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Abstract: Catalytic gas-phase hydrogenation of CO2 into CH4 was tested under three different
nickel/aluminate catalysts obtained from precursors of hexaaluminate composition (MAl16O19,
M = Mg, Ca, Ba). These catalysts were prepared using a carbon template method, where carbon is
self-generated from a sol-gel that contains an excess of citric acid and the Al and M salts (Ba2+, Ca2+,
Mg2+) by two-step calcination in an inert/oxidizing atmosphere. This procedure yielded Ni particles
decorating the surface of a porous high surface area matrix, which presents a typical XRD pattern
of aluminate structure. Ni particles are obtained with a homogeneous distribution over the surface
and an average diameter of ca 25–30 nm. Obtained materials exhibit a high conversion of CO2 below
500 ◦C, yielding CH4 as a final product with selectivity >95%. The observed trend with the alkaline
earth cation follows the order NiBaAlO-PRx > NiCaAlO-PRx > NiMgAlO-PRx. We propose that the
high performance of the NiBaAlO sample is derived from both an appropriate distribution of Ni
particle size and the presence of BaCO3, acting as a CO2 buffer in the process.

Keywords: heterogeneous catalysts; methanation; nickel nanoparticles; Sabatier reaction; carbon
dioxide depletion

1. Introduction

The increasing use of fossil fuels during the last decades and its corresponding CO2
emissions has incremented its concentration in the atmosphere, which has been associated
with global climate change. Therefore, CO2 emission diminution could be considered one
of the major challenges today [1–4]. One strategy to face this issue is CO2 valorization by its
chemical reduction to value-added products. In particular, the catalytic hydrogenation of
CO2 for synthetic fuel production (methanol, dimethyl ether, methane) could be considered
an economically viable solution, especially when CO2 comes from industrial sources.

The Sabatier reaction (4H2 + CO2→CH4 + 2H2O) is an example of the power-to-gas
process (P2G) [5–11]. In this process, exceeding electricity is utilized to electrolyze water,
obtaining hydrogen and oxygen. H2 is then combined with CO2 to produce methane. When
hydrogen is produced by renewable power sources, as in the example just mentioned, the
synthetized methane may be considered “green”, and the substitution of natural gas (fossil)
results in an overall neutral CO2 emission cycle [12–17].

The Sabatier reaction is highly exothermic, therefore, thermodynamically favored,
although kinetically very slow (∆H0 = −164 kJ/mol; ∆G0 = −131 kJ/mol), needing a
catalyst to take place. The practical range of this reaction is restricted to 200–500 ◦C, as
the reverse water gas shift reaction (RWGS) increases CO content at higher temperatures.
Due to the exothermic character of the reaction and for large-scale applications, hot spots
may occur in the catalytic bed, making it necessary to develop thermally stable catalysts to
minimize aging.
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A wide variety of noble metals (Rh, Ru, Pd) have been tested for the gas-phase
hydrogenation of CO2 into methane mediated by Sabatier’s reaction in the gas phase under
diverse conditions [18–22].

Ni-based catalysts are nowadays the most investigated metal due to its high activity,
selectivity and lower cost compared with other alternatives [7,9,23–27] The performance
of Ni-based catalysts depends, as in most of catalytic reactions, on metallic particle size,
properties of the support (nature, basicity, reducibility) and the metal-support interac-
tion [28–36]. In the case of Sabatier reaction, the performance of the catalyst may be
inhibited by carbon deposition, what ultimately would decrease the conversion rate. Both
factors depend mostly on Ni particle size.

It is generally accepted that the key intermediate of this reaction is the adsorbed
formiate (HCOOad) specie [37], formed by the coadsorption of H2 and CO2. This format
could either decompose on CO or be hydrogenated to CH4. On small Ni particles with a
low hydrogen coverage, CO formation is favored, while CH4 formation is enhanced on
bigger Ni particles. On the contrary, carbon formation is more favorable in big particles
than in small particles. [16,38–45]. It is worth mentioning here that the adsorption of the
formiate species would be favored on Brönsted basic sites due to the acid character of the
CO2 molecule.

In the present work, Ni-based nanosized particles have been formed on three different
porous materials prepared by a two-step procedure, consisting of the decomposition of a
precursor under inert gas at high temperatures, followed by a calcination step at a lower
temperature. The resulting materials with a pseudo-hexaaluminate structure are used as
precursors of the catalytic active phase, obtained from calcined materials under a reactant
mixture (H2 + CO2) without any further pretreatment. The use of these aluminate-derived
materials provided active, thermally stable, and very selective materials for the reduction
of CO2 with hydrogen (Sabatier reaction). The influence of the accompanying cation (Mg2+,
Ca2+, Ba2+) in the acid/basic character of the support and in the size of NiO particles
is discussed.

