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Abstract
A new crack-tip finite element able to improve the accuracy of Finite Element Method (FEM) solutions for cracks growing
along theWinkler-type spring interfaces between linear elastic adherents is proposed. The spring model for interface fracture,
sometimes called Linear-Elastic (perfectly) Brittle InterfaceModel (LEBIM), can be used, e.g., to analyse fracture of adhesive
joints with a thin adhesive layer. Recently an analytical expression for the asymptotic elastic solution with logarithmic stress-
singularity at the interface crack tip considering spring-like interface behaviour under fracture Mode III was deduced by
some of the authors. Based on this asymptotic solution, a special 5-node triangular crack-tip finite element is developed.
The generated special singular shape functions reproduce the radial behaviour of the first main term and shadow terms of
the asymptotic solution. This special element implemented in a FEM code written in Matlab has successfully passed various
patch tests with spring boundary conditions. The new element allows to model cracks in spring interfaces without the need
of using excessively refined FEM meshes, which is one of the current disadvantages in the use of LEBIM when stiff spring
interfaces are considered. Numerical tests carried out by h-refinement of uniform meshes show that the new singular element
consistently provides significantly more accurate results than the standard finite elements, especially for stiff interfaces, which
could be relevant for practical applications minimizing computational costs. The new element can also be used to solve other
problems with logarithmic stress-singularities.

Keywords Spring boundary condition · Impedance boundary condition · Robin boundary condition · Singular element ·
Crack-tip element · Logarithmic stress-singularity
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1 Introduction

Thin adhesive layers in composite laminates or adhesively
bonded joints are often modeled as a Winkler-type spring
interface [1], given by a continuous distribution of indepen-
dent linear elastic springs, see [2] for a recent review of this
model. The spring interface is also referred to in the litera-
ture as the weak interface, linear elastic interface, impedance
interface, or Robin interface especially in the mathematical
literature. Additionally, in the numerical solution of the uni-
lateral Signorini contact problem, the spring interface is often
used to regularise the original contact problem.

Computational analysis and prediction of damage initia-
tion and growth in thin adhesive layers requires a suitable
fracture model. An efficient way to model a crack propa-
gating along spring interface, which may represent a thin
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adhesive layer, is by means of the Linear-Elastic (perfectly)
Brittle InterfaceModel (LEBIM) [3–7]. It is characterized by
a continuous spring-distribution with a linear elastic-brittle
law relating the displacement jump across this surface (mate-
rial separation, inMode I) and the traction vector acting there.
A review of the state of the art of this model can be found
in [8]. An accurate calculation of the Energy Release Rate
(ERR) is required for modelling crack growth by LEBIM,
which depends on the values of the traction vector and the
displacement jump (across the interface) at the crack tip.
Thus, usually very fine meshes are required at the crack tip
when using a numerical approximation [9, 10], especially for
stiff interfaces or large cracks.

LEBIM can be considered as a non-smooth limit case of
the well-known intrinsic Cohesive Zone Model (CZM) [6, 7,
11–14]. Moreover, results in [15] showed that in some test
configurations the LEBIM predictions can better fit exper-
imental results than the predictions by a classical intrinsic
CZM.Although LEBIM is a simple and powerful tool, some-
times it may produce inaccurate predictions, associated to a
fictitious too compliant interface, much lower than the actual
elastic interface stiffness, because the interface stiffness in
LEBIM is defined by the interface strength and fracture
energy. This drawback can be solved by the application of
the Coupled Criterion of Finite Fracture Mechanics (CC-
FFM) to spring interfacewhich allows themodellingof (more
realistic) very stiff interfaces, because the interface stiffness,
strength and fracture energy are independent properties [6,
7, 14, 16–19].

In the past, there have been numerous attempts by
researchers to find the first singular terms of the asymptotic
series of singular solutions in the crack-tip neighbourhood in
non-classical fracture mechanics models such as LEBIM [5,
20–24]. Nevertheless, only very recently a general solution
in the form of a complete double asymptotic series for a sin-
gle material corner with any opening angle and with a spring
boundary condition was deduced and analysed for antiplane
shear in [25], and particularized for aMode III crack in spring
interface in [26, 27]. Remarkably, in these works it has been
shown that there is a logarithmic stress-singularity at the tip
of a crack in the spring interface, but with bounded tractions
along such interface. The logarithmic stress-singularity is
sometimes considered as the weakest singularity that occurs
in linear elasticity [28].

The knowledge of these first singular terms is neces-
sary for any efficient computational implementation because
they include the terms representing the logarithmic stress-
singularity and also the logarithmic singularity of gradient
of tractions on the undamaged spring interface. These terms
cause difficulties in the numerical solution and lead to poten-
tially high discretisation errors, especially when evaluating
the maximum of tractions at the crack tip, if the mesh around
the crack tip is not sufficiently fine.

Several approaches have been proposed in the past
to increase the accuracy of numerical approximations of
non-smooth solutions in the neighbourhood of singular
points/edges associated with discontinuities in geometry,
material, boundary conditions (e.g., crack tip, re-entrant
corner tip, jump in value or type of boundary condition).
Some of these methods can almost achieve the accuracy
given by the programming language precision, like, e.g.,
approaches using global shape functions that incorporate
singularity functions to enrich the approximation space gen-
erated by, e.g., piecewise polynomial shape functions, [29,
30]. However, their general implementation in FEM codes is
associated with significant difficulties.

Therefore, following the idea of a very successful quarter-
point crack-tip element [31–35] in classical Linear Elastic
Fracture Mechanics (LEFM), the main objective of the
present article is to develop and test a new crack-tip ele-
ment for the logarithmic stress-singularities. The aim is to
improve the accuracy of FEM solutions predicting propaga-
tion of cracks in spring interfaces that appear in modeling,
e.g., laminates and joints, and minimize the computational
resources used, avoiding the need for an excessive refinement
of FEM meshes. Such refinement is currently necessary to
achieve a high accuracy of the numerical solution, due to
a slow numerical-solution convergence in presence of loga-
rithmic stress-singularities. It is expected that the developed
special crack-tip element implemented in a FEM code will
allow modeling cracks in spring interfaces without the need
of highly refined meshes.

In the present article, the solution of the Laplace equation
is used to analyse a linear elastic problem in antiplane shear
with a crack under fracture Mode III located in a flat spring
interface, focusing on the solution behaviour near the crack
tip.Recall that theLaplace equation is relevant formanyother
kinds of physical problems such as heat transfer, groundwa-
ter flow, electrostatics, magnetostatics, etc. [36], the results
presented here are therefore directly applicable to all these
physical problems.

