flows according to the delta-variant model B (left panel) and susceptible interactions with other population compartments (right panel). A
single population is modeled, as we consider that the waning immunity time scale (either due to vaccine immunity or to recovery) is much longer than the time scale of prevalence
of the delta variant. Vaccinated individuals W are permanently removed from the susceptible compartment, their population becoming a terminal compartment of the model.
t

(

recovered population in the sense that this is a terminal compartment
of the model. For the time period of 3–4 months for which the delta
variant was dominant, the potential waning of immunity (either from
recovery or from the vaccine) is not considered sufficient to allow these
individuals to replenish the susceptible compartment. For more persis-
tent variants, replenishing the susceptible population may be relevant.
The small number of breakthrough infections removes the need for
a detailed modeling of compartments within the vaccinated category.
Accordingly, the relevant model with the same (but single-component)
populations as before and with the addition of the withdrawn (𝑊 )
ompartment reads as reported in Eqs. (9). A schematic of the popu-
ation flows (left panel) and the susceptible interactions is shown in
ig. 9.

The initial conditions are taken in a similar fashion as in the
micron variant, except for 𝑆(0), which is taken as a fitting parameter.
e chose to render it a fitting parameter since susceptibles who be-

ame infected with previous variants are immune to the delta variant.
owever, their number is not definitively known. Moreover, as in our
odeling of the omicron variant via models A1 and A2, we supposed

hat the transmission rate 𝛽 is the same for all three infectious compart-
ents: asymptomatics, presymptomatics, and for the symptomatically

nfected population. In addition, as in the case of the omicron-variant
odels, we imposed the single constraint on the incubation period

inc = 𝜎−11 + 𝜎−12 to be equal to a value randomly sampled following
normal distribution whose mean now is 4.41 and standard deviation
9

0.3291, in line with what is reported in [29].
d𝑆
d𝑡

= −𝛽𝑆(𝐼 + 𝐴 + 𝑃 ) − 𝜃𝑉 (𝑡),

d𝐸
d𝑡

= −𝜎1𝐸 + 𝛽𝑆(𝐼 + 𝐴 + 𝑃 ),

d𝑃
d𝑡

= (1 − 𝜙)𝜎1𝐸 − 𝜎2𝑃 ,

d𝐴
d𝑡

= 𝜙𝜎1𝐸 − 𝜇𝐴,

d𝑈
d𝑡

= 𝜇𝐴,

d𝐼
d𝑡

= 𝜎2𝑃 − (𝛾𝑟 + 𝛾ℎ)𝐼,

d𝐻
d𝑡

= 𝛾ℎ𝐼 − (𝜅𝑟 + 𝜅𝑑 )𝐻,

d𝑅
d𝑡

= 𝛾𝑟𝐼 + 𝜅𝑟𝐻,

d𝐷
d𝑡

= 𝜅𝑑𝐻,

d𝑊
d𝑡

= 𝜃𝑉 (𝑡).

(9)

The norm associated with model B, and minimized during the
optimization procedure, is:

 = 1
𝑛

𝑛
∑

𝑖=1

{

log
[

𝐷num(𝑡𝑖)
]

− log
[

𝐷obs(𝑡𝑖)
]}2. (10)

Again, following the approach presented in the Appendix, we find
hat the three parameters 𝜎1, 𝜙, 𝜇 and the following combinations

𝛾ℎ + 𝛾𝑟) + 𝜎2, (𝛾ℎ + 𝛾𝑟) ⋅ 𝜎2, 𝜅𝑑 + 𝜅𝑟,
𝛽(𝛾ℎ + 𝛾𝑟) ,

𝛾ℎ 𝜅𝑑𝜃,
𝛾ℎ𝜅𝑑 𝛾ℎ + 𝛾𝑟
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are globally identifiable. Thus, 𝜎2 and the sum (𝛾ℎ+𝛾𝑟) are locally iden-
ifiable. Initial conditions other than 𝐷(0), which is explicitly available
hrough the fatality time series, are not identifiable. As discussed in
he identifiability analyses of the two omicron models, this is just the
heoretical result, based on the analysis of [39]. As we have empirically
bserved, when we fix certain initial conditions or choose a bound for
he parameters to be optimized, the identifiability properties of the
odel may change. In that light, the relevant parameter identifications

hould be considered with the associated practical ‘‘word of caution’’
ndicated above.