2. Results
2.1. Textural Data and XRD of Calcined Samples

Table 1 compiles the main textural parameters (SBET and porosity data) of the prepared
catalysts together with two other samples prepared for comparison. These two samples
correspond to a NiBaAl11O19 sample calcined directly in the air at 1000 ◦C (NiBaAlO-AIR)
and a NiBaAl11O19 sample prepared as described elsewhere, with commercial carbon added
in the preparation method and then calcined directly in the air [46] (NiBaAlO-Carbon). In
this table, chemical analysis obtained by ICP is also included. The results obtained fit with
the intended composition.

Table 1. Textural and chemical data of NiBaAlO, NiMgAlO, and NiCaAlO samples.

Sample ICP Chemical
Formula

BET Surface
(m2/g)

Pore Volume
(cm3/g)

Micropore
Volume (cm3/g) Pore Size (Å)

NiBaAlO NiBa1.1Al11(O)x 30.0 0.11 0.002 12–17
NiMgAlO NiMg1.0Al11(O)x 58.0 0.20 0.005 14–17
NiCaAlO NiCa1.1Al11(O)x 31.0 0.21 0.003 22–24
NiBaAlO-AIR NiBa1.0Al11(O)x 7.2 0.02 1.6 × 10−4 11–13
NiBaAlO-Carbon NiBa1.1Al11(O)x 15.0 0.03 6.3 × 10−4 13–15

From these data is clear that the proposed preparation method results in a major
increase in the SBET, with more than a 5-fold increase with respect to the air calcined sample
(NiBaAlO-AIR) and more than a 2-fold increase with respect to the NiBaAlO-carbon sample.
This clearly indicates that samples prepared by the method described here showed higher
porosity and specific surface area, parameters beneficial for higher catalytic activity.
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The N2 adsorption–desorption isotherms of catalysts (included in Supplementary
Information) show that all the adsorption–desorption isotherms are qualitative of type IV
(IUPAC classification) characteristic of porous materials [47,48]. The hysteresis with sharp
adsorption and desorption branches in the P/P0 = 0.7–0.9 indicate a narrow mesopore
size distribution.

Figure 1 shows the diffractograms of the three samples after their calcination in air at
600 ◦C. As can be seen, NiO is observed as a segregated phase, while the other elements
form a mixed alkaline earth aluminate phase (BaAl2O4, CaAl4O7, and MgAl2O4). Some
other trace phases can be detected for NiBaAlO and NiCaAlO (Al2O3 and NiC, respectively).
The average crystallite domain size (calculated from the Scherrer formula) for the different
detected phases is compiled in Table 2. Data in this table show that all the phases detected
present an average crystallite domain of ca 25–40 nm, similar for all the samples, which
reflects the repeatability of the preparation method, independently of the cation (Ba, Mg,
Ca) incorporated into the aluminate structure. This small crystallite size is directly related
to the preparation method, as deduced from the values obtained for the NiBaAlO-Air and
NiBaAlO-Carbon samples, presenting values significantly higher in crystalline dominion.
Therefore, the self-generated template induces a higher surface area, higher porosity, and
smaller crystallite size, all parameters that are beneficial for the use of these materials
as catalysts.
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Table 2. Crystallite size (diffraction dominion) calculated from Scherrer formula for NiBaAlO,
NiMgAlO, and NiCaAlO samples.

Crystallite Size Calculated from Scherrer Formula (nm)

NiBaAlO NiBaAlO-PRx NiCaAlO NiCaAlO-PRx NiMgAlO NiMgAlO-PRx NiBaAlO-Carbon
NiBaAlO-AIR