The solution of an antiplane crack problem in a domain
symmetric with respect to a flat spring interface can be
decomposed into a symmetric and a skew-symmetric part
with respect to the interface plane, similarly as in [26]. The
symmetric part of the solution is bounded and smooth near
the crack tip, and has zero tractions on the interface plane
because the out-of-plane displacements on both sides of the
interface are identical, so in simple terms the springs are not
stretched. Therefore, we will focus on the skew-symmetric
part of the solution. An example of such a skew-symmetric
problem with a crack in the spring interface located in the
xz-plane is shown in Fig. 1, cf. [5]. It will suffice to study
the corresponding Boundary Value Problem (BVP) in a half-
domain by replacing the spring interface of stiffness k with
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Fig. 1 Schematic of a
skew-symmetric antiplane
problem with a crack of length
2a in a spring interface of
stiffness k. a 3D view and b 2D
view, with the shaded part
representing a subdomain that
can be discretized by FEM once
the symmetry conditions are
applied

Fig. 2 Schematic of the crack-tip neighbourhood in the half domain �

in which the asymptotic solution is defined

a spring (Robin) boundary condition of double stiffness 2k,
see Figs. 1 and 2.

The article is organized as follows. First, the weak formu-
lation of the Boundary Value Problems (BVPs) with spring
boundary condition and the crack-tip solution for a crack
in a flat spring interface are introduced in Sects. 2 and 3,
respectively. In Sect. 4, the new singular element is intro-
duced, including details of the developed shape functions
and resulting stiffness matrix. The results of several numer-
ical test are presented and analysed in Sect. 5. Finally, some
conclusions are given in the last section.

2 Weak formulation of a BVP for antiplane
shear with Robin boundary condition. FEM
approximation

Consider an antiplane shearBoundaryValue Problem (BVP),
with u(x) = uz(x) the out-of-plane displacement, with
x = (x, y), in linear elastic solid represented by its cross-
section given by an open 2D domain � ⊂ R

2, with a
Lipschitz boundary � = ∂�, defining the closed domain as

� = � ∪ �. Dirichlet, Neumann and Robin (spring) bound-
ary conditions are prescribed on the boundary parts �D , �N

and �R , respectively. Let n = (nx , ny) define the unit out-
ward normal vector to �, μ > 0 being the shear modulus of
the linear elastic material in � and 2k > 0 the shear elas-
tic stiffness of the spring distribution on the Robin boundary
part �R .

Then, the shear stress component along the boundary is
given by

σnz(x) = μ
∂u

∂n
(x) = μu,i (x)ni (x), i = 1, 2, x ∈ �.

(1)

The homogeneous Robin boundary condition, also called
spring boundary condition, is defined as

σnz(x) + 2ku(x) = 0, x ∈ �R, (2)

or in terms of displacement only

μ
∂u

∂n
(x) + 2ku(x) = 0, x ∈ �R . (3)

Then, the mathematical formulation of the considered
BVP for the displacement u(x) can be written as, cf. [37,
38],

μ�u(x) + f (x) = 0, x ∈ �, (4)

u(x) = ū(x), x ∈ �D, (5)

μ
∂u

∂n
(x) = τ̄ (x), x ∈ �N , (6)

μ
∂u

∂n
(x) + 2ku(x) = 0, x ∈ �R, (7)
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where f (x) is the body force in the z-direction, and ū(x)
and τ̄ (x) are the prescribed displacement and shear stress
component on the boundary parts �D and �N , respectively.

By applying the divergence theorem for two displacement
fields: u(x), the solution of the above BVP, and v(x), an
auxiliary field, both defined in �, we get

∫
�

μu,iv,i d� = −
∫

�

μu,i ivd� +
∫

�

μu,i nivd�. (8)

Consider that the auxiliary displacement field vanishes on
�D , i.e.

v(x) = 0 for x ∈ �D. (9)

Then, by applying the definition of the BVP, we get the
followingweak formulation,which should be verified for any
such v

∫
�

μu,iv,i d� +
∫

�R

2kuvd� =
∫

�

f vd�

+
∫

�N

τ̄ vd�, ∀v, u(x) = ū(x), x ∈ �D. (10)

Consider a discretization of � by a triangular finite
element mesh, � = ∪Ne

n=1�n ,1 with N nodes xn (n =
1, . . . , N ), and the associated shape functionsψn(x). Let the
finite element mesh be characterised by a mesh size param-
eter h > 0.

Let the solution u(x) be approximated by a linear combi-
nation of these shape functions, called trial function,

u(x) ∼= uh(x) =
N∑

n=1

unψn(x) x ∈ �. (11)

We assume that these shape functions verify the so-called
Lagrange property

ψn(xm) = δnm . (12)

Then, the coefficients of the above linear combination are
nodal values of displacement, i.e.

u(xn) ∼= un . (13)

We prescribe

un = ū(xn) for xn ∈ �D, (14)

1 �n represents the closure of an open subdomain �n , i.e. the subdo-
main and its boundary. In this sense, an open subdomain �n does not
include its boundary.

defining the set of known nodal values of displacement
approximation.

By introducing the approximation of displacement u into
the weak formulation, and taking v(x) = ψm(x) as test func-
tion, we get the final linear system for the unknown nodal
values of displacement

N∑
n=1

[∫
�

μψn,iψm,i d�

]
un +

N∑
n=1

[∫
�R

2kψnψmd�

]
un

=
∫

�

f ψmd� +
∫

�N

τ̄ψmd�,

m = 1, . . . , N with xm /∈ �D.

(15)

If the body force in � and the prescribed shear τ̄ on �N

are also approximated by the above shape functions as

f (x) ∼=
N∑

n=1

fnψn(x), x ∈ �, (16)

τ̄ (x) ∼=
N∑

n=1

τ̄nψn(x), x ∈ �N , (17)

then, this linear system takes the following form, suitable for
a computational implementation:

N∑
n=1

[∫
�

μψn,iψm,i d�

]
un +

N∑
n=1

[∫
�R

2kψnψmd�

]
un

=
N∑

n=1

[∫
�

ψnψmd�

]
fn +

N∑
n=1

[∫
�N

ψnψmd�

]
τ̄n,

m = 1, . . . , N with xm /∈ �D. (18)

By defining the elements of stiffnessmatrix and force vec-
tor as

Kmn =
∫

�

μψn,iψm,i d� +
∫

�R

2kψnψmd�, (19)

Fm =
N∑

n=1

[∫
�

ψnψmd�

]
fn +

N∑
n=1

[∫
�N

ψnψmd�

]
τ̄n,

(20)

we get the following form of the final system in the matrix
notation:

Kmnun = Fm for m = 1, . . . , N with xm /∈ �D.