.1. Andalusia and Switzerland

In our simulations, the fitting window for the Andalusia calculation
tarted on June 15, 2021, whereas it started on July 1, 2021 for the
witzerland simulations. The choice of the initial time was determined
rom the existence of a plateau in the associated time series. The fitting
eriod ended on October 1, 2021 for both regions, and the prediction
nterval terminated on November 1, 2021. As mentioned in Section 2,
he omicron variant appeared in November 2021.

Fig. 10 shows the results of our model B simulations, both for the
itting and the prediction intervals. The left panel presents results for
ndalusia, whereas the right panel does it for Switzerland. The best fit-

ing parameters and initial conditions for both countries corresponding
o the model B ODEs are presented in Table 3. In the case of Andalusia,
e observe a high quality fit, not only for the regression interval but
lso for the prediction interval. Nevertheless, some parameters do not
eem to be in agreement with current knowledge of the epidemiology
f the delta variant of SARS-CoV-2. We believe, that the primary
eason is the lack of identifiability of the model (both the local aspects
hereof theoretically, as well as the practical aspect highlighted above
n connection to data and initial condition choices). For example, the
ecovery time of asymptomatics, 1∕𝜇 is found to be ≈ 3.5 days, and
n upper bound to the recovery time of symptomatically infected is
∕𝛾𝑟 ≈ 5.4 days. It may be expected that both time scales are likely to be
onger than these predictions, although these numbers are in reasonable
orrespondence with findings, e.g., such as the ones of [48] for the delta
ariant. On the other hand, the fraction of asymptomatics, 8%, is in
greement with the review and analysis of [45] who found a consider-
bly smaller fraction of asymptomatics associated with the delta than
he omicron variants, again in agreement with our calculations.

Our model calculations for Switzerland in Fig. 10 provide a reason-
ble fit throughout the training interval: calculations initially under-
redict and later over-predict. Nevertheless, the predicted time series
onsiderably under-predicts the number of fatalities over the prediction
eriod. Some optimized parameters for this territory differ significantly
rom those obtained for Andalusia. In particular, the transmission rate
or the Switzerland data is higher than that for the Andalusia data, as
re the 𝐻 → 𝑅 recovery rates. The Switzerland parameters, however,

for the death rate and the vaccine efficiency are predicted to be lower
than those for Andalusia. In this case, we do not have a definitive
attribution of the relevant result (i.e., the under-prediction of fatalities)
in the case of Switzerland. The only change in policy that we could
identify was that from September 13, 2021, access to most indoor
public spaces like restaurants, bars, museums or fitness centers was
permitted with a valid COVID certificate in Switzerland. No other
restrictions were enforced on fully vaccinated and boosted people.

4. Conclusions and future challenges

In this work we presented a new class of compartmental epidemi-
ological models that was motivated by the immunological properties
of the delta and omicron variants of SARS-CoV-2. More generally, our
aim was to present possibilities for settings where variants are highly
transmissive (and hence relevant to consider vaccinated individuals and
their epidemiological characteristics) as in the case of models A1–A2 for
10

u

the omicron variant, as well as ones where breakthrough infections are
more rare, and hence vaccination is tantamount to withdrawal from the
susceptible population as in the case of model B for the delta variant.
Therefore, we constructed model B with the stipulation that vaccinated
individuals were permanently withdrawn from the susceptible popula-
tion based on the vaccination records and vaccine coverage rate. On the
other hand, the epidemiology of the omicron variant suggests a substan-
tial number of breakthrough infections, namely infections of vaccinated
individuals. Accordingly, we developed models for both vaccinated and
unvaccinated populations and analyzed their pairwise interaction and
overall time evolution. Indeed, two classes of regression results were
given. In the first (and more crude) regression, only the cumulative
number of fatalities was accounted for in the optimization objective.
This was done when the data did not allow the partitioning of fatalities
(or hospitalizations) to vaccinated and unvaccinated components. In
the second, more refined approach, fatalities (or hospitalizations) stem-
ming from the two different (vaccinated or not) groups were separately
considered. More broadly, our motivation is to contribute towards a
modeling platform that can incorporate the specific features of past
or/and future variants, and the available datasets (such as fatalities
or/and hospitalizations), with the aim of a quantitative characterization
of different components of the involved population (in line, also, with
the corresponding identifiability analysis).