NiO 23 ± 2 – 31 ± 2 – 24 ± 2 – –

Metallic Ni – 20 ± 2 – 30 ± 2 – 20 ± 2 –

Al2O3 35 ± 2 45 ± 2 – – – – –

BaAl2O4 30 ± 2 34 ± 2 – – – – 63 ± 2
74 ± 2

BaCO3 – 40 ± 2 – – – – –

CaAl4O7 – – 24 ± 2 11 ± 2 – – –

(MgAl2O4) – – – – 15 ± 2 12 ± 2 –

2.2. Morphological and Micrographs of Calcined Samples (SEM/TEM)

Figure 2 presents SEM images of the typical morphology of the three samples. They
are formed of large flakes that, in general, resemble a “cookie” form. The surface of
these flakes is usually flat, although showing pores. On the contrary, the inner part of
the “flakes” is highly porous, with a granular aspect with irregular particles of around
40–60 nm (Figure 2a). That size is in the order of magnitude of the crystallite domain size
calculated from XRD, reflecting that most of the grains observed by SEM are frequently
formed by single domains of the detected phases.
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It is worth noting that some brighter particles are also observed in Figure 2b,c, homo-
geneously distributed onto the porous support. These particles, as confirmed by EDAXS,
correspond to NiO. These NiO particles are well distributed on the surface of the flake
aggregates of the oxidic phase (BaAl2O4, CaAl4O7, and MgAl5O8 –MgAl2O4) in the three
catalysts, showing a narrow size distribution (ca 25–30 nm), similar to datum calculated
from Scherrer formula.

Although smaller NiO particles have been suggested in some of the micrographs
obtained would be difficult to observe by SEM due to the granular morphology of the
samples and resolution limitation. In order to complement the SEM, TEM images of the
samples have also been obtained. As an example of these images, Figure 3 shows details of
NiBaAlO, NiCaAlO, and NiMgAlO samples, where besides the 25–30 nm NiO particles,
much smaller NiO particles (ca. 5–7 nm) are clearly observed. It is worth noting that these
small particles were not observed on SEM images (where only the surface of the particles is
observed) and seemed to be incorporated into the structure of the oxidic material.
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2.3. Temperature-Programmed Reduction (TPR)

The TPR profiles obtained for the three samples are plotted in Figure 4. These TPR
graphs show wide profiles, with a bimodal structure that can be divided into two zones:
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623 K–873 K and 873 K–1173 K (maximum experimental temperature). The profiles in
each zone present maxima at ca 723 K and 1073 K, although some shoulders are observed
around those maxima. The adscription of these two zones in similar compounds have been
discussed elsewhere [49,50], but still controversy remains in the literature: One hypothesis
is that the low temperature peak is due to reduction of NiO particles, while the higher
temperature peak is related to reduction of Ni2+ incorporated into the structure of an
aluminate, perovskite, or similar structure. In our case, taking SEM/TEM images and
XPS result, discussed later, we have been assigned to reduction of big and superficial NiO
particles in the case of the lower temperature zone (623 K–873 K), while contribution of
reduction at higher temperatures has been assigned to reduction of Ni2+ cations inside the
structure [51] or reduction of very small particles cleaved inside the oxidic support [52].
It is worth noting that this bimodal assignation would fit with the observations made by
SEM/TEM, where two particle sizes of NiO has been detected (20–30 nm and 5–7 nm). It
is important also to note that these two particles seem to be arranged differently on the
support: the bigger particles appear mostly on the surface of the aggregates being more
accessible for their reduction, but, the smaller particles look to be clutched inside the oxidic
matrix, what would difficult their process of reduction.
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2.4. X-ray Photoelectron Spectroscopy (XPS) of Calcined Samples

The chemical state and surface distribution of Ni species on the oxidic substrates were
explored using XPS analysis (Figure 5, Tables 3 and 4). Two signals have been followed,
especially due to their possible role in the reaction: Ni2p and C1s. In all the cases, the
signals are plotted after normalization vs. the area of Al2p, also used as an internal reference
for calibration (74.4 eV). XPS signals corresponding to the Ni2p levels present different
satellite structures [53,54]. For Ni2+, the satellite at about +6.0 eV might be assigned to a
final state effect associated with a (core) 3d8L configuration (where L stands for ligands),
depending on the intensity and position of this satellite on factors such as bonding with
ligands, symmetry, particle size and crystallinity [55,56].
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Figure 5. XPS spectra corresponding to the Ni2p3/2 C1s and O1s regions of the NiBaAlO, NiMgAlO,
and NiCaAlO calcined samples.

Table 3. Calculated surface % area obtained from XPS and peaks maxima for NiBaAlO, NiMgAlO,
and NiCaAlO samples.

