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14 Abstract 
 

15 Artisanal cheeses are part of the heritage and identity of different countries or regions. In this 
 

16 work, we investigated the spectral variability of a wide range of traditional Brazilian cheeses 
 

17 and compared the performance of different spectrometers to discriminate cheese types and 
 

18 predict compositional parameters. Spectra in the visible (vis) and near infrared (NIR) region 
 

19 were collected, using imaging (vis/NIR-HSI and NIR-HSI) and conventional (NIRS) 
 

20 spectrometers, and it was determined the chemical composition of seven types of cheeses 
 

21 produced in Brazil. Principal component analysis (PCA) showed that spectral variability in 
 

22 the vis/NIR spectrum is related to differences in color (yellowness index) and fat content, 
 

23 while in NIR there is a greater influence of productive steps and fat content. Partial least 
 

24 squares discriminant analysis (PLSDA) models based on spectral information showed greater 
 

25 accuracy than the model based on chemical composition to discriminate types of traditional 
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26 Brazilian cheeses. Partial least squares (PLS) regression models based on vis/NIR-HSI, NIRS, 
 

27 NIR-HSI data and HSI spectroscopic data fusion (vis/NIR + NIR) demonstrated excellent 
 

28 performance to predict moisture content (RPD > 2.5), good ability to predict fat content (2.0 < 
 

29 RPD < 2.5) and can be used to discriminate between high and low protein values (~1.5 < RPD 
 

30 < 2.0). The results obtained for imaging and conventional equipment are comparable and 
 

31 sufficiently accurate, so that both can be adapted to predict the chemical composition of the 
 

32 Brazilian traditional cheeses used in this study according to the needs of the industry. 
 

33 
 

34 Keywords: artisanal cheeses; denomination of origin; non-destructive technologies; visible- 
 

35 near infrared (vis/NIR) spectroscopy; chemometrics; data fusion. 
 

36 
 

37 1. Introduction 
 

38 Historical aspects, regional characteristics, manufacturing technologies, microbial diversity 
 

39 and dairy species contributed to the emergence of different cheeses with unique 
 

40 characteristics that reflect the cultural identity of certain populations. In Brazil, there is a wide 
 

41 type of traditional cheeses that are part of the heritage and identity of different regions, 
 

42 including the North (Marajó cheese), Northeast (Butter and Coalho), South (Colonial and 
 

43 Serrano), Southeast (Araxá, Campo das Vertentes, Cerrado, Canastra and Serro) and Center 
 

44 (Caipira) of the country (Margalho et al., 2021). 
 

45 Traditional Brazilian cheeses have gained greater visibility in recent years, especially through 
 

46 the granting of Geographical Indications (GI), awards in national and international 
 

47 competitions (such as the World Cheese Awards) and, above all, through the approval of new 
 

48 regulations. To date, five geographical indications have been granted in the Indication of 
 

49 Origin (IP) modality, which recognizes the traditional area of cheese production, historical 
 

50 connotation and economic relevance (Serro, Canastra, Colônia Witmarsum, Marajó and 
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51 Cerrado); and a GI in the Denomination of Origin (DO) modality, which recognizes the 
 

52 specificities of the geographic environment, including natural factors (suitable climate and 
 

53 native pastures) and human factors, which provide the product with unique characteristics (the 
 

54 terroir, such as Serrano cheese “Campos de Cima da Serra”) (Brasil, 1996a). In 2018, through 
 

55 new regulations, the “Arte” seal was created, which now allows the retail sale of artisanal 
 

56 cheeses made with raw milk throughout the national territory (Brasil, 2018). 
 

57 The GIs and the “Arte” seal connect characteristic cheeses to their place of origin and, 
 

58 through know-how passed down through generations, recognizes their own identity and adds 
 

59 value, which increases the interest of other producers in regulating their products. 
 

60 Consequently, it is necessary to know the characteristics of artisanal cheeses and identify 
 

61 markers that can assist in the certification of products with geographical indication and in the 
 

62 identification of fraudulent products (Santos et al., 2017). 
 

63 Different methodologies based on chemical composition (Fitztum et al., 2023; Santos et al., 
 

64 2017) and gas chromatograph (Margalho et al., 2021), Mid-Infrared Spectroscopy (MIR), 
 

65 Reversed-Phase High Performance Liquid Chromatography (RP-HPLC) (Silva et al, 2023), 
 

66 and inductively coupled plasma optical emission spectrometer (ICP-OES) (Andrade et al., 
 

67 2022) were applied to characterize and discriminate cheeses according to the type or region of 
 

68 production. Despite presenting promising results, it is necessary to investigate new techniques 
 

69 that allow obtaining reliable, fast, and low-cost results. 
 

70 Techniques based on vibrational spectroscopy in the visible/near infrared range (vis/NIR) 
 

71 have consolidated applications in the food industry (Ayvaz et al., 2021; Stocco et al., 2019; 
 

72 Wiedemair et al., 2019; Marinoni et al., 2017; Madalozzo et al., 2015; Karoui et al., 2006;) 
 

73 and has been investigated as a tool for authentication. Vis/NIR spectroscopy provides a 
 

74 spectrum of the sample, often called “fingerprint”, which can be used to extract information 
 

75 related to its composition. It is characterized as being non-destructive, avoiding the use of 
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76 chemicals and allowing rapid characterization and measurement of several attributes 
 

77 simultaneously at any stage of the production chain and directly on the surface of the cheese. 
 

78 However, the potential of vis/NIR can be compromised in heterogeneous matrices, such as 
 

79 ripened cheeses, as conventional spectrometers provide information from a small portion of 
 

80 the sample. To overcome this difficulty, it is possible to use vis/NIR hyperspectral imaging 
 

81 (HSI), which combines in a single device the advantages of conventional spectroscopy and 
 

82 artificial vision, allowing the simultaneous acquisition of information related to composition 
 

83 (spectral information) and its distribution within the sample (spatial information) (Amigo et 
 

84 al., 2019). Considering the shortages of studies in this field, there is a need for further 
 

85 investigation comparing the application of hyperspectral imaging and conventional 
 

86 spectrometers to predict the composition of a wider type of cheeses and without the need for 
 

87 sample preparation. 
 

88 Due to the large amount of information generated by hyperspectral imaging and conventional 
 

89 spectroscopy, a data mining step (also known as chemometrics) becomes necessary to extract 
 

90 only the relevant information from spectra. Spectral pre-processing steps are performed to 
 

91 remove/minimize the influence of undesirable phenomena that affect the spectral 
 

92 measurement, such as light scattering, particle size and morphology effects and detector 
 

93 artifacts. However, there is no standard method, and a trial-and-error approach is required for 
 

94 a specific application. Additionally, a wavelength selection step can be performed to develop 
 

95 simpler models, reducing data processing time and allowing industrial applications (Pasquini, 
 

96 2018; Amigo, 2019). Finally, algorithms are applied to investigate spectral variability and 
 

97 develop models to predict chemical compounds of interest. 
 

98 Thus, this study compared the performance of NIRS and hyperspectral imaging (vis/NIR-HSI 
 

99 and NIR-HSI) devices, as well as the fusion of HSI spectroscopic data (vis/NIR + NIR) to 
 

100 discriminate and predict the chemical composition of a wide type of Brazilian traditional 
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101 cheeses. In this work, we investigate the relationship of cheese processing steps with spectral 
 

102 variability, and the influence of instrument technology (image and point measurement), 
 

103 spectral region (vis and NIR) and spectral preprocessing methods on the performance of 
 

104 classification and predictive models. 
 

105 
 

106 2. Material and methods 
 

107 2.1. Brazilian traditional cheese samples 
 

108 Seventy-two samples of seven types of Brazilian traditional cheeses were obtained from 
 

109 producers, supermarkets and markets located in three regions of Brazil were analyzed: 
 

110 Northeast, Southeast and South. The sample set (Table 1) included the main types of 
 

111 traditional Brazilian cheeses and considered different production technology, curd heat 
 

112 treatment (uncooked and cooked), curd melting, maturation (ripened or not ripened), chemical 
 

113 composition and structural characteristics of the cheese matrix (soft and hard cheeses) to 
 

114 address a wider sample variation and allow effective evaluation of the ability of vis/NIR 
 

115 devices to predict chemical composition. 
 