We addressed the identifiability of the various models and consid-
ered mathematical issues (e.g., parameters globally and locally identi-
fiable, given particular time series), we raised some practical consid-
erations due to the finite nature of the available observations, and we
considered the compatibility of the selection of some initial conditions.
In the case where the time series associated with vaccinated and
unvaccinated individuals are required, we identified the issue of how
to handle the so-called ‘‘unknown’’ deaths if the individual vaccination
status remains undeclared. We proposed a concrete approach to address
such disparities, yet clearly these topics merit further investigation.

In our presentation, we focused on the region of Andalusia in Spain
and the country of Switzerland (which included data from the Princi-
pality of Liechtenstein). These two territories have similar populations.
In each territory, we presented studies of a regression effort involving
the fatalities (model A1), as well as one terminating at the compartment
of total (i.e., conventional plus critical) hospitalizations (model A2).
Our models gave generally good agreement with the corresponding
training sets, but also reasonable predictions within the prediction
interval of periods of about a month beyond the end of the training
period (up to which the optimization is performed). In the cases where
deviations from the predictions were more significant, plausible expla-
nations were offered on the basis of, e.g., the relaxation of measures or
other changes of policies.

Naturally, these models offer a starting point for further consid-
erations and are intended as a stepping stone for further studies. On
the one hand, it would be quite relevant to seek additional sources
of data and other approaches to parameter estimation (than the re-
gression and bootstrapping methodologies used here), to incorporate
more accurately the measurement uncertainty and to improve the
adequacy of the parameter estimation, in line with our expectations
stemming from the analysis of the model identifiability. From a more
mathematical perspective, it may also be quite relevant to seek to
identify plausible vaccination function patterns 𝑉 (𝑡). Then, one can
se these to provide a systematic analysis of the evolution, stabil-
ty features, and asymptotic behavior of the system. An especially
ppealing feature of the model in that regard is its mathematically
on-autonomous nature which renders such an analysis a less explored,
ut quite worthwhile direction. Another important direction is to add
he spatial dimension to the proposed well-mixed ODE models, to
ncorporate the mobility of vaccinated individuals. This can be done
ither at the level of metapopulation models [8,49,50] or at that of PDE
pproaches [51–54]. Finally, numerous additional dimensions of such
odeling of vaccinations are relevant to consider such as, e.g., the age

tratification of such effects [2,22,55]. These directions are currently
nder consideration and will be reported in future publications.
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Table 3
Optimal parameters and initial conditions for the delta-variant model, model B, in Andalusia (third column) and Switzerland (fourth column).

Model fits to the total number of fatalities, norm (10).
Parameter Symbol Median (interquartile range) Median (interquartile range)

Andalusia Switzerland
Model B, norm (10) Model B, norm (10)

