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ABSTRACT: Spectroscopic methods—Ilike nuclear magnetic AFM
resonance, mass spectrometry, X-ray diffraction, and UV/visible
spectroscopies—applied to molecular ensembles have so far been
the workhorse for molecular identification. Here, we propose a
radically different chemical characterization approach, based on the
ability of noncontact atomic force microscopy with metal tips
functionalized with a CO molecule at the tip apex (referred as HR-
AFM) to resolve the internal structure of individual molecules. Our
work demonstrates that a stack of constant-height HR-AFM
images carries enough chemical information for a complete
identification (structure and composition) of quasiplanar organic
molecules, and that this information can be retrieved using
machine learning techniques that are able to disentangle the contribution of chemical composition, bond topology, and internal
torsion of the molecule to the HR-AFM contrast. In particular, we exploit multimodal recurrent neural networks (M-RNN) that
combine convolutional neural networks for image analysis and recurrent neural networks to deal with language processing, to
formulate the molecular identification as an imaging captioning problem. The algorithm is trained using a data set—which contains
almost 700,000 molecules and 165 million theoretical AFM images—to produce as final output the IUPAC name of the imaged
molecule. Our extensive test with theoretical images and a few experimental ones shows the potential of deep learning algorithms in
the automatic identification of molecular compounds by AFM. This achievement supports the development of on-surface synthesis
and overcomes some limitations of spectroscopic methods in traditional solution-based synthesis.
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B INTRODUCTION

Scanning probe microscopes have played a key role in the
development of nanoscience as the fundamental tools for the
local characterization and manipulation of matter with high
spatial resolution. In particular, atomic force microscopy

distributions and have opened the door to track and

control on-surface chemical reactions.'*">
So far, the identification of molecular structure and
composition relies heavily on spectroscopic methods like

vibrational spectroscopy (i.e, Raman and IR), nuclear

(AFM) operated in its frequency modulation mode allows
the characterization and manipulation of all kinds of materials
at the atomic scale.' ™ This is achieved measuring the change
in the frequency of an oscillating tip due to its interaction with
the sample. When the tip apex is functionalized with inert
closed-shell atoms or molecules, particularly with a CO
molecule, the resolution is dramatically enhanced, providing
access to the inner structure of molecules.” This outstanding
contrast arises from the Pauli repulsion between the CO probe
and the sample molecule” modified by the electrostatic
interaction between the potential created by the sample and
the charge distribution associated with the oxygen lone pair at
the probe.’”® In addition, the flexibility of the molecular probe
enhances the saddle lines of the total potential energy surface
sensed by the CO.” These high-resolution AFM (HR-AFM)
capabilities have made it possible to visualize frontier orbitals'’
and to determine bond order potentials'' and charge
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magnetic resonance (NMR) spectroscopy, or mass spectros-
copy, together with X-ray based techniques. These techniques
provide only averaged information extracted from macroscopic
samples, and the chemical information collected in the
acquired spectra is often difficult to interpret. In addition, X-
ray-based methods are especially suited for crystalline samples
and very limited in the case of organic molecules since H
atoms cannot be detected by X-rays. Therefore, these
traditional characterization techniques are not suitable for
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the study of the products and reaction intermediates of on-
surface synthesis."”

At variance with those ensemble techniques, HR-AFM is
able to address individual molecular entities, providing unique
local information. This capability, together with the exquisite
sensitivity of the AFM contrast to subtle changes in the
molecular charge density, restonsible for the impressive
achievements described above,'®'” would suggest that HR-
AFM could provide a completely different approach to
molecular recognition, identifying not only the structure but
also the chemical composition of a certain molecule exclusively
by means of HR-AFM observations. However, this ultimate
goal remains elusive. Molecules have been identified
combining AFM with other experimental techniques like
scanning tunneling microscopy (STM) or Kelvin probe force
microscopy (KPFM), and with the support of theoretical
simulations.'”'”~>"  Chemical identification by AFM of
individual atoms at semiconductor surface alloys was achieved
using reactive semiconductor apexes.22 In that case, the
maximum attractive force between the tip apex and the
probed atom on the sample carries information on the
chemical species involved in the covalent interaction. However,
the scenario is rather different when using tips functionalized
with the inert CO molecules where the main AFM contrast
source is the Pauli repulsion and the images are strongly
affected by the probe relaxation. So far, the few attempts to
discriminate atoms in molecules by HR-AFM have been based
either on differences found in the tip—sample interaction decay
at the molecular sites””® or on characteristic image features
associated with the chemical properties of certain molecular
components.6’10’]7’2]’24_28 For instance, sharper vertices are
displayed for substitutional N atoms on hydrocarbon aromatic
rings®**** due to their lone pair. Furthermore, the decay of the
CO—sample interaction over those substitutional N atoms is
faster than over their neighboring C atoms.”** Halogen atoms
can also be distinguished in AFM images thanks to their oval
shape (associated with their o-hole) and to the significantly
stronger repulsion compared to atoms like nitrogen or
carbon.”® However, even these atomic features depend
significantly on the molecular structure®'' and cannot be
uniquely associated with a certain species but to its moiety in
the molecule. Moreover, although the characteristic oval shape
points immediately to the presence of a halogen, discriminating
among the different chemical species has to rely on subtle
details concerning the spatial extension of this feature and their
variation with tip height. The huge variety of possible chemical
environments and the need to consider the evolution with tip—
sample distance of the AFM features render the molecular
identification by a mere visual inspection by human eyes an
impossible task.

Artificial intelligence (AI) techniques are precisely optimized
to deal with this kind of subtle correlation and massive data.
Deep learning (DL), with its outstanding ability to search for
patterns, is nowadays routinely used to classify, interpret,
describe, and analyze images,” " providing machines with
capabilities hitherto unique to human beings or even
surpassing them in some tasks.”> A DL model to achieve
molecular identification faces two great challenges: (i) it has to
be able to disentangle the contribution of the bonding
topology, the chemical composition, and the internal torsion
of the molecule to the AFM images, coping with the presence
of experimental noise and tip asymmetries, and (ii) it should
be able to generalize, learning from a training with a large but

limited number of molecules to identify any possible organic
molecule.