Areas and Maxima Binding Energies (eV) from XPS Zones

Al2p C1s Ba3d Ca2p Mg1s Ni2p O1s

(B.E. eV) (B.E. eV) (B.E. eV) (B.E. eV) (B.E. eV) (B.E. eV) (B.E. eV)

NiBaAlO
38.9% 13.3% 2.5% 0.7% 44.6%

(74.0 ± 0.1) (284.7 ± 0.1) (780.2 ± 0.1) (854.3 ± 0.1) (531.3 ± 0.1)

NiBaAlO-PRx
44.1% 4.7% 3.3% 0.5% 47.4%

(74.0 ± 0.1) (290.1 ± 0.1) (780.8 ± 0.1) (852.7 ± 0.1) (531.7 ± 0.1)

NiCaAlO
43.0% 11.2% 1.7% 4.5% 39.7%

(74.0 ± 0.1) (284.6 ± 0.1) (347.4 ± 0.1) (854.8 ± 0.1) (530.4 ± 0.1)

NiCaAlO-PRx
52.2% 3.3% 2.7% 3.1% 38.7%

(74.0 ± 0.1) (284.5 ± 0.1) (348.0 ± 0.1) (851.8 ± 0.1) (531.5 ± 0.1)

NiMgAlO 40.6% 6.4% 2.1% 1.3% 49.7%
(74.0 ± 0.1) (285.3 ± 0.1) (1303.5 ± 0.1) (856.5 ± 0.1) (531.4 ± 0.1)

NiMgAlO-PRx 44.1% 1.3% 2.1% 1.2% 50.6%
(74.0 ± 0.1) (281.5 ± 0.1) (1304.2 ± 0.1) (853.5 ± 0.1) (532.2 ± 0.1)

In all three samples, the obtained spectra are quite similar in shape, but some differ-
ences in intensity are observed. The Ni2p3/2 region reflects, in all cases, a shape typical
of nickel oxide (main peak at 855.6 eV and a satellite at 862.1 eV), but the intensity in
the NiCaAlO sample is about 2.5 times greater than for NiBaAlO and NiMgAlO sample
(Table 3). It should be noted here that the intensity of a metallic particle dispersed onto a
granular matrix, like the cases studied here, depends on several factors, namely: particle
size of the metallic (NiO) and matrix phase (BaAl2O4, CaAl4O7, and MgAl5O8) [57] but
also the surface/inner distribution of the NiO particles onto the oxidic matrix [52]. This
may reflect, according to SEM images, that the NiCaAlO sample may present more NiO
particles on the surface of the aluminate phase than the other two samples. The O1s in all
the samples reflect a single peak centered at 531.1 eV, with no shoulder and quite similar
intensity, according to the similar stoichiometry found from XRD for the aluminate phases
found in the three samples. The C1s spectra of the samples present in all the cases a
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major peak, centered at ca. 285.0 eV (due to adventitious carbon) and a shoulder at higher
binding energy (290.0 eV), more noticeable in the case of NiBaAlO sample, as can be easily
visualized in data compiled in Table 4 (a visualization of the fitting of these signals have
been incorporated as Supplementary Information). These shoulders at high binding energy
correspond with carbonates and/or oxy-hydroxyl species on the surface of the support.

Table 4. Calculated surface % area for the indicated elements obtained from XPS and peaks maxima
for NiBaAlO, NiMgAlO, and NiCaAlO samples.

Percentage of Indicated Species for Deconvolution of C1s and Ni2p XPS Signals

C1s-1%
(Carbonate)

C1s-2%
(Graphitic)

C1s-3%
(Carbide)

Ni2p-1%
(Ni2+)

Ni2p-2%
(Ni0)

NiBaAlO 25.3 69 5.7 90.0 10.0

NiBaAlO-PRx 45.9 38.6 15.5 62.7 37.3

NiCaAlO 10.7 84.6 4.8 98.7 1.3

NiCaAlO-PRx 22.8 50.3 26.9 50.6 49.4

NiMgAlO 15.3 77 7.6 100.0 0.0

NiMgAlO-PRx 3.3 48.1 48.6 69.5 30.5

2.5. Catalytic CO2 Hydrogenation

The catalytic conversion of CO2 and selectivity versus CO and CH4 corresponding to
the NiBaAlO, NiMgAlO, and NiCaAlO are plotted in Figure 6.
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Figure 6. Conversion of CO2 (left) and selectivity toward CH4 (right) for NiBaAlO, NiMgAlO, and
NiCaAlO calcined samples.