(21)

Once the system (21) is solved considering (14), we can
compute the stresses σi z(x) (i = x, y) by element-wise dif-
ferentiating the FEMapproximation of the displacement field
in (11) as
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σi z(x) = μ

N∑
n=1

unψn,i (x), x ∈
Ne⋃

m=1

�m . (22)

Recall that such element-wise approximation of stresses
is in general discontinuous between elements. Nevertheless,
this is a good option to asses the convergence of the finite ele-
ment solution, in the sense that big jumps of stresses between
elements indicate that the stress solution has not converged
yet to the exact solution of the problem. There are many
options to get a smooth stress solution by the so-called recov-
ered nodal stress values. One of the best and simple technique
is Zienkiewicz–Zhu’s derivative (stress) patch recovery tech-
nique [39].

However, in the case of singular points (e.g., crack tip,
jumps in the value or type of the boundary condition), where
stresses are discontinuous or singular, the usage of such
recovery techniques is not suitable. Its use in general would
lead toworse values and fictitious smoothness of the solution.

3 Crack-tip solution for cracks in spring
interfaces

According to [26], the study of a boundary value problem
(BVP) in a symmetric domain with a crack in the spring
(Robin) interface, as shown in Fig. 1, can be basically
reduced, by symmetry arguments, to the study of another
BVP corresponding to its skew-symmetric part defined in
the upper-half domain only, with a suitable spring boundary
condition, as shown in Fig. 2.

Thus, the out-of-plane displacement u(x) in the neigh-
bourhood of the crack tip located in a straight spring interface
is givenby twoboundary conditions: i) a homogeneousRobin
boundary condition ahead of the crack tip on the bound-
ary part �R , where a continuous distribution of linear elastic
springswith stiffness 2k is considered, and ii) a homogeneous
Neumann boundary condition on �N , on the traction-free
upper crack face, where the stress component σnz is null.

In a 2D view, we consider a semi-infinite straight crack
occupying the negative part of the x-axis, with the crack
tip located at the origin of the Cartesian or polar coordinate
system, see Fig. 2. Since u(x) is a harmonic function, the
so-called Robin-Neumann (R-N) BVP is defined as

�u = 0 x ∈ �, (23)

σnz(x) + 2ku(x) = 0 x ∈ �R, (24)

σnz(x) = 0 x ∈ �N . (25)

A polar coordinate system centered at the crack tip is
used to describe the analytic solution. Thus, the Robin and
Neumann boundary conditions are prescribed at θ = 0 and
θ = π , respectively. As shown in [26], the most singular part

of this crack tip solution is given in the form of a truncated
asymptotic series

u(r , θ) = K

(
1 +

S∑
k=1

u(k)(r , θ) + O(r S+1 logS+1 r)

)
,

(26)

where the parameter K is the Generalized Stress Intensity
Factor (GSIF), the constant main term u(0) = 1, and S is the
number of the so-called shadow terms u(k) associated to the
main term.

In a complete BVP, e.g., with some loads prescribed also
on the outer boundary contour, the value of K depends on
these loads and the geometry of the whole BVP. When S is
increased, the error in the fulfillment of the Robin bound-
ary condition decreases in a neighbourhood of the crack tip
(the singular point). The number of shadow terms consid-
ered in the asymptotic series is related to computational cost
and solution accuracy. The more shadow terms included, the
lower the error, but at a higher computational cost.

In the present article, the behaviour of the singular solution
near the crack tip is described by the asymptotic series asso-
ciated with the first main term truncated at S = 2. Although
only the first shadow term in the series is related to loga-
rithmic singularities in stresses, an additional shadow term
related to the logarithmic singularity in the gradient of bound-
ary tractions has been included to better characterise the crack
tip solution behaviour. Hence, the expressions of these two
shadow terms are

u(1)(r , θ) =2kr

μπ
(cos θ ln r + (π − θ) sin θ) ,

u(2)(r , θ) = k2r2

μ2π2

(
cos 2θ

[
ln2 r − ln r − (π − θ)2

]

+ sin 2θ(π − θ)(2 ln r − 1)) . (27)

The stresses corresponding to these displacements are
expressed as

σθ z(r , θ) = − 2k

π
(sin θ ln r − (π − θ) cos θ + sin θ)

+ k2r

μπ2

(
sin 2θ

[
−2 ln2 r + 2(π − θ)2 + 1

]

+ 4(π − θ) cos 2θ ln r) , (28)

and

σr z(r , θ) =2k

π
(cos θ ln r + (π − θ) sin θ + cos θ)

+ k2r

μπ2

(
cos 2θ

[
2 ln2 r − 2(π − θ)2 − 1

]

+ 4(π − θ) sin 2θ ln r) . (29)
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Fig. 3 One-dimensional element

These stresses have a logarithmic singularity at r = 0,
whereas σθ z is bounded along the positive part of the x-axis
(θ = 0) near the singular point [26].

4 Singular element for logarithmic
stress-singularity

Once the crack tip displacement solution given by (26) and
(27) is known, a finite element capable of approximating the
most relevant part of this singular solution can be developed.
For ease of understanding, 1-D shape functions are derived
first, and then 2-D shape functions are obtained.

4.1 1-D shape functions

In order to deduce the set of shape functions of the 1D-
element represented in Fig. 3, with nodes at r1 = 0, r2 = 0.5
and r3 = 1, the following basis functions defined in the inter-
val [0, 1] are considered in view of (26) and (27)

Ñ1(r) = 1, Ñ2(r) = r , Ñ3(r) = r ln (r). (30)

Then, the new 1D-element shape functions are obtained
by a linear combination of the basis functions

Ni (r) = Ci j Ñ j (r), (31)

by imposing thewell-knownLagrange interpolation property

Ni (r j ) = δi j , (32)

where δi j is the Kronecker delta. Solving the system of equa-
tions (32), the following set of functions is obtained

N1(r) = 1 − r − r ln (r)

ln
( 1
2

) , (33)

N2(r) = 2r ln (r)

ln
( 1
2

) , (34)

N3(r) = r − r ln (r)

ln
( 1
2

) . (35)

Another and equivalent method that could be used to
obtain these shape functions was developed in [40]. The plots
of these functions in Fig. 4 show that the maximum of N2(r)
is not achieved in the associated node 2 with r2 = 0.5, as
usual, but in a point with r = e−1 = 0.367879. Neverthe-
less, it is considered that this fact has no influence on the

Fig. 4 One-dimensional shape functions in r

performance of the new crack-tip element defined by these
functions.