Transmission rate [per day] 𝛽 0.4526 (0.4210–0.4703) 0.5445 (0.5320–0.5570)
Latent period [days] 1∕𝜎1 2.2001 (2.0896–2.2982) 2.2027 (2.1113–2.3021)
Preclinical period [days] 1∕𝜎2 2.1590 (2.0518–2.2789) 2.2056 (2.1112–2.3055)
𝐴∕𝑃 partitioning [-] 𝜙 0.0801 (0.0780–0.0827) 0.0800 (0.0787–0.0820)
Infectivity period (𝐴) [days] 1∕𝜇 3.4493 (3.3551–3.5658) 3.4708 (3.3879–3.6194)
Recovery rate 𝐼 → 𝑅 [per day] 𝛾𝑟 0.1852 (0.1643–0.1982) 0.1888 (0.1842–0.1959)
Transition rate 𝐼 → 𝐻 [per day] 𝛾ℎ 0.0017 (0.0016–0.0020) 0.0026 (0.0024–0.0027)
Recovery rate 𝐻 → 𝑅 [per day] 𝜅𝑟 0.0629 (0.0523–0.0831) 0.2480 (0.2355–0.2637)
Death rate 𝐻 → 𝐷 [per day] 𝜅𝑑 0.0462 (0.0449–0.0481) 0.0069 (0.0066–0.0072)
Vaccine efficiency [-] 𝜃 0.7956 (0.7802–0.8240) 0.6162 (0.6047–0.6189)
Initial ratio [#] 𝑆(0)∕𝑁(0) 0.5824 (0.5673–0.5951) 0.5278 (0.5178–0.5377)

Initial conditions

Initial exposed population [#] 𝐸(0) 1322 669
Initial presymptomatic population [#] 𝑃 (0) 351 591
Initial asymptomatic population [#] 𝐴(0) 205 332
Initial symptomatically infected population [#] 𝐼(0) 1914 1441
Initial hospitalized population [#] 𝐻(0) 80 57
Fig. 10. Delta-variant model B: Fit and prediction of the total number of fatalities in Andalusia (left panel) and Switzerland (right panel). Norm (10) was used. The vertical line,
he beginning of the prediction interval, is October 1, 2022. Note the significant difference in the number of fatalities. Line and symbol colors, as well as ranges, are as described
n the previous figures.
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ppendix. Identifiability analysis

As defined in [38] (see also references therein), a parameter or an
nitial condition of a differential model is called globally identifiable
f it can be uniquely determined from the input and output of the
ystem. On the other hand, they are called locally identifiable if
here is only a finite number of possible values. Due to many issues,
uch as parameter sensitivity, a globally identifiable parameter does
ot necessarily lead to a very sharp estimate, although it is guaranteed,
n theory, to have a unique value. At the same time, only locally,
11

t

ut not globally, identifiable parameters often have poor estimates.
evertheless, as pointed out in [42] and elsewhere, the poor estimates
f these parameters may still yield reasonable predictions of the state
ariables. Overall, identifiability analysis sheds important insights on
he quality of the parameter estimation and the prediction of the
tate variables, and consequently it should be carried out before any
arameter estimation is done.

Following the differential algebraic approach in [36], one needs to
ewrite the whole system as a single high-order differential equation of
he observable (i.e., the data). Inevitably, a moderate system leads to
n equation with a huge number of terms which is very likely beyond
he capability of symbolic mathematics software like Mathematica.
he difficulty is due to the nonlinear terms in the original system.
ur approach is to leave some original equation(s) untouched and

ewrite the rest as a high-order differential equation of the observable.
asically, we explicitly carry out as many derivations as possible, and
top short of writing the original system into a single ODE, as the last
tep(s) may lead to an exceedingly complex equation. Then we apply
he identifiability analysis package SIAN [38,39] and StructuralIdenti-
iability [40,41] to the new system. In what follows, we explain how
t is done for the model given by Eqs. (1), model A1. The other two
odels, models A2 and B, are analyzed in the exactly same way. Note

hat this approach is not limited to the models presented in this work.
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In addition, we remark that results could not be obtained for all the
cases.

The subscript 𝑢 or 𝑣 will be dropped whenever there is no obvious
mbiguity. We introduce intermediate parameters 𝛾𝑠 = 𝛾𝑟 + 𝛾ℎ and
𝑠 = 𝜅𝑟 +𝜅𝑑 . The idea is to rewrite Eqs. (1) as a system of equations for
he number of asymptomatics 𝐴 and a high-order ODE for the number
f fatalities 𝐷’s. The 𝐷’s need to be kept because they are the output
i.e., the observable).