It should be remarked that CH4 and CO were the only products of the reaction
detected and, therefore, CO selectivity is complementary to CH4 for 100% (water product
is condensed in a cold trap before entering into the GC). As explained in the experimental
section, samples are heated up to 500 ◦C at different steps and then cooled down, taking
reaction data both in the heating ramp and in the cooling down section. Although, in
general, conversion and selectivity values do not differ more than 5–10% between these
two stages, only data corresponding to the cooling down steps have been taken into
consideration.
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The results show an increased conversion rate in all the samples above 300 ◦C, espe-
cially abrupt in the case of the NiBaAlO sample, which reaches 80% conversion at 400 ◦C
and ca. 95% at 500 ◦C. The NiCaAlO sample increases its conversion also with temperature,
but its variation is more linear. On the other hand, the NiMgAlO sample shows a small
conversion between 300 ◦C and 400 ◦C and only increases above this temperature. Never-
theless, at 500 ◦C, all the catalysts reach a conversion of ca. 95%. It should be mentioned
here that the reactants are diluted in He and that, according to the stoichiometry, during
the reaction, there is a decrease in the number of moles produced with respect to the moles
consumed, which may modify slightly the apparent concentration of products as detected
by GC (the condensation of water by a cold trap also helps in this direction), making that
some of the conversions and selectivities appear a bit higher than real values, with values
slightly above to the thermodynamic values, which do not affect the main conclusions of
this study. The selectivity toward CH4 follows a similar trend: NiBaAlO is the sample that
presents higher selectivity (85–95% at 400–500 ◦C) and at lower temperatures, followed by
the sample NiCaAlO with a big difference in the range 400- 500 ◦C (25–80%). Finally, the
NiMgAlO sample only presents significant conversions above 450 ◦C, but the selectivity
decrease in this range of temperature.

Together with the characterization of the samples before the reaction, we have per-
formed an analysis of post-reaction samples (labeled with the suffix—PRx, i.e., NiBaAlO-
PRx and so on), which is presented below. In the case of XPS, this analysis has been
performed using an “in situ” reaction chamber that avoids exposure of samples to the atmo-
sphere, and the thermal treatment has been performed using the same gas composition and
flows as that used for catalytic tests, as explained in the experimental section. This “in situ”
treatment ensures that the XPS analysis of the post-reaction sample is not contaminated
by exposition to the atmosphere, which would especially affect carbon signals and nickel
oxidation state.

2.6. Textural Data and XRD of Post-Reaction Samples

XRD of post-reaction samples is shown in Figure 7. Several aspects are relevant: In
the case of NiBaAlO-PRx, Nickel is observed as metallic Ni, and the formation of BaCO3
is observed. In the case of NiCaAlO-PRx, Ni is also found as a metallic phase, and the
CaAl4O7 remains unaltered. Nevertheless, in NiMgAlO-PRx, nickel is found as a mixture
of metallic and NiO phases.
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2.7. SEM/TEM of Post-Reaction Samples

The SEM images of post-reaction samples can be seen in Figure 8. Again, and for
simplicity, only one image of each sample is reproduced, but similar images can be found
on each sample. Images on the right and center show that the “cookie” morphology is
conserved, and no significant changes were detected for the grain size of oxidic support.
Carbon filament or deposits were not detected for any sample. In the case of Ni particles
deposited on the surface of the “flakes”, a small increase in size was detected with an
average diameter of ca. 30–40 nm and a more rounded shape. In the case of NiBaAlO-PRx
sample (c), we have observed the appearance of some type of “spikes” on the surface of the
aggregates. An EDAX analysis of these zones shows that they are formed by C, O, and Ba.
These “spikes” were observed neither on the NiCaAlO-PRx nor on the NiMgAlO-PRx.
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2.8. “In Situ” XPS Analysis of Post-Reaction Samples

Figure 9 shows XPS spectra of post-reaction samples, corresponding to Ni2p3/2 and
C1s regions. In the case of Ni2p3/2, the signals for NiCaAlO-PRx and NiMgAlO-PRx show
a maximum at 851.8 eV and a shoulder at 856.1 eV. The spectrum of NiBaAlO-PRx depicts
a broad shape, with two bumps at approximately the same positions as the other two
samples (851.8 eV, 856.1 eV). The position of a maximum at ca. 851.8 eV is indicative of the
presence of metallic Ni. Although bulk Ni0 has a very small satellite intensity vs. the main
peak, the intensity ratio of satellite/main peak has been discussed long ago as a function
of Ni particle size and interaction with the support [57]. The observed satellite/main
peak ratio is observed to proceed in the order NiBaAlO-PRx > NiMgAlO-PRx > NiCaAlO-
PRx. The position of the main peak is also slightly shifted to higher binding energies in
the order NiBaAlO-PRx > NiMgAlO-PRx > NiCaAlO-PRx. A fitting of these signals has
been performed using the same shapes for all three samples, which results have been
summarized in Table 4. (fitting has been included in Supplementary Materials). The results
of this fitting show that the percentage of metallic Ni varies NiCaAlO-PRx < NiBaAlO-PRx
< NiMgAlO-PRx.
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PRx, and NiCaAlO-PRx post-reaction samples.