116 
 

117 Table 1. Description of the Brazilian traditional cheeses included in the sampling. 

 
Region 

 
 
 
 
 

Northeast 

 
 
 
 
 
 

South/ 

Southeast 

 

Cheese type 

(Identification) 
 

Coalho integral 
(CO) and light 

(CL) 

Butter cheese 

integral (BC) 

and light (BL) 
 

Minas Frescal 

(MF) 

 

Minas Araxá 

(AR) 

 

Minas Canastra 

(CT) 

Production aspects 
 

Production technology 
 

Enzymatic coagulation, cutting, stirring, 
whey drainage, cooking (45–55 °C), and 

pressing 

Spontaneous coagulation, desorption, 

washing with water and/or milk and melting 

(at 85°C for at least 15 min) with butteroil 

Enzymatic coagulation, supplemented or not 

with the action of lactic acid bacteria, whey 

drainage and packaging 

Coagulation with endogenous culture and 

industrial rennet, cutting, agitation, molding, 
and superficial salting. The cheese is turned 

daily during shelf maturation 

Coagulation with natural dairy culture and 

industrial rennet, cutting, stirring, molding, 

pressing, and salting 

 
Distinctive 

steps 
 

Not 

ripened 

 
 

Melted 

 
 

Not 

ripened 

 

Ripened 

(14 days) 

 

Ripened 

(14 days) 

 

Regulatory 

patterns 
 

Moisture: 36.0 

–54.9%; FTS: 

35.0 a 60.0%1 

Moisture: 

≤54.9 %; FTS: 

25.0 – 55.0%1 

Moisture: 

>55.0%; FTS: 

25.0 – 44.9%2 

 

Moisture: ≤ 
45.9%3 

 

Moisture: ≤ 
45.9%3 
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Minas Padrão Ripened 

(light) (MP) (20 days) 

Ripened 
(10 days) 

 
 

Enzymatic coagulation, complemented by                              Moisture: 36 a 

the action of lactic acid bacteria, heating                                 45.9%. FTS: 

(32–42°C), draining, pressing, and salting 42 a 57%4 

Coagulation with industrial rennet, heating                              Moisture: 36.0 

Colonial (CN) (30–45°C), whey drainage, molding, a 45.9%; FTS 
pressing, and salting 45.0 a 59.9%5 

118 1Brasil (2001), 2Brasil (1997), 3Minas Gerais (2008), 4Brasil (2020), 5Rio Grande do Sul (2023). 

 
119 
 

120 2.2. Image and spectral data collection 
 

121 2.2.1. Sample treatment and morphological features 
 

122 To investigate the spectral changes associated with the cheese process, especially ripening, 
 

123 the cheeses were sectioned horizontally (20 mm in height) and two cylinder of 25 mm in 
 

124 diameter were removed from the center (internal surface) towards the rind (external surface), 
 

125 with the aid of a stainless-steel sampler. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

126 
 

127 Fig. 1. Representation of obtaining cheese samples for spectral acquisition (a) and the types of 

128 traditional Brazilian cheeses (b) included in the sampling. 
 

129 
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130 2.2.2. Portable NIR spectrometer (NIRS) 
 

131 Spectra were recorded using a portable NIR spectrophotometer (MicroNIR Pro Lite 1700, 
 

132 VIAVI, Santa Rosa, California, USA), previously calibrated, scanning the wavelength range 
 

133 of 908 and 1676 nm (spectral resolution of 6.2 nm). Reflectance spectra were corrected by 
 

134 means of a two-point calibration. For that, a white reference spectrum (Spectralon, Labsphere 
 

135 Inc., North Sutton, USA) and a dark current spectrum were acquired in each collection 
 

136 session. Finally, two spectra were acquired at random locations on the outer surface (totaling 
 

137 144 spectra) and two spectra on the inner surface (totaling 144 spectra) of each cheese 
 

138 cylinder. 
 

139 
 

140 2.2.3. Hyperspectral imaging (HSI) 
 

141 Hyperspectral images of Brazilian traditional cheeses were acquired in the visible and near 
 

142 infrared spectral region (vis/NIR – HSI) using a Specim IQ camera (Spectral Imaging Ltd., 
 

143 Oulu, Finland) with a spectral range of 397 to 1004 nm (512 × 512 pixels and FWHM of 7 
 

144 nm). This camera is based on the pushbroom principle and has a mobile, portable, and 
 

145 autonomous design (integrated operating system and controls), which allows the acquisition 
 

146 of images in different environments. This camera has a certified reflectance device made of 
 

147 teflon to perform the calibrations. Also, near-infrared (NIR – HSI) hyperspectral images were 
 

148 acquired using a laboratory system composed of a Xenics® XEVA-USB InGaAs camera (320 
 

149 × 256 pixels; Xenics Infrared Solutions, Inc., Leuven, Belgium), a spectrograph (Specim 
 

150 ImSpector N17E Enhanced; Spectral Imaging Ltd., Oulu, Finland) covering the spectral range 
 

151 between 884 – 1717 nm (3.25 nm spectral resolution), a mirror scanner (Spectral Imaging 
 

152 Ltd., Oulu, Finland) and a computer system with instrumental acquisition software 
 

153 SpectralDAQ v. 3.62 (Spectral Imaging Ltd., Oulu, Finland). A “white reference” image (W, 
 

154 100% reflectance) was acquired from a white ceramic tile (Labsphere Inc., North Sutton, 
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155 USA), and a “dark reference” image (B, 0% reflectance) was obtained with the light source 
 

156 off and the camera covered with its opaque cap. 
 

157 The cheese cylinders were placed on a dark surface and illuminated by two 70 W tungsten 
 

158 iodine halogen lamps (Prilux ®, Barcelona, Spain) separated 50 cm and oriented at 45° from 
 

159 the area of image. The distance between the camera and the sample was 45 cm. The camera 
 

160 covers an angle of 24º with a speed of 5.6 degrees/sec. For each cheese cylinder, an image of 
 

161 the outer surface and one of the inner surfaces was recorded. After the calibration and 
 

162 segmentation processes, the average spectra of the region of interest (ROI) were extracted 
 

163 using Matlab (R2019; Mathworks, Natick, USA). 
 

164 
 

165 2.2.4. HSI spectroscopic dataset fusion 
 

166 Given the complementary nature of the information provided by the visible (vis) and near 
 

167 infrared (NIR) spectra, the average vis/NIR-HSI (397 to 1004 nm) and NIR-HSI (884 to 1717 
 

168 nm) spectra were sectioned at the 950 nm wavelength and unified into a new matrix (397 to 
 

169 1717 nm) to increase reach and improve classification and prediction models. 
 

170 
 

171 2.3. Chemical composition, colorimetric parameters, and texture 
 

172 2.3.1. Chemical composition 
 

173 The samples were crushed until obtaining a homogeneous state and then were subjected to the 
 

174 following analyses (g/100 g of cheese): moisture, fat, proteins, and ash, according to the 
 

175 Association of Official Analytical Chemists protocols (AOAC, 2012). After, fat was 
 

176 calculated in dry matter (g/100g) for comparison with the legislation and carbohydrates were 
 

177 calculated by subtracting the moisture, fat, protein, and ash contents from the total 
 

178 composition (100%). 
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179 The results of moisture (g/100g of cheese) and fat in dry matter (FDM) (g/100g of dry matter) 
 

180 were used to classify the cheeses according to the Brazilian legislation (Brasil, 1996b), in 
 

181 cheeses of low (moisture < 35.9%), medium (36.0 – 45.9%), high (46.0 – 54.9%) and very 
 

182 high moisture (> 55.0%); and in skimmed (fat < 10.0%), low fat (10.0 – 24.9%), semi-fat 
 

183 (25.0 – 44.9%), full fat (45.0 – 59.9%) or extra fat (> 60%). 
 