In this work, we solve these two challenges turning
molecular identification into an image captioning problem:
the description of the contents of an image through written
words, a task where deep learning algorithms are especially
appropriate. More specifically, we demonstrate that a stack of
constant-height HR-AFM images (3D stack), covering the
range of tip—sample distances where the interaction changes
from attractive to repulsive, can be used as an input for a deep
learning algorithm whose output is the International Union of
Pure and Applied Chemistry (IUPAC) name of the target
molecule. This algorithm learns during the training how to (i)
recognize certain image features and their distance dependence
in order to extract the chemical groups and their arrangement
in the molecule from the 3D stack using a convolutional neural
network (CNN) and (ii) use this chemical information to
formulate following the rules of IUPAC nomenclature using a
recurrent neural network (or Elman network) (RNN). As
explained in detail below, we have used a two-step procedure,
based on multimodal RNNs (M-RNNs), that is capable of
identifying an unknown organic molecule from the AFM
images.

The results presented below, based on a huge test with
816,000 3D stacks of AFM images belonging to 34,000
molecules that have not been used for the training, provide
clear support to our two bold hypotheses: the significant
chemical information contained in AFM images is enough to
provide a complete molecular identification and can be
retrieved using DL models. Our approach identifies with a
95% accuracy the chemical groups within the molecule. This
aspect is really remarkable because not only is our model able
to detect the presence of chemical functional groups, but it also
determines how these groups are actually connected among
them—given the IUPAC name—with a high accuracy. This is
not the case of other well-established characterization
techniques like vibrational spectroscopy or NMR, which only
detect the presence of some constituent groups after a hard
and complex assignment work of the spectra. In particular, our
model predicts the exact IUPAC name in almost half of the
tests and provides significant structural and compositional
information in the rest of the cases, as shown by the high
score—surpassing other applications in the literature—
obtained with the Bilingual Evaluation Understudy (BLEU)
algorithm,’ the most commonly applied metric to score the
accuracy of language-involved models.

These achievements have great relevance for nanotechnol-
ogy, where AFM is one of the key visualization and
manipulation tools. It proves that, besides its already
recognized ability to unveil the inner structure of molecules,
the contrast observed in AFM images carries relevant chemical
information, enough to allow the complete identification of the
atomic species in the molecular composition. The analysis of
particular cases in previous works hinted in this direction, but
here we provide a clear answer to this question, which has
remained elusive for many years. Ultimately, our work shows
that AFM in combination with DL methods represents a
powerful tool to obtain quantitative information about the
spatial distribution of the electronic charge density in
molecular systems. This has implications beyond molecular
identification, not only for many nanotechnology applications
that rely on subtle details of the molecular density, like self-
assembly, but also for other relevant fields like the design and
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screening of more efficient catalysts, dyes for energy harvesting,
and pharmaceutical drugs.

B RESULTS

Deep Learning Approach for Molecular Identifica-
tion. The ultimate goal of the present work consists of
designing and training a DL model that should be able to use
as input experimental AFM images from an unknown molecule
adsorbed on a certain substrate in order to produce an output
that provides a complete molecular identification (structure
and composition). Before considering the two challenges
involved in extracting the chemical information from AFM
images, there is a basic requirement that is common to all DL
applications: the need of a very large data set to train the DL
models. The amount of experimental data is certainly limited,
but we should be able to rely on AFM simulation methods that
are capable of accurately reproducing the observed contrast
and its distance dependence in many systems. In a previous
work,”” we have tested this hypothesis in a simple
identification problem: the classification of a set of 60 organic
molecular structures that include 10 different atomic species
(C,H,N, P, O, S, F, Cl, Br, and I). We specifically designed a
CNN, the neural network of choice for the analysis of images,
and trained it with a large data set that includes 314,460
theoretical images of those molecules—calculated with the
latest HR-AFM modeling approaches”**—and only 540
images generated with a variational autoencoder from very
few experimental images. Once trained, this CNN, using as
input an AFM image of one of the molecules in the set—
different from the ones used for the training—obtained almost
perfect (99%) accuracy in the classification using simulated
AFM images and very good accuracy (86%) for experimental
AFM images. Notice that the correct identification of
structures constituted by the same molecular entities is not a
problem for machine learnin§ algorithms as recently
demonstrated for ionic hydrates.’

This proof-of-concept confirmed the feasibility of a
molecular identification within a limited set using a model
trained mostly with theoretical AFM images. Although
encouraging, it is still very far from our final goal of a
complete identification of an arbitrary molecule from AFM
images. In particular, it clearly showed the need of a much
richer training set. We have recently extended the available
data sets of theoretical AFM images with the generation of
Quasar Science Resources S.L.—Universidad Autonoma de
Madrid—atomic force microscopy (QUAM—AFM),*’ which
aims to provide a solid basis for making results from DL
applications to the AFM field reliable and reproducible.*
QUAM—AFM includes calculations for a collection of 686,000
molecules using 240 different combinations of AFM operation
parameters (tip—molecule distance, cantilever oscillation
amplitude, and tilting stiffness of the CO—metal bond),
resulting in a total of 165 million images.*’

Besides the need of large training data sets, the first intrinsic
challenge of AFM-based molecular identification comes from
the fact that the features of the AFM images are controlled by
the charge density, which is uniquely related to the chemical
nature and the position of the atoms within the molecule. The
results in the AFM literature clearly show the exquisite
sensitivity of AFM with CO tips to probe the molecular charge
density, but a complete identification requires disentangling
the contribution of the bonding topology, the chemical
composition, and the internal torsion of the molecule to the

AFM images through the molecular charge density. Alldritt et
al.** developed a CNN focused on the task of determining the
molecular geometry. Results were excellent for the structure of
quasiplanar molecules (with limited internal torsion), even
using the algorithm directly with experimental images. For 3D
structures, they were able to recover information for the
positions of the atoms closer to the tip. However, the
discrimination of functional groups produced nonconclusive
results. At variance with this study, as we already mentioned
above, a CNN>7 was able to solve the classification problem for
60 essentially flat molecules with almost perfect accuracy,
being able to identify, for example, the presence of a particular
halogen (F, Cl, Br, or I) in molecular structures that, apart
from this atom, were identical.

