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Abstract

The existence and uniqueness of positive solutions of a nonautonomous
system of SIR equations with diffusion are established as well as the con-
tinuous dependence of such solutions on initial data. The proofs are fa-
cilitated by the fact that the nonlinear coefficients satisfy a global Lip-
schitz property due to their special structure. An explicit disease-free
nonautonomous equilibrium solution is determined and its stability inves-
tigated. Uniform weak disease persistence is also shown. The main aim
of the paper is to establish the existence of a nonautonomous pullback
attractor is established for the nonautonomous process generated by the
equations on the positive cone of an appropriate function space. For this
an energy method is used to determine a pullback absorbing set and then
the flattening property is verified, thus giving the required asymptotic
compactness of the process.

1 Introduction and setting of the problem

The SIR model for the transmission of infectious diseases, which was introduced
by Kermack and McKendrick [18] in 1927, is one of the fundamental models of

∗Partially supported by DFG grants KL 1203/7-1, the Spanish Ministerio de Economı́a y
Competitividad project MTM2011-22411, the Consejeŕıa de Innovación, Ciencia y Empresa
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02468 and the Ayuda Incentivos Actividades Cient́ıficas IAC11-II-10602. The authors thank
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particular concerning persistence.
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mathematical epidemiology [1, 4, 34]. Its classical form involves a system of
autonomous ordinary differential equations for three classes, the susceptibles S,
infectives I and recovereds R, of a constant total population.

Many generalizations of this model have been proposed and studied, for
instance, to include age structure, time delays, spatial diffusion and variable
infectivity; see, for example, [4, 5, 9, 13, 16]. Most papers have focused on the
persistence and extinction of the disease, the existence of the threshold value for
which the infectious disease will grow or die out, the local and global stability
of disease-free and endemic equilibria, and the existence of periodic solutions.
Persistence is an important property of dynamical systems in epidemiology and
ecology, which addresses the long-term survival of some or all components of
a system. See Smith and Thieme [28] and Thieme [32, 33] for background
information and references. Loosely speaking, a population is uniformly weakly
persistent if its size, while it may come arbitrarily close to 0 every now and then,
always climbs back to a level that eventually is independent of the initial data.

More recently, nonautonomous versions of the SIR model and related epi-
demic systems for which the total population may vary in time have been inves-
tigated [15, 19, 23, 26, 32, 33]. Webb [36] introduced a spatially inhomogeneous
version of the SIR model in a bounded environment in terms of a system of
parabolic partial differential equations in 1981. Many variations of this model
have since been considered [12, 26]. Discrete analogs have been considered in
which people move between cities (see [2, 3, 11] and Section 3.2. in [28]). These
models allow different moving rate for susceptibles and infective individuals, but
are time-autonomous.

In this paper we will analyse the asymptotic behavior of a temporally-forced
SIR model with diffusion on a bounded domain Ω ⊂ Rd, where d ≥ 1, with
a smooth boundary ∂Ω from the perspective of the theory of nonautonomous
dynamical systems [6, 21, 27]. Temporally varying forcing is typical of seasonal
variation of a disease [17, 29]. In particular, we consider the system of parabolic
partial differential equations

∂S

∂t
−∆S = aq(t)− aS + bI − γ SIN ,

∂I

∂t
−∆I = −(a+ b+ c)I + γ SIN ,

∂R

∂t
−∆R = cI − aR,


(1)

where
N(t) = S(t) + I(t) +R(t),

with the Dirichlet boundary condition

S(x, t) = I(x, t) = R(x, t) = 0 on ∂Ω× (t0,+∞) (2)

and initial condition

S(x, t0) = S0(x), I(x, t0) = I0(x), R(x, t0) = R0(x) for x ∈ Ω, (3)
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where t0 ∈ R and the parameters a, b, c and γ are positive constants. The
temporal forcing term is given by a continuous function q : R → R taking
positive bounded values, i.e., q(t) ∈ [q−, q+] for all t ∈ R, where 0 < q− ≤ q+.

The system (1) is chosen as a representative model amongst other pos-
sibilities with the main aim of paper being to establish the existence of a
nonautonomous pullback attractor, which contains the counterparts of equilibria
and limit cycles of autonomous systems. The particular choices of frequency-
dependent incidence and nonautonomous terms give the nonautonomous model
(1) a quasiautonomous feature as the sharp threshold conditions for disease ex-
tinction can be chosen to be time independent. Other choices like mass action
(density-dependent) incidence or time-dependent infection rates would require
considering time-averages to get sharp extinction conditions, if they could be
found at all (see [32, 33], Chapters 13 and 15 in [28]).