For the unvaccinated state variables, Eqs. ((1i), (1g), (1f), (1c)) lead
o

= 1
𝜅𝑑

𝐷′,

𝐼 = 1
𝛾ℎ

(𝐻 ′ + 𝜅𝑠𝐻) = 1
𝛾ℎ𝜅𝑑

(𝐷′′ + 𝜅𝑠𝐷
′),

𝑃 = 1
𝜎2

(𝐼 ′ + 𝛾𝑠𝐼) =
1

𝜎2𝛾ℎ𝜅𝑑
(𝐷′′′ +𝐷′′(𝜅𝑠 + 𝛾𝑠) +𝐷′(𝛾𝑠𝜅𝑠)),

𝐸 =
𝑃 ′ + 𝜎2𝑃
(1 − 𝜙)𝜎1

= 1
(1 − 𝜙)𝜎1𝜎2𝛾ℎ𝜅𝑑

×
[

𝐷(4) +𝐷′′′(𝜅𝑠 + 𝛾𝑠 + 𝜎2) +𝐷′′(𝜅𝑠𝛾𝑠 + 𝜅𝑠𝜎2 + 𝛾𝑠𝜎2) +𝐷′(𝜅𝑠𝛾𝑠𝜎2)
]

.

Here all subscripts 𝑢 are dropped: identical equations for vaccinated
state variables should also be considered. From the last equation, we
compute the following (since it resembles certain terms in Eq. (1b)),

𝐸 + 𝜎1 ∫

𝑡

𝑡0
𝐸(𝜏) 𝑑𝜏

= 1
(1 − 𝜙)𝜎1𝜎2𝛾ℎ𝜅𝑑

[

𝐷(4) + 𝑘3𝐷
′′′ + 𝑘2𝐷

′′ + 𝑘1𝐷
′ + 𝑘0𝐷 + 𝛼̃

]

, (A.1)

where 𝛼̃ is an integration constant (a new parameter) and

3 = 𝜅𝑠 + 𝛾𝑠 + 𝜎1 + 𝜎2, 𝑘2 = 𝜅𝑠𝛾𝑠 + 𝜅𝑠𝜎1 + 𝜅𝑠𝜎2 + 𝛾𝑠𝜎1 + 𝛾𝑠𝜎2 + 𝜎1𝜎2,

𝑘1 = 𝜅𝑠𝛾𝑠𝜎1 + 𝜅𝑠𝛾𝑠𝜎2 + 𝜅𝑠𝜎1𝜎2 + 𝛾𝑠𝜎1𝜎2, 𝑘0 = 𝜅𝑠𝛾𝑠𝜎1𝜎2.

With Eq. (A.1), we now add Eqs. (1a) and (1b), and then integrate
to obtain

(𝑆′ + 𝐸′) = −𝜎1𝐸 − 𝜃𝑉 (𝑡) ⇒

𝑆 = −1
(1 − 𝜙)𝜎1𝜎2𝛾ℎ𝜅𝑑

[

𝐷(4) + 𝑘3𝐷
′′′ + 𝑘2𝐷

′′ + 𝑘1𝐷
′ + 𝑘0𝐷 + 𝛼 + 𝜃𝑉 (𝑡)

]

,

where 𝛼 is another integration constant (different from 𝛼̃), and

𝑉 (𝑡) = ∫

𝑡

𝑡0
𝑉 (𝜏) 𝑑𝜏, 𝜃 = (1 − 𝜙)𝜎1𝜎2𝛾ℎ𝜅𝑑𝜃.

So far, the state variables for unvaccinated population 𝐻, 𝐼, 𝑃 , 𝐸, 𝑆
are expressed as functions of 𝐷 and its derivatives. We have identical
formulas for the vaccinated populations 𝐻𝑣, 𝐼𝑣, 𝑃𝑣, 𝐸𝑣, 𝑆𝑣, except that
for 𝑆𝑣 a negative sign should be added in front of 𝜃.