Tackling simultaneously the determination of the structure
and the chemical composition remains an open problem. Even
with the restriction to quasiplanar molecules, the clear success
of the classification in ref 37 does not provide a general
solution to the problem of molecular identification. The
classification approach can only identify molecules included in
the training data set. Given the rich complexity provided by
organic chemistry, even using an extremely large data set—
which already poses fantastic computational requirements (as
the output vector has the dimension of the number of
molecules in the data set)—the model would fail to classify
many of the already known or possibly synthesized molecules
of interest, which are not included in the training data set.
Thus, the second intrinsic challenge is how to build a DL
model that, trained with a large but limited number of
molecules, is able to generalize and identify any possible
organic molecule.

We have faced these two challenges and provided an answer
to the two fundamental questions that they pose. Regarding
the first challenge, we have considered the previous successes
in the association of particular features in AFM images and
their variations with tip—sample distance with certain chemical
species, discussed above. Here, we propose using as input a
stack: a collection of 10 constant-height AFM images, spanning
(in intervals of 0.1 A) the height range [2.8—3.7] A above the
molecular plane where the tip—sample interaction changes
from slightly attractive to strongly repulsive in order to collect
enough chemical information to determine the structure and
composition of the molecular system.

To face the second challenge, we transform molecular
identification into an image captioning problem: the
description of the content of an image using language.
Automatic image captioning has been a field of intensive
research for deep learning techniques over the past several
years.”*~*° It has been recently and successfully used*”** for
optical chemical structure recognition,* the translation of
graphical molecular depictions into machine-readable formats.
These works are able to predict the SMILES textual
representation®” of a molecule from an image with its chemical
structure depiction by using standard encoder—decoder® or
transformer®’ models. In our case, we consider the stack of 10
constant-height HR-AFM images as the “image”, and the
TUPAC name of the molecule as the description or caption. In
the TUPAC nomenclature, a given name determines
unambiguously the molecular composition and structure, so
predicting the IUPAC name provides a complete identification
of the molecule.

The TUPAC name is formed by combining terms: sets of
letters, numbers, and symbols that are used to denote the
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Figure 1. Two molecular structures with five of their associated AFM images at different tip—sample distances, the IUPAC name, the term
decomposition of that name, and the associated attributes (a selection of 100 IUPAC terms that represent common functional groups, or chemical
moieties; see the text). The top structure shows that the attributes are sorted by length and alphabetically, not by the position in which they appear
in the term decomposition. The bottom structure shows that attributes appear once even if they are repeated in the term decomposition.

functional groups, to define their structural 5pos1t10n within the
molecule, and to specify their connections.”” The terms, taken
from a hierarchical keyword list, play the role of “words” and
together with the “syntax”, the systematic rules to assemble
additive names, define the language that we are going to use to
describe the content of our AFM images. We name as attributes
the elements in the subset of terms that identify the functional
groups or moieties (see Table S1 and the Methods section).
Figure 1 illustrates how the combinations of these terms
generate the IUPAC names for two molecules and identifies
the attributes in those names.

Most of the current methods for automatic image captioning
have two key components: (i) a CNN—a neural network
(NN) with convolutional kernels as processing units—that
represents the high-level features of the 1n£>ut images in a
reduced dimensional space, and (i) an RNN>*—an NN whose
units are complex structures that have an inner state that stores
the temporal context of a time series—that deals with language
processing and predicts a single word at each time step.”> > In
our implementation, we focus on the well-known Multimodal
Recurrent Neural Network (M-RNN), which integrates three
components (see Figure 2A and Figure S1). Besides the CNN
and RNN, there is a multimodal (¢) component, which
concatenates the CNN and RNN outputs in a single vector
and uses fully connected layers to search for relations among
the components of this vector (representing the high level
features extracted by the CNN and the predictions of the
CNN) to generate the output of the model. At each time step,
our model has to predict segments of the molecule’s IUPAC
name (see Figure 1).

Our first attempts based on feeding an M-RNN with a stack
of AFM images provided poor results predicting the IUPAC
names. For this reason, we decomposed the problem into two
parts and developed an architecture composed of two M-
RNNs (see Figure 2A,B). M-RNN,, (Figure 2A) uses as input
the stack of AFM images and predicts the attributes, the main

chemical groups that compose the molecule. The second
network, named AM-RNN, takes as inputs both the AFM
image stack and the attribute list with the aim of ordering them
and completes the whole IUPAC name of the molecule with
the remaining terms. Figure 2C shows the inputs and outputs
at each time step predicted by the M-RNN, and AM-RNN
networks from a 3D image stack corresponding to the
perylene-1,12-diol molecule. Although both AM-RNN and
M-RNN,, are based on the standard M-RNN," we introduce
substantial modifications in each component (see the Methods
section).