The following functions spaces will be used. L2 (Ω) denotes the space of
square integrable real valued functions defined on Ω with the norm |·|L2(Ω)

corresponding to the scalar product defined

(u, v)L2(Ω) =

∫
Ω

u · vdx

for all u, v ∈ L2 (Ω), while H1
0 (Ω) denotes the space of such functions satis-

fying the Dirichlet boundary condition that have square integrable generalized
derivatives with the scalar product

(∇u,∇v)L2(Ω) =

∫
Ω

∇u · ∇vdx

for all u ∈ H1
0 (Ω) and the norm |u|H1

0 (Ω) := |∇u|L2(Ω). In addition, X3 denotes

the space of functions (u1, u2, u3) ∈ L2 (Ω)
3

with the scalar product

((u1, u2, u3), (v1, v2, v3))L2(Ω) = (u1, v1)L2(Ω) + (u2, v2)L2(Ω) + (u3, v3)L2(Ω) ,

and norm

|(u1, u2, u3))|L2(Ω) = |u1|L2(Ω) + |u2|L2(Ω) + |u3|L2(Ω)

for all (u1, u2, u3),(v1, v2, v3) ∈ X3. Finally, let X+
3 be the subspace of non-

negative functions in X3.
Recent developments in the theory of nonautonomous dynamical systems [8,

21] offer new concepts, which allow the asymptotic dynamics to be characterized.
The main aim of this paper is to show the existence of a pullback attractor for
the process associated to (1)–(3) using the theory of nonautonomous dynamical
systems formulated as a process, which is also called two-parameter semi-group.
The pullback attractor is the nonautonomous counterpart of an autonomous
attractor and similarly contains the limiting behaviour. The choice of Dirichlet
boundary conditions and the space L2 (Ω) here are to facilitate the derivation
of the required estimates. Solutions in the space L1 (Ω) are more typical in
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many biological situations, but due to the special structure of the system (and
its possible variants) we note that the solutions have stronger regularity, in
particular are also in the space L∞ (Ω), and L1 (Ω) ∩ L∞ (Ω) is a subspace of
L2 (Ω).

The structure of the paper is as follows. In Section 2, partly following [28],
we analyze the total population equation and its asymptotic behaviour. In
Section 3 we establish the existence and uniqueness of a positive solution for
our model and we prove a continuous dependence result with respect to initial
data. (Due to their special structure, the nonlinear coefficients are, in fact,
globally Lipschitz, which is also verified here). A result about the asymptotic
stability (in the forward sense) for γ < λ1 + a + b + c, where λ1 > 0 is the
first eigenvalue of the operator −∆ on the domain Ω with a Dirichlet boundary
condition, of a nonautonomous equilibrium solution representing a disease-free
solution and its loss of linear stability are addressed in Section 4. In Section
5 we establish uniform weak persistence of the disease if γ > λ1 + a + b + c.
In Section 6, the main goal of proving the existence of a family of a pullback
attractor or the attracting universe of fixed bounded sets is established via the
flattening property.

Remark 1 The assumption that q− > 0 is not essential for the existence of
the pullback attractor, but without it the persistence result need not hold. For
example, if q(t) → 0 exponentially fast as t → 0, then the total population N(t)
→ 0 as t → 0 and hence so do the component populations. See also Remark 11
in Section 5.

2 Total population equation

Adding both sides of the above PDEs gives

∂N

∂t
+ [−∆ + a]N = aq(t), (4)

where N(t) = S(t)+ I(t)+R(t) is the total population. Standard existence and
uniqueness theorems for scalar reaction-diffusion equations provide the existence
and uniqueness of a solution in L2 (Ω) for the mild form of the PDE (4) with
a Dirichlet boundary condition. By the variation of constants formula this
solution is given explicitly by

N(t) = e−Ã(t−t0)N(t0) + ae−Ãt
∫ t

t0

eÃrq(r) dr,

where Ã is the linear operator associated with −∆ + a on the domain Ω with
the Dirichlet boundary condition.

From (4) we obtain the energy equality

d

dt
|N(t)|2L2(Ω) + 2 |∇N(t)|2L2(Ω) = −2a |N(t)|2L2(Ω) + 2a (q(t), N(t))L2(Ω) ,
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and hence, by the Poincaré inequality,

d

dt
|N(t)|2L2(Ω) + 2(λ1 + a) |N(t)|2L2(Ω) ≤ 2 (aq(t), N(t))L2(Ω) ,

where λ1 > 0 is the first eigenvalue of the operator −∆ on the domain Ω with
Dirichlet boundary condition. Since

2 (aq(t), N(t))L2(Ω) ≤
(aq+)2

λ1 + a
|Ω|+ (λ1 + a) |N(t)|2L2(Ω)

we have the differential inequality

d

dt
|N(t)|2L2(Ω) + (λ1 + a) |N(t)|2L2(Ω) ≤

(aq+)2

λ1 + a
|Ω| .

Multiplying both sides by the integrating factor e(λ1+a)t and integrating between
t0 and t, then simplifying, we obtain

|N(t)|2L2(Ω) ≤
(

aq+

λ1 + a

)2

|Ω|+ |N0|2L2(Ω) e
−(λ1+a)(t−t0). (5)

The PDE (4) has what Chueshov [10] called a nonautonomous equilibrium
solution, which is found by taking the pullback limit (i.e., as t0 → −∞ with t
held fixed, see [21]), namely

N̂(x, t) = ae−Ãt
∫ t

−∞
eÃrq(r)dr. (6)

This also forward attracts all other solution of the PDE (4). We observe that

∂

∂t
(N − N̂) + [−∆ + a] (N − N̂) = 0

with Dirchlet boundary conditions. As above, using the Poincaré inequality, we
obtain the differential inequality

d

dt

∣∣∣N(t)− N̂(t)
∣∣∣2
L2(Ω)

+ 2(λ1 + a)
∣∣∣N(t)− N̂(t)

∣∣∣2
L2(Ω)

≤ 0.

