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Abstract: In the present work a general procedure for the experimental evaluation of 
Generalized-Fracture-Toughness values at multimaterial closed corners is defined. The 
lack of symmetries in the stress fields at multimaterial corners with non-isotropic 
materials makes it extremely difficult to define standard test procedures for 
Generalized-Fracture-Toughness determination. The proposed procedure is suitable for 
closed corners (all wedge faces being bonded) having two singular terms. The 
procedure begins by finding the load configurations at which one of the singular terms 
in the asymptotic series expansion vanishes, allowing the failure to be controlled by the 
other, non-vanishing, singular term. An example of a typical bimaterial corner in an 
adhesively bonded joint with composite materials is extensively analyzed and suitable 
test configurations for the experimental evaluation of the Generalized-Fracture-
Toughness values K1C and K2C associated to the singular terms are defined. The 
experimental part of this work using a novel modified configuration of the Brazilian 
Test will be described in a follow up paper. 
 
 
Keywords: Generalized-Fracture-Toughness, Brazilian test, bimaterial corner, stresses 
singularities. 
 
 
1. Introduction 
 
The 2D stress and displacement fields in the neighbourhood of anisotropic multimaterial 
corners, assuming 2D linear elasticity and a polar coordinate system (r,) centred at the 
corner tip, can be represented by an asymptotic series expansion, with variable 
separation. See Kondratev [1], Costabel and Dauge [2], Knees and Sändig [3] and 
Borsuk [4] for a more mathematical approach to the problem. See Wieghardt [5], 
Williams [6], Vasilopoulos [7], Dempsey and Sinclair [8,9], Sinclair [10,11] and Paggi 
and Carpinteri [12] for a more applied approach, and Ting [13], Barroso et al. [14], 
Hwu et al. [15] and Yin [16] for particular analysis of anisotropic multimaterial corners. 
Under some simplifying assumptions (e.g. neglecting the possible existence of 
logarithmic terms) the series expansion for displacements and stresses at a corner tip 
(r0+) can be written in the following form: 
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where Kk (k=1,...,n) are the Generalized Stress Intensity Factors (GSIFs), k (k=1,...,n) 
are the characteristic exponents. If 0<Re(k)<1, 1-k is called the order of stress 
singularity. Functions )(

kg  and )(
kf  (k=1,...,n) are the characteristic angular shape 

functions for displacements ( )(k
rg , )(

kg ) and stresses ( )(k
rrf , )(

kf , )(
k

rf ) 

respectively. The angular shape functions  )(
kg  and )(

kf  are normalized according 

to the definition given in Section 3.1. 
 
The characteristic exponents, k, and angular shape functions, )(

kg  and )(
kf , 

depend only on the local geometry, material properties and boundary conditions in a 
neighbourhood of the corner tip, while the GSIFs, Kk, additionally depend on the far 
field loading and global geometry. In fact, in the case of proportional loading, the GSIFs 
Kk are proportional to the load factor. 
 
In geometrical and material configurations where the stress representation given in (1) 
applies, stress singularities may appear and the GSIFs Kk control the local stress field. If 
the extension of yielding at the corner tip is small compared to the K-dominated zone 
(where the stress solution is approximated well by the first singular term, with 0<k<1, 
in the series expansion (1)) the onset of failure can be assumed to be controlled by 
critical values of Kk, called Generalized-Fracture-Toughness values, which will be 
denoted generically in what follows as KkC (see Leguillon and Sanchez-Palencia [17], 
Leguillon and Siruguet [18], or Henninger and Leguillon [19]). 
 
Unlike the well defined test standards for the experimental determination of fracture 
toughness values for cracks in homogeneous isotropic materials (KIC, and KIIC 
respectively for the symmetrical and unsymmetrical cases), the lack of symmetries in 
the stress fields in general configurations of anisotropic multimaterial corners makes it 
difficult to develop a general procedure for Generalized-Fracture-Toughness 
determination in corners of this kind. 
 
The characteristic exponents k and the angular shape functions )(

kg , )(
kf  in series 

(1) must be known, and a procedure for evaluating Kk should be available before any 
proposal of an experimental procedure is attempted. The measurement of any critical 
GSIFs (KkC) is based on the evaluation of Kk at the experimental failure load when the 
external load distribution activates only one singular mode. This is the key idea of the 
proposed procedure. 
 
