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Abstract 

Terrestrial Laser Scanning (TLS) is becoming increasingly important in the cultural heritage field 

given the need for virtual records of buildings and detecting surface wear and deterioration. 

Scientific research has shown that exhaustive 3D modelling from point clouds enables accurate 

analysis of heritage buildings and sites. However, factors such as the number and location of 

scanning stations, distance to objects, point of view, and resolution impact the scanning and 

modelling accuracies. Through the case study of a 19th-century Anglican masonry church in 

Nottingham (UK), this chapter investigates the accuracy of TLS surveying features to model 

surface deficiencies in heritage buildings. The results showed that combining different points of 

view and distances can enhance accuracy, but the joint accuracy is still lower than that of the 

less unfavourable station. The research also determined the suitable meshing smoothening for 

damage modelling and analysed the point cloud discretisation distortion for accuracy analysis. 
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1. Introduction 

The UNESCO World Heritage Convention (United Nations Educational Scientific and Cultural 

Organization (UNESCO), 1972) stressed the uniqueness and need to protect heritage, the 

valuable and irreplaceable legacy from the past of all the peoples of the world (United Nations 

Educational Scientific and Cultural Organization, 2019). For heritage to prevail in this rapid-

developing world, continuous maintenance and conservation actions must take place. To this 

end, the Athens and Venice Charters (International Council on Monuments and Sites, 



2011)(International Council on Monuments and Sites, 2004) promoted the use of modern 

techniques and materials in the restoration, the process of returning heritage assets to their 

original condition and/or spatial layout, but also consolidating them to be durable over time, 

thus retaining their historic integrity. To support this, digital tools have been implemented in 

such a way that heritage assets can be studied, understood, and virtually reconstructed from 

documentary sources. 

 

1.1. 3D scanning in Cultural Heritage 

In recent years, as indicated by Li et al. (Li et al., 2023), the current practice of built heritage 

protection is constantly based on three-dimensional LiDAR, which accounts for light detection 

and ranging. 3D LiDAR, which operates in an analogous way to radar, is an active sensor that 

records surrounding 3D information (Huang et al., 2022). As described by Huang et al. (Huang et 

al., 2022) this technology obtains the distance of target bodies by illuminating laser signals 

(pulses) at specific wavelengths on those targets. This is performed using the time-of-flight (ToF) 

principle, which modulates laser beams over time. In other words, the emitter of the device 

shoots a laser pulse at the target body, and the receiver collects the reflected laser pulse. The 

ToF method measures the round-trip flight time of emitted laser pulses to determine the 

distance between the LiDAR device and the target. This, carried out throughout the target 

surface, captures 3D point cloud data (spatial data in XYZ coordinates). 

The use of 3D scanning technology has been extensively investigated to detect damage in 

heritage buildings in high resolution. In other words, it provides detailed insight into the real 

state of conservation and the behaviour of the assets in order to generate new knowledge for 

their life cycle. This technology produces highly accurate qualitative and quantitative 

information that can be used to assess complex structures under a non-destructive and efficient 

approach, thus supporting restoration actions for the conservation of architectural and cultural 

heritage. Particularly, Terrestrial Laser Scanning (TLS) can be used to detect and monitor surface 

deficiencies in heritage buildings (Antón et al., 2022) using both 3D point clouds and their laser 

intensity data (TLS radiometric data; Red, Green, and Blue (RGB) values depending on the 

reflection of the laser beam on surfaces). Combined with unsupervised classification methods 

for digital image processing, TLS intensity data is also useful for the detection of damage deriving 

from moisture content in stone materials of historic buildings (Armesto-González et al., 2010). 

Likewise, other researchers (Lezzerini et al., 2016) used computer-aided design (CAD) and 

Geographic Information System (GIS) software to map different stone materials of the medieval 

Church of St. Nicholas in Pisa, Italy, using TLS data, high-resolution images, and organoleptic data 

of the building surface. As a result, the façade of that historic building was characterised in terms 

of materials, stages, and techniques used to build it. Regarding the virtual representation of 

geometrical alterations for heritage buildings and archaeological sites, TLS has been used as the 

data source to develop semi-automatic as-built or as-is 3D modelling approaches (Antón et al., 

2018)(Antón et al., 2019) compatible with Historic Building Information Models (HBIM). In this 

way, 3D meshing algorithms and visual programming language implemented in CAD software 

packages can be used to model both structural and surface irregularities and singularities of the 

assets. Consequently, the recording of surfaces using this remote sensing technique can be 

further applied to the early detection and monitoring of the damage and changes in historic 

building surfaces, i.e., their surface wear and deterioration and their evolution over time. This is 

the case of the research by Dawson et al. (Dawson et al., 2022), who monitored and detected 

minor changes in a historic site thanks to TLS surveys in the long term. Similarly, Lercari (Lercari, 



2019) conducted multi-temporal TLS monitoring and surface change detection at the millimetric 

scale from the resulting 3D point clouds of Neolithic earthen structures. 