Hence∣∣∣N(t)− N̂(t)
∣∣∣2
L2(Ω)

≤ e−2(λ1+a)(t−t0)
∣∣∣N(t0)− N̂(t0)

∣∣∣2
L2(Ω)

→ 0 as t→∞. (7)

Then, we can deduce

N(x, t)− N̂(x, t)→ 0 a.e. in Ω× (t0,+∞) as t→∞. (8)

Summarizing

Theorem 2 The nonautonomous equilibrium solution N̂(x, t) is globally asymp-
totically stable (in the forward and pullback senses) with respect to both L2 and
almost everywhere convergence.
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3 Existence and uniqueness of solutions

We state and sketch the proof of a result on the existence and uniqueness of
positive solutions of (1)–(3) for initial data in X+

3 . Similar results can be found
in [24, 25, 34].

Theorem 3 For any initial value (S0, I0, R0) ∈ X+
3 , there exists a unique pos-

itive solution

(S(t), I(t), R(t)) = (S(t, t0;S0, I0, R0), I(t, t0;S0, I0, R0), R(t, t0;S0, I0, R0))

of the problem (1)–(3) on t ≥ t0.

Proof. Let (S(t), I(t), R(t)) be a solution of (1)–(3) with initial condition
(S0, I0, R0). If we denote

f1(S, I,R, t) := aq(t)− aS + bI − γ SI
N

,

f2(S, I,R, t) := −(a+ b+ c)I + γ
SI

N
,

f3(S, I,R, t) := cI − aR,

it is easy to verify that non-negative initial data imply non-negative solutions
using [12, Theorem 2.1], since

f1(0, I, R, t) ≥ aq+ + bI > 0, f2(S, 0, R, t) = 0, f3(S, I, 0, t) = cI ≥ 0.

On the other hand, there is a unique local solution of (1)–(3) since the coeffi-
cients of the equation are, in fact, globally Lipschitz for any given non-negative
initial value (S0, I0, R0) in X+

3 . (This is true also for the nonlinear terms due
to their special structure, which will be shown in the proof of Theorem 5 be-
low). Finally, thanks to the upper bounds (5), the positive solutions of (1)–(3)
are always bounded. In particular, all solutions of (1)–(3) are globally defined.

3.1 Solution mapping as a process

The globally defined nonnegative solutions of (1)–(3) generate a nonautonomous
2-parameter semigroup or process in the Banach space X+

3 , i.e., a family of
mappings Ut,t0 : X+

3 → X+
3 with t ≥ t0 in R satisfying

Ut,t0x = x, Ut,t0x = Ut,r ◦ Ur,t0x (9)

for all t0 ≤ r ≤ t and x ∈ X+
3 .

From Theorem 3 and Theorem 5 we have.

Proposition 4 The 2-parameter family of mappings Ut,t0 : X+
3 → X+

3 , t0 ≤ t,
given by

Ut,t0(S0, I0, R0) = (S(t), I(t), R(t)), (10)

where (S(t), I(t), R(t)) is the unique positive solution of (1)–(3) with the initial
value (S0, I0, R0) defines a continuous process on X+

3 .
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3.2 Continuity in initial data

Theorem 5 The process defined by (10) is continuous in X+
3 .

Proof. We denote

(S, I,R) := (S1, I1, R1)− (S2, I2, R2),

where (S1, I1, R1) is the solution of (1)–(3) for the initial condition (S1
0 , I

1
0 , R

1
0)

and (S2, I2, R2) is the solution for the initial condition (S2
0 , I

2
0 , R

2
0). Then,

(S, I,R) is the solution for the following problem

∂S

∂t
−∆S = −aS + bI − γF1,2,

∂I

∂t
−∆I = −(a+ b+ c)I + γF1,2,

∂R

∂t
−∆R = cI − aR,


(11)

in Ω× (t0,+∞) with Dirichlet boundary condition

S(x, t) = I(x, t) = R(x, t) = 0 on ∂Ω× (t0,+∞) (12)

and initial condition

S(x, t0) = S1
0(x)− S2

0(x), I(x, t0) = I1
0 (x)− I2

0 (x), R(x, t0) = R1
0(x)−R2

0(x)
(13)

for x ∈ Ω, where

F1,2 :=
S1I1
N1
− S2I2

N2
. (14)

Now

F1,2 :=
S1I1
N1
− S2I2

N2
=

(S1I1 − S2I2)

