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Abstract

In this paper we prove the existence of pullback and uniform attractors for a
non-autonomous Liénard equation. The relation among these attractors is also
discussed. After that, we consider that the Liénard equation includes forcing
terms which belong to a class of functions extending periodic and almost peri-
odic functions recently introduced by Kloeden and Rodrigues in [14]. Finally,
we estimate the Hausforff dimension of the pullback attractor. We illustrate
these results with a numerical simulation: we present a simulation showing the
pullback attractor for the non-autonomous Van der Pol equation, an important
special case of the non-autonomous Liénard equation.
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1 Introduction and setting of the problem

The Liénard equation was introduced in 1928 by the French physicist A. Liénard in
the paper [25]. The Liénard equation is a particularly interesting equation as many
questions arising in the physical sciences are concerned with it (see for instance [29],
[33], [34]). The Liénard equation, which is often taken as the typical example of
nonlinear self-excited vibration problem, can be used to model resistor-inductor-
capacitor circuits with nonlinear circuit elements. During the development of radio
and vacuum tubes, Liénard equations were intensely studied as they can be used to
model oscillating circuits. It can also be used to model certain mechanical systems
which contain the nonlinear damping coefficients and the restoring force or stiffness.
The Liénard equation has been studied for a long time, and there are many results.
The general autonomous equation of Liénard type was first studied by Levinson and
Smith in the classical paper [24], and later on several authors have contributed to
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the theory of this equation with respect to existence and uniqueness of nontrivial
periodic solutions.

The non-autonomous Liénard equation has been well-studied (see for instance
[10, 17, 18, 19, 27] as well as their lists of references) and there are many results
on the dissipative nature of the non-autonomous Liénard equation (see [4], [20],
[28]). Leonov proposed in [21] a method for localizing the attractors of the non-
autonomous Liénard equation based on the construction of special piecewise-linear
discontinuous comparison systems. Later, the universality of the construction of
the comparison systems examined in [22] by Leonov enables to introduce different
variable parameters which improve the localization theorem of [21].

There are basically two ways to define attraction of a compact and invariant
non–autonomous set for a process on a metric space. The first, and perhaps more
obvious, corresponds to the attraction in the sense of Lyapunov stability, which
is called forward attraction, and involves a moving target, while the second, called
pullback attraction, involves a fixed target set with progressively earlier starting time.
In general, these two types of attraction are independent concepts, while for the
autonomous case, they are equivalent. Physically, the pullback attractor provides
a way to assess an asymptotic regime at time t (the time at which we observe
the system) for a system starting to evolve from the remote past. The pullback
dynamics contains interesting dynamical properties, which allow us to understand
the forward attraction (see [3], [13] for more details). To our knowledge, there does
not seem to be in the literature any study of the existence of pullback attractors for
non-autonomous Liénard equations.

Let us introduce the model we will be involved with in this paper. We consider
the following problem for a non-autonomous Liénard equation,

x′′ + f(x)x′ + a(t)x = E(t). (1)

Denote by y = x′, then equation (1) can be reduced to the following equivalent
first order system

x′ = y,

y′ = −a(t)x− f(x)y + E(t),

 (2)

with initial condition
x(t0) = x0, y(t0) = y0, (3)

where t0 ∈ R.
We assume that the following conditions are fulfilled:

(H1) f is a locally Lipschitz continuous function with respect to x and there exists
f0 > 0 such that f(x) ≥ f0 for all x.

(H2) E : R 7→ R is a continuous function such that satisfies
∫ t
−∞ e

f0sE2(s)ds < +∞
for all t ∈ R.

2



(H3) a : R 7→ R is a continuous function such that 0 < a0 ≤ a(t) ≤ a1 for all t ∈ R
and (a(t)ef0t)′ ≤ 0 on [t0,∞).

Van der Pol equation is an important special case of the Liénard equation. This
equation was introduced in 1920 by the Dutch physicist Balthasar Van der Pol and
is an example of the long-standing interaction between differential equations and
the physical and biological sciences. A few years after, in [32] Van der Pol and
Van der Mark modeled the electric activity of the heart rate. Later, Fitzhugh [9]
and Nagumo [26] extended the Van der Pol equation in a planar field as a model
for action potentials of neurons. Recently, this equation has also been utilized in
seismology to model the two plates in a geological fault.