It can be checked that these shape functions fulfill the rigid
body translation condition

3∑
i=1

Ni (r) = 1, (36)

and the constant strain condition

3∑
i=1

ri Ni (r) = r . (37)

It is also useful to see, especially in view of the logarithmic
function included, that these functions can be transformed
into a dimensionless form after being transported to a finite
element of length h by the linearmapping r → r

h , just scaling
their shapes shown in Fig. 4 as

N1(r) = 1 − r

h
− r ln (r/h)

h ln
( 1
2

) , (38)

N2(r) = 2r ln (r/h)

h ln
( 1
2

) , (39)

N3(r) = r

h
− r ln (r/h)

h ln
( 1
2

) . (40)

4.2 2-D shape functions

Once the shape functions have been obtained in 1-D space,
it is necessary to generalise them to a 2-D reference space ξ

- η, with 0 ≤ ξ, η ≤ 1. This is done by generating a square
reference element with 6 nodes and shape functions with
linear behaviour in η and with variation of 1-D special shape
functions in ξ , by replacing r with ξ in (33)–(35).
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Table 1 Displacement shape
functions i Nu

i
∂Nu

i
∂ξ

∂Nu
i

∂η

1 (1 − η)
(
1 − ξ − ξ

ln (ξ)
ln (1/2)

)
(1 − η)

(
−1 − 1

ln (1/2) − ln (ξ)
ln (1/2)

)
−

(
1 − ξ − ξ

ln (ξ)
ln (1/2)

)

2 (1 − η)
(
ξ − ξ

ln (ξ)
ln (1/2)

)
(1 − η)

(
1 − ln (ξ)

ln (1/2) − 1
ln (1/2)

)
−

(
ξ − ξ

ln (ξ)
ln (1/2)

)

3 η
(
ξ − ξ

ln (ξ)
ln (1/2)

)
η

(
1 − ln (ξ)

ln (1/2) − 1
ln (1/2)

) (
ξ − ξ

ln (ξ)
ln (1/2)

)

4 η
(
1 − ξ − ξ

ln (ξ)
ln (1/2)

)
η

(
−1 − 1

ln (1/2) − ln (ξ)
ln (1/2)

) (
1 − ξ − ξ

ln (ξ)
ln (1/2)

)

5 (1 − η)
(
2ξ ln (ξ)

ln (1/2)

)
2(1 − η)

(
ln (ξ)
ln (1/2) + 1

ln (1/2)

)
−

(
2ξ ln (ξ)

ln (1/2)

)

6 η
(
2ξ ln (ξ)

ln (1/2)

)
2η

(
ln (ξ)
ln (1/2) + 1

ln (1/2)

) (
2ξ ln (ξ)

ln (1/2)

)

Fig. 5 Quadrilateral element in the reference space

Table 2 Geometric shape functions

i N g
i

∂Ng
i

∂ξ

∂Ng
i

∂η

1 (1 − ξ)(1 − η) −(1 − η) −(1 − ξ)

2 ξ(1 − η) (1 − η) −ξ

3 ξη η ξ

4 (1 − ξ)η −η (1 − ξ)

The set of the obtained 2-D shape functions and their
derivatives are shown in Table 1 with the numbering associ-
ated to nodes defined inFig. 5. These shape functions are used
to approximate displacements and their derivatives, strains
and stresses, and are fundamental for computing the stiff-
ness matrix.

However, for modelling the geometry and the Jacobian
matrix, standard bilinear shape functions are used, see Table
2.

4.2.1 Singular shape functions in the collapsed triangular
element

The mapping between the quadrilateral element, in the refer-
ence ξ − η space, and the triangular element, in the physical

Fig. 6 Collapsed triangular element in the physical space

x − y space, is defined by the bilinear geometric shape func-
tions together with the collapse of the element side between
nodes 1 and 4 (Fig. 5) into a point, following [33]. Notice that
the logarithmic shape functions in the quadrilateral element
have an infinite gradient at this element side. Thus, the loga-
rithmic stress-singularity along the side 1–4 is collapsed into
a logarithmic stress-singularity in node 1. Hence, the varia-
tion of the resulting displacement shape functions defined in
the triangular element in the x− y space is considered appro-
priate for approximation of the logarithmic stress-singularity.

In Fig. 6, the collapse of all the points on the rectangular
element side 1–4 (ξ = 0) into one point defined by node 1 in
the new triangular element is illustrated.

The plots of the developed displacement shape functions
in the rectangular and triangular elements, respectively, in
the ξ − η and x − y spaces, are depicted in Figs. 7 and 8. It
is important to notice that in these plots there is a logarith-
mic variation in the ξ -direction while maintaining a linear
variation in the η-direction.

As explained above, all the points on the ξ = 0 side col-
lapse into a single point defined by the node 1 generating a
new singular function in the x − y space given by the sum-
mation of two displacement functions in the ξ − η space

[N1(ξ, η) + N4(ξ, η)]ξ−η space = [N1(x, y)]x−y space (41)
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Fig. 7 Shape functions of the rectangular element represented in the
reference space a N1 and b N4. c N1 shape function of the collapsed
triangular element in the physical space

Note that depending on the domain discretization in the
physical x − y space, special triangular elements with the
logarithmic stress-singularity can have different triangular
forms.