N1
− NS2I2
N1N2

,

so

|F1,2| ≤
|I1|
|N1|

|S1 − S2|+
|S2|
|N1|

|I1 − I2|+
∣∣∣∣ S2I2
N2N2

∣∣∣∣ ∣∣∣∣N2

N1

∣∣∣∣ ∣∣N ∣∣
≤

∣∣S∣∣+

∣∣∣∣N2

N1

∣∣∣∣ ∣∣I∣∣+

∣∣∣∣N2

N1

∣∣∣∣ ∣∣N ∣∣ (15)

since I1
N1

, I2
N2

S2

N2
take values in [0, 1]. Similarly, interchanging the indices in the

above derivation, we also have

|F1,2| ≤
∣∣S∣∣+

∣∣∣∣N1

N2

∣∣∣∣ ∣∣I∣∣+

∣∣∣∣N1

N2

∣∣∣∣ ∣∣N ∣∣ . (16)

7



Fix t ≥ t0. Applying (15) at the interior points x of Ω where N2(x, t) ≤ N1(x, t)
and (16) at the interior points x of Ω where N1(x, t) ≤ N2(x, t), we obtain

|F1,2| ≤
∣∣S∣∣+

∣∣I∣∣+
∣∣N ∣∣ .

Hence taking the L2 norms

|F1,2(t)|2L2(Ω) ≤ 3
∣∣S(t)

∣∣2
L2(Ω)

+ 3
∣∣I(t)

∣∣2
L2(Ω)

+ 3
∣∣N(t)

∣∣2
L2(Ω)

. (17)

From the energy equality applied to each component of the system (11)-(13)
and using the Poincaré inequality we obtain

d

dt

∣∣S(t)
∣∣2
L2(Ω)

+ 2λ1

∣∣S(t)
∣∣2
L2(Ω)

≤ −2a
∣∣S(t)

∣∣2
L2(Ω)

+ 2b
(
S(t), I(t)

)
L2(Ω)

+2γ
(
F1,2(t), S(t)

)
L2(Ω)

, (18)

d

dt

∣∣I(t)
∣∣2
L2(Ω)

+ 2λ1

∣∣I(t)
∣∣2
L2(Ω)

≤ −2(a+ b+ c)
∣∣I(t)

∣∣2
L2(Ω)

(19)

+2γ
(
F1,2(t), I(t)

)
L2(Ω)

,

and

d

dt

∣∣R(t)
∣∣2
L2(Ω)

+ 2λ1

∣∣R(t)
∣∣2
L2(Ω)

≤ 2c
(
I(t), R(t)

)
L2(Ω)

− 2a
∣∣R(t)

∣∣2
L2(Ω)

. (20)

Defining

Σ(t) :=
∣∣S(t)

∣∣2
L2(Ω)

+
∣∣I(t)

∣∣2
L2(Ω)

+
∣∣R(t)

∣∣2
L2(Ω)

and adding we obtain

d

dt
Σ(t) + 2(λ1 + a)Σ(t) ≤ 2b

(
S(t), I(t)

)
L2(Ω)

+ 2γ
(
F1,2(t), S(t)

)
L2(Ω)

−2(b+ c)
∣∣I(t)

∣∣2
L2(Ω)

+ 2γ
(
F1,2(t), I(t)

)
L2(Ω)

+2c
(
I(t), R(t)

)
L2(Ω)

≤ 1

2
b
∣∣S(t)

∣∣2
L2(Ω)

+
1

2
c
∣∣R(t)

∣∣2
L2(Ω)

+2γ
(
F1,2(t), S(t)

)
L2(Ω)

+ 2γ
(
F1,2(t), I(t)

)
L2(Ω)

,

≤
(

1

2
b+ γ

) ∣∣S(t)
∣∣2
L2(Ω)

+ γ
∣∣I(t)

∣∣2
L2(Ω)

+
1

2
c
∣∣R(t)

∣∣2
L2(Ω)

+2γ |F1,2(t)|2L2(Ω) ,

where we have used the Cauchy-Schwarz inequality four times. Now we use the
inequality (17) to obtain

d

dt
Σ(t) + 2(λ1 + a)Σ(t) ≤

(
1

2
b+ 7γ

) ∣∣S(t)
∣∣2
L2(Ω)

+ 7γ
∣∣I(t)

∣∣2
L2(Ω)

+
1

2
c
∣∣R(t)

∣∣2
L2(Ω)

+ 6γ
∣∣N(t)

∣∣2
L2(Ω)

.
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This gives the differential inequality

d

dt
Σ(t) + ρΣ(t) ≤ 6γ

∣∣N(t)
∣∣2
L2(Ω)

, (21)

for an appropriate nonzero constant ρ (which may be negative).
Now, we observe that N = S + I +R satisfies

∂N

∂t
+ [−∆ + a]N = 0,

so as in the derivation of the estimate (7), we have∣∣N(t)
∣∣2
L2(Ω)

≤ e−2(λ1+a)(t−t0)
∣∣N0

∣∣2
L2(Ω)

≤ Σ(t0), (22)

since
∣∣N0

∣∣2
L2(Ω)

≤ Σ(t0). Thus from the differential inequality (21) we obtain

d

dt
Σ(t) + ρΣ(t) ≤ 6γΣ(t0),

which we integrate between t0 and t, to obtain

Σ(t) ≤
[(

1− 6γ

ρ

)
e−ρ(t−t0) +

6γ

ρ

]
Σ(t0)

Hence Σ(t) → 0 as Σ(t0) → 0 for each t ≥ t0. Hence we have shown that
the process defined by (10) is continuous in X+

3 .