The C1s signals of the three samples present big differences with respect to the calcined
samples (see Tables 3 and 4). The first remarkable fact is the abrupt diminution of the C1s
signal due to the elimination during the reaction of the adventitious C1s signal found in the
original samples. The amount of total carbon in the samples follows the trend NiBaAlO-PRx
> NiCaAlO-PRx > NiMgAlO-PRx. In the case of NiMgAlO-PRx and NiCaAlO-PRx, a new
peak at 280.6 eV was observed. This peak has been usually assigned to Ni3C or NiCx [58–61].
On the contrary, in the case of NiBaAlO-PRx, the more intense peak is centered at ca. 289.4
and 285.0 eV, which can be ascribed to BaCO3 and graphitic carbon. There is also a small
shoulder at 284.0 eV, which could be associated with a small contribution of NiC but
with much lower intensity than in the case of NiMgAlO-PRx and NiCaAlO-PRx. A more
comprehensive summary is compiled in Table 4, showing that the carbonate peak (289.4 eV)
follows the trend NiBaAlO-PRx > NiCaAlO-PRx > NiMgAlO-PRx, while the nickel carbide
peak presents the opposite tendency: NiBaAlO-PRx < NiCaAlO-PRx < NiMgAlO-PRx.
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3. Discussion

Ni/NiO nanosized particles have been formed on different oxidic supports (BaAl2O4,
CaAl4O7, and MgAl5O8) through a simple and non-expensive method, consisting of thermal
decomposition of a precursor derived from citric acid and metallic salts of Ni, Ba, Mg, and
Ca. The obtained catalysts show a porous structure, with a higher specific surface area than
others with similar composition, forming aggregates with a “cookie” morphology. NiO
particles are observed evenly distributed on that “cookie” morphology. From TPR AND
SEM/TEM data, we can conclude that NiO/Ni particles are deposited on the surface of the
support, with a mean diameter of ca. 20–30 nm (Nid25), but also on the inner structure of the
aggregates, with a much smaller size, ca. 5–7 nm (Nid5). That would be in accordance with
the recent DFT studies that have calculated that the TOF for CO2 hydrogenation presents a
maximum on very small particles (ca 2–3 nm) [37].

The presence of a segregated NiO phase instead of a pure NiMAl11O19 hexaaluminate
phase is probably due to an insufficient temperature of crystallization. In fact, we have
observed the formation of such phase (NiBaAl9O11) when the precursor is calcined in air at
1400 ◦C, but at the expense of a severe specific surface area loss. In any case, that does not
result in a limitation on the catalysts’ performance, as shown here. In any case, the NiO is
transformed during heating in the reaction mixture into a metallic nickel phase (Ni0), with
only a small increase in size, both for small particles and bigger ones.

Analysis of XPS intensity of Ni2p3/2 signals and TPR areas of low/high temperature
of reduction in calcined samples indicate that the proportion of Nid5/Nid25 depends on
the alkaline earth cation, in the order NiMgAlO-PRx < NiCaAlO-PRx < NiBaAlO-PRx.
Nevertheless, chemical analysis has shown that Ni content is the same in all the samples
(as per mol of sample). Considering that the average size (and shape) of Ni bigger particles
is the same in all the samples, let us discard that the differences observed could be related
to different Ni facets and, therefore, pathways of reaction associated with this [62].

Finally, C1s of post-reaction samples show the formation of nickel carbide species
on NiMgAlO-PRx and NiCaAlO-PRx samples and at a lower degree on NiBaAlO-PRx
samples. Two more factors should be considered to explain the differences observed in
catalytic performance: the presence of carbide and carbonate species. In this context, it is
worth noting that carbide species have been recently proposed as an appealing alternative
for different processes, as CO2 hydrogenation [63] in metals such as Mo, Ru, etc., and
more recently have been discussed, based on micro-kinetic simulations, found that for Ni
particles, the dominant kinetic route for CO2 hydrogenation corresponds to a combination
of the carbide and formate reaction pathways [37]. On the other hand, carbonate species are
more favored in NiBaAlO-PRx than in NiCaAlO-PRx and NiMgAlO-PRx. It is worth noting
here that catalytic performance follows the same tendency NiMgAlO-PRx < NiCaAlO-PRx
< NiBaAlO-PRx. The influence of basicity of support and, in particular, the formation of
carbonates have been proposed as an alternative pathway for the Sabatier reaction [35,64].