As seen above, the scientific community has embraced TLS because of its great capabilities. In 

particular, it can be used in developing countries to digitise heritage buildings and sites that are 

endangered (United Nations Educational Scientific and Cultural Organization (UNESCO), 2023a). 

The threats include natural disasters, climate change and agents, the expansion of urban areas, 

pollution, war, uncontrolled tourism (United Nations Educational Scientific and Cultural 

Organization (UNESCO), 2023b), and other human activities and behaviours such as vandalism. 

Besides, TLS can be combined with many other technologies to: 

- Provide a more comprehensive and integrated approach to studying heritage buildings 

and sites for conservation: The physical and spatial characteristics of the heritage assets 

can be analysed alongside their information when using 3D point cloud data on Building 

Information Modelling (BIM) platforms and GIS (Geographic Information Systems). 

Moyano et al. (Moyano et al., 2021) experimented with HBIM parameterisation through 

semantic segmentation applied to a TLS point cloud dataset of one of the façades of a 

heritage building in Seville, Spain. Klapa et al. (Klapa & Gawronek, 2022) studied the 

synergies between TLS and UAVs (unmanned aerial vehicles) for the creation of HBIM, 

in which the authors placed greater importance on the accuracy of the measurement 

information than on the selection of the level of detail itself. Still, HBIM open-source 

technology is a cutting-edge topic, and an extensive review can be found in the research 

paper by Diara (Diara, 2022). Haznedar et al. (Haznedar et al., 2023) proposed a 

workflow for 3D point cloud segmentation for heritage buildings using deep learning by 

implementing PointNet, thus improving the HBIM capabilities. Regarding GIS, Campiani 

et al. (Campiani et al., 2019) inserted deterioration—calculated by comparing TLS data 

in different periods—and environmental values of earthen walls in a Neolithic site into 

a GIS to relocate conservation interventions to more urgent areas. Doğan and Yakar 

(Doğan & Yakar, 2018) developed a GIS to integrate and document 3D data for cultural 

assets in Turkey. Pepe et al. (Pepe et al., 2021) employed a Scan-to-BIM method for 

heritage assets in order to create a 3D GIS model that enabled a multidisciplinary view. 

This was conducted by integrating TLS and close-range photogrammetry, and a BIM 

project was loaded into a 3D GIS, thus facilitating multiple information connections. 

- Significantly improve the efficiency and accuracy of damage detection in heritage 

buildings: Yang et al. (Yang et al., 2023) reviewed the use of non-artificial intelligence-

based algorithms to perform 3D point cloud segmentation of cultural heritage datasets, 

and machine learning and deep learning methods to conduct semantic segmentation. 

Thanks to these approaches, damage detection can be automated. Nevertheless, those 

authors indicated that, among other issues, these methods are mainly limited to historic 

buildings, suffer from over-segmentation, lack consistency when processing data from 

multiple sources, and should improve for larger datasets, although progress is being 

made in large-scale scene segmentation (Liao et al., 2022). Dayal et al. (Dayal et al., 

2019) also analysed damage detection of heritage monuments from TLS point clouds an 

terrestrial optical data in India. To this end, the authors converted the 3D point cloud 

into a 2D dataset, leading to an “unrolled” point cloud that was employed to generate 

raster images. They undertook the damage detection through an approach based on 

geometry and a radiometric data. Alkadri et al. (Alkadri et al., 2022) examined surface 

fractures and material behaviour from TLS point cloud attribute information for a church 

in Java, Indonesia. 



- Improve the processing and analysis of massive TLS datasets, i.e., a substantial number 

of points in space: Research (Pajić et al., 2018)(Liu & Boehm, 2015) has addressed the 

management of large-scale 3D point clouds in a big data context for processing and 

semantic classification. Other authors (Nguyen et al., 2022) researched a cost-effective 

and user-friendly large point cloud rendering solution based on a potential distributed 

computing framework for big data storing and processing (Hadoop) for distributed 

computing applications in civil engineering, including progress monitoring, change 

detection or indoor navigation. Compared to conventional solutions, they achieved 

improved performance, scalability, and fault tolerance. Duchnowski and Wyszkowska 

(Duchnowski & Wyszkowska, 2022) modelled vertical terrain displacement from 

massive TLS data using Msplit estimation, which the authors proved to be more accurate 

than least-square or robust M-estimation. 

- Make 3D scan data of historic buildings and sites more accessible and user-friendly, 

especially for non-expert users, to support the dissemination and conservation of 

heritage assets. This can be done by importing 3D point cloud data into immersive 

technologies such as augmented reality (AR), mixed reality (MR), and virtual reality (VR). 

Thus, Patel et al. (Patel et al., 2021) explored the methodology of bridge inspection from 

TLS and AR, mainly to cover unreachable spots, from the office, not from the site. 