184 
 

185 2.3.2. Fatty acids 
 

186 For the quantification of fatty acid methyl esters, the sample preparation used were the same 
 

187 as those reported by Sant'Ana et al. (2019). The identification and quantification of fatty acid 
 

188 methyl esters was performed with a gas chromatograph equipped with flame ionization 
 

189 detection (GC-FID) (QP2010-plus, Shimadzu, Kyoto, Japan) and a fused silica capillary 
 

190 column (SP-2560, 100 m × 0.25 mm × 0.20 µm, Supelco, Bellefonte, PA, USA). The injector 
 

191 and detector were kept at 250 and 280 °C, respectively. The temperature program was as 
 

192 follows: 50 °C for 1 min; ramped to 150 °C at 50 °C/min and held for 20 min; then ramped to 
 

193 190 °C at 1 °C/min, held for 1 min; and ramped to 220 °C at 2 °C/min, held for 30 min. 
 

194 Helium was used as the carrier gas at 1 mL/min constant flow rate, and 1 μL of the sample 
 

195 was injected. 
 

196 The identification of peaks of fatty acid methyl esters was performed by comparing the 
 

197 retention times with the standards (FAME Mix, 37 components) under the same analysis 
 

198 conditions. 
 

199 
 

200 2.3.3. Instrumental color 
 

201 Instrumental color was determined by measuring the coordinates L* (lightness), a* (greenish 
 

202 for negative and reddish for positive values) and b* (bluish for negative and yellowish for 
 

203 positive values), using a digital colorimeter (CM-2600D, illuminant D65 Konica Minolta 
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∗ 

 
 

204 Sensing Inc., Osaka, Japan), calibrated with a white ceramic standard. Then, the chroma (𝐶𝑎𝑏) 

 
205 was calculated, which corresponds to the saturation or intensity of the color, and hue angle 
 

206 (hab), according to CIE (1978). The Yellowness index (YI) of the samples was calculated 
 

207 using Equation (1) (Francis & Clydesdale, 1975). 
 

208 𝑌𝐼 = 142.86 
𝐿∗ Equation (1) 

 
209 
 

210 2.3.4. Statistical analysis 
 

211 One-way Analysis of Variance (ANOVA) was applied to chemical composition and 
 

212 instrumental color parameters to identify whether they influenced by cheese types. Tukey's 
 

213 multiple mean comparison test (p < 0.05) was applied to identify differences between cheese 
 

214 types, using Sisvar software version 5.7 (Lavras, Minas Gerais, Brazil). 
 

215 
 

216 2.4. Multivariate analysis 
 

217 2.4.1. Spectral preprocessing 
 

218 Different pre-processing methods were applied to the vis/NIR spectra to correct effects of the 
 

219 random noise, light scattering, and changes in the baseline. Savitzky-Golay smoothing (SG), 
 

220 Standard Normal Variate (SNV) and Savitzky-Golay derivatives (1st SG and 2nd SG) (both 
 

221 derivatives were used with a 13-point window and second order polynomial filtering) were 
 

222 tested alone or in combinations (SG + SNV, SNV + 1st SG and SNV + 2nd SG). The best 
 

223 results obtained for each equipment and chemical component are presented in the results. All 
 

224 pre-processing and post analysis were performed using PLS Toolbox 8.9.1 from Eigenvector 
 

225 Research, Inc. (Manson, WA, USA) to Matlab R2019a (Mathworks, Natick, USA). 
 

226 
 

227 2.4.2. Principal Component Analysis (PCA) 
 
 

10



 
 

228 Principal Component Analysis (PCA) was initially performed to investigate the influence of 
 

229 the spectral acquisition surface (external and internal surface of the cheese) on the grouping of 
 

230 cheeses. It was observed that both surfaces allow visualization of groupings between samples 
 

231 and explain close variance percentages. Thus, the external surface spectra (144 spectra, two 
 

232 for each sample) were chosen for the PCA and other multivariate analyzes for maintaining the 
 

233 integrity of the samples and the non-destructive nature of the spectroscopic method. Finally, 
 

234 Principal Component Analysis (PCA) was applied to the complete spectra and informative 
 

235 region (spectrum region with peaks and absorption differences between samples) to 
 

236 investigate spectral variability of the cheeses and correlate the grouping of samples with the 
 

237 cheese type, differences between the chemical composition and distinctive steps related to 
 

238 production (ripening, curd heating and curd melting). PCA models were developed using 
 

239 singular value decomposition (SVD) algorithm (95% confidence level) and outliers were 
 

240 detected and eliminated using Hotelling's residual Q and T2 values. 
 

241 
 

242 2.4.3. Classification and prediction models 
 

243 
 

244 Classification models based on the Partial Least Squares Discriminant Analysis (PLSDA) 
 

245 method were constructed to discriminate the seven types of traditional Brazilian cheeses. 
 

246 Furthermore, regression models (PLSR) were built to predict the chemical composition of the 
 

247 cheeses: moisture, fat, proteins, and ash. 
 

248 Initially, the classification and prediction models were developed using the full spectrum and 
 

249 then a variable selection step was applied to build reduced models. Selection of optimal 
 

250 wavelengths was performed by two approaches: (1) Informative region and (2) Interval Partial 
 

251 Least Squares algorithm (iPLS). The selection of the informative region was performed by 
 

252 visual inspection of the spectrum, considering regions with higher peaks and differences 
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TP 

TN 

TP + TN 

FP + FN 

 
 

253 between cheese samples. For the vis/NIR-HSI data, the spectrum was divided into two 
 

254 informative regions: 387 – 780 nm (visible region) and 780 – 1004 nm (infrared region); and 
 

255 in the NIRS and NIR-HSI data, were studied the regions of 1100 – 1600 nm and 1050 – 1350, 
 

256 1600 – 1680 nm (Medeiros et al, 2023). The iPLS was performed considering one wavelength 
 

257 per interval and limited to 10 intervals. In addition to the classification models based on 
 

258 spectral information, a model based on chemical composition was built to compare the 
 

259 efficiency of spectral techniques with traditional chemical methods. 
 

260 In both models, 70% of the samples (50 samples) were used and the remaining 30% (22 
 

261 samples), containing at least two samples of each cheese type, were used as an independent 
 

262 set to test the predictive capacity of the models. The optimal number of latent variables (LV) 
 

263 in the classification and prediction models was chosen using the lowest average classification 
 

264 error in cross-validation (leave-one-out) and lowest root mean squared error of cross 
 

265 validation (leave-one-out) (RMSECV), respectively. 
 

266 The performance of PLS-DA models was evaluated by sensitivity (fraction of samples that 
 

267 belong to a class and are properly accepted) (Eq. (1)), specificity (fraction of samples that do 
 

268 not belong to a class and are correctly rejected) (Eq. (2)), accuracy (ratio between the number 
 

269 of samples correctly classified, regardless of the class, and the total number of samples) (Eq. 
 

270 (3)) and error (Eq. (4)). 
 

271 Sensitivity =
TP + FN 

(Eq. 1) 

 

272 Specificity =
FP + TN 

(Eq. 2) 

 

273 Accuracy =
TP + TN + FP + FN 

×100 (Eq. 3) 

 

274 Error =
TP + FP + TN + FN 

×100 (Eq. 4) 

 

275 
 
 

276 where TP is true positive, TN is true negative, FN is false negative, and FP is false positive. 
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277 The performance of the calibration models was evaluated by the coefficient of determination 
 

278 (R2) and Root Mean Square Error (RMSE) for the calibration (𝑅𝐶, RMSEC) and cross- 

 

279 validation (𝑅𝐶𝑉, RMSECV) and the predictive capacity of the models was evaluated using the 

 

280 coefficient of determination (𝑅𝑃), Root Mean Square Error (RMSEP) and Performance Ratio 

 
281 to Deviation (RPD = SD/RMSEP, where SD is the standard deviation of the chemical 
 

282 component content) (Nicolaï et al., 2007). 
 

283 
 

284 3. Results and discussion 
 

285 3.1. Chemical composition and instrumental color parameters 
 

286 Brazilian traditional cheeses showed significant differences (p < 0.05) for the evaluated 
 

287 compositional parameters (Table 1): Moisture (34.35 – 54.43%), fat (9.07 – 36.47%), fat in 
 

288 total solids (17.50 – 55.88%), protein (18.78 – 28.35%), carbohydrates (0.39 – 10.19%) and 
 

289 ash (1.64 – 5.45%). 
 