We propose that the high performance of the NiBaAlO sample is a consequence of the
higher contribution of small particles and the basicity of the Ba-aluminate phase that is
acting as support. In particular, the formation of BaCO3 crystals, detected by SEM and XPS,
would act as a buffer in the process of adsorption and transfer of CO2 to the Ni particles
(via adsorbed formiate species). That basicity would be enhanced with larger cations, such
as Ba or Ca, and less favored for the Mg cation. On the contrary, carbon deposits on Ni
particles, either as graphitic or carbide species, mostly found on Mg samples, would inhibit
the performance of formiate species and enhance CO formation.

4. Materials and Methods
4.1. Preparation of the Catalysts

Catalysts here used have been prepared using hexaaluminate-derived materials as
precursors of the final materials; basically, NiO particles deposited onto a M2+Al2O4 phase
(M2+ = Mg, Ca, Ba). All samples were prepared by a modification of the preparation method
described elsewhere [65], adjusting the stoichiometry to obtain NiMAl11O19 (M = Ca, Ba,
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Mg) instead of NiAl2O4 reported in the cited work. This preparation method allows wide
flexibility of composition and low impurities when easily decomposable salts are used, such
as nitrates or ammonium metal compounds. In a typical preparation procedure, several
stages are comprised: (a) dissolution; (b) formation of gel and drying; (c) decomposition
in inert gas of dried gel; (d) calcination and removal of carbonaceous species (e) direct
reduction of samples under reaction mixture (H2 + CO2) atmosphere. In the dissolution
stage, appropriate quantities of corresponding nitrates (Mg(NO3)2 (Aldrich), Ca(NO3)2·,
Ba(NO3)2·6H2O (Aldrich) Al(NO3)3·9H2Oand Ni(NO3)2·6H2O were dissolved in excess of
deionized (MilliQ quality) water. Amounts of these salts were appropriate to provide a final
formula NiBaAl11O19, NiCaAl11O19, and NiMgAl11O19. Citric acid (Aldrich) was added in
excess (100 wt.%) over the stoichiometric quantity to ensure both a complete complexation
of the metal ions and an excess of the carbonaceous amount in the decomposition stage.
Once the dissolution was complete, water was evaporated on a rotavapor up to 313 K
leading to the apparition of a viscous spongy gel. This gel is dried overnight in an oven at
393 K. During this treatment, a foam is produced, resulting from gas bubbles coming from
the partial decomposition of nitrates and citric acid. At this stage, classic citrate methods
normally include calcination under oxygen or air at temperatures between 973 and 1273 K.
In our method, we have introduced a modification, and the thermal treatment is performed
under a constant flow of inert gas atmosphere using a low heating ramp (1–5K/min) up
to 1373 K. After this treatment, a composite of carbonaceous species and well-formed
aluminate-precursor particles is obtained. The presence of the carbonaceous species par-
tially inhibits the sintering of the aluminates particles (carbonaceous template) during the
high-temperature treatment, but the high temperature used helps a well-crystallized phase.
Further thermal treatment with air at lower temperatures (typically 600–700 ◦C) allows the
complete removal of the carbonaceous species, leaving a porous structure in the sample
with a much higher specific surface area than that obtained without the carbonaceous
template step. After this calcination step, the obtained materials, with the stoichiometry
described above in this paragraph, will be denoted NiBaAlO, NiMgAlO, and NiCaAlO. It is
important to note here that calcined samples are not the active phase, and further reducing
treatment is needed to decompose this aluminate structure with the formation of Ni metallic
nanoparticles. Thermal decomposition of these precursors under a reactant mixture leads
to Ni nanoparticles deposited on an alkaline earth aluminate of high homogeneity.

4.2. Catalytic Test

Catalytic tests were performed over 200 mg of catalyst held between two pompons
of quartz glass in a tubular quartz reactor. Samples were pre-dried in an oven at 120 ◦C
and sieved to obtain particles with size <100 µm prior to their introduction in the reactor.
No further treatment was applied to the samples prior to contact with the reaction mixture
(H2:CO2:He = 40:10:50 mL/min). The reaction was carried out at 300, 350, 400, 450,
and 500 ◦C steps for two hours, with a heating ramp of 5 ◦C/min between plateaus.
After being heated at the maximum temperature for 2 h, samples were cooled down
with the same temperature steps (450, 400, 350, and 300 ◦C). It is worth noting here that
due to the high conversion rate observed, an axial gradient along the bed length could
occur. In that context, we have performed a simulation using the “gradientcheck” tool
(https://engineering.purdue.edu/~catalyst/ (accessed on 15 December 2022)) with the
parameters used in this work, and while there is a noticeable gradient in the radial direction,
there could be a gradient of ca. 5 ◦C along the axial direction. Nevertheless, additional
tests using the same amount of catalysts mixed with SiC as a diluent have not shown
significant changes in the conversion/selectivity obtained. Products were analyzed by
gas chromatography using a VARIAN GC3800 GC equipment, connected online with the
reactor, provided with two columns Porapak, molecular Sieve) and TCD detectors. A water
cold trap formed by a siphon cooled down by a Peltier cooler (ca. 1–3 ◦C) was used before
the entrance to the GC, avoiding saturation of the columns and TCD damage. To assess