4.3 Stiffness matrix

Starting from the above weak formulation of the considered
BVP, the part of the bilinear form on the left-hand side of (10)
associated with the element �n with the trial displacements
u and test displacements v is given by

μ

∫
�n

(
∂v
∂x

∂v
∂ y

) (
∂u
∂x
∂u
∂ y

)
dxdy + 2k

∫
�Rn

uv d�, (42)

d� being the differential element of length on �Rn . Note that
�Rn can be empty for some elements. Then, the change of
variable can be defined using the Jacobian matrix

(
∂u
∂ξ
∂u
∂η

)
= [J ]

(
∂u
∂x
∂u
∂ y

)
, (43)

leading to the final expression for the bilinear form for the
element �n

μ

∫ 1

0

∫ 1

0

(
∂v
∂ξ

∂v
∂η

)
([J ]−1)T [J ]−1

(
∂u
∂ξ
∂u
∂η

)
|J |dξdη

+χRn 2k
∫ 1

0
uv

d�

dξ
dξ, (44)

Fig. 8 Shape functions of the rectangular element represented in the
reference space. a N2, c N3, e N5, g N6. Shape functions of the collapsed
triangular element in the physical space b N2, d N3, f N5, h N6

where χRn is equal to 1 when the element �n has a Robin
condition on one of its edges, otherwise it is zero. For a sin-
gular element, this element edge is associated with a constant
value of η, which is either 0 or 1 depending on the location
of the Robin boundary, see Fig. 5. The displacement fields
u and v can be approximated using the same displacement
shape functions

u =
6∑

i=1

Ni (ξ, η)ui , (45)

v =
6∑

i=1

Ni (ξ, η)vi . (46)
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Then, their derivatives in the reference space are

∂u

∂ξ
=

6∑
i=1

(
∂Ni (ξ, η)

∂ξ
ui

)
, (47)

∂v

∂ξ
=

6∑
i=1

(
∂Ni (ξ, η)

∂ξ
vi

)
, (48)

∂u

∂η
=

6∑
i=1

(
∂Ni (ξ, η)

∂η
ui

)
, (49)

∂v

∂η
=

6∑
i=1

(
∂Ni (ξ, η)

∂η
vi

)
. (50)

The [B] matrix and [N] vector can be defined, taking into
account the collapse of the edge between nodes 1 and 4 to
get the triangular element in the physical space as

[B] =

⎛
⎜⎜⎜⎜⎝

∂(N1+N4)
∂ξ

∂(N1+N4)
∂η

∂N2
∂ξ

∂N2
∂η

...
...

∂N6
∂ξ

∂N6
∂η

⎞
⎟⎟⎟⎟⎠ , [N ] =

⎛
⎜⎜⎜⎝

(N1 + N4)

N2
...

N6

⎞
⎟⎟⎟⎠ .

(51)

Then, the 5 × 5 element stiffness matrix is generated in
the form

(Ki j )5x5 = μ

∫ 1

0

∫ 1

0
[B]([J ]−1)T [J ]−1[B]T |J |dξdη

+χRn 2k
∫ 1

0
[N ][N ]T d�

dξ
dξ. (52)

The elements of thismatrix can be computed either numer-
ically or analytically. In the present article, the calculations
are carried out by analytical integrations using the computer
algebra software Mathematica [41], to avoid any numerical
issues. However, some preliminary results have also been
obtained by using the Gauss quadrature method combined
with an appropriate coordinate transformation. The results
obtained by both approaches have almost the same accuracy
with at least 10 identical significant digits.

5 Numerical results and convergence study

First, to check the implementation of the new special singular
element and to ensure the convergence of the FEM solutions
using this element, it was successfully tested by solving var-
ious patch tests with spring boundary conditions.

5.1 Definition of the analysedmeshes and problems

An h-refinement of uniform meshes is employed to analyse
the convergence behaviour of the new crack-tip triangular
element for cracks propagating along spring interfaces. Stan-
dard linear triangular elements are used in the whole domain
except for the neighbourhood of the crack tip, where the
crack-tip elements are used. For comparison purposes, the
same meshes using the standard linear triangular elements
in the whole domain, including the crack tip neighbourhood,
are also employed. For these studies, a unit square domain
discretised by triangular elements is considered.

The results are obtained by the above described FEM
implementation in the software Matlab [42]. Three differ-
ent types (patterns) of meshes are used as well as different
number of elements that compose them. The mesh patterns
are shown in Fig. 9. The mesh of type 3 is based on the
suggestions for classical quarter-point elements for a better
performance [33, 34]. Specifically, when quarter-point ele-
ments are used, isosceles triangles are recommendedwith the
unequal angle located at the crack tip. Following this idea,
the mesh of type 3 has the same number of elements at the
crack tip as the mesh of type 2 but using isosceles triangles at
the crack tip. The mesh of type 3 is obtained from the mesh
of type 2 by radially moving one vertex of the triangular
crack tip elements to achieve that all triangles at the crack tip
are isosceles. Thus, only the crack tip elements and the sur-
rounding ones are modified. Nevertheless, further analyses
will be necessary to propose some general rules regarding
the optimal convergence properties of the proposed element,
especially when a different type of regular local mesh is used,
that may include elements within one or two circular-ring
zones surrounding the crack tip elements.

The total number of elements in a mesh is defined by a
parameter N , where 2N is the number of elements along each
square side. The spring (Robin) and traction free (homoge-
neous Neumann) boundary conditions are prescribed on the
right and left halves of the bottom edge, respectively. Thus,
N can be also defined as

N = a

h
, (53)

where a is the length of the traction free zone, usually asso-
ciated to the crack (half-)length, and h is the characteristic
length of an element.

Figure 10 shows the two benchmark problems analysed
with the above described meshes. The length of the square
domain side is L = 2a = 1 in all cases as mentioned above.

The first analysed problem, in Fig. 10a, is based on the
most singular term of the asymptotic series at tip of a semi-
infinite crack in Mode III located on a flat spring interface
(26), a solution studied in [25–27]. This solution is, to the
best of the authors’ knowledge, the only analytical solution
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Fig. 9 Analysed mesh patterns
for N=4

Fig. 10 Boundary conditions of
the two analysed problems. D, N
and R are associated to
Dirichlet, Neumann and Robin
boundaries, respectively

currently available for a crack in a spring interface. The dis-
placement on the edgeswithDirichlet boundary conditions is
imposed by this singular term. The problem parameters are:
shear modulus μ = 1, spring stiffness 2k = 1, GSIF K = 1,
and the number of shadow terms used in the truncated series
is S = 10 in (26).

The second problem is shown in Fig. 10b, where the uni-
form Neumann boundary conditions with τ = σyz = 1 is
applied on the upper edge, the Robin boundary condition
on the right half part of the lower edge and the remain-
ing edges are stress free boundaries. It will be referred to
as the uniform applied load problem. Due to the nature of
the antiplane problem, particularly regarding the meaning of
the stress free boundary, this problem could represent three
different problems: (a) actual stress free boundaries on the
left and right edges, (b) left edge representing a symmetry
plane, thus the model describes half of the solid, and (c) both
left and right edges representing symmetry planes, thus the
model also represents the configuration of an infinite array
of periodic cracks along the x-axis, cf. Appendix A.