290 The main differences for moisture content were observed for Minas Canastra (CT), which had 
 

291 the lowest moisture content. This cheese undergoes a minimum maturation period of 14 days, 
 

292 where a series of biochemical events take place, responsible for its flavor and texture, as well 
 

293 as for the reduction of moisture. The highest moisture contents were observed for light butter 
 

294 cheese (BL), Minas Frescal (MF) and Minas Padrão light (MP) cheeses. MF cheese is 
 

295 characterized by being marketed fresh (not matured), and BL and MP cheeses are 
 

296 characterized by a reduction in fat content, implying an increase in moisture content. 
 

297 According to Brazilian legislation (Brasil, 1996b), the analyzed cheeses are classified as low 
 

298 cheeses (hard cheeses) (< 35.9%) to high cheeses (soft cheeses) (46.0 – 54.9%) moisture 
 

299 content and comply with their respective technical regulations. 
 

300 The lowest levels of fat were observed for BL and MP cheese (11.48 and 13.51%), while the 
 

301       highest fat content was observed for BC cheese (29.25%). These differences are mainly 
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302 attributed to the ingredients used during cheese production. Although these cheeses are 
 

303 produced from skimmed milk, butter cheese has as its main characteristic the addition of 
 

304 butteroil during the melting process of the coagulated mass. This butter, typical of the 
 

305 northeast region of Brazil, is obtained by heating cream (110 to 120°C) until complete 
 

306 melting and contains a minimum fat content of 98.5%, contributing to a higher fat content in 
 

307 the butter cheese. According to the fat content in the dry extract, the analyzed cheeses are 
 

308 classified between lean (10–24.9 %) and full fat (45–59.9 %) (Brasil, 1996b) and are in 
 

309 accordance with the provisions of their respective technical regulations. 
 

310 The main difference in protein content was observed for MP cheese (27.31%) (highest 
 

311 content) and is related to the incorporation of whey protein concentrate, which is used to 
 

312 improve the yield or sensory properties of low-fat cheeses. All other cheeses had protein 
 

313 contents between 22.74 and 24.96% and are in line with reports by other authors (Costa et al., 
 

314 2022; Margalho et al., 2021). 
 

315 The lowest carbohydrate contents were observed for matured cheeses (Minas - Canasta and 
 

316 Colonial) (2.15 – 2.84¨%) and for Coalho cheese (2.58%). The amount of carbohydrates in the 
 

317 cheese is influenced by the concentration of lactose in the milk, type and amount of coagulant, 
 

318 as well as aspects related to the curd washing step, such as washing time, amount of water and 
 

319 particle size (Hayaloglu & McSweeney, 2014; Ibáñez et al., 2020). In addition, in mature 
 

320 cheeses, lactose is metabolized by lactic acid bacteria, releasing glucose and galactose, and 
 

321 synthesizing organic acids, resulting in low carbohydrate content (Bezerra et al., 2017). The 
 

322 highest carbohydrate contents were observed for light cheeses (BL, MP and CL) (4.82 to 
 

323 8.66%). This result can be attributed to the lower fat content present in these cheeses, which 
 

324 consequently alters the amount of other constituents. 
 

325 The main differences in ash content were observed for butter cheese (BC and BL) (2.11 and 
 

326 2.60%) and CL (4.18%) and may be related to some particular steps during manufacture of 
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327 these cheeses. In butter cheese, the milk is coagulated by the action of acids and then 
 

328 subjected to draining, washing, and melting with butteroil. Acid coagulation causes colloidal 
 

329 calcium phosphate solubilization (Masotti et al., 2020) and washing can promote the leaching 
 

330 of minerals into the whey, contributing to the reduction of mineral content. On the other hand, 
 

331 in the production of CO cheese, as well as in CL, MP and MF cheeses, calcium chloride is 
 

332 added as an ingredient to provide ideal conditions for milk coagulation (improves gel 
 

333 firmness and reduces coagulation time), resulting in an increase in mineral content (Koutina et 
 

334 al., 2016). Minas traditional AR and CT cheeses had statistically equal mineral contents (p < 
 

335 0.05) to cheeses with added calcium chloride. Although these cheeses do not have addition of 
 

336 calcium chloride, this increase may be related to differences in the percentage of salt added in 
 

337 the technological process and the concentration of solids during maturation. 
 

338 The composition intervals presented in this study are in accordance with those reported by 
 

339 Margalho et al. (2021) for 402 samples of 11 types of Brazilian artisan cheeses and are close 
 

340 to those reported by authors who obtained robust models to predict compositional attributes in 
 

341 a wide type of cheeses (Ayvaz et al., 2021; Stocco et al., 2019). Thus, it can be inferred that 
 

342 the sampling used in this study and the models developed from these data are representative 
 

343 of the compositional variability of Brazilian traditional cheeses. 
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344 Table 2. Chemical composition, instrumental color parameters and yellowness index (YI) of Brazilian traditional cheeses. 
 

Region 
 

Northeast 

 

Cheese samples 

 
Coalho - Integral (CO) 

Chemical composition (%) 

Moisture Fat 

45.46bc ±2.62 23.34bc±2.17 

 
FDM 

42.73ab ±2.42 

 
Protein 

24.73ab ±1.12 

 
Carb 

2.58de± 1.46 

 
Ash 

3.89ab ±0.66 

Color parameters (CIELAB units) 

L* Cab hab 

89.1ab ± 1.5 25.3ab ± 2.8 100.2ab ± 1.0 

 
YI 

40.6abc ± 4.7 

 

 
 
 
 
 

South/ 
Southeast 

 

Coalho - Light (CL) 

Minas Frescal (MF) 

Butter cheese - Integral 
(BC) 

Butter cheese - Light (BL) 

Minas Araxá (AR) 

Minas Canastra (CT) 

Minas Padrão light (MP) 

Colonial (CN) 

44.78bcd ±2.83 

46.65b ±2.33 

40.71cd±3.84 
 

54.45a ±0.15 

42.54bcd ±2.27 

40.12d ±4.90 

46.55b ±1.10 

43.87bcd±2.14 

21.98c±6.29 

22.95bc±0.61 

29.25a ±4.57 
 

11.48d±0.12 

26.78abc±1.73 

28.12ab ±3.47 

13.51d±3.37 

26.29abc±3.27 

39.38b ±9.41 

43.12ab ±2.87 

49.06a±4.66 
 

25.19c±0.28 

46.65a ±3.07 

46.86a ±2.83 

25.17c ±5.86 

45.82a ±3.89 

24.23b±1.77 

22.74b ±2.43 

24.56b±1.24 
 

23.72b±0.24 

23.11b±2.21 

24.96ab ± 2.20 

27.31a ±0.96 

24.30b ±1.26 

4.82b ± 1.39 

4.42bc ± 0.90 

3.36bcde±1.01 
 

7.76a±0.32 

3.93bcd±0.69 

2.84cde ±0.94 

8.66a ± 1.45 

2.15e ±1.51 

4.18a ±0.62 

3.25bc ±0.21 

2.11d±0.31 
 

2.60cd±0.02 

3.64ab±0.36 

3.95ab ±0.86 

3.98ab±0.27 

3.89ab ±0.44 

90.9a ± 0.6 

90.8a ± 4.9 

69.3d ± 4.9 
 

67.4d ± 2.6 

81.2bc ± 10.3 

83.2abc ± 7.9 

79.6c ± 1.7 

83.8abc ± 1.9 

22.5ab ± 2.2 

20.4b ± 2.2 

25.9ab ± 6.4 
 

21.1ab ± 0.7 

27.3a ± 6.9 

19.7b ± 2.3 

22.8ab ± 

3.2 

25.6ab ± 4.7 

90.8d ± 0.5 

98.4bc ± 5.3 

105.0a ± 2.5 
 

96.7bc ± 0.7 

90.6d ± 8.3 

95.9bcd ± 2.9 

94.2cd ± 0.9 

97.8bc ± 3.8 

35.4bc ± 3.4 

31.8c ± 4.5 

51.6a ± 12.6 
 

44.5abc ± 3.3 

49.7ab ± 19.9 

33.9c ± 5.7 

40.2abc ± 5.6 

43.3abc ± 9.2 

Range 34.35 – 54.43 9.07 – 36.47 17.50 – 55.88 18.78 – 28.35 0.39 – 10.19 1.64 – 5.45 60.9 – 94.7 17.0 – 38.5 77.2 – 109.5 26.1 – 82.4 

345 FDM = Fat in dry matter and Carb = Carbohydrate. Values in the same column followed by different letters are significantly different by ANOVA test (p < 0.05). 
 