The QUAM—AFM™ data set has been used to train and test
the networks (see the Methods section). A description of each
layer and the training strategy, far from trivial when combining
a CNN and an RNN, can be found in Sections S2 and S3,
respectively. We have to stress here that, regarding the design
and the training of the DL models, we have always kept in
mind that our final goal is to be able to identify molecular
systems from experimental AFM images. To this end we have
used during the training stacks of images corresponding to 24
different combinations of AFM operation conditions (canti-
lever oscillation amplitude and tilting stiffness of the CO—
metal bond) and applied an Imaged Data Generator (IDG) to
take into account deformations in the images (due to slight
asymmetries of the CO tip or to experimental noise) (see
Section S3). Furthermore, we have also considered this in the
design of the model, including some dropout layers in the
CNN, the RNN, and the multimodal component (as described
in Section S2), to prevent the model from overspecializing in
the theoretical images.

Assessment of the Model. We have benchmarked the
model illustrated in Figure 2 by testing the trained networks
with the 34,000 molecule test set, corresponding to a total of
816,000 testing inputs from QUAM—AFM associated with 24
different combinations of the AFM simulation parameters. M-
RNN, predicts the correct list of functional groups in the
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Figure 2. The architecture proposed for molecular identification through the IUPAC name is a composition of two networks [Multimodal
Recurrent Neural Network for attribute prediction (M-RNN,) and Atribute Multimodal Recurrent Neural Network (AM-RNN)] whose data flow
is shown in panels A and B. The gray square boxes represent each component of the models: a convolutional neural network CNN, a recurrent
neural network RNN, and the multimodal component ¢. A detailed description of the structure and role of the CNN, RNN, and multimodal ¢
components can be found in Figure S1 and Sections S2 and S3. The arrows indicate the data flow within the model. M-RNN,, predicts an attribute
at each time step until the loop is broken with the endseq token (blue-line printed), whereas the AM-RNN predicts the sorted terms that give rise to
the JIUPAC name. Panel C shows the inputs and outputs at each time step predicted by the M-RNN, and AM-RNN networks from a 3D image
stack corresponding to the perylene-1,12-diol molecule (see Figure 1). (D—F) Representation of the RNN, in the same format used in panels A and
B, corresponding to the fourth time step in M-RNN, (E) and AM-RNN (F) for the perylene-1,12-diol molecule. This figure highlights the fact that
the state of the RNN, in particular, the recurrent layer, depends on the previous predictions.

molecule in 95% of the cases. This result answers one of the
more challenging open questions in the field:>'0*3 it
demonstrates that the 3D HR-AFM data obtained with CO-
terminated apexes carries information on the chemical species
present on the molecules, at least on the simulated image sets.
The IUPAC names predicted by the AM-RNN network are
identical to the annotations for 43% of the molecules. Taken
into account the complexity of the problem, we can consider
this as a good result. Notice that each match means that the
model has identified from the images, without any error, all the
molecular moieties, and it has also provided the exact IUPAC
name, character by character, as shown in Figure 3. Our model
is able to identify planar hydrocarbons, either cyclic or
aliphatic, but also more complex structures such as those
including nitrogen or oxygen atoms that, due to their fast
charge density decay,” usually appear on the images as faint

features (see for example Figure 3). Halogens, characterized on
the images by oval features whose size and intensity are
proportional to their o-hole strength,” can also be correctly
labeled (Figure 3b,d,e). The model can even recognize the
presence of the fluorine element, which does not induce a o-
hole and, when bonded to a carbon atom, produces an AFM
fingerprint that is very similar to that of a carbonyl group
(compare Figure 3e with Figure 3f). More surprisingly,
hydrogen positions are often guessed, which is striking since
hydrogen atoms bonded to sp® carbon atoms are hardly
detected by the HR-AFM due to their negligible charge
density.”**® Thus, many kinds of molecules, over half of our
test set, including those showing nontrivial behaviors, have
been correctly recognized by our model.

However, this statistic does not reflect the real accuracy of
the model. A deeper analysis of the results shows that its
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Structure

Pred: N-(4-bromo-2-chlorophenyl)-5,7-dimethyl-[1,2, 4]triazolo[1,5-a]pyrimidine-2-carboxamide

B« «

Pred: N-[[5-(4-fluorophenyl)furan-2-yljmethylideneamino]-3-methyl-1,3-benzothiazol-2-imine

Figure 3. Set of perfect predictions (4-gram scores of 1.00). Each panel shows the molecular structure on the left, the AFM images at various tip—
sample distances on the right, and the prediction, which matches exactly the ground truth, below the images.

quality and usefulness is much higher than the naked figure of
43% could indicate. Figure 4 shows that, even in those cases
where the prediction is not correct, the majority of the
examples still provide valuable information about the molecule.
In order to quantify the accuracy of the prediction, we apply
the n-grams of BLEU*® (see Figure 4). This method,
commonly used for assessing accuracy in natural language
processing (NLP) problems, calculates the accuracy based on
n-grams of terms between predicted and reference sequences.
An n-gram scores each prediction by comparing the sorted n-
word groups appearing in the prediction with respect to the
references. In our scenario, the comparison is with one single
reference (ground truth), so it compares the common groups
of n terms that appear in both the prediction and the reference
(for example, perylene-1,12-diol, 4-gram reference groups
include: “per, yl, ene, —”, “yl, ene, —, 17, “ene, —, 1, ,”, etc.).

First, we apply the BLEU metric to assess the accuracy of the
M-RNN,, the one that predicts the attributes, i.e., the
molecular moieties. A perfect match on the 1-grams means
that every attribute in the reference appears in the prediction
and that the prediction does not contain any other attributes.
Our model scores 0.95 under this assumption. This very high
mark confirms that this network does recognize the molecular
components in 95% of the cases.