Janeras et al. (Janeras et al., 2022) employed MR to display and distribute 3D data of the 

Montserrat Massif (Spain) during a stability assessment, leading to better risk 

communication to the users. Finally, Poux et al. (Poux et al., 2020) designed a system to 

implement a VR application for multidisciplinary users, which was tested in a Belgium 

castle from a TLS 3D point cloud. 

 

1.2. Limitations of TLS 

In spite of the numerous benefits of TLS and future advances and its combination with other 

diverse technologies, this remote sensing technique is not free of limitations or challenges. 

These issues can be divided into two different groups: 

Financial 

- Even if the purchase of state-of-the-art devices is not considered, 3D scanning 

equipment can be expensive, especially when high resolution and accuracy are needed. 

According to Disney et al. (Disney et al., 2019), TLS instruments over $100,000 are 

beyond the reach of most researchers. In contrast, low-cost devices are in the region of 

$20,000, which is still a significant amount of money for many users. For those cases, 

the Structure-from-Motion (SfM) photogrammetric technique is the very low-cost 

alternative, for which the only requirement for data collection is access to a camera. 

Furthermore, handling and processing massive 3D point cloud data requires high-

performance workstations and/or laptops. 

Operational 

- Time-related: Especially for large and complex heritage buildings and sites that require 

hundreds of stations (scan positions), TLS surveying can be a time-consuming process, 

although there are few other options currently available. The time that the fieldwork 

takes does not only depend on the (scan and image) recording period but also on the 

survey planning, the levelling of the tripod, and the recording of targets for subsequent 



registration. In addition, as seen in the work by Julin et al. (Julin et al., 2020), TLS imaging 

quality also influences the total data acquisition time spent in the field since the 

performance of the equipment significantly differs when choosing Low Dynamic Range 

(LDR) or High Dynamic Range (HDR) imaging. Finally, the processing and analysis of 3D 

point cloud data may require spending considerable time depending on the computer 

specifications, the number of stations and points recorded, the resolution and other 

parameters set in the TLS survey, the intended point density, the segmentation and 

cleaning of the data, among many others, with a view to extracting meaningful 

information. 

- Image quality: Research has found poor colourisation of 3D point clouds depending on 

which TLS device is used (Julin et al., 2020), and their image quality is far inferior to what 

can be achieved by SfM photogrammetry. As explained by Julin et al. (Julin et al., 2020), 

low image quality has an impact on the direct applicability of coloured 3D point clouds 

to diverse cases that need to rely on visual appearance or radiometric values for object 

interpretation and recognition, visual analysis, or photorealism. Those authors 

considered that enhanced colouring of 3D point cloud data would be relevant and useful 

for traditional application areas. These domains cover engineering, surveying, or cultural 

heritage but also emerging application fields such as virtual production in the film 

industry or the creation of 3D content for video games and immersive experiences. 

- Accuracy: The accuracy of the 3D recording depends on numerous factors. Firstly, it 

depends on the TLS device used. Here, as seen in the work by Chen et al. (Chen et al., 

2018), the ability of the LiDAR sensor to measure both time and the laser beam width 

has an impact on the recording accuracy. Secondly, the accuracy of 3D scanning results 

depends on several factors such as illuminance and atmospheric conditions, surface 

characteristics of the building (materials, moisture content, dust, among others), 

number and location of stations, distance to the object, point of view, and resolution. 

These aspects also influence the intensity of the point cloud data, as the laser beam 

incidence angles and distances may differ. 

With a special focus on accuracy, the scientific community has studied the effect of TLS 

parameters on crack width measurement in different materials and damage sizes. Nevertheless, 

the quantification of depth recording errors still needs to be addressed, especially in hybrid 

materials (Oytun & Atasoy, 2022). For their part, other researchers (Tan & Cheng, 2017) 

investigated the effects of specular reflection on the accuracy of the scan data. They corrected 

the incidence angle to eliminate the specular reflection effects for TLS intensity image 

interpretation and 3D point cloud representation by intensity. The authors explained that 

scanning at larger incidence angles avoids the influence of specular reflection effects in the 

intensity data of smooth surfaces. Consequently, perpendicular scanning should be avoided, as 

in the case of a different remote sensing technology, infrared thermography, where the camera 

operators themselves constitute a source of emissions that must be taken into account (Antón 

& Amaro-Mellado, 2021). However, as indicated by (Soudarissanane et al., 2011), increasing 

incidence angles implies higher measurement errors, i.e., lower quality in point clouds. Finally, 

Tan et al. (Tan et al., 2018) studied anomalous distance measurement errors caused by target 

specular reflections. Their results revealed that distance measurement errors are strongly 

related to the original intensity values, so the correction of those errors leads to significantly 

improved accuracy. 

In view of all the above limitations and determining factors of TLS surveys, this chapter aims to 

investigate the accuracy and precision of 3D laser scanning positioning to detect damage 



features of heritage buildings and how to enhance detection and monitoring for their 

preservation over time. 