In this work, the evaluation of k, )(

kg  and )(
kf  is based on a general analytical 

procedure proposed in Barroso et al. [14] which applies for linear elastic generalized 
plane strain states, without any limitation in the number and nature of materials. In 
particular, mathematically degenerate materials in the framework of Stroh formalism of 
anisotropic elasticity, see for example Ting [20], are covered by this analytical 
procedure, a feature usually lacking in similar procedures proposed elsewhere. The 
evaluation of Kk is based on a numerical procedure (Barroso et al [21,22]) which has 
proved to be accurate in most difficult cases with multiple singularities. Examples of 
characterization in mixed modes at bimaterial interfaces can be found in Dollhofer et al 
[23]. 
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The aim of the present work is to propose a general procedure for the Generalized-
Fracture-Toughness determination in 2D multimaterial anisotropic closed corners 
having two singular terms. With two singular terms, the evaluation of Generalized-
Fracture-Toughness KkC (k=1,2) is based on the possibility of isolating each singular 
term with a particular external load distribution. Notice that corners having only one 
singular term present no difficulty as the asymptotic stress state is controlled by only 
one GSIF, defined, e.g., as KI whose value at the failure load defines K1C. By contrast, 
2D corners having more than two singular terms present additional difficulties as the 
isolation of each singular term is not always possible (as will be detailed in Section 2). 
 
The procedure presented here is only valid for closed corners (with all materials wedges 
perfectly bonded, without any external boundaries, sometimes referred to as cross-
points) because the proposed procedure is, essentially, based on the well-known 
Brazilian test (introduced in 1943 almost simultaneously by Carneiro [24] and Akazawa 
[25]), with the multimaterial corner at the centre of the disk loaded in compression. The 
compression load is applied in the diametric direction at any generic point along the 
external perimeter and this is only possible for the case of closed corners. A similar 
Brazilian disk specimen has been used by Banks-Sills et al. [26,27] in the evaluation of 
fracture toughness of interface cracks in bimaterial systems, including thermal curing 
stresses. 
 
Based on a previous work by the same authors, Barroso et al [28] and also based on the 
conclusions obtained by Qian and Akisanya [29], the thermal stresses due to the curing 
process have not been considered in the present analysis of the bimaterial corner of the 
Brazilian disk specimen. 
 
Two different test procedures will be detailed in Section 2 while section 3 will present 
the application of the general procedure developed to a particular bimaterial corner of a 
real structure. 
 
For a practical illustration of the procedure in the field of composite materials, it has 
been applied to a particular CFRP-epoxy bimaterial closed corner (CFRP: Carbon-
Fiber-Reinforced-Plastic). The experimental results and failure envelope, based on 
critical values of the GSIFs, will be described in a follow up paper [32]. A similar 
failure envelope, based on the strain energy release rate instead of GSIFs was presented 
for adhesively bonded joints by Hafiz et al. [30]. 
 
Although the procedure has been applied in the present paper to a bimaterial corner, 
there is no additional impediment to use it in three- or multi-material corner 
configurations, provided that the stress representation involves only two singular terms. 
Examples of composite three-material corners having two stress singularities have been 
extensively reported in literature, see for example Barroso et al. [31] for the detailed 
analysis of the three-material corner as that depicted in Figure 1, corner b. 
 
 
2. Description of the test procedures 
 
Figure 1 shows some examples of multimaterial closed corners appearing in an 
adhesively bonded joint between a [0/90]S laminate and aluminium. The bimaterial 
corner (a) has a 90º wedge of unidirectional carbon fibre reinforced lamina (with the 
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fibre in the x direction) and a 270º wedge of isotropic adhesive. The three-material 
corner (b) has a 90º wedge of a unidirectional fibre reinforced lamina (the fibre in the z 
direction), a 90º wedge of the same material but with the fibre oriented in the x axis and 
a 180º wedge of isotropic adhesive material. In these two examples, there are no 
symmetry planes. Figure 1c shows an isotropic bimaterial corner. Finally, Figure 1d 
shows schematically a generic multimaterial closed corner. 
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Figure 1. Examples of multimaterial closed corners in a real structure (lap joint). 