346 
 

347 Table 3. Fatty acids profile of Brazilian traditional cheeses. 
 

Region Cheese samples 
C14:0 C16:0 C16:1 C18:0 

Fatty acids profile (%) 

C18:1 C18:2 C18:3 SFAs MUFAs PUFAs 

 

Northeast 

 
 
 
 
 

South/ 
Southeast 

 

Coalho - Integral (CO) 

Coalho - Light (CL) 

Minas Frescal (MF) 

Butter cheese - Integral (BC) 

Butter cheese - Light (BL) 

Minas Araxá (AR) 

Minas Canastra (CT) 

Minas Padrão light (MP) 

Colonial 

(CN) 

Range 

 

10.66ab±1.10 

10.65ab±0.76 

11.58ab±1.79 

9.77b±1.10 

11.02ab±0.09 

12.07a±0.85 

11.95a±0.57 

11.03ab±0.78 

10.35ab±0.4
9 

8.36 – 
13.15 

 

31.19bc±2.35 

31.41bc±0.16 

32.73abc±2.54 

29.22c±1.62 

31.85abc±0.01 

36.08a±2.39 

33.56ab±3.38 

32.85abc±1.80 

32.91abc±0.85 

27.05 – 38.30 

 

1.33b±0.70 

1.50b±0.98 

2.41ab±1.32 

1.71ab±1.12 

1.17b±0.04 

1.93ab±1.02 

2.82ab±1.31 

3.60a±1.27 

2.94ab±1.09 

0.81 – 5.04 

 

13.55ab±1.37 

13.33ab±0.84 

12.51abc±1.55 

14.65a±1.65 

13.77ab±0.07 

11.69bcd±0.80 

9.82d±1.53 

10.55cd±0.56 

12.02bcd±0.59 

8.32 – 16.66 

 

29.24ab±2.8

3 

28.61ab±1.9

6 

25.76bc±3.8

3 

30.67a±2.97 

29.33ab±0.0



4 22.60c±2.56 

24.78bc±1.76 

27.14abc±1.99 

26.34abc±0.34 

20.29 – 34.58 

 

2.32ab±0.23 2.10ab±0.14 

2.36ab±0.21 2.15ab±0.42 

2.00ab±0.07 2.17ab±0.18 

1.94ab±0.28 1.87b±0.47 

2.49a±0.42 

1.18 – 2.83 

 

1.21ab±0.31 

1.08abc±0.33 

0.91abc±0.40 

1.35a±0.32 

1.15abc±0.20 

0.54bc±0.38 

0.70abc±0.30 

0.79abc±0.56 

0.52c±0.19 

0.00 – 1.77 

 

65.91b±2.99 

66.59b±1.68 

69.08ab±5.37 

64.06b±2.92 

66.35b±0.13 

72.77a±2.94 

68.86ab±2.37 

66.61b±3.06 

67.71ab±0.82 

59.24 – 76.15 

 

30.57b±2.6

7 

30.12b±1.4

9 

28.17ab±4.

82 

32.38b±2.4

5 

30.50b±0.0

0 

24.53b±2.7

4 

27.60ab±1.

47 

30.74b±2.9

4 

29.28ab±1.
30 

21.29 – 
36.59 

 

3.53a±0.44 

3.17abc±0.26 

3.27abc±0.31 

3.50ab±0.62 

3.16abc±0.13 

2.71bc±0.45 

2.64c±0.34 

2.65c±0.28 

3.01abc±0.52 

2.20 – 4.17 
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348 In Table 2, Polar coordinates chroma (Cab) and hue (hab) are shown instead of the Cartesian 
 

349 coordinates a* and b*, as they explain color better from a psychophysical point of view. 
 

350 Chroma in cheeses is almost entirely due to the influence of the b* component. In addition, 
 

351 indicating the hue value (hab) alone shows whether the cheese has a more yellowish or more 
 

352 orange appearance without the need to evaluate a* and b* simultaneously. Finally, the 
 

353 yellowness index (YI), which depends on b* and L*, has been shown as a common indicator 
 

354 of cheese color in scientific literature. Brazilian artisanal cheeses showed significant 
 

355 differences (p < 0.05) for the instrumental color parameters: lightness (60.9 – 94.7), chroma 
 

356 (17.0 – 38.5), hue (77.2 – 109.5) and yellowness index (26.1 – 82.4). Standard deviation 
 

357 values showed that there is also a large variation in color parameters for the same type of 
 

358 cheese, which may be related to differences in the production process and storage conditions. 
 

359 The yellow color of the cheese (hab ~ 90) is mainly due to the presence of carotenoids, such as 
 

360 β-carotene (C40H56), lutein (C40H56O2) and β-cryptoxanthin (C40H56O) (Gentili et al., 2013). In 
 

361 this study, a relationship was observed between the brightness and the productive aspects of 
 

362 the cheeses, where the unripened cheeses (CO and MF) were characterized by lighter colors 
 

363 (higher values of lightness), the ripened cheeses by intermediate colors and the melted by 
 

364 darker colorations (lower lightness values). Regarding the yellowness index, which takes into 
 

365 account the color parameter b* and brightness, it was observed that BC is more yellow, while 
 

366 MF and AR cheeses are more whitish. 
 

367 Table 3 presents the results of the fatty acid profile of traditional Brazilian cheeses, where 
 

368 statistically significant differences are observed (p < 0.05). In general, the samples consist 
 

369 mainly of saturated fatty acids (SFAs) (59.24 – 76.15%), with emphasis on myristic acid 
 

370 (C14:0, 8.36 – 13.15%), palmitic acid (C16:0, 27.05 – 38.30%) and stearic (C18:0, 8.32 – 
 

371 16.66%), followed by monounsaturated fatty acids (MUFAs) (21.29 – 36.59%), especially 
 

372       oleic (C18:1, 20.29 – 34.58%). It is possible to observe that cheeses produced in the Northeast 
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373 region (CO, CL, BC, BL and MF) have a different fatty acid profile than cheeses from the 
 

374 South and Southeast regions (AR, CT, MP and CN), as they have lower percentages of SFAs 
 

375 and higher levels of PUFAs. The fatty acid profile of cheeses is directly related to the 
 

376 composition of milk fat (rearing system, animal feeding and time of year), as well as cheese 
 

377 processing, especially microbiota and maturation period (Jesus et al., 2023; 2021). Thus, these 
 

378 compositional differences associated with the production process and producing region can be 
 

379 investigated to certify the origin of the cheeses. 
 

380 
 

381 3.2. Spectral profile 
 

382 The mean absorbance spectra of Brazilian traditional cheeses (Fig. 2) are comparable to those 
 

383 previously reported for other cheese types (Malegori et al., 2021; Reis et al., 2022; Medeiros 
 

384 et al., 2023). It is possible to observe different absorption bands in the visible (450 nm) and 
 

385 near infrared (970, 1150, 1210, 1230, 1390, 1450, 1500, 1526 and 1660-1690 nm) regions of 
 

386 the pre-processed spectra related to the main organic compounds present in cheese. 
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387 
 

388 Fig. 2. vis/NIR and NIR spectra of Brazilian traditional cheeses raw, preprocessed with 
389 Savitzky-Golay smoothing combined with SNV (SG + SNV) and with the first derivative of 

390 Savitzky-Golay (1st SG). 

391 
 

392 The absorption peak at 450 nm can be attributed to the presence of carotenoids responsible for 
 

393 the yellow color of cheeses (Britton et al., 2004), such as β-carotene, lutein and β- 
 

394 cryptoxanthin, and/or the presence of riboflavin (vitamin B2) (Becker et al., 2003). The 
 

395 absorption bands at 970 and 1450 nm correspond to second and O–H stretching in the first 
 

396 overtone, characteristic of water. The absorption bands at 740, 1150, 1230, 1340-1390 and 
 

397 1690 nm correspond to C–H stretching at the fourth, second and first overtone (–CH, –CH2, – 
 

398 CH3), present in CH2 groups in the acid chain fatty acids and their terminal CH3 groups, as 
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399 well as CH and CH2 present in the glycerol fraction. The absorption bands at 1170 and 1660 
 

400 nm are attributed to C–H vibrations in the second and first overtone and are associated with 
 

401 the presence of unsaturated fatty acids (–HC=CH–) in the aliphatic chains of fat, especially 
 

402 oleic acid (C18 :1) (Osborne et al., 1993). The peaks at 910 and 1210 nm, attributed to C–H 
 

403 vibrations at the third and first overtone, and at 1500 and 1530 nm, attributed to N–H 
 

404 vibrations at the first overtone, are associated with protein content, such as casein (Frank & 
 

405 Birth, 1982; Osborne et al., 1993). 
 

406 
 

407 3.3. Principal Components Analysis (PCA) 
 

408 Principal Component Analysis (PCA) (Fig. 3) was applied to NIRS and HSI spectra (vis/NIR, 
 

409 NIR and data fusion) to explore spectral variations among Brazilian traditional cheeses. The 
 

410 results are shown according to three groupings: cheese type, production steps (ripening and 
 

411 curd melting) and composition. The influence of curd heating was also investigated, but it was 
 

412 not observed sample separation regarding this feature. 
 