The rest of this chapter is organised as follows: Section 2 describes the case study that will be 

used in the investigation, details on the TLS survey, processes to carry out the geometry and 

accuracy analyses on 3D point clouds and meshes, and the specifications of the equipment used 

for data processing and analysis. Section 3 presents the results and their discussion, as well as 

the limitations of the research. The conclusions and future work are described in Section 4. 

 

2. Methodology 

This research investigates TLS survey accuracies and positioning for the recording of surface 

damages in heritage buildings. Hence, it is worth describing the selected case study for that 

purpose. 

2.1. Case study: St John the Baptist Church in Nottingham, UK 

This research is developed through the case study of the Church of St John the Baptist, also 

called Beeston Parish Church, an Anglican temple in Beeston, Borough of Broxtowe, in the city 

of Nottingham (Nottinghamshire County, East Midlands region in England, the United Kingdom). 

The site map with coordinates is shown in Figure 1. 

 

Figure 1. Site map of St John the Baptist Parish Church with coordinates. Source: Google Earth 

with 2D satellite imagery. 

The Church of St John the Baptist was listed as a Grade II historic building by Historic England 

(Historic England, 1987) with List Entry Number: 1263823 (it was formerly listed 18.lO.49 as 

Parish Church of St John). This temple dates from the mid-19th century; since then, restoration 

interventions have taken place on its tower and bells, roofs, and interior walls (The Southwell 

and Nottingham Church History Project, 2021). This heritage building presents diverse surface 

pathologies such as patina of lichen and moss, moisture, and stone mass loss in masonry blocks. 

The latter is the case of a section of a wall of approximately 1.65 m (width) x 1.95 m (height) 



oriented to the West, with damaged blocks scattered on it, mainly in the bottom and at mid-

height. The target wall is indicated in Figures 2 and 4. 

 

Figure 2. St John the Baptist Parish Church. North façade and target wall. Source: The authors, 

based on Google Street View. 

 

2.2. 3D laser scanning 

In order to study the TLS measurements on the aforementioned wall, a comprehensive 3D 

survey was first carried out throughout the exterior and interior of the building. However, the 

interior was not considered in this research as it was beyond its scope. The geometry of the 

temple was recorded using a tripod-mounted Leica Geosystems ScanStation P20 3D laser 

scanner (Leica Geosystems, 2012), as can be seen in Figure 3. The survey parameters were as 

follows: the resolution was set at 6.3 mm at 10 metres and 3.1 mm for closer and further 

stations, respectively; full scanning range and horizontal and vertical angles were established; 

and HDR imaging was selected. 

 



Figure 3. St John the Baptist Beeston Parish Church and the 3D laser scanner. Wide-lens 

Southeast perspective. Source: The authors. 

The TLS survey was carried out according to previous planning consisting of a total of 17 stations 

surrounding the building. No targets were placed outside the temple given the sufficient overlap 

(enough points) between scans. 

 

2.2.1. Registration diagnostics 

Leica Cyclone 9.4 (Leica Geosystems, 2019) was used to process the scan data after collection. 

This allowed for creating constraints between the clouds so that the stations were registered, 

i.e., aligned in the same coordinate system. This process was mainly automatic because of the 

overlap described above. However, given the numerous trees surrounding the building, the 

algorithm may have had difficulties registering the scans. As a result, certain scan links 

(constraints) needed the manual selection of three pairs of common points between the 

datasets for accurate alignment, which was further optimised by using the automatic tool in 

Cyclone. Next, the programme was also used to generate the alignment report (registration 

diagnostics, Table 1), which consisted of essential data to certify and understand the accuracy 

of the process. In addition to specifying the stations matched, the strength of the scan links, the 

overlapping points, and the average errors, the report included the Root Mean Square Error 

(RMSE) of each constraint as per equation (1) (Xu et al., 2021). 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ ‖𝑝𝑖 − 𝑞𝑗‖

2𝑁
𝑖=1 , (1 ≤ 𝑗 ≤ 𝑀), (1) 

where pi and qj are, respectively, the nearest corresponding pair of points in clouds P and Q, and 

N and M account for the registration scales of those clouds. 

 

Table 1.  Registration diagnostics of the exterior TLS survey of Beeston Parish Church. Source: 

The authors. 

Constraint 
ID 

Station 
no. 

With 
station 

no. 