 
 
As mentioned previously in the Introduction, the proposed procedure is essentially 
based on the Brazilian Test, there being two alternatives which will be explored in 
Sections 2.1 (uniaxial test) and 2.2 (biaxial test) respectively. In this procedure the test 
sample is a flat cylinder, such as those shown in Figures 1a, 1b and 1c, which will be 
subjected to uniaxial or biaxial loading. 
 
As the present procedure is suitable for corner configurations having two singular terms, 
the following examples will be particularized for the determination of two Generalized-
Fracture-Toughness values (K1C and K2C). 
 
 
2.1. Case with isolated terms. Uniaxial test procedure 
 
The uniaxial test procedure simply consists, in a first step, of the numerical simulation 
of a Brazilian Test in which the sample is loaded in uniaxial compression, with a load P, 
as shown in Figure 2a (particularized, as an example, for the bimaterial corner of Figure 
1a) at different angles along the external circular perimeter. Assuming linear elastic 
behaviour and using the appropriate tools for determining the GSIFs (Kk), it is possible 
to plot the evolution of K1 and K2 (under load P) with the angle  (as shown 
schematically in Figure 2b). Recall that K1 and K2 are associated to different values of 
characteristic exponents , therefore having different units (MPa/mm-1). 
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Figure 2. Uniaxial test procedure. 
 

 
Once a representation like the one shown in Figure 2b is obtained, if both curves, 
representing the dependencies of K1 and K2 (for the external load P) on the angle , cut 
the x-axis at angles 1 and 2 for K1 and K2 respectively, it means that there exist two 
test configurations in which the singular terms can be isolated (K1=0 at =1 and K2=0 
at =2). Thus, in these configurations the local stress fields are only controlled by one 
singular term (one GSIF value). 
 
The second step of the procedure consists of the experimental testing at these particular 
angles 1 and 2. The failure loads obtained in tests for =1 and =2 allow the 
Generalized-Fracture-Toughness values K1C and K2C to be evaluated by simply scaling 
the values obtained numerically for K1 and K2 (for a load value P, Figure 2b) with the 
obtained failure loads P1 and P2 and taking into account the dimensions of the test 
specimen, see Vicentini et al. [32]. 
 
At this point, the previously mentioned difficulty in corners having more than two 
singular terms in the series expansion (1) is clear. If a third curve, associated to a third 
singular term, is added to a representation like the one in Figure 2b, the value of this 
third K3 at the test orientations 1 and 2 will not, generally speaking, be zero. Thus, the 
isolation of each singular term will not be possible in the present test. 
 
It should be mentioned that the present form does not pretend to propose a physically 
based analytical expression for an interaction formula of a general mixed mode failure 
criterion based on GSIFs and their corresponding Generalized-Fracture-Toughness 
values. This is the reason why several additional load configurations different from 
those leading to K1=0 or K2=0 will be also analyzed and experimentally tested. If the 
interaction formula were known a priori, it would only be necessary to determine K1C 
and K2C and substitute them in the interaction formula. 
 
Defining a failure criterion in terms of the specimen strength, some size-scale effects 
will appear. Applying a dimensional analysis, a GSIF can be expressed as (see Leicester 
[33], Carpinteri [34], Carpinteri and Paggi [35], Dunn et al [36] and the references 
therein): 
 

knomk ARK k )Re(1     (k=1,2)  (2) 
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where nom is a nominal stress in the problem, R is a characteristic length (the radius in 
the present case) and Ak is a shape factor taking into account the geometry and material 
properties of the problem. 
 
A Generalized-Fracture-Toughness based failure criteria could be expressed in a general 
form as: 
 

)(CK    (3) 

 

where    22

2

2

1

1

CC K
K

K
KK   is a normalized GSIF modulus (a dimensionless magnitude) 

and  is a normalized fracture-mode-mixity angle, )//()/(tan 1122 CC KKKK . 

Unlike the traditional mode mixity definition in the case of a crack, )/(tan 12 KK , 
the inclusion of the fracture toughnesses is due to the different units of K1 and K2 in the 
present case. The parameterization ))(,(  C defines a hypothetical failure envelope 

curve based on Generalized-Fracture-Toughness concepts. It should be stressed that 
using (2) and (3) an explicit expression of the size-scale effect on the specimen strength 
(e.g. in terms of the critical nominal stress nom) can easily be deduced. 
 