The equation for 𝐸𝑢, Eq. (1b), multiplied by (1 − 𝜙𝑢)𝜎1𝜎2𝛾ℎ,𝑢𝜅𝑑,𝑢
becomes

𝐷(5)
𝑢 = −

[

𝑘3𝐷
(4)
𝑢 + 𝑘2𝐷

′′′
𝑢 + 𝑘1𝐷

′′
𝑢 + 𝑘0𝐷

′
𝑢
]

−
[

𝐷(4)
𝑢 + 𝑘3𝐷

′′′
𝑢 + 𝑘2𝐷

′′
𝑢 + 𝑘1𝐷

′
𝑢 + 𝑘0𝐷𝑢 + 𝛼𝑢 + 𝜃𝑢𝑉 (𝑡)

]

⋅
[

𝛽𝑢𝑢(𝐼𝑢 + 𝐴𝑢 + 𝑃𝑢) + 𝛽𝑢𝑣(𝐼𝑣 + 𝐴𝑣 + 𝑃𝑣)
]

.

Note that the subscript 𝑢 for the parameters 𝑘3, 𝑘2, 𝑘1, 𝑘0 is still omitted.
But for this equation they should be computed from the parameters
associated with the unvaccinated population, whereas for the equation
of 𝐷(5)

𝑣 they should be computed from the parameters associated with
the vaccinated population.

Furthermore,

𝛽𝑢𝑢(𝐼𝑢 + 𝐴𝑢 + 𝑃𝑢) = 𝛽𝑢𝑢
[𝐷′′

𝑢 + 𝜅𝑠,𝑢𝐷′
𝑢

𝛾ℎ,𝑢𝜅𝑑,𝑢
+ 𝐴𝑢 +

𝐷′′′
𝑢 +𝐷′′

𝑢 (𝜅𝑠,𝑢 + 𝛾𝑠,𝑢) + (𝜅𝑠,𝑢𝛾𝑠,𝑢)𝐷′
𝑢

𝜎2𝛾ℎ,𝑢𝜅𝑑,𝑢

]

=
𝛽𝑢𝑢

[

𝐷′′
𝑢 + 𝜅𝑠,𝑢𝐷′

𝑢

]

𝛾ℎ,𝑢𝜅𝑑,𝑢
+

𝛽𝑢𝑢
[

𝐷′′′
𝑢 +𝐷′′

𝑢 (𝜅𝑠,𝑢 + 𝛾𝑠,𝑢) + (𝜅𝑠,𝑢𝛾𝑠,𝑢)𝐷′
𝑢

]

𝜎2𝛾ℎ,𝑢𝜅𝑑,𝑢
+ 𝛽𝑢𝑢𝐴 .
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𝑢

Similarly,

𝛽𝑢𝑣(𝐼𝑣 + 𝐴𝑣 + 𝑃𝑣) =
𝛽𝑢𝑣

[

𝐷′′
𝑣 + 𝜅𝑠,𝑣𝐷′

𝑣
]

𝛾ℎ,𝑣𝜅𝑑,𝑣

+
𝛽𝑢𝑣

[

𝐷′′′
𝑣 +𝐷′′

𝑣 (𝜅𝑠,𝑣 + 𝛾𝑠,𝑣) + (𝜅𝑠,𝑣𝛾𝑠,𝑣)𝐷′
𝑣
]

𝜎2𝛾ℎ,𝑣𝜅𝑑,𝑣
+ 𝛽𝑢𝑣𝐴𝑣,

𝛽𝑣𝑢(𝐼𝑢 + 𝐴𝑢 + 𝑃𝑢) =
𝛽𝑣𝑢

[

𝐷′′
𝑢 + 𝜅𝑠,𝑢𝐷′

𝑢
]

𝛾ℎ,𝑢𝜅𝑑,𝑢

+
𝛽𝑣𝑢

[

𝐷′′′
𝑢 +𝐷′′

𝑢 (𝜅𝑠,𝑢 + 𝛾𝑠.𝑢) + (𝜅𝑠,𝑢𝛾𝑠,𝑢)𝐷′
𝑢
]

𝜎2𝛾ℎ,𝑢𝜅𝑑,𝑢
+ 𝛽𝑣𝑢𝐴𝑢,

𝑣𝑣(𝐼𝑣 + 𝐴𝑣 + 𝑃𝑣) =
𝛽𝑣𝑣

[

𝐷′′
𝑣 + 𝜅𝑠,𝑣𝐷′

𝑣
]

𝛾ℎ,𝑣𝜅𝑑,𝑣

+
𝛽𝑣𝑣

[

𝐷′′′
𝑣 +𝐷′′

𝑣 (𝜅𝑠,𝑣 + 𝛾𝑠,𝑣) + (𝜅𝑠,𝑣𝛾𝑠,𝑣)𝐷′
𝑣
]

𝜎2𝛾ℎ,𝑣𝜅𝑑,𝑣
+ 𝛽𝑣𝑣𝐴𝑣.