Remark 6 The SIR model (1)–(3) is, strictly speaking, not defined at the origin
of X+

3 , but we can extend it continuously to hold there by defining the nonlinear
term IS/N to be zero there. The estimates in the preceeding proof remain valid.

4 Nonautonomous equilibrium solutions

It is clear from the above considerations, in particular from the estimate (5) for

|N(t)|2L2 that the closed and bounded subset

Σ+
3 :=

{
(S, I,R) ∈ X+

3 : N = S + I +R, |N |2L2(Ω) ≤ 1 +

(
aq+

λ1 + a

)2

|Ω|

}
(23)

of X+
3 attracts (in both the forward and pullback senses) all populations starting

outside it and that populations starting within it remain there, see Proposition
16 below.

Hence we can restrict attention to the dynamics in Σ+
3 and to the asymptot-

ically stable (in the forward and pullback senses) limiting population N̂ given
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by (6),
∂S

∂t
−∆S = aq(t)− aS + bI − γ SI

N̂
,

∂I

∂t
−∆I = −(a+ b+ c)I + γ SI

N̂
,

∂R

∂t
−∆R = cI − aR,

 (24)

with the Dirichlet boundary condition and initial condition (S(t0), I(t0), R(t0))
= (S0, I0, R0).

4.1 Disease–free limiting solution

We eliminate the S variable and just consider the equations for the I and R
variables. Specifically, we replace S by S = N̂ − I −R in (24) to obtain the IR
system

∂I

∂t
−∆I = (γ − a− b− c)I − γ I(I+R)

N̂
,

∂R

∂t
−∆R = cI − aR


with Dirichlet boundary condition and non-negative initial condition (I(t0), R(t0))

= (I0, R0) satisfying 0 ≤ I0(x), R0(x) ≤ N̂(x, t0) for every x ∈ Ω.

Remark 7 The use of N̂ instead of N here is no restriction since it corresponds
to the stable manifold of the system, which contains the limiting dynamics of
the system. It will only be attained from outside asymptotically, but nevertheless
provides important information about the long-term dynamics of the system.

Note that I(t) = R(t) = 0 is a solution, in which case system (24) reduces
to

∂S

∂t
−∆S = aq(t)− aS (25)

with Dirichlet boundary condition S(x, t) = 0 on ∂Ω× (t0,+∞) and the initial
condition S(x, t0) = S0(x) for x ∈ Ω. This is exactly the same as equation (4)
for the total population, so it has the pullback limit

Ŝ1(t) = N̂(t) = ae−Ãt
∫ t

−∞
eÃrq(r)dr. (26)

Lemma 8 The nonautonomous equilibrium solution (Ŝ1(x, t), 0, 0) ∈ X+
3 is

globally asymptotically stable (in the forward sense) in Σ3 provided γ < λ1 +
a+ b+ c, where λ1 > 0 is the first eigenvalue of the operator −∆ on the domain
Ω with Dirichlet boundary condition.

Proof. Since I satisfies

∂I

∂t
−∆I = −(a+ b+ c)I + γ

SI

N̂
,
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so from the energy equality and the Poincaré inequality, we have

d

dt
|I(t)|2L2(Ω) + 2(λ1 + a+ b+ c) |I(t)|2L2(Ω) ≤ 2γ

(
SI

N̂
, I

)
L2(Ω)

.

On the other hand, taking into account that 0 ≤ S

N̂
≤ 1, we obtain

d

dt
|I(t)|2L2(Ω) ≤ −2(λ1 + a+ b+ c− γ) |I(t)|2L2(Ω)

and hence

|I(t)|2L2(Ω) ≤ |I0|
2
L2(Ω) e

−2(λ1+a+b+c−γ)(t−t0). (27)

Taking t to infinite in (27), we see that

I(t)→ 0 in L2 (Ω) as t→∞,

provided γ < λ1 + a+ b+ c, from which we can deduce that

I(x, t)→ 0 a.e. in Ω× (t0,+∞) as t→∞. (28)

Similarly, R satisfies
∂R

∂t
−∆R = cI − aR,

from the energy equality and the Poincaré inequality we have

d

dt
|R(t)|2L2(Ω) + 2(λ1 + a) |R(t)|2L2(Ω) ≤ 2c (I,R)L2(Ω) .

Using

2c (I,R)L2(Ω) ≤
c2

λ1 + a
|I(t)|2L2(Ω) + (λ1 + a) |R(t)|2L2(Ω) ,

this gives

d

dt
|R(t)|2L2(Ω) + (λ1 + a) |R(t)|2L2(Ω) ≤

c2

λ1 + a
|I(t)|2L2(Ω) .

Taking into account (27), we have

d

dt
|R(t)|2L2(Ω) + (λ1 + a) |R(t)|2L2(Ω) ≤

c2

λ1 + a
|I0|2L2(Ω) e

−2(λ1+a+b+c−γ)(t−t0).