5.2 Asymptotic singular solution problem

The numerical solutions obtained using only the standard
elements, and by using also the new singular elements with

the logarithmic stress-singularity at the crack tip, are com-
pared with the analytical expression of the asymptotic crack
tip solution (26) developed in [26]. For the calculation of the
analytical solution S = 10 shadow terms have been used.
The relative error of the numerical solution for displacement
obtained with respect to the analytical solution is evaluated
to study which numerical solutions approximate better the
analytical solution.

Figure 11 shows the numerical solutions in displacement
for the mesh type 2. The solutions obtained by using the
standard elements, the singular elements, as well as the ana-
lytical solution [26] are compared. A rapid convergence of
all numerical solutions to the analytical solution is observed.
This is a relevant confirmation of the correct FEM imple-
mentation for the Robin BVP according to Sect. 2, in fact
this is one of the reasons to first compare the numerical
results with the only analytical solution currently available.
The singular elements givemore accurate solutions than stan-
dard elements as expected. However, the improvement is
not so great because the stiffness of the spring distribution
is relatively low, as according to Sect. 5.3 the improvement
increases with the spring stiffness, which makes the Robin
BVP with the logarithmic stress-singularity at the crack tip
more difficult to solve numerically.
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Fig. 11 Numerical solutions for displacement obtained for the mesh type 2 along the bottom edge in the asymptotic singular solution problem a
global view and b zoom

Fig. 12 Convergence of the relative error e in the crack tip displace-
ment obtained for each numerical solution of the asymptotic singular
solution problem. T1, T2 and T3 correspond to the mesh type 1, 2 and
3, respectively

In Fig. 12, the convergence of the relative error in displace-
ment at the crack tip, e = |unum − uana|/uana, for increasing
values of N , obtained for each numerical solution and the
mesh type with respect to the analytical solution is shown in
a log-log plot. A triangle in the plot indicates the expected
quadratic asymptotic convergence rate O(N−2) for these ele-
ments. A non-monotonous convergence of e is observed in

some cases for coarse meshes. It is associated to a change
of sign of the absolute error unum − uana. This behaviour
is observed for all numerical solution obtained by singular
elements.

It can be observed that as the value of N increases the
numerical solutions converge to the analytical one, with rel-
ative errors up to 10−8 being achieved. This provides an
additional confirmation of the correct FEM implementation
for theRobinBVP according to Sect. 2. In general, with some
exceptions for the coarsestmeshes, the singular elements give
consistently smaller errors, often by an order of magnitude,
than the standard elements. The error of the standard ele-
ments is essentially insensitive to the mesh pattern, whereas
the singular elements may give different errors for different
mesh patterns.

To check the improvement by the developed singular ele-
ments, the ratio of the relative error with respect to the
analytical solution for the crack tip displacement is evalu-
ated using the improvement ratio

I = estd
esing

, (54)

where estd and esing are the relative errors obtained using the
standard elements and the new singular elements, respec-
tively, for the samemesh type. Table 3 summarizes the results

Table 3 Improvement obtained
when the new singular element
is used in the asymptotic
singular solution problem

Pattern \ N 1 2 4 8 16 32 64 128 256 512

1 0.3 0.4 1.4 3.8 30.8 8.7 4.5 3.7 4.4 7.1

2 12.3 2.6 14.6 3.6 2.5 2.0 1.8 1.7 1.8 2.8

3 – 0.8 3.4 99.5 5.4 3.4 2.6 2.4 2.6 11.8
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Fig. 13 Numerical solutions obtained for the mesh type 1 for a δ = 1 and b δ = 1000, in the uniform applied load problem

Fig. 14 Solutions obtained for the mesh type 2 for a δ = 1 and b δ = 1000, in the uniform applied load problem

for the obtained improvements when the new singular ele-
ments are used, for every mesh pattern and several N values.
The results obtained using singular elements always give
more accurate results for mesh type 2, while the same occurs
for the mesh types 1 and 3 for N ≥ 4.

5.3 Uniform applied load problem

For this problem, several spring stiffness values are tested by
varying the value of the dimensionless structural parameter
δ, while keeping the model geometry fixed, cf. [5],

δ = 2kLch

μ
= 4ka

μ
, (55)

where k is the spring stiffness (in the complete problem), Lch

is a characteristic length of the problem (the crack length 2a

is used herein) and μ is the material shear modulus. The
considered δ values are 0.1, 1, 10, 100 and 1000.

Figures 13, 14 and 15 show the displacement field along
the bottom edge obtained for the three types of analysed
meshes and for two values of δ. It seems that the numeri-
cal solutions tend to the perfect interface solution when the
stiffness of the interface is sufficiently large. As expected,
the solutions obtained using the singular elements are more
accurate and converge faster to the solution obtained using
the finest mesh than those obtained using the standard ele-
ments. These differences are more evident for the very stiff
spring distribution with δ = 1000.

Analogously to the previous section, the improvement
achieved in the crack-tip solution when using the singular
elements is analysed. In the asymptotic singular solution
problem, the numerical solutions converged to the analytical
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Fig. 15 Solutions obtained for the mesh type 3 for a δ = 1 and b δ = 1000, in the uniform applied load problem

solution as the value of N increased. In the current problem,
no analytical solution is available. Thus, a way to calculate
the error is by taking as a reference the results obtained with
the finest mesh (i.e. the largest number of elements in the
Robin boundary part) in this case N = 512, for each mesh
pattern and the kind of finite elements used. The relative error
for this problem can be defined equivalently in terms of either
the crack-tip displacement or the crack-tip shear calculated
on the Robin boundary part as

erel = utip(N ) − utip(Nmax)

utip(Nmax)
= τtip(N ) − τtip(Nmax)

τtip(Nmax)
. (56)

Figure 16 shows the variation of this relative error as the
number of elements N in the Robin boundary part increases,
for δ = 0.1, 1, 10, 100 and 1000. The results show that when
the interface stiffness is small i.e. δ = 0.1 and 1, the relative
errors are very similar for all considered types of meshes and
types of finite elements. The main differences occur for the
smallest values of N . On the other hand, when the interface
stiffness becomes higher, i.e. δ ≥ 10, the differences between
the meshes with and without singular elements become evi-
dent, especially for the large values of N , where the errors
obtained using singular elements are significantly smaller
than those obtained using standard elements only, often by
an order of magnitude or more.