 
 
2.2. Case of non-isolated terms. Biaxial test procedure 
 
If neither of the curves cuts the x-axis, see for example Figure 3a, a second alternative is 
to perform a biaxial test. In the hypothetical case of Figure 3a, which is obtained as 
indicated in Section 2.1, the biaxial test loading for isolating the first singular term K1 
may be defined using the following procedure. 
 
Let the values of K2 considering a unit load P=1, at orientations =0º and  =90º, be 
K2=H1 and H2, respectively. Then, the biaxial test configuration would consist in a 
compression loading of a generic value P at =0º and a tensile loading of value 
(H1/H2)·P at =90º. In this situation, for a load P, and applying the superposition 
principle, the compression load would contribute by K2=H1·P and the tensile load would 
contribute by K2=- H2·(H1/H2)·P=-H1·P, leading to a superposed total value of K2=0. In 
this way the first singular term governed by K1 has been isolated. 
 

K2



K1

adhesive

xP

(b)(a)

=0º =90º

H1

H2

P
H

H

2

1

P
H

H

2

1

P

(=0º)

(
=

90
º)

0º
CFRP

 
Figure 3. Biaxial test procedure. 
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The same procedure should also be used to isolate the second singular term governed by 
K2 in case no load orientation makes K1 to vanish, as schematically depicted in Figure 
3a. 
 
The critical point of this alternative hinges on the difficulty of the practical application 
of a tensile load in the Brazilian test sample. An additional fixture or device can be 
bonded at the corresponding angle, but the adhesive bonding of this device should have 
a greater strength than that of the actual corner which is being measured. It should also 
be taken into account that the size of the bonded device, at the boundary of the sample, 
should be small in comparison with the sample radius. The reason is to avoid, in view of 
the Saint-Venant's Principle, a change in the stress state of the sample centre induced by 
the concentrated load considered in the numerical model used to obtain the results of 
Figure 3a. 
 
Note that, in the case of GSIF dependencies as shown in Figure 2, the biaxial test is also 
applicable, and easy to perform experimentally, as it would involve only two uniaxial 
compressions. 
 
 
3. Application to a real bimaterial closed corner 
 
3.1. Evaluation of stress singularities and angular shape functions 
 
The procedures introduced above will be applied to the bimaterial corner shown in 
Figure 1a. The calculation of the orders of stress singularities and angular shape 
functions in (1) can be obtained by the familiar techniques, see for example Ting [13], 
Barroso et al. [14], Hwu et al. [15] or Yin [16] among others. Specifically, the 
procedure by Barroso et al. [14] has been used in the present work. The values of the 
three smallest non-trivial characteristic exponents (1, 2, 3) obtained are shown in 
Figure 4, where the mechanical properties of the materials considered in the corner are 
also included. The bimaterial closed corner under analysis has two singular terms, as 
3>1. An additional third (regular) term has also been calculated, as suggested in 
Barroso et al. [37], to accurately represent the stresses and displacements near the 
corner tip. In any case, as will be seen later, the contribution to the asymptotic stress 
field in the reasonably small neighbourhood of the corner is dominated by the two 
singular terms appearing in this particular configuration. 
 

E11=141.3 GPa, E22=E33=9.58 GPa

G12=G13=5.0 GPa, G23=3.5 GPa

12=13=0.3, 23=0.32

Composite (AS4/8552)

E=3.0 GPa, =0.35 
Adhesive FM-73M.06

Characteristic
exponents

1=0.763236
2=0.889389
3=1.106980adhesive

x

0º CFRP
y


r

 
Figure 4. Properties and characteristic exponents (k) of the bimaterial closed corner. 

 
 
By substituting the computed values of k in (1), the asymptotic displacement and stress 
representations can be particularized as follows: 
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where it is clear that the third term of the stress representation tends to zero when r0, 
the singular character of stresses being associated to the first two singular terms. In the 
case of u an additional term Kr·r needs to be added to the displacement representation 
in order to include the rigid body rotation. This term can be avoided if the boundary 
conditions of the numerical model (FEM or BEM) impose a null rotation at the corner 
tip, an effect which it is not always possible to obtain. The terms associated to the rigid 
body translation have not been included in (4) as relative displacements with respect to 
the corner tip were used in the numerical procedure for Kk evaluation. 
 