The next step is to scale variables as follows

𝛾ℎ,𝑢𝜅𝑑,𝑢𝐴𝑢 → 𝐴𝑢, 𝛾ℎ,𝑣𝜅𝑑,𝑣𝐴𝑣 → 𝐴𝑣,
𝛽𝑢𝑢

𝛾ℎ,𝑢𝜅𝑑,𝑢
→ 𝛽𝑢𝑢,

𝛽𝑢𝑣

𝛾ℎ,𝑣𝜅𝑑,𝑣

→ 𝛽𝑢𝑣,
𝛽𝑣𝑢

𝛾ℎ,𝑢𝜅𝑑,𝑢
→ 𝛽𝑣𝑢,

𝛽𝑣𝑣

𝛾ℎ,𝑣𝜅𝑑,𝑣
→ 𝛽𝑣𝑣. (A.2)

The above equation for 𝐷(5)
𝑢 becomes

𝐷(5)
𝑢 = −

[

𝑘3𝐷
(4)
𝑢 + 𝑘2𝐷

′′′
𝑢 + 𝑘1𝐷

′′
𝑢 + 𝑘0𝐷

′
𝑢
]

−
[

𝐷(4)
𝑢 + 𝑘3𝐷

′′′
𝑢 + 𝑘2𝐷

′′
𝑢 + 𝑘1𝐷

′
𝑢 + 𝑘0𝐷𝑢 + 𝛼𝑢 + 𝜃𝑢𝑉 (𝑡)

]

×
(

𝛽𝑢𝑢
[

𝐷′′
𝑢 + 𝜅𝑠,𝑢𝐷

′
𝑢
]

+
𝛽𝑢𝑢

𝜎2

[

𝐷′′′
𝑢 +𝐷′′

𝑢 (𝜅𝑠,𝑢 + 𝛾𝑠,𝑢) + (𝜅𝑠,𝑢𝛾𝑠,𝑢)𝐷′
𝑢
]

+ 𝛽𝑢𝑢𝐴𝑢

+𝛽𝑢𝑣
[

𝐷′′
𝑣 + 𝜅𝑠,𝑣𝐷

′
𝑣
]

+
𝛽𝑢𝑣

𝜎2

[

𝐷′′′
𝑣 +𝐷′′

𝑣 (𝜅𝑠,𝑣 + 𝛾𝑠,𝑣) + (𝜅𝑠,𝑣𝛾𝑠,𝑣)𝐷′
𝑣
]

+ 𝛽𝑢𝑣𝐴𝑣

)

.

The equation for 𝐴𝑢, Eq. (1d), takes the form

𝐴′
𝑢 =

𝜙𝑢
(1 − 𝜙𝑢)𝜎2

[

𝐷(4)
𝑢 +𝐷′′′

𝑢 (𝜅𝑠,𝑢 + 𝛾𝑠,𝑢 + 𝜎2)

+ 𝐷′′
𝑢 (𝜅𝑠,𝑢𝛾𝑠,𝑢 + 𝜅𝑠,𝑢𝜎2 + 𝛾𝑠,𝑢𝜎2) +𝐷′

𝑢(𝜅𝑠,𝑢𝛾𝑠,𝑢𝜎2)
]

− 𝜇𝑢𝐴𝑢.