For the assessment of the overall prediction of the model, we
propose the cumulative 4-gram, a common metric for the

evaluation of linguistic predictions. This metric weights the
scores obtained with the 1,2,3,4-grams and also performs a
product with a function that penalizes the different lengths
between prediction and reference. BLEU scores (see Table 1)
reveal that AM-RNN also performs exceptionally well. Note
that, in this case, the 1-gram shows the set of terms that are in
both prediction and reference. That is, despite not providing
the correct formulation, the model is able to predict 88% of the
terms that the name contains, in agreement with the prediction
capability shown by our first M-RNN,,, and indicating a great
deal of chemical information about the molecule. In addition,
AM-RNN scores 0.76 in the evaluation with the cumulative 4-
gram, assessing large segments of the IUPAC name. Figure 4
puts the accuracy of the model based on this assessment in
context with a set of examples with different scores. Note that
Figure 4f shows a frequently occurring case where, by applying
a metric developed to assess translation in longer texts with
several references, mistakes in predictions composed of only a
few terms are overly penalized. Table 2 provides a systematic
study of this limitation of the metric, showing an analysis of the
score obtained by splitting the test set according to the number
of terms into which the corresponding IUPAC name
decomposes. The accuracy of the model is worse in molecules
whose term decomposition is shorter. The reason for this
seemingly contradictory fact is that the cumulative 4-gram
metric penalizes more for errors in short chains. As shorter
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091

Ground Truth: 2-amino-5-(5-methyl-1H-1,2 4-triazol-3-yl)phenol

Prediction:

Prediction:

2-amino-4-(5-methyl-1H-1,2,4-triazol-3-yl)phenol

EEE

Ground Truth: 4-chloro-3-[(5-methyl-1,3-thiazol-2-yl)carbamoylamino]benzoic acid
4-chloro-3-[(5-methyl-1,3,4-thiadiazol-2- )d)carbamcylammo]benzmc amd

4-gram
0.82

4-gram
0.76

Ground Truth: 5-(4-bromophenyl)-1,3-oxazole-2-carboxylic acid

Prediction:

Ground Truth: 10-iodo-2-methylanthracene
Prediction:  1-iodo-6-methylanthracene

5-(4-bromophenyl)-1,3,4-oxadiazole-2-carboxylic acid

4-gram
0.67

4-gram
0.73

Ground Truth: N-methyl-2-phthalazin-1-yloxyethanamine
Prediction:

Ground Truth: chrysen-1-amine
Prediction:  chrysen-6-amine

N-ethyl-2-phthalazin-1-yloxymethanamine

oo -

4-gram
0.00

Figure 4. Examples of incorrect predictions, reflecting how the evaluation algorithm penalizes errors. Each panel shows, from left to right, the
simulated structure, the structure that matches the model prediction (where it exists), a set of AFM images at various tip—sample distances, and the
4-gram score. Below each panel is the IUPAC name of the molecule (ground truth) and the prediction performed by the model (prediction).

Table 1. BLEU Cumulative n-Gram Scores Obtained with
AM-RNN“

metric 1-gram 2-gram 3-gram 4-gram

score 0.88 0.84 0.79 0.76
“The test has been performed on 816,000 inputs (3D stacks of
constant-height HR-AFM images) taken from the QUAM—AFM data
set, corresponding to a set of 34,000 molecular structures simulated
with 24 different combinations of AFM operation parameters.

strings contain fewer subgroups of 4 terms, the 4-gram scoring
method penalizes an error in a smaller chain more heavily than
in a longer one (as shown in Figure 4af).

Comparing the predictions with the references on a term-by-
term basis, we find that 25.1% of the errors are due to
misclassification of one number term with another number, i.e.,
misplacing a group of atoms, and 17.1%, 4.8%, 4.7%, and 2.7%

»

of the errors are due to a misclassification of the “=”, “(” or “)”,

“yI”, and “[” or “]” terms, respectively. Therefore, almost half of
the errors made are located in the prediction of characters
more related to the chemical formulation than to the
information extracted from the images. Moreover, we must
point out the fact that when the model predicts incorrectly, it
sometimes generates [TUPAC names that do not correspond to
any molecule (see Figure 4e). These results indicate that it is
not the capability of our model to recognize the molecules but
the ability of the RNN component to properly write the name
that is limiting the success rate. This conclusion is consistent
with a recent work where automated TUPAC name translation
from the SMILES nomenclature,”® which completely charac-
terizes the structure and composition of a molecule, is done by
an RNN,*” obtaining a BLEU 4-gram score of just 0.86.
Deep learning architectures are developed based on human
intuition to improve the accuracy of the model. However, it is
difficult to analyze in detail why the model succeeds or fails.
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Table 2. Score with the BLEU Cumulative 4-Gram Metric Based on the Characteristics of the Molecules and Their

Annotations”
Number of Terms
term decomposition 0-10 10-20 20—-30 30—40 40—-50 50—60
4-gram score 0.59 0.73 0.78 0.79 0.75 0.66
Atom Height Difference
distance <0.5 A <10 A <15 A >15 A
4-gram score 0.79 0.62 0.62 0.50

“The top section divides the scores into subsets based on the length of the string of ferms into which the IUPAC name is broken down. The bottom
section divides the test set score into subsets based on the maximum difference in height among atoms in the molecule (excluding hydrogens).

When representing the input terms in the RNN component, we
apply a word embedding that is trained with the rest of the
model (see Figures S2 and S3). Previous research has shown
that representations in this space capture the semantic meaning
of words and establish algebraic relationships between
them.”* ™ It is truly remarkable to see that these results
have been transferred to the formulation, grouping the terms
according to their semantic meaning or according to the
interactions described by the image stacks. We have verified
this by projecting each of the terms into the 32-dimensional
embedding space belonging to the AM-RNN, defining an L2
norm and computing the distances between the terms. These
results show that terms with similar semantic meaning are close
together (see Figure S9). For example, the closest terms to
brom are chlor, fluor, and iod, or the terms closest to nona are
octa, deca, undeca, and dodeca. This also reflects in the fact
that the terms that the model most commonly gets wrong are
the closest ones, such as the errors in the prediction of the
numbers that place atomic groups in specific positions (see
Figure 4a,d,f), or the mistaking of one halogen for another. In
other words, the erroneous terms have, in general, a similar
semantic meaning.