The characteristic angular shape functions can also be computed from the semianalytic 
expressions given by Barroso et al. [14]. For the particular corner under study, they 
have been included in the Appendix (Figures A1, A2 and A3, and Tables A1, A2 and 
A3 for the first three terms, respectively). The GSIFs have been standardized following 
the procedure by Pageau et al. [38] giving rise to expressions of the angular shape 
functions which fulfil the condition 1)2()º0(  kkf 

   (k=1,2,3), in order to obtain: 

 





3

1
1)2(

)º0,(
k

k

kr

K
r  
        (5) 

 
The Kk values have dimensions of MPa·mm1-, f (,=r,) being dimensionless and 
g (=r,) having dimensions of MPa-1. In the numerical examples of the following 
sections only normalized values of Kk will be used. 
 
 
3.2. Numerical results for the uniaxial test 
 
The GSIFs Kk (k=1,2,3) for the particular corner under study have been extracted from 
FEM results using the postprocessing procedure by Barroso et al. [21,22]. In this 
procedure, the determination of Kk is based on the minimization of the sum of quadratic 
differences between the analytical series expansion (4) and numerically computed 
displacements at common bonded interfaces (=0º, 90º) by a simple and robust least 
squares technique. Any other available technique could be used for evaluating the 
GSIFs. 
 
At these common edges, 22 nodes in the range 0.00057·R<r<0.00162·R have been used 
for the Kk determination, where R is the specimen radius. Figure 5 shows the Finite 
Element model (FEM) used for the problem, in which a regular mesh has been used, 
with nodes of radial lines, each of  5º, and 200 nodes along each radial line with a 
progressive refinement of the mesh towards the corner tip, where the final element size 
is 7.4·10-5·R. The load used in the FEM model was 100N. 
 
Plane elements with 4 nodes and 2 degrees of freedom (ux, uy) have been used with the 
plane strain option. In a previous work (Barroso et al. [39]), it was found that the stress 
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state at the free edges was less severe than that at the interior of the specimen, for which 
reason the plane strain option was chosen. Boundary conditions in displacements have 
been used to avoid rigid body motions. The CFRP solid was modelled as an equivalent 
linear elastic orthotropic material and the adhesive as a linear elastic isotropic material, 
whose properties were introduced in Figure 4. 
 

100N

100N

2R



adhesive

0º CFRP

 
Figure 5. FEM model of the bimaterial corner problem 

 
The normalized values, according to Pageau et al. [38], of the GSIFs associated to the 
two singular terms (K1, K2) for 0º<<180º are shown in Figure 6, where it can be 
observed that  13º and  60º are the test configurations at which K2 and K1 
respectively vanish. 
 
It can be observed from Figure 6 that there are two load orientations for which K1 and 
K2 vanish respectively (60º and 143º for K1 and 13º and 115º for K2). These 
four cases have to be analyzed, as well as additional cases in which none of the GSIFs 
vanishes to determine a large number of points in the failure envelope. Obviously, the 
choice of 60º or 143º will lead to different values of K1C (which might be denoted 
as 01 

CK  and 01 
CK ), which is conceptually acceptable, as both values correspond 

to different stress states. Nevertheless, any particular choice will have no relevant 
influence on the shape of the failure envelope (which is obtained in the experimental 
part of the present work, which will be described in a follow up paper (Vicentini et al. 
[32]). In any case, it should be mentioned that the selected angles,  13º and  60º 
correspond to maximum values of the non vanishing GSIF, a fact which may slightly 
increase the accuracy of KkC estimations. 
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Figure 6. Standardized values of K1 and K2 in the uniaxial test configuration. 

 
It must be stressed that due to the fact that the values of the GSIFs are normalized, the 
relative influence of GSIFs on the stress distribution depends not only on the absolute 
values of GSIFs, shown in Figure 6, but also on the values of angular shape functions 
and the specific distance from the corner tip. This fact can be further clarified by 
representing stresses and displacements for the particular case of =13º, where 
K1=0.01125, K2=0.007319 and K3=0.01266. In this particular case the normalized value 
of K2 is only 1.5 times lower than the absolute value of K1, and K3 (which is not 
associated to a singular term) is higher than K1. 
 