Weight 
(coefficient) 

Overlap 
(points) 

Average 
error (m) 

RMSE 

(m) 

1 6 16 0.9218 714,800 0.003 0.023 

2 7 16 0.8251 332,366 0.003 0.028 

3 13 14 1.0000 319,433 0.001 0.019 

4 1 2 1.0000 885,066 0.003 0.024 

5 8 9 0.7213 335,033 0.001 0.026 

6 3 4 1.0000 885,966 0.002 0.021 

7 5 6 0.5751 487,066 0.004 0.018 

8 3 15 0.7300 622,200 0.002 0.021 

9 7 8 0.5048 116,033 0.002 0.029 

10 15 17 0.6369 901,700 0.001 0.021 

11 8 10 0.4648 214,800 0.001 0.025 

12 5 7 0.4453 169,700 0.004 0.024 

13 4 5 0.5345 608,433 0.001 0.018 

14 6 7 0.3883 216,366 0.002 0.025 



15 9 10 0.3485 463,833 0.001 0.021 

16 3 5 0.4384 658,800 0.003 0.022 

17 10 11 0.1964 549,266 0.004 0.022 

18 1 13 1.0000 243,700 0.001 0.024 

19 1 14 1.0000 319,966 0.001 0.023 

20 2 3 1.0000 525,933 0.002 0.021 

21 2 4 1.0000 435,766 0.001 0.021 

22 2 14 1.0000 319,666 0.002 0.025 

23 9 11 1.0000 513,400 0.002 0.025 

24 11 12 1.0000 479,366 0.001 0.025 

25 12 13 1.0000 477,533 0.001 0.025 

26 12 14 1.0000 324,833 0.001 0.027 

 

The mean absolute error of the TLS survey registration was only 0.002 m (two millimetres). In 

relation to the RMSE, the lower it is, the better the registration result. 

 

2.3. Geometric and accuracy analysis 

2.3.1. Assessing the TLS survey layout 

Once the details of the alignment have been presented, it is worth showing the selected stations 

to be used to assess the accuracy of the damage recording on the target wall. To do this, this 

research took into account the findings of Tan and Cheng (Tan & Cheng, 2017) to avoid specular 

reflection effects in 3D point cloud intensity data by scanning at greater angles and avoiding 

perpendicular recording, at least over short distances. At the same time, consideration was given 

to what Soudarissanane et al. (Soudarissanane et al., 2011) reported on the occurrence of higher 

measurement errors at large angles of incidence, thus entailing lower quality in point clouds. 

The layout of the stations also depended on the planned positions of the scanner to avoid 

occlusions affecting the TLS recording of the entire exterior of the church. 

6 out of the 17 stations of the Beeston Parish Church TLS survey captured the geometry of the 

target wall. However, considering the above criteria, two stations were discarded for excessive 

incidence angle and occlusions. Therefore, four stations were chosen to analyse the accuracy of 

the recording and damage detection on the heritage building. From the arrangement of these 

four remaining stations, two of them were selected as the ground truth for the analysis (stations 

17 and 15). They were the closest to the target wall (A and B, respectively, in Figure 4 and Tables 

2 and 3), thus providing the highest resolution in the 3D point cloud and a low average error (1 

mm). These stations also faced the target wall from each side. 

 



 

Figure 4. Layout of selected stations for accuracy analysis, and target wall (right). Top view. 

Source: The authors. 

To ease understanding, a letter was given to each station from the registration diagnostics list 

depending on their distance to the target wall (please see Table 1 and Figure 4 above, and Table 

2). 

Table 2. Reader-friendly naming of scan stations. Source: The authors. 

Station ID 17 15 3 1 

Station name A B C D 

 

Table 3. Distance from stations to target, approximate incidence angle, scanning resolution, and 

measured wall target cloud resolution. Source: The authors. 

Station name A B C D 

Mean distance to target (m) 3.85 14.15 25.50 43.95 

Incidence angle (°) 70 63 42 89 

Scanning resolution at 10 metres (mm) 6.3 3.1 3.1 3.1 

Point resolution in wall target cloud (mm) < 3 < 5 < 8 < 14 

 

 

2.3.2. Accuracy analysis 

To analyse the recorded surface at each station, a previous segmentation process was needed 

to extract the target wall from the 3D point cloud. This also allowed for the removal of noise and 

unwanted sectors. Open-source software such as CloudCompare (Girardeau-Montaut, 2016) 

permits the manual creation of polygon fences to enclose the desired points and then compute 

the trimming. 

As described above, the geometry of reference (ground truth) consisted of point cloud data of 

the target wall from stations A and B (1 mm average error in the alignment; please see Table 1). 

Therefore, it is worth analysing the accuracy of stations C and D to assess the suitability of 

different points of view for the detection of damage on heritage building surfaces.  

 

Point deviation analysis 



The Cloud-to-Cloud (C2C) Distance computing tool (Girardeau-Montaut, 2015a) in 

CloudCompare software enables point deviation measurements to be conducted between two 

point clouds. In addition to a histogram of the distance between them, statistical data such as 

mean distance and standard deviation are also provided to offer insight into the scanning 

accuracy. This was useful to compare the clouds from stations C and D against the reference 

cloud to assess their accuracies, but also if combining the point clouds from those two 

unfavourable stations (due to excessive distance and incidence angle) significantly improves the 

accuracy of the scanning. The results will be shown in section 3. 