Nonplanar structures are a challenge for AFM-based
molecular identification. Table 2 shows an analysis of the
score obtained by splitting the test set according to different
ranges of molecular torsion. In line with the conclusions
reached in ref 42, our model has a hard job to fully reveal the
structure of molecules whose height difference between atoms
exceeds 1.5 A. This is an expected result as the microscope is
highly sensitive to small variations on the probe—sample
separation, and the interaction becomes highly repulsive on a
distance range of 50—100 pm, inducing large CO tilting and
image distortions. This makes it very difficult to get a proper
signal from lower atoms on molecules with nonplanar
configurations. We have tested our model by randomly
selecting four of the nonplanar structures whose prediction
scores an arithmetic mean of 0.40 in the cumulative prediction
of the 4-gram. We force them to acquire a flat structure, and
then, we run the test again (see Figures S6 and S7). Prediction
scores improve in the range 0.2—0.55, resulting in a new mean
cumulative 4-gram of 0.73. This improvement represents
semantically going from a prediction that barely provides any
useful information about the molecule to one that in many
cases gets it absolutely right. Thus, while the model already
scores very high in the test with simulated images of gas-phase
molecules, the performance would definitely improve with the
flatter configurations expected for the adsorbed molecules
measured in the experimental HR-AFM images. In this regard,
a recent work® has shown how the limitations of AFM with
bulky molecules can be overcome with the combination of
AFM imaging with Bayesian inference and DFT calculations in

order to determine the adsorption configurations for a known
molecule. Future work should explore whether a combination
of this strategy with our models is able to extend the molecular
identification to highly corrugated structures.

B DISCUSSION

The results presented so far show that the stacks of 3D
frequency shift images contain information not only on the
structure of the molecules but also regarding their chemical
composition. This information can be extracted by deep
learning techniques, which, additionally, are able to provide the
TUPAC name of the imaged molecules with a high success rate.
Our combination of two M-RNNs is able to correctly
recognize the molecule in many cases, even in those where it
is difficult to discern between similar functional groups—as
fluorine terminations with either carbonyl or even —H
terminations—or in image stacks where some moieties provide
very subtle signals (see Figure 3). Some mistakes do appear
from the chemical recognition point of view, especially in those
molecules showing significant nonplanar configurations where
the performance is lower (see Figures S6 and S7 together with
Table 2). However, apart from these fundamental drawbacks,
most of the errors in the predictions are related to the spelling
of IUPAC names: that is, misplacement of functional groups or
the incorrect use of parentheses, square brackets, or hyphen
characters, etc. It seems that these errors are frequent for
RNNs dealing with the TUPAC nomenclature.®”

At this stage, it is worth considering if other DL
architectures or alternative chemical nomenclatures could
improve the molecular identification based on HR-AFM
images. We have already pointed out that, leaving out the
additional problem of extracting the chemical information from
the images, an RNN only achieves a BLEU 4-gram score of
0.86 when translating from the SMILES to the ITUPAC name.””
Nomenclature translation has been addressed with architec-
tures based on the novel transformer networks,®> obtaining a
practically perfect accuracy.*** Also, automatic recognition of
molecular graphical depictions is able to correctly translate
them to their SMILES representation with a 88% or 96%
accuracy by using either a standard encoder—decoder™ or a
transformer’” network. However, in our work we face a
different problem since we deal with identification from AFM
images instead of either molecular depictions, which contains
all the chemical information needed to name a molecule, or
translation between nomenclatures. Furthermore, the applica-
tion of transformers to the identification from AFM images is
not straightforward. First, tokenization must be consistent, and
each term must have a chemical meaning so that the
embedding layers learn a meaningful information representa-
tion (see Figure S9). This point has only been considered in
ref 63. More importantly, our method achieves high accuracy
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due to the initial attribute detection, forcing us to develop an
architecture that is, in principle, incompatible with trans-
formers, which are based on encoder—decoder networks.

Regarding other nomenclature systems for describing
organic molecules, besides the already cited SMILES,>® there
are other proposals such as InChI® or SELFIES,®® whose
textual identifiers use the name of the atoms and bond
connectivity. These systems miss relevant chemical informa-
tion that is not provided by describing the molecule as a set of
individual atoms rather than as moieties made up of atoms.
Unlike these systems, the [IUPAC nomenclature is focused on
the classification of functional groups, an approach consistent
with the characteristics shown by the AFM image features, that
reflects in our proposal of a dual architecture composed by M-
RNN, and AM-RNN. The SELFIES nomenclature establishes
a robust representation of graphs with semantic constraints,
solving some problems that arise in computer writing with
other nomenclatures. However, the atom-based description
would force an approach without attribute prediction, which is
the key to obtaining a high accuracy with our model. Hence, it
seems to be a trade-off between the limitations and
improvements offered by these nomenclatures, suggesting
that a dramatic improvement in performance is not expected,
although further work is needed in order to reach a final
conclusion.

Finally, we should recall that, although our final goal is a
method to identify the structure and composition of molecules
from their experimental HR-AFM images, our analysis so far
has been based on simulated images. In ref 37, we showed that
the experimental images contain features that are not reflected
in the theoretical simulations. Data augmentation has been
applied during the training (see Subsections S3.2 and $3.4) to
capture these effects, and specific features have been included
in the model (like the dropout layers in the RNN; see Figure
S1) to prevent it from specializing too much with theoretical
images. Although limited by the scarcity of experimental results
suitable to apply our methodology, the tests have provided
very promising results. We have selected constant-height AFM
images of dibenzothiophene and 2-iodotriphenylene from refs
27 and 67, corresponding to 10 different tip—sample distances,
covering a height range of 100 pm for dibenzothiophene
(identical to the one spanned by the 3D stacks of theoretical
images used to train our model) and 72 pm for 2-
iodotriphenylene (see Section S5 for details). Despite the
strong noise in the images and the white lines crossing the
images diagonally (see Figure S8), the prediction of
dibenzothiophene is perfect, scoring 1.00 on the 4-gram,
whereas for 2-iodotriphenylene the model predicts “2iodtri-
phenylene”, missing a hyphen but providing all the relevant
chemical information. Despite these good results, a larger,
systematic analysis with proper experimental data is necessary
to further address the accuracy of our model.