In Fig. 17, the dimensionless shear stress values at the
crack tip (defined from the Robin boundary side) are plotted
with respect to N . The results for themesheswith andwithout
singular elements are depicted for δ = 0.1, 1, 10, 100 and
1000. These results show that the solutions for each kind
of mesh tend to a constant value (converged solution) for
sufficiently large values of N . The asymptote lines shown in
the plots represent the values obtained for the highest N value
for each mesh pattern and using singular elements. When the

interface stiffness is small (δ ≤ 1), the shear stress value at
the crack tip is well approximated even for small values of N
(coarse meshes). However, as the interface becomes stiffer
(δ ≥ 10), the convergence of the numerical solution is slower
because larger values of N are needed to obtain a constant
value.The crack-tip shear stress values for all kinds ofmeshes
tend to approximately the same value for the highest value
of N , for δ ≤ 100, whereas for δ = 1000 they tend to only
slightly different values. Noteworthy, the numerical solutions
converge significantly faster when the singular elements are
used.

The convergence of the Energy Release Rate (ERR) G tip

(in its dimensionless form) at the crack tip is presented in
Fig. 18. Recall that G tip is usually the most relevant quantity
for prediction of crack propagation along spring interfaces.
In [26] it was shown that G tip values in a spring-like inter-
face, associated to fracture Mode III, can be calculated by
the following expressions

G tip = τtiputip = τ 2tip

2k
= 2ku2tip. (57)

Thus, G tip can be directly computed using the crack tip dis-
placement utip. The values of G tip computed using meshes
with and without singular elements varying the number of
elements N are plotted in Fig. 18 for δ = 0.1, 1, 10, 100 and
1000. Similarly to the results for the crack-tip shear stress,
G tip tends to a constant value (converged solution) for suf-
ficiently high values of N . When the interface stiffness is
small, i.e. δ ≤ 1, an excellent approximation of G tip value is
obtained even for small values of N (coarse meshes). How-
ever, when the interface becomes stiffer, i.e. δ ≥ 10, the
convergence of G tip is slower (larger N values are needed)
to get an asymptotic value. Noteworthy, the values ofG tip for
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Fig. 16 The convergence of the error erel with respect to the number of elements on the Robin boundary part N for a δ = 0.1, b δ = 1, c δ = 10,
d δ = 100 and e δ = 1000, in the uniform applied load problem. T1, T2 and T3 correspond to the mesh type 1, 2 and 3, respectively
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Fig. 17 The convergence of the shear stress at the crack tip with respect to the number of elements on the Robin boundary part N for a δ = 0.1,
b δ = 1, c δ = 10, d δ = 100 and e δ = 1000, in the uniform applied load problem. T1, T2 and T3 correspond to the mesh type 1, 2 and 3,
respectively
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all kinds of meshes tend to approximately the same asymp-
totic value for the highest value of N , for δ ≤ 100, but they
tend to slightly different values for δ = 1000. Again, the
G tip values converge significantly faster when the singular
elements are used.

The G tip values in Fig. 18 are normalised by the value
G tip = 2aτ 2/μ obtained in an analogous problem for
k → ∞ (perfect interface or equivalently a crack in a homo-
geneous body) and infinitely long strip of width 2L = 4a,
see (A.4). Asmight be expected, for the higher values of δ the
normalised value of G tip tends to one, showing that the solu-
tions for very stiff spring interfaces tend to the crack solution
in a homogeneous body.

A comprehensivemathematical analysis of the asymptotic
behaviour of the displacement solution in neighbourhood
of the crack tip, for δ → ∞, was developed by Costa-
bel and Dauge [20], focusing on the limit change from the
Robin-Neumann problem (studied in the present work) to
the Dirichlet-Neumann problem (corresponding to the clas-
sical crack in a homogeneous body). Costabel and Dauge
[20] were able to precisely describe the change of the nature
of the local solution behaviour at the crack tip from the log-
arithmic singularity to the classical square root singularity
of stresses. According to [20, 43] and for relatively large δ

values, if δ value is increased by a factor the radius of the
(inner) region at the crack tip where the first most singular
term of the order r ln r , see (26) and (27), governs the dis-
placement solution decreases by the same factor, and then
the (outer) region governed by the classical square root solu-
tion

√
r extends towards the crack tip. Thus, in the limit

case only the classical square root solution governs the dis-
placement solution near the crack tip. Such convergence,
for increasing values of δ, of the numerical displacement
solutions to the classical analytic solution for a crack in the
homogeneous body, deduced in Appendix A, is shown in
Fig. 19.

Table 4 summarizes the obtained improvement ratios I ,
computed analogously as in (54) but using (56), for all mesh
patterns and N values. Noteworthy, the results obtained using
singular elements always producedmore accurate results, i.e.
I > 1, for all mesh types and interface stiffness defined by δ

values. It should be noted that, especially for large δ values,
the improvement ratios I would be significantly higher if the
more accurate results obtained by the singular elements were
also used as reference values in the calculation of the relative
error for the standard elements.

In the present model, the different values of δ were
obtainedbykeeping thedomainfixed andchanging the spring
stiffness. However, it was found that similar results can be
obtainedby changing the dimensions of the domain andkeep-
ing the stiffness of interface constant.

Conclusions and future developments

A new singular finite element for the logarithmic stress-
singularities has been developed. It is capable of significantly
improving the accuracy of FEM solutions for cracks grow-
ing along the Winkler-type spring interfaces between linear
elastic adherents. The proposed shape functions are based
on the asymptotic elastic solution with logarithmic stress-
singularity at the interface crack tip, considering spring-
like interface behaviour under fracture Mode III, recently
deduced in [26]. They reproduce the radial behaviour of
the asymptotic solution. The special crack-tip finite element
developed is triangular with 5 nodes, obtained by collapsing
a 6-node rectangular element.

The new finite element is implemented in a FEM code
written in Matlab. The obtained numerical results show that
the new element allows to model interface cracks without
the need of using excessively refined FEM meshes, even for
stiff interfaces. A convergence analysis using h-refinement
with uniform meshes show that the new singular element
provides significantly more accurate results than the stan-
dard finite elements, especially for stiff interfaces. The use of
the proposed element will allow to minimize computational
resources whenmodelling cracks propagating along stiff and
thin adhesively bonded interfaces using the Linear-Elastic
Brittle Interface Model (LEBIM) or the Coupled Criterion
of Finite Fracture Mechanics (CC-FFM) applied to spring
interfaces.

This new finite element can be applied to any other phys-
ical problems governed by the Laplace equation with the
logarithmic singularities of the solution gradient at some
points.