Introducing these values into (4) the displacements and stresses are shown, at 
r=0.001·R, in Figures 7 (ur, u) and 8 (, r, r) together with the FEM results 
obtained. In Figures 7-8, not only the total displacement and stress components are 
shown but also the individual contribution of each one of the terms of the series 
expansion (4). Despite the values of the normalized GSIFs obtained for =13º 
(K1=0.01125, K2=0.007319 and K3=0.01266), it can be clearly observed in Figures 7-8 
that the displacement and stress fields are almost exclusively determined by the first 
term of the series expansion (4), the second and third term contributions being almost 
negligible. 
 
The difference in the displacement component u observed in Figure 7b is associated to 
a rigid body rotation, which has been taken into account in (4) as an independent term, 
Kr·r, the difference thus being constant all along the circumferential coordinate . 
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Figure 7. FEM and series expansion results, a) ur and b) u, for =13º at r=0.001·R. 
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Figure 8. FEM and series expansion results, a) , b)r, c)r, for =13º at r=0.001·R. 

 
 
As can be observed in Figure 8c, r is not continuous neither at =90º nor =0º and 
360º, where the material changes and the perfect adhesion conditions do not require the 
continuity of this stress component. 
 
Although only displacements have been used in the postprocessing procedure extracting 
the values of Kk from FEM results, the fitting between the numerical (FEM) and the 
series expansion results in stresses (Figure 8) is also excellent. 
 
In the test configuration at which K1=0 (60º), Figures 9-10 show the displacements 
and stresses in a similar way to Figures 7-8 for the case K2=0. 
 
Both singular terms in the present configuration are weak singularities with 0.5<k<1, 
but the second one, considered now (K1=0) is particularly weak 2=0.889389. Thus, 
although still having the unique singular term (the second) as the most important 
contribution to the total displacement and stress fields at the chosen distance r=0.001R, 
the first regular term with 3=1.106980 sometimes shows a relatively significant 
contribution, as will be observed later on. 
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With reference to the displacement components ur, u and also to the shear stress r, 
Figures 9 and 10b respectively, the situation is similar to the one observed in the 
previous case, (K20, =13º), with the non-vanishing singular term (K2 in this case, K1 
in the previous one) having almost all the weight of the corresponding displacements 
and stress components. 
 
The difference in the u component is, as in the previous case, Figure 7b, associated to 
the rigid body rotation which has been taken into account in (4) as Kr·r. In the case of 
 and r (Figures 10 a and c) the contribution of the regular term to the maximum total 
stress value is not negligible, it being lower than 10%. Thus, in this case, the critical 
value of K2 at failure should be considered only a good estimation of the real K2C. The 
real value might be slightly lower or slightly higher depending on the contribution of 
the non-vanishing terms to the failure. 
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Figure 9. FEM and series expansion results, a) ur and b) u for =60º at r=0.001·R. 
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Figure 10. FEM and series expansion results, a) , b)r, c)r, for =60º at 

r=0.001·R. 
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In Figure 10c, as already observed in Figure 8c, r is not continuous neither at =90º 
nor =0º and 360º. 
 
To sum up, having a configuration in which one of the singular terms is negligible 
(13º for K20 and 60º for K10) permits the determination of the critical values of 
the GSIFs (K1C and K2C respectively) by simply evaluating the Kk value at the 
experimentally obtained failure load. 
 
 
3.3. Definition of the biaxial tests 
 
Using the results shown in Figure 6, in particular the values of K1 and K2 associated to 
the load orientations =0º and =90º, it is possible to define two biaxial test 
configurations having either K1=0 or K2=0. The values of K1 and K2 from Figure 6 and 
the procedure introduced in Section 2.2, suggest the two test configurations shown in 
Figure 11a and b, to isolate the singular terms associated to K2 and K1 respectively, by 
means of the superposition principle. 
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Figure 11. Biaxial test configurations for: a) K1=0 and b) K2=0. 

 
The coefficients 1.70 (Figure 11a) and 0.58 (Figure 11b) have been obtained by simply 
dividing the values of K1 and K2 associated respectively to =0º and =90º. 
 