B CONCLUSIONS

In this work, we have shown how deep learning models,
trained with the simulated HR-AFM 3D image stacks for
678,000 molecules included in the QUAM—AFM data set, are
able to perform full chemical—structural identification of
molecules. Motivated by the unfeasibility of defining a
classification in the usual sense of Al, we turned the problem
into an image captioning problem. Thus, instead of aiming to
have a model that knows every atomic structure, we endow it
with the ability to formulate. As a result the model is able to

not only identify images that have not been previously shown
to it but also predict the IUPAC name of these unknown
structures. We have devised a two-step procedure involving the
combination of two M-RNNs. In a first step, the M-RNN,
identifies the attributes, the most relevant functional groups
present in the molecule. This initial step is already of
importance because the algorithm provides useful information
about the chemical characteristics of the molecule. In a second
step, the AM-RNN, whose inputs arise from the M-RNN,,
sorts the information on the functional groups and adds extra
characters (connectors, position labels, other tags, etc.) and the
remaining functional groups that are not part of the attributes
set. That is, the AM-RNN assigns the positions of the
functional groups, completes the remaining terms, and writes
down the final IUPAC name of the molecule.

We have tested the model on a set of 816,000 3D stacks of
HR-AFM images belonging to 34,000 molecules that have not
been shown before to the network. The predictions for the
IUPAC names are exactly the same with respect to the
reference in QUAM—AFM, character by character, in a striking
43% of the cases. To further asses the usefulness of the wrong
predictions by the model, we apply the metrics defined by the
BLEU n-gram. The accuracy of the attribute prediction
assessed with the 1-gram scores 0.95: our approach correctly
identifies all the functional groups in the molecule in 95% of
the cases, demonstrating that the 3D image stacks carry key
chemical information. The overall accuracy of the model is
determined with the cumulative 4-gram, scoring 0.76. This
high value means that, even when the model does not achieve a
perfect prediction, it provides valuable chemical insight,
leading to a correct JIUPAC name of a similar molecule in
the vast majority of the cases. The ability of machine learning
models to provide relevant information from HR-AFM images
is further supported by alternative approaches based on CNNs
to predict accurate electrostatic fields® and on graph neural
networks (GNNs) to extract molecular graphs.”” The accuracy
obtained in the extensive test with theoretical images, together
with the results from few experimental examples taken from
the literature, shows the potential of our deep learning
approach trained with theoretical results to become a powerful
tool for molecular identification from experimental HR-AFM
images.

B METHODS

QUAM—AFM: Structures and AFM Simulations. One of the
main challenges to automate the molecular identification through
AFM imaging arises from the limited availability of data to fit the
parameters of deep learning models. We use QUAM—AFM,* a data
set of 165 million AFM images theoretically generated from 686,000
isolated molecules. Although the general operation of the HR-AFM is
common to all instruments, operational parameter settings (cantilever
oscillation amplitude, tip—sample distance, CO tilt stiffness) lead to
variations in the contrast observed on the resulting images. The value
of the first two can be adjusted by modifying the microscope settings
to enhance different features of the image. However, the latter
depends on the nature of the tip, i.e,, the differences in the attachment
of the CO molecule to the metal tip that have been consistently
observed and characterized in experiments.”*” In order to cover the
widest range of variants in the AFM images, six different values for the
cantilever oscillation amplitude, four for the tilt stiffness of the CO
molecule, and 10 tip—sample distances were used to generate
QUAM—-AFM, resulting in a total of 240 simulations from each
structure. We use the stack of 10 images resulting from the different
tip—sample distances in a single input and the 24 parameter
combinations as a data augmentation technique. That is, we feed
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the network with different image stacks randomly selected from the
combinations of simulation parameters in each of the epochs for each
of the molecules.

IUPAC Tokenization. Deep learning has already proven to have
an extraordinary capacity to analyze data. This capacity is such that, in
many cases, the biggest problem to be solved lies in defining an
appropriate descriptor rather than in improving the existing analysis
capacity. This is the case for AFM images, where the complexity to
design the output of a model is due to the existence of infinite
molecular structures. To establish a model output that is
unambiguous, uniform, and consistent for the terminology of
chemical compounds, we have adopted the ITUPAC nomenclature.
Then, we have turned the standard classification problem®” for a finite
number of molecular structures into an image captioning task,
developing a model that manages to formulate the IUPAC name of
each molecule.

Most image captioning techniques to describe images through
language consist of a loop that predicts a new word at each iteration
(time step). Our goal is to transfer this idea to the identification of
AFM images through the JTUPAC formulation. Therefore, instead of
predicting words at each time step, our model has to predict segments
of the molecule’s ITUPAC name (see Figure 1). That is, the set of
tokens used to decompose each name are sets of letters, numbers, and
symbols that we call terms and are used by the IUPAC nomenclature
to denote functional groups, to assemble additive names, or to specify
connections. Different combinations of these terms generate [UPAC
names for the molecules, as exemplified in Figure 1.

A systematic split of the IUPAC names in QUAM—AFM reveals
that some of the terms have a very small representation, not enough
to train an NN. We have discarded those that are repeated less than
100 times in QUAM—AFM, retaining a total of 199 terms (see Table
S1). Consequently, we have also removed the molecules that have any
of these terms in their IUPAC name. In addition, we have dropped
the molecules whose term decomposition has a length longer than 57,
as there is not enough representation of such names in QUAM—AFM.
Even so, the set of annotations still contains 678,000 molecules, that
we have split into training, validation, and test subsets with 620,000,
24,000, and 34,000 structures, respectively.