Noteworthy, new analytical expressions for the double
asymptotic series at the tip of a crack located in a Winkler-
type interface under fractureMode I/IIwere recently deduced
in [44]. These expressions show that the singular character
of the crack-tip solutions in mode I/II, governed by the Lamé
system, is similar to that of cracks in Mode III, governed
by the Laplace equation, although with some particularities.
Thus, it is expected that the FEM solution for such cracks
under fracture Mode I/II can be improved using a similar
crack-tip element with the logarithmic stress-singularity as
the one proposed in the present article.

Nevertheless, from the present analysis of the conver-
gence behaviour of the numerical solutions obtained by the
developed singular element, and also from the discussion of
the main results of the asymptotic analysis in [20, 43], see
Sect. 5.3, we might expect that another singular element with
a higher number of shape functions and nodes, including in
addition to the 1D basis functions in (30) an additional basis
function Ñ4(r) = √

r , could provide even better convergence
properties covering well also cases with very large values of
δ, when a large part of the crack tip element is governed by
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Fig. 18 The convergence of the ERR G tip with respect to the number of elements on the Robin boundary part N for a δ = 0.1, b δ = 1, c δ = 10,
d δ = 100 and e δ = 1000, in the uniform applied load problem. T1, T2 and T3 correspond to the mesh type 1, 2 and 3, respectively
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Fig. 19 The numerical solutions for the displacement along the interface, for increasing values of δ, converging to the analytic solution for a
classical crack in an infinite homogeneous strip of finite width (A.8). The numerical solutions are obtained by the mesh type 1 with N = 512

Table 4 Improvement ratios I
obtained using the singular
elements in the uniform applied
load problem

δ Pattern\N 1 2 4 8 16 32 64 128 256

0.1 1 3.9 2.0 1.7 1.5 1.4 1.3 1.3 1.2 1.2

2 6.5 3.1 2.2 1.8 1.6 1.5 1.4 1.4 1.3

3 – 2.1 1.7 1.5 1.4 1.3 1.3 1.2 1.2

1 1 4.4 2.4 1.9 1.7 1.6 1.5 1.4 1.4 1.4

2 6.7 3.2 2.3 1.9 1.7 1.6 1.5 1.4 1.4

3 – 2.4 1.9 1.7 1.5 1.4 1.4 1.3 1.3

10 1 6.3 6.5 6.8 5.9 4.8 3.9 3.2 2.8 2.5

2 4.9 3.5 2.8 2.3 2.1 1.9 1.8 1.7 1.6

3 – 4.3 4.0 3.4 2.9 2.5 2.3 2.1 2.0

100 1 2.1 2.8 4.8 10.8 104.0 30.0 28.3 166.5 26.5

2 1.9 2.1 2.5 2.7 2.7 2.4 2.1 2.0 1.9

3 – 2.3 3.2 4.4 5.5 5.6 5.0 4.2 3.7

1000 1 1.2 1.3 1.5 1.8 2.4 3.8 7.7 36.3 26.1

2 1.2 1.2 1.4 1.6 1.9 2.3 2.6 2.8 2.7

3 – 1.2 1.4 1.6 2.0 2.8 4.1 5.6 6.5

the square root term
√
r and only a very small part adjacent

to the crack tip is governed by the r ln r term. The novel idea
behind this proposal is to include in the singular element not
only the most singular term in the problem to be solved, i.e.
the term r ln r in the present case of a crack in spring inter-
face, but also the most singular term in the limit problem for
δ → ∞, i.e. the square root term

√
r , with the aim of cov-

ering well the whole range of δ values. The performance of
such singular element will be studied in a forthcoming work.
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Appendix A: Analytic solution for an infinite
array of collinear identical cracks in an infi-
nite plane under Mode III

Consider an infinite array of cracks of length 2a located on the
x-axis in an infinite plane, with 2L > 2a being the distance
between their centers, under antiplane shear produced by a
remote uniform shear σyz = τ .

By adapting the Westergaard approach [45] to this
antiplane problem, and considering the origin of the Carte-
sian coordinates (x, y) in the center of one of these cracks,
we can define the following Westergaard-type complex ana-
lytic function of z = x+iy, where i = √−1 is the imaginary
unit,

Z ′
I I I (z) = τ sin (π z/2L)√

sin2 (π z/2L) − sin2 (πa/2L)
, (A.1)

giving out-of-plane displacement u = uz = 1
μ
ImZI I I (z),

and shear stresses σxz = μu,x = ImZ ′
I I I (z) and σyz =

μu,y = ReZ ′
I I I (z).

From (A.1) we can deduce the SIF KI I I for this array of
cracks

KI I I = τ
√

πa

√
2L

πa
tan

(πa

2L

)
= τ

√
2L tan

(πa

2L

)
. (A.2)

This leads to the ERR value

GI I I = K 2
I I I

2μ
= τ 2L

μ
tan

(πa

2L

)
, (A.3)

which in the case L = 2a, studied in Sect. 5.3, gives

GI I I = 2aτ 2/μ. (A.4)

To get the variation of displacement u(x, 0) along the
upper crack face, for −a < x < a and y = 0, we can
just integrate the shear stress σxz as follows

− 1

μ

∫ a

x
σxz(x

′, 0)dx ′ = −
∫ a

x
u,x ′(x ′, 0)dx ′

= u(x, 0) − u(a, 0) = u(x, 0), (A.5)

considering that the crack tip displacement is zero. Hence,

u(x, 0) = τ

μ

∫ a

x

sin
(
πx ′/2L

)
√
sin2 (πa/2L) − sin2 (πx ′/2L)

dx ′,

(A.6)

which can be evaluated analytically by some substitutions
giving

u(x, 0) = 2Lτ

πμ
ArcCoth

cos(πx/2L)√
cos2(πx/2L) − cos2(πa/2L)

(A.7)

= Lτ

πμ
ln

cos(πx/2L) + √
cos2(πx/2L) − cos2(πa/2L)

cos(πx/2L) − √
cos2(πx/2L) − cos2(πa/2L)

.

(A.8)

As explained in Sect. 5.1, taking into account that the sym-
metry planes in the middle between these cracks are free of
shear stresses σxz the above solution is also valid for a one-
crack problem in an infinitely long strip of width 2L with
traction free lateral boundaries, analogous to those shown in
Figs. 1 and 10b but with perfect interface instead of spring
interface.
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8. Mantič V, Távara L, Blázquez A, Graciani E, París F (2015) A lin-
ear elastic - brittle interface model: Application for the onset and
propagation of a fibre-matrix interface crack under biaxial trans-
verse loads. Int J Fract 195:15–38

9. Muñoz-Reja M, Távara L, Mantič V (2018) Convergence of the
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