 
5. Conclusions 
 
In the present work an experimental test procedure has been developed for Generalized-
Fracture-Toughness determination in multimaterial closed corners having two stress 
singularities. The procedure is based on a kind of Brazilian disk specimen applied to the 
corner geometry, for which reason the procedure is only valid for closed corners, which 
can be loaded in compression at any position along the whole external perimeter. 
 
The procedure is especially suitable for non-symmetric multimaterial corners involving 
isotropic and non-isotropic materials and having two singularities. The procedure is able 
to isolate any of the singular modes, which is not possible with standard test procedures 
for homogeneous isotropic materials, due to the lack of symmetries of the stress states at 
these corners with non-isotropic materials. 
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The procedure has been applied to a particular bimaterial corner, typically appearing in 
adhesive joints involving composites, and the test configurations suitable for the 
experimental evaluation of the Generalized-Fracture-Toughness values K1C and K2C 
have been defined. 
 
Once the tests have been carried out and the Generalized-Fracture-Toughness values 
calculated, a failure envelope can be obtained by testing the samples at different angles, 
which originate mixed mode stress states. This experimental part will be described in a 
follow up paper. The present work also shows the influence of the specimen size (the 
radius) on the specimen strength. 
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Appendix A: Angular shape functions )(
kg , )(

kf , (k=1,2,3), (,=r,) 
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Figure A1. Angular shape functions associated to 1 in (1) )(1 rg , )(1 g , )(1 f , 

)(1 rf  and )(1 rrf  (f is dimensionless and ga has dimensions of MPa-1). 

 
 g r (MPa -1 ) g   (MPa -1 ) f  f r  f rr

0 -0.2891 1.9311 0.6472 -3.5404 -31.1077
15 -0.3299 2.0661 1.0618 1.2386 -15.7554
30 -0.2566 2.2091 -0.1616 3.7880 -9.0372
45 -0.0880 2.3092 -2.2054 4.8281 -4.5299
60 0.1298 2.3353 -4.4043 4.4767 -0.7570
75 0.3510 2.2790 -6.1512 2.9151 2.2468
90 0.5378 2.1512 -6.9653 0.5120 4.1729
91 0.5540 2.1125 -6.9796 0.4213 -2.3127
105 0.6099 1.5486 -6.8815 -0.8791 -2.1141
120 0.3262 1.0078 -6.1720 -2.1517 -2.4722
135 -0.2448 0.6813 -4.9536 -3.0461 -3.3061
150 -0.9739 0.6748 -3.4464 -3.3816 -4.3970
165 -1.6979 1.0256 -1.9282 -3.0938 -5.4688
180 -2.2540 1.6939 -0.6765 -2.2489 -6.2457
195 -2.5137 2.5716 0.0899 -1.0290 -6.5107
210 -2.4099 3.5047 0.2558 0.3054 -6.1506
225 -1.9511 4.3251 -0.1658 1.4703 -5.1803
240 -1.2193 4.8860 -1.0369 2.2177 -3.7399
255 -0.3534 5.0925 -2.1237 2.3873 -2.0655
270 0.4804 4.9213 -3.1454 1.9402 -0.4402
285 1.1227 4.4254 -3.8334 0.9671 0.8653
300 1.4547 3.7232 -3.9879 -0.3308 1.6486
315 1.4230 2.9735 -3.5194 -1.6839 1.8180
330 1.0503 2.3421 -2.4684 -2.8103 1.4114
345 0.4309 1.9674 -0.9964 -3.4754 0.5878
360 -0.2891 1.9311 0.6472 -3.5404 -0.4058  

Table A1. Values for the normalized angular shape functions associated to 1 in (1) 
)(1 rg , )(1 g , )(1 f , )(1 rf  and )(1 rrf . 
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Figure A2. Angular shape functions associated to 2 in (1) )(2 rg , )(2 g , )(2 f , 

)(2 rf  and )(2 rrf  (f is dimensionless and ga has dimensions of MPa-1). 