Our first attempts based on feeding a single model with a stack of
AFM images provide poor results predicting the IUPAC nomencla-
ture. For this reason, we decompose the problem into two parts and
assign each objective to a different NN (see Figures 1 and 2 and the
next section for a detailed description). We define the attributes as a
100-element subset of the IUPAC terms (see Table S1) which mainly
describes the most common functional groups in organic chemistry
and, thus, are repeated a minimum number of times. The first
network, named M-RNN,, uses as input the stack of AFM images,
and its aim is to extract the attributes, predicting the main functional
groups of the molecule (see Figures 1 and 2). The second network,
named AM-RNN, takes as inputs both the AFM image stack and the
attribute list with the aim of ordering them and completing the whole
IUPAC name of the molecule with the remaining terms which are not
considered attributes (see Figure 2B).

M-RNN, reports information neither on the order nor the number
of times that the attribute appears in the formulation. However, this
first prediction plays a key role in the performance of the model.
Unlike most of the NLP challenges, the IUPAC name completely
identifies the structure and composition of the molecule. Thus, a prior
identification of the main functional groups not only releases the
CNN component of the AM-RNN from the goal of identifying these
moieties but also, more importantly, almost halves the number of
possible predictions of the AM-RNN. By feeding the AM-RNN with
the attributes that are present in the IUPAC name (predicted by the
M-RNN,), we are also effectively excluding the large number of them
that do not form part of it. This is an extremely simple relationship
that the network learns and that significantly improves its perform-
ance.

Multimodal and Attribute Multimodal Recurrent Neural
Networks (M-RNN, and AM-RNN). The standard approach for

image captioning is based on an architecture that integrates a CNN

and an RNN.**”! Here, we focus on the well-known M-RNN, which
integrates three components (see Figure S1). The CNN encodes the
input image into a high-level feature vector whereas the RNN
component has two key objectives: first, to embed a representation of
each word based on its semantic meaning and, second, to store the
semantic temporal context in the recurrent layers. The remaining
component is the multimodal (¢) component, which is in charge of
processing both CNN and RNN outputs and generating the output of
the model.

As discussed in the previous section, we have developed an
architecture composed of two M-RNNs (see Figure 2A,B). The first
one, the M-RNN,, predicts the attributes that are incorporated as
input to the second one, the AM-RNN, which performs the IUPAC
name prediction. Although both AM-RNN and M-RNN, are based
on the standard M-RNN,"* we introduce substantial modifications in
each component. In Figure 2A,B, we show the inputs for each
component. The input of the CNN component is a stack of 10 AFM
images, whereas the input of the multimodal component ¢ consists of
a concatenation of the outputs of the CNN and RNN components. A
detailed description of the structure and role of the CNN, RNN, and
multimodal ¢ components can be found in Figure S1 and Sections S2
and S3.

To explicitly define the inputs of the M-RNN components, it is
worth recalling that an M-RNN processes time series, so it will
perform a prediction (attribute or term) at each time step. Let us start
by defining the inputs of the RNN component of the M-RNN,. We
encode the attributes of the model by assigning integer numbers (from
1 to 100) to each attribute. The input of RNN is a vector of fixed size
19, the maximum number of different attributes in the names of the
molecules in QUAM—AFM (17) plus the startseq and endseq tokens.
In the first step, it will contain Sy rnn, = Startseq to provide the

model with the information that a new prediction starts. This input is
padded with zeros until we obtain a length of 19 (see Figure 2A,C,E)
and then processed by the RNN component while the stack of AFM
images are processed by the CNN component, each of them encoding
the respective input into a vector. The two resulting vectors are used
to feed the multimodal component ¢, where they are concatenated
and processed in a series of fully connected layers to finally produce a
vector of probabilities (see Figures S1 and S2 for details on the RNN
and ¢ layers). In this way the prediction at each time step
corresponds to the most likely attribute Y, which replaces the
padding zero of the corresponding position in the input sequence of
the RNN component in the next time step. This process is repeated
until the endseq token is predicted, which breaks the loop. That is, for
a given time step t, we feed the RNN component of M-RNN, with
the input (S, Y4, .., Y1) that concatenates the starseq token S, with
all the predictions already performed in previous time steps, which is
padded with zeros until we obtain a length of 19 (see Figure 2E for
the example of t = 4 in the identification of perylene-1,12-diol
molecule). Once the model has already predicted the N, attributes, it
has to break the loop, so its last prediction must be the endseq token
(see Figure 2C).

Once the prediction of the attributes has finished, the AM-RNN
starts to operate in order to predict the [IUPAC name of the molecule.
For the input of the RNN component and the prediction flow, we
follow the same reasoning applied to M-RNNy, replacing S; ;. rnn, by
Soamrnn = (Y1, ., Yy, startseq) (Figure 2B). Each RNN input is a
vector of 76 components, arising from the concatenation of 18
attributes (Y7, ., Yig) ~ (Ay, .., Ajg) (padded if necessary) with the
startseq token and the predictions performed at each previous time
step, (Y, .., Y,_;), padded until we obtain a vector with length 57—
the maximum number of terms in the decomposition of the IUPAC
names in QUAM—AFM (see Figure 2C,F). Similarly as in the M-
RNN,, the semantic input is processed by the RNN component while
the AFM image stack is processed by the CNN, encoding the
respective input into a vector. The multimodal component ¢
processes the CNN output v, concatenates the result with the output
of the RNN, and processes this combined result producing a vector of
probabilities as output of the network (see Figures S1 and S2 for
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details). The position of the larger component in the vector provides
us with the prediction of the new term Y,. The process stops when the
endseq token is predicted (see Figure 2C).
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