 

Accuracy of damage modelling: 3D meshing 

The scientific community has demonstrated that TLS data is useful in capturing heritage building 

surface deficiencies. However, 3D modelling constitutes a step forward towards further analysis 

and simulation. 3D meshes (triangle-based 3D objects) and 3D solid models of heritage assets in 

CAD and BIM environments have been used for virtual reconstruction and studies to contribute 

to their conservation and dissemination. For these reasons, the accuracy analysis of 3D meshing 

should be addressed to ensure surface defects in historic buildings can be represented. In this 

sense, this research focuses on the following accuracy indicators: 

a) Different smoothening degrees in the 3D meshing of the reference geometry (target 

wall cloud from stations AB, ground truth in the analysis) should be analysed and 

compared with each other to find the optimal smoothening degree to model surface 

deficiencies in the heritage building. 

b) The accuracy of clouds of the target wall from stations A and B should be verified against 

the reference cloud and optimal mesh (AB) to find the most suitable TLS parameters in 

the survey. This was carried out by running the C2C tool and the Cloud-to-Mesh Distance 

computing tool (Girardeau-Montaut, 2015b) in CloudCompare software, which enables 

point deviation measurements to be conducted between a point cloud and a mesh, or 

those of two meshes with each other, although the vertices of one of them will be 

chosen instead the mesh itself. 

c) Finally, it is worth analysing the accuracy of each component of the ground truth point 

cloud data, A and B, against the reference 3D mesh (AB) in order to calculate the 

distortion from discretising their geometry. 

3D meshes were generated from the selected 3D point clouds using a plug-in in CloudCompare 

based on the Screened Poisson Surface Reconstruction algorithm developed by Kazhdan and 

Hoppe (Kazhdan & Hoppe, 2013). This requires that the point sets have their normal vectors 

calculated. Once this was conducted, the smoothening degree was determined by selecting the 

Octree depth value (level). Qualitative testing indicated that levels 9 and 10 enabled the 

representation of surface defects on the target wall without excessive simplification (loss of 

deformation details) or number of triangles (larger file size), respectively. As a consequence, 

both levels needed to be analysed to determine the optimal smoothening degree for accuracy 

analysis through cloud-to-mesh and mesh-to-mesh distance computations. 

When creating an open surface that extends beyond the point cloud edges (Neumann meshing 

method), it is necessary to segment the excess part so that its vertexes are not taken into 

account in the accuracy analysis. This was carried out by filtering mesh vertexes by the desired 

density values, so that outliers that were not part of the target wall geometry were removed. 



To do this, it was possible to set the 3D mesh density as scalar field values thanks to the 

aforementioned CloudCompare plug-in. 

 

2.4. Equipment used 

As seen in previous sections, the TLS equipment consisted of a Leica Geosystems ScanStation 

P20 3D laser scanner. The computer used to process and 3D mesh the 3D point cloud data and 

perform the analysis was a high-performance gaming laptop with an octa-core processor with 

hyper-threading at 2.30 GHz and a maximum turbo frequency of 4.60 GHz with 24 MB cache, 32 

GB RAM DDR4 @ 3200 MHz, a 256-bit graphics card with 6144 cores @ 1245 to 1710 MHz and 

8 GB GDDR6 dedicated memory @ 14 Gbps, and a 1TB NVMe PCIe Gen3x4 SSD (solid-state 

drive). 

 

3. Results and discussion 

This section aims to gather, interpret and examine the outcomes of the accuracy analysis on 3D 

point clouds of each TLS survey station and the 3D meshes of the surface deficiencies detected 

on the target wall of the case study. This includes analysing the point deviation of station clouds 

that derive from their incidence angle, resolution, and distance to the target against the ground 

truth, the reference dataset resulting from the combination of two accurate stations (A and B) 

for presenting more favourable surveying features. 

 

3.1. Suitability of TLS surveying characteristics for damage detection on heritage buildings 

This sub-section addresses the accuracies of both 3D point clouds and meshes by applying the 

approaches described in the methodology. 

 

3.1.1. Accuracies of station clouds 

Qualitatively speaking, special mention should be made of the evident difference in resolution 

between the 3D point cloud data from stations D and C, and the ground truth (AB) (please see 

Figure 5 below). There is a greater distance between points in the former stations in comparison 

with the dense cloud in the more accurate cloud AB (right). Here, in the reference stations, 

shorter distances to the target wall and increased resolution set before scanning made the 

difference. This can also be seen in Table 3 with quantitative data. Considering this table, station 

C implied a greater incidence angle of the laser beam on the target wall, whose implications in 

mean distance between clouds and point accuracy (standard deviation value) will be shown 

below. Figure 5 shows the two compared stations and the reference cloud, which is much more 

detailed. Because of the greater angle in station C (centre), the points are not arranged in a 

quasi-regular grid as in station D (left). This entails lower accuracy in cloud C in comparison with 

a hypothetical station established at the same distance as C but with a lower angle (closer to 

perpendicularity) to the target wall. 