Integrating between t0 and t, then simplifying, we obtain

|R(t)|2L2(Ω) ≤ |R0|2L2(Ω) e
−(λ1+a)(t−t0) +

c2 |I0|2L2(Ω) e(t, t0)

(λ1 + a)(λ1 + a+ 2b+ 2c− 2γ)
, (29)

where
e(t, t0) := e−(λ1+a)(t−t0) − e−2(λ1+a+b+c−γ)(t−t0).
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Taking t to infinite, since γ < λ1 + a+ b+ c, we have that

R(t)→ 0 in L2 (Ω) as t→∞,

then we can deduce that

R(x, t)→ 0 a.e. in Ω× (t0,+∞) as t→∞. (30)

Finally, from

S(x, t)− Ŝ1(x, t) = (N(x, t)− I(x, t)−R(x, t))− Ŝ1(x, t),

taking into account (8), (28) and (30), we obtain

S(x, t)− Ŝ1(x, t)→ 0 a.e. in Ω× (t0,+∞) as t→∞.

Thus we have proved that the nonautonomous equilibrium solution (Ŝ1(x, t), 0, 0)
∈ X+

3 is globally asymptotically stable (in the forward sense) in Σ+
3 provided γ

< λ1 + a+ b+ c.

Lemma 9 The disease–free nonautonomous equilibrium solution (Ŝ1(x, t), 0, 0)
∈ X+

3 loses forward linear stability at γ = λ1 + a+ b+ c.

Proof. Since linearized equations about the disease-free nonautonomous equi-
librium solution are given by the autonomous system

∂S̄

∂t
−∆S̄ = −aS̄ + (b− γ)Ī ,

∂Ī

∂t
−∆Ī = (γ − a− b− c)Ī ,

∂R̄

∂t
−∆R̄ = cĪ − aR̄


since Ŝ1(t) ≡ N̂(t). The largest eigenvalue of the matrix on the right hand side
of this system (when written in matrix-vector form) is γ − λ1 − a− b− c.

5 Weak uniform persistence of the disease

The loss of linearized stability in Lemma 9 is of limited use, but nevertheless
indicates that a change of behaviour may occur. In fact, the disease is then
weakly uniformly weakly persistent.

Theorem 10 If γ > λ1+a+b+c, then the disease is weakly uniformly persistent
in the sense that there exists an ε0 > 0 such that

lim sup
t→∞

∫
Ω

I(t, x)dx ≥ ε0

for all nonnegative solutions with I0 6≡ 0 at the initial time t0.

12



Proof. We will use contradiction arguments as in [11, 28]. Suppose that the
disease is not uniformly weakly persistent. Then, for any ε > 0, there exists a
solution with I0 6≡ 0 such that

lim sup
t→∞

∫
Ω

I(t, x)dx < ε.

We will work with the equations

∂I

∂t
−∆I = αI − γ I(I +R)

N
,

∂R

∂t
−∆R = cI − aR,

with the Dirichlet boundary condition, where α = γ−a− b− c. By assumption,
α − λ1 > 0. Let G be the Green’s function for ∂

∂t −∆ on Ω with the Dirichlet
boundary condition. There exists a tε > 0 such that∫

Ω

I(t, x)dx < ε for t ≥ tε.

We have
∂I

∂t
−∆I ≤ αI.

Consider e−αtI(t, x). Then for all s ≥ tε + 1, there exists a positive constant M
such that

I(s, x) ≤ eα
∫

Ω

G(1, x, y)I(s− 1, y) dy

≤ M

∫
Ω

I(s− 1, y)dy ≤Mε. (31)

Now for all t ≥ 0, x ∈Ω and using (31) we can deduce that there exists M̃ > 0
such that

I(t+ 2 + tε, x) ≤ eα
∫

Ω

G(1, x, y)I(t+ 1 + tε, y) dy ≤ M̃εu(x), (32)

where

u(x) :=

∫
Ω

G(1, x, y) dy.

Further, taking into account (4), if we consider eatN(t, x) and use the vari-
ation of constants formula, we have

N(t, x) ≥
∫ t

0

∫
Ω

G(t− s, x, y)q(s) dsdy ≥ q−
∫ t

0

∫
Ω

G(s, x, y)dsdy.

For t ≥ 0, using Lemma 6.4 in [30], we obtain that there exists a δ > 0 such
that

N(t+ 2 + tε, x) ≥ q−
∫ 2

1/2

∫
Ω

G(s, x, y) dsdy ≥ δu(x). (33)
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On the other hand, we have

∂R

∂t
−∆R ≤ cI + aR.

Consider e−atR(t, x). Using the variation of constants formula, we obtain for
all t ≥ 0

R(t+ 2 + tε, x) ≤
∫ t+2+tε

t+1+tε

∫
Ω

I(s, y)G(t+ 2 + tε − s, x, y) dsdy

Now, taking into account (31) we can deduce

R(t+2+tε, x) ≤Mε

∫ t+2+tε

t+1+tε

∫
Ω

G(t+2+tε−s, x, y) dsdy = Mε

∫ 1

0

∫
Ω

G(s, x, y)dsdy.