https://engineering.purdue.edu/~catalyst/
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the catalytic activity, the CO2 conversion X (%), and CH4 selectivity S (%) by using the
following formulas:

CO2 conversion (%) =
[CO2]in − [CO2]out

[CO2]in
× 100

CH4 selectivity (%) =
[CH4]

[CO2]in − [CO2]out
× 100

where [F]in and [F]out are the volume concentration of CO2 and/or CH4 at the inlet and
outlet, respectively.

4.3. N2-Physisorption

N2 adsorption/desorption isotherms were obtained at −196 ◦C in a TRISTAR II
(Micromeritics) equipment. With a minimum amount of 50 mg. Samples were pre-treated
under vacuum at 150 ◦C prior to the adsorption/desorption experiment. Surface areas and
porosity were calculated according to the BET and BJH methods, respectively.

4.4. SEM/TEM

SEM images were obtained in a Hitachi S-5200 microscope with a field emission
filament, using an accelerating voltage of 4–5 kV and an extraction current of 10 mA.
Transmission electron microscopy was carried out in a Philips CM200 microscope operating
at 200 kV. In both cases, samples were deposited onto a copper grid coated with lacey
carbon. Analysis of particle size was performed by sampling 100 particles.

4.5. XRD

Diffractogram patterns of calcined and reduced samples were obtained in a PANa-
lytical X-Pert PRO diffractometer with a Cu anode (λ = 1.5418 Å, Cu Kα), using a Bragg-
Brentano configuration in the 2θ range of 10–80◦, with a step of 0.05◦ and an effective
acquisition time of 240 s.

4.6. TPR

Temperature-programmed reduction experiments were performed using a thermal
conductivity detector calibrated with a commercial NiO. An estimated amount of calcined
sample for consuming 100 µmol of H2 was used in each case. Conventional experiments
were carried out from room temperature up to 1000 ◦C with a heating ramp of 10 ◦C min−1.
Experimental conditions were chosen to avoid peak overlapping [66].

4.7. XPS

Studies were performed in a customized system incorporating a hemispherical ana-
lyzer (SPECS Phoibos 100) and a non-monochromatized X-ray source (Al Kα; 1486.6 eV, Mg
Kα, 1253.6 eV). The analyzer was operated at a fixed transmission and 50 eV pass energy
with an energy step of 0.1 eV. Binding energies were calibrated using C1s or Al2p (284.6 eV
or 74.0 eV) as an internal reference. Prior to each analysis, samples were evacuated to 10−9

mbar at room temperature. The “in situ” treatments were performed on a high-pressure,
high-temperature commercial cell (SPECS HPC) coupled to the main chamber of the spec-
trometer. The high-temperature, high-pressure cell design allows sample heating up to
800 ◦C, under flow or static conditions, at pressures up to 20 bar or dynamic flows in the
range 20–500 NmL·min−1. This arrangement enabled a transfer of post-reaction samples
from the reaction chamber to the spectrometer under UHV conditions, avoiding exposure
to the laboratory atmosphere. In a typical experiment, the sample was initially placed in the
sample holder (in the form of a pelletized disc) and transferred to the spectrometer chamber,
where XPS spectra were acquired. The sample was then transferred under vacuum to the
high-pressure cell, where it was exposed to the reactive gases and heated to the appropriate
temperature. The flow and concentration of gases (CO2 + H2) were the same as those
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used for catalytic testing (vide infra). After the treatment, the sample was cooled to room
temperature under the same reaction atmosphere, evacuated down to 10−7 mbar in less
than two minutes, and then transferred back to the spectrometer chamber for analysis,
avoiding ambient exposure. This allows us to analyze the surface and chemical state of the
elements exposed at the surface of the catalysts after reaction conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13010142/s1, Figure S1: Nitrogen adsorption–desorption
isotherms of catalysts. Table S1: Calculated surface % area for the indicated elements obtained from
XPS and peaks maxima for NiBaAlO, NiMgAlO, and NiCaAlO samples. Table S2: List of main
diffraction peaks and planes for detected phases.
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