 

Figure 5. Target wall clouds from stations D (left), C (centre), and the ground truth AB (right). 

Rainbow colour gradient for intensity visualisation. Elevation view. Source: The authors. 

The C2C Distance tool in CloudCompare yielded the following data from the point deviation 

analysis in clouds: 

 

Station D against the ground truth (AB) 

These are the results of the accuracy analysis of the most distant station with the most 

perpendicular angle and the reference cloud: 

Mean distance = 0.004341 metres 

Standard deviation = 0.001952 metres 

The histogram of absolute point distances is shown in Figure 6 below. 

 

Figure 6. Histogram of the geometric comparison between station D and the ground truth. 

Source: The authors. 



 

Station C against the ground truth (AB) 

The accuracy of the far-intermediate cloud with the greatest angle (histogram of point distances 

in Figure 7): 

Mean distance = 0.002897 metres 

Standard deviation = 0.001245 metres 

 

Figure 7. Histogram of the geometric comparison between station C and the ground truth. 

Source: The authors. 

 

Stations D and C combined against the ground truth (AB) 

The accuracy of the combination between stations D and C and the histogram of point distances 

(Figure 8) are given below: 

Mean distance = 0.003370 metres 

Standard deviation = 0.001658 metres 



 

Figure 8. Histogram of the geometric comparison between the joint cloud from stations D and C 

and the ground truth. Source: The authors. 

Given the standard deviation values from the geometric comparison between stations D, C, and 

their combination (D+C) against the ground truth (AB), it can be concluded that merging the 

datasets of both stations improves the accuracy of the point cloud from the most unfavourable 

station (D, also in terms of resolution), but does not enhance their accuracy as a joint point 

cloud. 

 

Stations B and A against the ground truth (AB) 

Before comparing stations B and A with the reference cloud, it is worth analysing their accuracy 

with each other (the histogram of their point deviation analysis is shown in Figure 9). 

Mean distances = 0.001762 metres 

Standard deviations = 0.000947 metres 

 



Figure 9. Histogram of the geometric comparison between stations B and A. Source: The authors. 

In view of the accuracies of stations D and C against the reference dataset, stations B and A 

evidence a greater similarity with each other. Specifically: 59.41%, 39.18%, and 47.72% decrease 

against stations D, C, and C+D in mean distances and 51.49%, 23.94, and 42.88% decrease in 

standard deviation, respectively. 

Besides, given the fact that stations A and B were used to build the ground truth by merging 

their clouds, it was expected that the comparison between them and the reference point cloud 

data (AB) yielded significantly low mean distances and high accuracies, as seen below: 

Mean distances = 0.000000 metres (B); 0.000001 metres (A) 

Standard deviations = 0.000030 metres (B); 0.000042 metres (A) 

In these cases, given the great similarity between the clouds, the histograms are not provided. 

The datasets should be compared with the geometry of the reference 3D mesh (mesh AB Octree 

level 10, which will be validated below). 

The analysis of station B against the reference mesh yielded the following data and histogram 

(Figure 10): 

Mean distance = 0.000826 metres 

Standard deviation = 0.000786 metres 

 

Figure 10. Histogram of the geometric comparison between station B and the reference mesh. 

Source: The authors. 

The analysis of station A against the reference mesh yielded the following data and histogram 

(Figure 11): 

Mean distance = 0.000225 metres 

Standard deviation = 0.000400 metres 



 

Figure 11. Histogram of the geometric comparison between station A and the reference mesh. 

Source: The authors. 

The results of the analysis reveal that, due to the smaller distance of station A to the target wall 

and its slightly smaller angle of incidence, the cloud from A is twice as accurate as station B 

despite the fact that the scanning resolution was set at twice its value. The vertical scale in the 

histograms of stations B and A was constant to ease the recognition of the higher point accuracy 

in the latter. 

 

3.1.2. Accuracies of 3D meshes 

The 3D meshing algorithm was used on the reference cloud (AB) of the target wall to constitute 

a solid basis of geometrical data for the accuracy analysis of station clouds. Likewise, the chosen 

3D meshing smoothening degree was validated for the purpose of modelling defects on heritage 

surfaces. 

Figure 12 illustrates the 3D mesh created by selecting level 10 of the Octree Depth parameter in 

CloudCompare both with the TLS imaging colours and showing the graded point neighbouring 

density on its surface. 



 

Figure 12. Octree level 10 3D mesh of the target wall in RGB and point neighbouring density 

visualisation modes. Elevation view. Source: The authors. 

With a view to validating the meshing algorithm parameters to create the geometry in Figure 

12, that 3D mesh was compared against a smoother mesh that benefits from a lower polygon 

count, i.e., a lower triangle resolution (bigger triangles), and, therefore, a lower file size. 