Similarly, the equation of 𝐴𝑣 and the high order equation for 𝐷𝑣
re:
(5)
𝑣 = −

[

𝑘3𝐷
(4)
𝑣 + 𝑘2𝐷

′′′
𝑣 + 𝑘1𝐷

′′
𝑣 + 𝑘0𝐷

′
𝑣
]

−
[

𝐷(4)
𝑣 + 𝑘3𝐷

′′′
𝑣 + 𝑘2𝐷

′′
𝑣 + 𝑘1𝐷

′
𝑣 + 𝑘0𝐷𝑣 + 𝛼𝑣 − 𝜃𝑣𝑉 (𝑡)

]

×
(

𝛽𝑣𝑢
[

𝐷′′
𝑢 + 𝜅𝑠,𝑢𝐷

′
𝑢
]

+
𝛽𝑣𝑢

𝜎2

[

𝐷′′′
𝑢 +𝐷′′

𝑢 (𝜅𝑠,𝑢 + 𝛾𝑠,𝑢) + (𝜅𝑠,𝑢𝛾𝑠,𝑢)𝐷′
𝑢
]

+ 𝛽𝑣𝑢𝐴𝑢

+ 𝛽𝑣𝑣
[

𝐷′′
𝑣 + 𝜅𝑠,𝑣𝐷

′
𝑣
]

+
𝛽𝑣𝑣

𝜎2

[

𝐷′′′
𝑣 +𝐷′′

𝑣 (𝜅𝑠,𝑣 + 𝛾𝑠,𝑣) + (𝜅𝑠,𝑣𝛾𝑠,𝑣)𝐷′
𝑣
]

+ 𝛽𝑣𝑣𝐴𝑣

)

,

𝐴′
𝑣 =

𝜙𝑣
(1 − 𝜙𝑣)𝜎2

[

𝐷(4)
𝑣 +𝐷′′′

𝑣 (𝜅𝑠,𝑣 + 𝛾𝑠,𝑣 + 𝜎2)

+ 𝐷′′
𝑣 (𝜅𝑠,𝑣𝛾𝑠,𝑣 + 𝜅𝑠,𝑣𝜎2 + 𝛾𝑠,𝑣𝜎2) +𝐷′

𝑣(𝜅𝑠,𝑣𝛾𝑠,𝑣𝜎2)
]

− 𝜇𝑣𝐴𝑣.

Up to now, we rewrote the original system as a system of 𝐷(5)
𝑢 ,

𝐷(5)
𝑣 , 𝐴𝑢, 𝐴𝑣. It can be written as a first-order system (by using 𝐷,𝐷′, 𝐷′′,

𝐷(3), 𝐷(4)) so that the identifiability analysis package StructuralIdenti-
fiability can be applied to find the identifiability property of the 18
parameters of this new system:

𝛽𝑢𝑢, 𝛽𝑢𝑣, 𝛽𝑣𝑢, 𝛽𝑣𝑣, 𝜎1, 𝜎2, 𝜙𝑢, 𝜙𝑣, 𝛾𝑠,𝑢, 𝛾𝑠,𝑣, 𝜇𝑢, 𝜇𝑣, 𝜅𝑠,𝑢, 𝜅𝑠,𝑣, 𝜃𝑢, 𝜃𝑣, 𝛼𝑢, 𝛼𝑣

Then, the identifiability property of the 19 parameters of the original
system
𝑢𝑢 𝑢𝑣 𝑣𝑢 𝑣𝑣
𝛽 , 𝛽 , 𝛽 , 𝛽 , 𝜎1, 𝜎2, 𝜃, 𝜙𝑢, 𝜙𝑣, 𝜇𝑢, 𝜇𝑣, 𝛾𝑟,𝑢, 𝛾ℎ,𝑢, 𝛾𝑟,𝑣, 𝛾ℎ,𝑣, 𝜅𝑟,𝑢, 𝜅𝑑,𝑢, 𝜅𝑟,𝑣, 𝜅𝑑,𝑣
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can be derived. Furthermore, one may use the SIAN Webapp, with the
globally identifiable parameters (from StructuralIdentifiability) as extra
outputs, to find the identifiability property of the initial conditions.
Identifiability results obtained from these calculations are reported in
appropriate sections in the main text.
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