413 The two-dimensional representation (PC1 × PC2) of the PCA scores showed that the NIR- 
 

414 HSI spectra explained a higher percentage of cheese variability (93.64%), followed by NIRS 
 

415 data (92.41%), vis/NIR-HSI (86.78 %) and the fusion of HSI spectroscopic data (77.26%). 
 

416 Although there is a difference in the variability explained by the first two components (PC1 
 

417 and PC2), the PCAs performed with the different data allow the visualization of the separation 
 

418 of some cheese types, especially butter cheese (BC) and Minas Padrão light cheese (MP). The 
 

419 overlapping of the other cheeses implies that there are other factors, in addition to the type of 
 

420 cheese, that influence the spectral variability of the cheeses and, consequently, the separation 
 

421 of the samples. 
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422 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

423 
 

424 Fig. 3. PCA score plot of Brazilian traditional cheeses according to type, production (ripening 

425 and curd heating), and compositional aspects (fat content and yellowness index). 

426 
 

427 In the PCA performed with the vis/NIR-HSI spectral data (397- 1004 nm, 1st SG) (Fig. 3) it is 
 

428 possible to observe that the spectral variability represented by the scores of first principal 
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429 component was influenced to a greater extent by the color of the samples, where cheeses with 
 

430 lower yellowness index (YI ≤ 40) were characterized by negative scores on PC1 and the 
 

431 highest yellowness index (YI > 40) by positive scores. This result is in line with the loadings 
 

432 plot (Fig. S2a), where it is possible to observe that variations in PC1, as well as in PC2, are 
 

433 associated with the content of carotenoids and/or riboflavin (440 nm) (Britton et al., 2004). 
 

434 The compositional aspects of the cheeses, especially the fat content, influenced the separation 
 

435 of samples in PC3 scores (Fig. S1 in supplementary material), where cheeses with lower fat 
 

436 content were characterized by negative scores and higher fat cheeses by positive scores. The 
 

437 biggest contributors to the separation in this main component (Fig. S2a in supplementary 
 

438 material) are associated with the content of carotenoids and riboflavin (430, 500 and 530 nm) 
 

439 (Britton et al., 2004; Becker et al., 2003) and the fat content (940 nm) (Osborne et al, 1993). 
 

440 In PCA models performed with NIRS (1100 – 1600 nm, SNV + 2nd SG) and NIR-HSI data 
 

441 (1100 – 1600 nm, SNV + 1st SG) (Fig. 3) the first principal component (PC1) is associated 
 

442 with changes in protein structure (especially casein) due to cheese processing. In non-ripened 
 

443 cheeses (CO, CL and MF), located in the positive region of PC1 scores, the enzymatic action 
 

444 of industrial rennet promotes limited proteolysis of k-casein (cleavage of the Phe105-Met106 

 

445 peptide bond) separating it into two macropeptides (Herbert et al., 1999). In ripened cheeses 
 

446 (AR, CT, MP and CN), distributed mainly between the negative and intermediate scores 
 

447 regions, in addition to enzymatic coagulation, changes occur during ripening that break 
 

448 cheese proteins into oligopeptides, which can additionally be degraded into shorter peptides 
 

449 and amino acids (Boran et al. 2023). In melted cheeses (BC and BL), spread in the negative 
 

450 part of PC1 scores, the main aspects of production are acid coagulation promoted by the 
 

451 natural microbiota of milk and the melting stage. The latter has a greater impact on the 
 

452 structure of the proteins, since melting salts (citrates, polyphosphates, or sodium bicarbonate) 
 

453 are used that promote the peptization of casein, separating its large hydrophobic aggregates 
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454 into smaller units (Garcia et al., 2023). Thus, it is possible to infer that the extent of changes 
 

455 in protein structure increases in the negative sense of PC1 scores (not ripened < ripened < 
 

456 melted). This behavior was also observed by Herbert et al. (1999) when studying the 
 

457 influence of milk coagulation types (acid, enzymatic and mixed) on tryptophan emission 
 

458 fluorescence spectral data, where the first principal component separated the samples 
 

459 according to modifications in the micellar structure. The second principal component 
 

460 describes the variability associated with the fat content, where it is possible to separate the 
 

461 samples with the highest (full fat) and lowest (low fat) content in the negative and positive 
 

462 part of PC2 scores, respectively. The wavelengths (Fig. S2b and S2c in supplementary 
 

463 material) that contributed to the separation of the samples towards PC1 and PC2 scores are 
 

464 associated with moisture content (1450 nm), fat (1140, 1170, 1210, 1320, 1390 and 1410 nm) 
 

465 and proteins (1190 and 1510 nm) (Osborne et al., 1993) 
 

466 From an exploratory point of view, the fusion of HSI spectroscopic data (vis/NIR + NIR) (397 
 

467 – 1600 nm, SNV + 1st SG) did not promote sample separation beyond what was observed for 
 

468 the separate techniques. In the first principal component (PC1) scores it is possible to observe 
 

469 a trend of sample separation according to the structural modifications of the proteins, as 
 

470 observed in the PCA performed with the NIR data, while the influence of the yellowness 
 

471 index is also observed, like the observed in the PCA for the vis/NIR data. In the loadings of 
 

472 PCA applied to the data fused (Fig. S3d in supplementary material) it is possible to observe 
 

473 that the wavelengths that influenced the separation in PC1 and PC2 scores are the same ones 
 

474 reported in vis/NIR-HSI and NIR-HSI separately, which are associated with the carotenoid 
 

475 content (490 nm), water (970 nm), fat (1140, 1230, 1330 and 1410 nm) and proteins 
 

476 (1500nm) (Osborne et al., 1993). 
 

477 
 

478 3.4. Classification models 
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479 
 

480 PLS-DA classification models (Table 4) based on spectral information (NIR, vis/NIR-HSI, 
 

481 NIR-HSI and HSI data fusion) were constructed to discriminate traditional Brazilian cheeses. 
 

482 The performances of these models were compared with the model based on chemical 
 

483 composition data to investigate the potential of spectroscopy as a tool to assist in the 
 

484 certification of these products. The chemical composition parameters used in the construction 
 

485 of the model were the fatty acids C6:0, C8:0, C10:0, C12:0, C14:0, C18:0, C18:1, C18:3, 
 

486 SFAs and MUFAs), as they provided better prediction results. 
 
 

487 It is possible to observe that the models performed with spectral information presented better 
 

488 classification performances, with higher sensitivity (≥ 0.75) and specificity (≥ 0.84) values 
 

489 and lower error rates (11 - 18%), compared to the model built only with chemical composition 
 

490 information (33% error rate). This result is justified by the large amount of information 
 

491 contained in the spectra, which is influenced by the composition and productive aspects, as 
 

492 observed in the PCA. Comparing the results of the three devices, the best classification index 
 

493 was obtained using information in the near infrared region (NIRS), where the sensitivity and 
 

494 specificity values were 0.95 and 0.84, respectively, and the classification rate 89% correct. 
 