 

Smooth mesh (AB, Octree level 9) against the reference mesh (AB, Octree level 10) 

In qualitative terms, the relief of the 3D meshes of the target wall is clearly lower when applying 

level 9 to the smoothening degree (please see the three-part Figure 13), which has an impact on 

the representation of surface defects on heritage buildings. 

 

Figure 13. Detail of surface defects on 3D meshes: levels 9 and 10 overlapping (left); level 9 

(centre); and level 10 (right). Source: The authors. 



Focusing on quantitative data, the accuracy of 3D mesh level 9 against level 10 (reference mesh) 

is given below: 

Mean distance = 0.000052 metres 

Standard deviation = 0.000295 metres 

Scalar field RMS = 0.000299847 metres 

The histogram of their point deviation analysis is shown in Figure 14. 

 

Figure 14. Histogram of the geometric comparison between 3D mesh level 9 and level 10 

(reference mesh). Source: The authors. 

Here, the 0.05 mm average distance between meshes and the approximately 0.3 mm errors 

could be accepted in favour of a lower polygon count. However, the global surface (area) and 

triangle surface (3D mesh resolution) of these meshes become essential aspects with regard to 

the reliability of the 3D representation. They can also be quantified so that the decision is based 

on accurate data. 

Level 9: 

Mesh Surface = 3.18227 m2 

Average triangle surface: 7.22781 x 10-6 m2 

Level 10: 

Mesh Surface = 3.22211 m2 

Average triangle surface: 1.70902 x 10-6 m2 

In view of these data, there is an evident loss of geometry when smoothening the meshes. In 

particular, the level 9 mesh loses 1.24% of geometry, and its triangle resolution significantly 

decreases (greater triangle size, meaning a poorer geometry) by 76.35%.  



Therefore, the 3D mesh generated using the Octree Depth level 10 was chosen as the reference 

mesh in the comparison for its ability to represent building surface deficiencies in a more 

accurate and representative way. 

 

3.2. Limitations 

In relation to the scan registration diagnostics from the TLS survey of Beeston Parish Church 

(Table 1), the reason for the alignment errors (RMSE values (from 2 to 3 mm) and average error 

of 4 mm in some cases) may have been the constant movement of the leaves and branches of 

the trees surrounding the temple. Nevertheless, as the comparison between stations A and B 

shows, their low alignment average error (1 mm) and great similarity (1.76 mm mean distance 

and 0.95 mm standard deviation) account for an accurate global registration, thus validating the 

accuracy analyses of point clouds and 3D meshes carried out. 

The reason why there are no round distances and incidence angles between the stations and 

the target wall in Table 3 is that the experiment was not carried out under laboratory conditions 

but after an actual TLS survey at Beeston Parish Church for subsequent 3D modelling. 

Nonetheless, this does not translate into inaccurate analysis results. 

 

4. Conclusions 

3D laser scanning, particularly Terrestrial Laser Scanning (TLS), is commonly used to capture 

dimensions and develop 3D CAD models in buildings. In the field of cultural heritage, this 

technology is becoming crucial because of the need for a virtual record of buildings and to detect 

their surface wear and deterioration. Scientific research has demonstrated that exhaustive as-

built modelling from 3D point cloud data allows for performing diverse accurate analyses of 

heritage buildings and sites. However, some issues in TLS surveying are the number and location 

of stations, the distance to the object, the point of view, and the resolution. These factors have 

a significant impact not only on the scanning and modelling accuracies but also on the intensity 

of the point cloud data for visual inspection and quantitative analyses. 

This chapter investigates the accuracy and precision of TLS positioning and resolution to produce 

detailed models of damage features on heritage buildings. A sector of a masonry wall in an 

Anglican temple from the mid-19th century, St John the Baptist Beeston Parish Church in 

Nottingham, UK, was selected as a case study for this purpose. 

This research sheds light on the accuracy that can be reached in a real TLS survey by combining 

different points of view and distances to target bodies. The results reveal that point cloud data 

of the building from a low-resolution scan station with a suitable angle to target can see its 

accuracy enhanced when combined with the cloud from another nearer station at a greater 

angle. Nonetheless, this research detected that the joint accuracy is still under that of the second 

station. 

In addition, this chapter determined the suitable smoothening degree for a case study of such 

characteristics to model the geometrical alterations of the damage features on the target wall. 

The distortion from discretising (triangle-based 3D meshing) the 3D point cloud geometry was 

analysed and validated for the accuracy analysis of scan stations. 



Finally, although it is expected that 3D scanning technologies will continue to improve, future 

research will delve into the analysis of additional samples of stations at different distances and 

incidence angles so that the scanning and modelling accuracies for geometrical alterations of 

surface pathologies at the millimetric scale are analysed under laboratory conditions for the 

digitisation and virtual reconstruction of heritage assets. 
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