Using Lemma 6.4 in [30], we have

R(t+ 2 + tε, x) ≤Mεu(x). (34)

We combine (32) and (34) and we conclude that for t ≥ 0 and x ∈ Ω,

(I +R)

N
(t+ 2 + tε, x) ≤ (M̃ +M)

δ
ε = M̃ε,

with M̃ not depending on ε.
Set u(t, x) := I(t+ 2 + tε, x). Then

∂u

∂t
−∆u ≥ αu− γM̃εu.

Let v1 be the eigenvector associated with λ1. Without restriction of generality,
v1 ≤ 1. Set

w(t) =

∫
Ω

u(t, x)v1(x) dx.

Recall that w depends on ε. Then

w′ ≥ (α− λ1 − γM̃ε)w.

Since we can choose ε > 0 as small as we want, we can arrange that α−λ1−γM̃ε
> 0. But w(0) > 0, so we have w(t) → ∞ as t → ∞, which contradicts

w(t) ≤
∫

Ω

u(t, x)dx =

∫
Ω

I(t+ 2 + tε, x)dx ≤ ε, t ≥ 0.

Remark 11 The assumption that q− > 0 is essential for the above proof. As
remarked in the Introduction, the result will not hold in certain situations with-
out it. Nevertheless, we expect that it may still hold, e.g., when q(t) switches
periodically between a zero and nonzero value or, more generally when its asymp-
totic average limt→∞

∫ t
t0
q(s) ds > 0. We will investigate this in a future paper,

since the focus of this one is on the pullback attractor.
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6 Existence of a pullback attractor

A pullback attractor for the process U in the space X+
3 is a family A = {A(t), t ∈

R} of nonempty compact subsets of X+
3 , which is invariant in the sense that

Ut,t0A(t0) = A(t) for all t ≥ t0

and pullback attracts bounded subsets D of X+
3 , i.e.,

distX+
3

(Ut,t0D,A(t))→ 0 as t0 → −∞.

Since all bounded subsets D of X+
3 are pullback absorbed into the positively

invariant bounded subset Σ+
3 in a finite time we can restrict attention to the set

Σ+
3 .

The existence of the pullback attractor and following characterization of its
components sets follows from [8, 21, 27]. An important requirement is that the
process is an asymptotically compact operator [6, 7, 8], which is implied by the
flattening property [8, 20, 21, 35].

Definition 12 A process Ut,t0 on a Banach space (X, ‖·|‖) is said to be pullback
flattening if for every bounded set B of X, ε > 0 and t0 ∈ R, there exists a T0

:= T0(B, t0, ε) > 0 and a finite-dimensional subspace Xε of X such that for each
t ∈ R ⋃

t0≤t−T0

PεUt,t0B is bounded (35)

and ∥∥∥∥(I − Pε)
⋃

t0≤t−T0

Ut,t0B

∥∥∥∥
X

< ε , (36)

where Pε : X → Xε is a bounded projection and (36) is understood in the sense
that ‖(I − Pε)Ut,t0x0‖X < ε for all x0 ∈ B and t ≥ T0.

Theorem 13 The closed and bounded subset Σ+
3 of X+

3 is positively invariant
for the process Ut,t0 defined by (10) and pullback absorbs bounded subsets of X+

3 .
Moreover, the process Ut,t0 satisfies the flattening property, so is asymptotically
compact.

Hence the process Ut,t0 has a unique pullback attractor A with component
sets given by

A(t) :=
⋂
s≤t

Ut,sΣ
+
3

L2(Ω)3

for all t ∈ R.

The proof of the theorem will be given in the following subsections.

Remark 14 The pullback attractor A is obtained by pullback convergence that
uses information about the system in the past. It includes, and is perhaps most
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realistic, when the nonautonomity arises from asymptotic autonomity or some
sort of temporal recurrence such as periodicity or almost periodicity. More com-
plicated, even random, variation is possible. The pullback attractor consists of
the bounded total solutions of the system. See [8, 21].

Remark 15 The pullback attractor A has component sets A(t) ⊂ Σ+
3 ∩ N̂∗(t)

for each t ∈ R. In the case that the disease–free nonautonomous equilibrium
solution (Ŝ1(t), 0, 0) is asymptotically stable (in the forward sense), then A(t) =

{(Ŝ1(t), 0, 0)} for each t ∈ R. Since this solution loses stability (in the forward
sense) at γ = λ1 + a+ b+ c there must be other nontrivial total solutions inside
the pullback attractor for γ > λ1 + a + b + c, see [27]. It would be interesting
to investigate the internal structure of the pullback attractor for persistent and
non-persistent components as was done in [28] for an autonomous attractor.

6.1 Proof of Theorem 13: absorbing set

Proposition 16 For every bounded subset D of X+
3 and t ∈ R there exists

T0(D) ≥ 0 such that the solution (S(t), I(t), R(t)) of (1)–(3) with initial value
(S0, I0, R0) ∈ X+

3 at time t0 satisfies

Ut,t0(S0, I0, R0) := (S(t), I(t), R(t)) ∈ Σ+
3 for all t0 ≤ t− T0(D).