495 Fusion of HSI spectroscopic data did not improve cheese discrimination (84% accuracy). 
 
 

496 

497 Table 4. Figures of merit of PLSDA models to classify Brazilian traditional cheese types. 
 

Equipment 

 

Pre-

processing 

 

Variables LV 
Calibration 

Sens Spec Acc 

Prediction 

Sens Spec Acc 

 

Chemical composition 
 

vis/NIR-HSI 
 

NIRS 
 

NIR-HSI 
 

Data fusion 

 

Autoscale 
 

2nd + SNV 
 

1st SG 
 

1st SG 
 

1st SG 

Fatty acids* 3 
 

iPLS 5 
 

1050 - 1350, 1600 - 1680nm 5 
 

iPLS 4 
 

780 - 1600 nm 6 

 

0.85 0.76 0.81 0.57 
 

0.94 0.93 0.82 0.75 
 

0.96 0.90 0.93 0.95 
 

0.94 0.88 0.91 0.85 
 

0.88 0.89 0.89 0.81 

 

0.76 0.67 
 

0.89 0.82 
 

0.84 0.89 
 

0.85 0.85 
 

0.87 0.84 

498 *C6:0, C8:0, C10:0, C12:0, C14:0, C18:0, C18:1, C18:3, SFAs e MUFAs. 
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499 The distribution of validation samples into classes (Fig. 4) showed that the largest 
 

500 classification errors in the model based on chemical composition, the largest errors were 
 

501 observed for CO/CL and MF cheeses, which were incorrectly classified as AR cheese. In 
 

502 models based on spectral information, the largest errors were observed for samples of CT and 
 

503 for coalho cheeses (CO/CL), where samples of CT cheese were identified as AR or coalho 
 

504 cheese (CO/CL), and coalho samples (CO/CL) were incorrectly classified as MF or MP. The 
 

505 wavelengths that contributed to the classification of cheeses in the visible region are related to 
 

506 the lipid fraction (930 nm), carotenoids (450 nm) and water (970 nm). In the infrared region, 
 

507 the wavelengths with the greatest contribution are centered in spectral regions associated with 
 

508 the content of water (970 3 1440 nm), fat (930, 1150, 1220 and 1275 nm) and proteins (1540 
 

509 nm). 
 

510 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

511 
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512 Fig. 4. Confusion matrix (external validation) of PLS-DA models based on chemical 

513 composition data and spectral information: vis/NIR-HIS (a), NIRS (b), NIR-HIS (c) and HSI 

514 spectroscopic dataset fusion (d). 
 

515 
 

516 3.5. Prediction models 
 

517 PLS regression models were developed to compare the performance of three spectrometers 
 

518 (NIR, vis/NIR-HSI and NIR-HSI) and fusion spectroscopic data (vis/NIR-HSI and NIR-HSI) 
 

519 in predicting moisture, fat, protein and ash in Brazilian traditional cheeses. The influence of 
 

520 pre-processing and spectral region on the statistical parameters of the models was 
 

521 investigated, so that the best results are presented in Table 5. Figures of merit for the ash 
 

522 models are not reported here because they did not performed values sufficiently relevant 
 

523 regarding model performance. 
 

524 In our study it was observed that only the model developed to predict protein content using 
 

525 the NIRS spectrum presented better results with the raw spectrum (without pre-processing). 
 

526 Even in this case, the best result was obtained by reducing the spectrum from 908 - 1676 nm 
 

527 to 1100 -1660 nm. Thus, in general, the models performed with pre-processed spectra and/or 
 

528 with the selection of wavelengths related to the target chemical attribute showed superior 
 

529 predictive performance than those using the raw data (full spectrum without pre-processing). 
 

530 When the calibration and cross-validation results of the models obtained for the different 
 

531 instruments were compared, the fusion of the spectral data showed slightly better results. 
 

532 However, the performance of the devices to predict in the external set varied according to the 
 

533 chemical components. 
 

534 
 

535 Table 5. Figures of merit of PLSR models to predict moisture, fat, and protein content in 

536 Brazilian traditional cheeses. 
 

Equipment 
 

Moisture 

 

Pre-

processing 

 

Spectral range LV 
Calibration 

𝑹𝑪       RMSEC 

Cross-validation 

𝑹𝑪𝑽 RMSECV 

Prediction 

𝑹𝑷       RMSEP RPD 

vis/NIR-HSI SNV + 1st SG 780 - 1000 nm 4 0.88 1.65 0.86 1.79 0.84 1.34 2.54 
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2 

2 

2 

 
 

NIRS 

NIR-HSI 

Dafa fusion 

Fat 

vis/NIR-HSI 

NIRS 

NIR-HSI 

Dafa fusion 

Protein 

vis/NIR-HSI 

NIRS 

NIR-HSI 

Dafa fusion 

537 

1st SG 

SNV + 1st SG 

SNV + 1st SG 

 
1st SG 

SNV + 2nd SG 

SG + SNV 

1st SG 

 

SNV + 1st SG 

Raw 

SNV + 1st SG 

SNV + 1st SG 

 

iPLS 

iPLS 

397 - 1717 nm 

 

397 - 1007 nm 

1100 - 1600 nm 

1050 - 1350, 

1600 - 1680 nm 

397 - 1600 nm 

 

iPLS 

1100 - 1600 nm 

iPLS 

397 - 1717 nm 

 

5 0.87 1.70 0.86 

5 0.89 1.54 0.88 

5 0.91 1.38 0.88 

 
4       0.87       2.28         0.83 

5       0.88       2.14         0.85 

7 0.87 2.29 0.83 

6 0.90 1.98 0.87 

 

5 0.73 1.10 0.69 

6 0.80 0.94 0.72 

5 0.83 0.88 0.79 

5 0.84 0.81 0.78 

 

1.73 0.85 1.36 2.51 

1.66 0.90 1.32 2.59 

1.62 0.90 1.27 2.69 

 
2.58         0.84       2.17         2.49 

2.39         0.85       2.17         2.49 

2.56 0.82 2.52 2.08 

2.24 0.81 2.33 2.25 

 

1.16 0.57 0.99 1.50 

1.12 0.73 1.01 1.47 

0.97 0.78 0.93 1.58 

0.95 0.67 0.91 1.62 

 

538 The best model to predict the moisture content was obtained from the fusion of the HSI 
 

539 spectroscopic data set (vis/NIR + NIR), where an RP of 0.90 and RMSEP of 1.27% were 
 

540 obtained. The variables that most contributed to this performance are centered around 508, 
 

541 1120, 1140, 1170, 1225, 1320, 1395, 1510, 1560 and 1660 nm and are associated with the 
 

542 content of other chemical components present in the cheese, such as fat, proteins, and 
 

543 carotenoids (Britton et al., 2004; Osborne et al., 1993). Although the visible region has 
 

544 contributed to this result, it is possible to obtain similar results for the prediction of moisture 
 

545 content from the other equipment (RP between 0.84 and 0.90 and RMSEP close to 1.3) using 
 

546 only the near infrared region. According to the RPD values, all models can be applied to 
 

547 predict the moisture content with good performance (RPD between 2.5 and 3.0). 
 

548 The best models to predict fat content were obtained with NIRS and vis/NIR-HSI spectra, 
 

549 where RP ~0.85 and RMSEP of 2.17% were observed. The variables that contributed to the 
 

550 performance of the NIRS model are mainly associated with the CH, CH2 and CH3 groups 
 

551 present in the aliphatic chains of fat (1170, 1215, 1360, 1395, 1415 nm) and, to a lesser 
 

552 extent, with structures present in proteins (1430 nm) and water (1450 nm). In the vis/NIR 
 

553 model, a strong contribution of wavelengths associated with fat content (950 nm) was also 
 

554 observed. However, it is interesting to emphasize that the greatest contribution was observed 
 

555 in the visible spectrum (430 and 505 nm), which is associated with carotenoid content. This 
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556 result is expected, because in addition to carotenoids contributing to the yellowish color of 
 

557 cheeses, they are solubilized in the fat fraction. Similarly, Stocco et al. (2019) observed that 
 

558 models built with the vis/NIR region (350 – 1830 nm) presented similar performances to 
 

559 those based on the NIR region (1100 – 1830 nm) (RP of 0.85 and RPD of 2.03), when 
 

560 comparing the performance of two spectrometers and spectrum intervals to predict the fat 
 

561 content in cheeses. All models predicting fat content showed RPD between 2.0 and 2.5, 
 

562 indicating that they can be used for screening purposes. 
 