 
 

 g r (MPa -1 ) g   (MPa -1 ) f  f r  f rr

0 -0.0056 0.2805 0.8160 0.1977 -0.3811
15 0.0191 0.2972 0.6631 0.3854 0.3512
30 0.0528 0.3002 0.4618 0.4060 0.7115
45 0.0867 0.2873 0.2814 0.3054 0.9657
60 0.1123 0.2608 0.1742 0.1169 1.1319
75 0.1239 0.2266 0.1727 -0.1130 1.1934
90 0.1197 0.1924 0.2839 -0.3299 1.1449
91 0.1149 0.1904 0.2948 -0.3328 0.5081
105 0.0448 0.1805 0.4523 -0.3381 0.3798
120 -0.0229 0.2057 0.6061 -0.2723 0.2566
135 -0.0667 0.2601 0.7120 -0.1482 0.1806
150 -0.0753 0.3289 0.7479 0.0048 0.1738
165 -0.0460 0.3935 0.7085 0.1500 0.2415
180 0.0146 0.4364 0.6065 0.2529 0.3711
195 0.0928 0.4452 0.4694 0.2890 0.5349
210 0.1703 0.4156 0.3331 0.2498 0.6971
225 0.2291 0.3526 0.2332 0.1449 0.8221
240 0.2556 0.2690 0.1965 -0.0003 0.8830
255 0.2440 0.1824 0.2344 -0.1509 0.8682
270 0.1976 0.1113 0.3406 -0.2705 0.7844
285 0.1280 0.0702 0.4921 -0.3302 0.6543
300 0.0523 0.0666 0.6549 -0.3156 0.5118
315 -0.0108 0.0988 0.7925 -0.2298 0.3937
330 -0.0460 0.1565 0.8738 -0.0933 0.3308
345 -0.0442 0.2233 0.8817 0.0615 0.3404
360 -0.0056 0.2805 0.8161 0.1977 0.4224  

Table A2. Values for the normalized angular shape functions associated to 2 in (1) 
)(2 rg , )(2 g , )(2 f , )(2 rf  and )(2 rrf . 
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Figure A3. Angular shape functions associated to 3 in (1) )(3 rg , )(3 g , )(3 f , 

)(3 rf  and )(3 rrf  (f is dimensionless and ga has dimensions of MPa-1). 

 
 

 g r (MPa -1 ) g   (MPa -1 ) f  f r  f rr

0 0.0058 0.0394 1.2173 -0.4368 1.4042
15 -0.0118 0.0721 1.4598 -0.4072 0.8879
30 -0.0138 0.1100 1.6380 -0.2203 0.6655
45 0.0015 0.1438 1.6895 0.0386 0.6002
60 0.0300 0.1646 1.5968 0.2899 0.6774
75 0.0631 0.1674 1.3847 0.4606 0.8665
90 0.0909 0.1523 1.1126 0.5023 1.1076
91 0.0985 0.1537 1.0941 0.5032 0.9621
105 0.2011 0.1439 0.8446 0.4442 1.2158
120 0.2821 0.0815 0.6472 0.2531 1.4163
135 0.3101 -0.0116 0.5794 -0.0136 1.4856
150 0.2767 -0.1032 0.6615 -0.2765 1.4033
165 0.1918 -0.1614 0.8692 -0.4571 1.1938
180 0.0806 -0.1641 1.1405 -0.5014 0.9191
195 -0.0240 -0.1059 1.3945 -0.3957 0.6601
210 -0.0910 0.0006 1.5550 -0.1711 0.4930
225 -0.1006 0.1285 1.5734 0.1065 0.4664
240 -0.0502 0.2446 1.4429 0.3550 0.5870
255 0.0452 0.3190 1.2008 0.5012 0.8177
270 0.1571 0.3343 0.9170 0.5022 1.0885
285 0.2522 0.2905 0.6737 0.3581 1.3172
300 0.3019 0.2052 0.5409 0.1122 1.4339
315 0.2914 0.1082 0.5553 -0.1623 1.4018
330 0.2234 0.0328 0.7100 -0.3834 1.2278
345 0.1179 0.0057 0.9561 -0.4851 0.9610
360 0.0058 0.0394 1.2173 -0.4368 0.6776  

Table A3. Values for the normalized angular shape functions associated to 3 in (1) 
)(3 rg , )(3 g , )(3 f , )(3 rf  and )(3 rrf . 