Proof. The proof follows from the definition of the total population and the
inequality (5) in section 2, i.e.,

|N(t)|2L2(Ω) ≤
(

aq+

λ1 + a

)2

|Ω|+ |N0|2L2(Ω) e
−(λ1+a)(t−t0).

Denote the bound in the set Σ+
3 by

B := 1 +

(
aq+

λ1 + a

)2

|Ω|

and note that

|S|2L2(Ω) ≤ B, |I|2L2(Ω) ≤ B, |R|2L2(Ω) ≤ B, (37)

for (S, I,R) ∈ Σ+
3 .

6.2 Proof of Theorem 13: flattening property

Let A : H1
0 (Ω) → (H1

0 (Ω))′ be the linear operator associated with the negative
Laplacian. Since the space H1

0 (Ω) is compactly imbedded in L2(Ω), the operator
A is symmetric, coercive and continuous. In particular, there exists a non-
decreasing sequence 0 < λ1 ≤ λ2 ≤ . . . of eigenvalues of A with limj→∞ λj =
+∞ and corresponding eigenvalues

Avj = λjvj for all j ≥ 1.

16



Moreover, {vj : j ≥ 1} ⊂ H1
0 (Ω) is a Hilbert basis of L2(Ω) and span {vj : j ≥ 1}

is densely embedded in H1
0 (Ω).

Let Pm be the projection of L2(Ω) onto the finite-dimensional subspace
spanned by {v1, . . . , vm} and let Qm = I − Pm. Then any u ∈ L2(Ω) has the
unique orthogonal decomposition u = um + qm, where um = Pmu and qm =
Qmu. Similarly, ∇u = ∇um + ∇qm for u ∈ H1

0 (Ω).
We can restrict attention to the dynamics in Σ+

3 . A solution (S(t), I(t), R(t))
system (24) can be decomposed its components PmX

+
3 and QmX

+
3 , where the

latter satisfy

∂QmS

∂t
−∆QmS = −aQmS + bQmI − γQm

(
SI

N

)
,

∂QmI

∂t
−∆QmI = −(a+ b+ c)QmI + γQm

(
SI

N

)
,

∂QmR

∂t
−∆QmR = cQmI − aQmR

with initial condition (QmS(t0), QmI(t0), QmR(t0)) = (QmS0, QmI0, QmR0)
and Dirchlet boundary condition.

The energy inequalities as above give

d

dt
|QmS|2L2(Ω) + 2 |∇QmS|2L2(Ω) ≤ −2a |QmS|2L2(Ω) + 2b (QmI,QmS)L2(Ω)

−2γ

(
Qm

(
SI

N

)
, QmS

)
L2(Ω)

≤ (b+ 2γ) |QmS|2L2(Ω) + b |QmI|2L2(Ω) ,

where (
Qm

(
IS

N

)
, QmS

)
L2(Ω)

≤
∫

Ω

∣∣∣∣ IN
∣∣∣∣ |QmS|2 dx ≤ |QmS|2L2(Ω) ,

since |I/N | ≤ 1. Hence by the positive invariance of the set Σ+
3 and the bounds

(37), for solutions starting in Σ+
3 we have

d

dt
|QmS|2L2(Ω) + 2 |∇QmS|2L2(Ω) ≤ kB

for an appropriate constant positive constant k. But, by a generalization of the
Poincaré inequality,

λm+1 |QmS|2L2(Ω) ≤ |∇QmS|
2
L2(Ω) ,

so
d

dt
|QmS(t)|2L2(Ω) + 2λm+1 |QmS(t)|2L2(Ω) ≤ kB.

17



Integrating thus gives

|QmS(t)|2L2(Ω) ≤ |QmS(t0)|2L2(Ω) e
−2λm+1(t−t0) +

kB

2λm+1

(
1− e−2λm+1(t−t0)

)
.

≤ Be−2λm+1(t−t0) +
kB

2λm+1
.

Given ε > 0 pick m large enough so that

2Be−2λm+1 < ε, kB < λm+1ε.

Then
|QmS(t)|2L2(Ω) ≤ ε.

Similar estimates hold for |QmI(t)|2L2(Ω) and |QmR(t)|2L2(Ω). This verifies condi-

tion (36) of the flattening property with the bounded set Σ+
3 and T0 = 1. It thus

holds for all other bounded subsets of X+
3 since these are pullback absorbed into

Σ+
3 in a finite time. It is clear that condition (35) by the L2 (Ω)-boundedness

and positive invariance of Σ+
3

6.3 Proof of Theorem 13: existence of the pullback at-
tractor

By the flattening property the process Ut,t0 defined by (10) is asymptotically
compact in L2 (Ω). Moreover the bounded subset Σ+

3 is positive invariant and a
pullback absorbing set for the process Ut,t0 . The existence of a unique pullback
attractor and its representation then follows from theorems in the literature (see
[8] and, specifically, Theorem 7 in [6]).

This completes the proof of Theorem 13.
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