563 The fusion of the HSI spectroscopic dataset (vis/NIR + NIR) showed the best result for 
 

564 predicting protein content, with calibration and prediction errors close to 0.9%. The 
 

565 wavelengths that contributed to the performance of the model are associated with protein 
 

566 content (1510 nm) and structures associated with carotenoids (508 nm) and fat (1145, 1225, 
 

567 1395 and 1660 nm). It is possible to predict the protein content without loss of performance 
 

568 (RP of 0.78 and error of 0.93%) using the NIR-HSI spectra and to obtain approximate results 
 

569 using the other equipment (between 0.57 and 0.73 and errors of ~1.0%). However, according 
 

570 to the RPD values, only models based on the fusion of spectroscopic data and NIR-HSI are 
 

571 indicated for estimating the protein content, as they are able to distinguish between high and 
 

572 low levels of this compound (1.5 < RPD < 2.0). 
 

573 Few studies available in the scientific literature have investigated the use of different 
 

574 spectrometers and spectral ranges in the vis and NIR ranges to predict chemical characteristics 
 

575 of a wide type of cheeses. This number is even lower when looking for studies that developed 
 

576 models from spectra acquired with whole cheese (without any sampling, grinding or other 
 

577 preparation). The discussion, therefore, focuses mainly on studies that used this last criterion 
 

578 and was carried out in terms of RMSEP and RPD, since the coefficient of determination (R2) 
 

579 is influenced by the range of reference values. 
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580 Wiedemair et al (2019) compared the performance of models based on vis/NIR (740 – 1070 
 

581 nm) and NIR (800 – 2500 nm) spectra to predict the composition of hard and semi-hard 
 

582 cheeses (n = 46). These authors reported results in accordance to this current work and 
 

583 observed better performance for moisture prediction using the NIR spectrum (RMSEP of 1.10 
 

584 and RPD of 5.60). On the other hand, fat content was predicted with lower error (RMSEP of 
 

585 1.19 and RPD of 7.75) from vis/NIR spectra. Stocco et al. (2019) developed PLS models to 
 

586 predict compositional characteristics of a wide type of cheeses (197 samples from 37 
 

587 categories) using a portable vis/NIR spectrometer (350 - 1830 nm) and obtained performance 
 

588 (RMSEP) very close to those reported in this study to predict fat ( 2.03%, 350 - 1830 nm) and 
 

589 proteins (1.57%, 850 - 1050 nm), and slightly lower for moisture prediction (2.00%, 1100 - 
 

590 1830 nm). Ayvaz et al (2021) when predicting the composition of Ezine cheese from different 
 

591 species (n = 81) using an FTIR spectrophotometer (10000 – 4000 cm-1) obtained superior 
 

592 results for moisture (RPD of 3.38) and similar results for fat (RPD of 2.14) and proteins (RPD 
 

593 of 1.47). 
 

594 The results obtained in this study were lower than those reported for predicting fat content in 
 

595 Emmental cheese (n = 91, RMSEP of 0.39% and RPD of 3.82) (Karoui et al., 2006), Grana 
 

596 Padano (n = 190, RMSEP of 1.19%) (Marinoni et al., 2017) and ricotta (n = 19, RMSECV of 
 

597 1.9%) (Madalozzo et al., 2015). The smaller errors obtained in these studies are justified by 
 

598 the high homogeneity of the sample set, since only one category of cheese was included. The 
 

599 results are also lower than those obtained for models based on spectra acquired with 
 

600 crushed/grated cheese. This result is expected, as predicting cheese composition from the 
 

601 outer surface spectrum is more challenging. Although grinding produces better performances 
 

602 (Ayvaz et al., 2021; Wiedemair et al., 2019; Marinoni et al., 2017), it confronts the non- 
 

603 destructive character of vis/NIR spectroscopy and limits its application in the rapid 
 

604 authentication of cheeses with of origin or protected geographical indication. 
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605 
 

606 3.6. Chemical maps of moisture, fat, and protein 
 

607 The best models obtained for the vis/NIR-HSI and NIR-HSI data were applied to each pixel 
 

608 from ROI of the images to visualize the distribution of moisture, fat, and protein in the cheese 
 

609 samples, obtaining a pseudo-color image, or chemical map. Fig. 5 shows some maps of the 
 

610 spatial distribution of the predicted chemical properties in different types of cheese. The 
 

611 values presented in the lower corner of each cheese cylinder correspond to the absolute error 
 

612 (%), calculated by subtracting the reference value and that predicted by the model. 
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613 One of the greatest advantages of using hyperspectral imaging, compared to RGB imaging 
 

614 and conventional spectroscopy, is that it is possible to observe the concentration distribution 
 

615 of the modeled analyte. In the RGB image (Fig. 5) one can observe differences in the color 
 

616 and texture of the external surface of the samples due to the presence of different types of 
 

617 cheese, while the compositional differences are practically imperceptible. On the other hand, 
 

618 hyperspectral imaging allows you to clearly visualize differences in composition by the color 
 

619 intensity of each pixel in the chemical map. 
 

620 Comparing the spatial distribution maps vis/NIR-HSI and NIR-HSI it is possible to observe a 
 

621 difference in the homogeneity and color intensity of the pixels for the same sample. This 
 

622 observation may be related to the difference in resolution between the images and the 
 

623 heterogeneous distribution of analytes in the sample. Despite this, there are no major 
 

624 differences between the results obtained by the reference method and those predicted by the 
 

625 two devices. 
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627 

628 

 

Fig. 5. RGB images and spatial distribution maps of moisture, fat and protein content based 

on vis/NIR-HSI and NIR-HSI data. 
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629 
 

630 It is important to mention that the vis/NIR-HSI and NIR-HSI models (based on the spectra 
 

631 acquired on the external surface) presented a low average error to predict the composition of 
 

632 the samples from the images of the internal part of the cheese, with average absolute errors of 
 

633 0.32 and 0.00% for moisture, 1.01 and 0.31% for fat, and 0.33 and 0.06% for protein, 
 

634 respectively. These results indicate that, even though some cheeses have composition 
 

635 gradients due to proteolytic, lipolytic and dehydration phenomena that occur during 
 

636 maturation, the information obtained from the external surface is sufficient to predict its 
 

637 composition satisfactory accuracy. Hence, these models can be used to predict the 
 

638 composition of Brazilian cheeses used in this study and also enhanced including additional 
 

639 types of cheese and can be useful to study compositional changes that occur during 
 

640 maturation. 
 

641 
 

642 4. Conclusion 
 

643 This study compared the feasibility of hyperspectral imaging (vis/NIR-HSI, NIR-HSI and 
 

644 data fusion) and conventional (NIRS) spectrometers to characterize Brazilian traditional 
 

645 cheeses. Principal component analysis (PCA) showed that the spectral variability of Brazilian 
 

646 traditional cheeses in the vis/NIR is related to differences in color and fat content, while in the 
 

647 NIR there is a greater influence of productive aspects and fat content. 
 

648 The PLS-DA models showed that the spectrum in the near infrared region (NIRS) has 
 

649 relevant information to discriminate the types of Brazilian artisanal cheeses, indicating that 
 

650 this technique can be used as a useful tool in investigating the authenticity of cheeses 
 

651 according to the region of origin. 
 

652 The PLS models demonstrated that it is possible to efficiently predict the chemical 
 

653       composition (moisture, fat, and protein) of a wide type of cheeses. Hyperspectral imaging 
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654 equipment (vis/NIR-HSI and NIR-HSI) can be recommended, especially when there is great 
 

655 heterogeneity within the sample and/or when there is interest in studying and visualizing 
 

656 compositional changes, as the general quantitative results obtained are comparable to the 
 

657 technique punctual (NIRS). The latter, in turn, is more attractive from an economic and 
 

658 operational point of view, due to lower cost, portability and shorter processing time. Finally, 
 

659 and in this case, the fusion of HSI spectroscopic data (vis/NIR + NIR) did not provide 
 

660 significant improvement of the predictive capability to justify its recommendation, because 
 

661 despite providing better performances to predict moisture and proteins, these are not 
 

662 substantially greater to justify its use. 
 

663 
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