The non-autonomous Van der Pol equation

x′′ − µ(1− x2)x′ + a(t)x = E(t), (4)

where µ is a positive constant, describes the behavior of the Van der Pol oscillator
when acted upon by a external disturbance in the presence of a linear restoring force
and non-linear damping. When |x| is small, the quadratic term x2 is negligible and
the system becomes a linear differential equation with a negative damping −µ, i.e.,

x′′ − µx′ + a(t)x = E(t).

On the other hand, when |x| is large, the term x2 becomes dominant and the damping
becomes positive and dissipation occurs. Therefore, an important special case of (1)
is (4) for large |x|.

The first aim of this paper is to show the existence of a pullback and a uniform
attractor for the process associated to (2)-(3). The fact that a and E are non-
autonomous is the main novelties of our problem.

A temporally global solution, if it exists, of a non-autonomous ordinary differen-
tial equation need not be periodic, almost periodic or almost automorphic when the
forcing term is periodic, almost periodic or almost automorphic, respectively. An al-
ternative class of functions extending periodic and almost periodic functions, which
has the property that a bounded temporally global solution of a non-autonomous
ordinary differential equation belongs to this class when the forcing term does, is
introduced by Kloeden and Rodrigues in [14]. Specifically, the class of functions
consists of uniformly continuous functions, defined on the real line and taking val-
ues in a Banach space, which have pre-compact ranges. Besides periodic and almost
periodic functions, this class also includes many nonrecurrent functions. The second
aim of this paper is to consider that (2) includes forcing terms which belong to this
class of functions introduced by Kloeden and Rodrigues.

On the other hand, the theory of topological dimension [12], developed in the
first half of the 20th century, is of little use in giving the scale of dimensional
characteristics of attractors. The point is that the topological dimension can take
integer values only. Hence the scale of dimensional characteristics compiled in this
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manner turns out to be quite poor. For investigating attractors, the Hausdorff
dimension of a set is much better. In [23] Lyapunov-type functions are introduced
into upper estimates for the Hausdorff dimension of negatively invariant sets of
cocycles. In this sense, the third aim of this paper is to estimate the Hausdorff
dimension of the pullback attractor of (2)-(3) using the recent method proposed by
Leonov et al. in [23].

The structure of the paper is as follows. A brief recall on abstract results about
the existence of pullback and uniform attractors is given in Section 2. In Section 3,
the main goals of proving the existence of pullback and uniform attractors of (2)-(3)
and the relation among them under certain suitable assumption, are established.
In Section 4, we consider that (1) includes forcing terms which belong to a class
of functions introduced by Kloeden and Rodrigues [14]. We illustrate these results
with a numerical simulation: we present a simulation showing the pullback attractor
for the non-autonomous Van der Pol equation (4) for large |x|. Finally, in Section 5
we estimate the Hausdorff dimension of the pullback attractor associated to (2)-(3).

2 Abstract results on Pullback and Uniform Attractors

In this section we recall some abstract results on the theory of pullback attractors
(see [1, 2, 3]) and we establish some results on the theory of uniform attractors (see
[3, 7]).

Let (X, dX) be a metric space, and let us denote R2
d = {(t, t0) ∈ R2 : t0 ≤ t}.

A process on X is a mapping U such that R2
d ×X 3 (t, t0, x) 7→ U(t, t0)x ∈ X

with U(t0, t0)x = x for any (t0, x) ∈ R × X, and U(t, r)(U(r, t0)x) = U(t, t0)x for
any t0 ≤ r ≤ t and all x ∈ X.

Definition 1 Let U be a process on X. U is said to be continuous if for any pair
t0 ≤ t, the mapping U(t, t0) : X → X is continuous.

Let us denote P(X) the family of all nonempty subsets of X, and consider a family
of nonempty sets D̂ = {D(t) : t ∈ R} ⊂ P(X). Let D be a nonempty set of
parameterized families of nonempty bounded sets D̂ = {D(t) = D : t ∈ R} ⊂
P(X), where D ⊂ X is a bounded set.

In what follows, we will consider a fixed universe of attraction D and throughout
our analysis the concepts of absorption and attraction will be referred to this fixed
universe.

Definition 2 It is said that D̂0 ⊂ P(X) is pullback absorbing for the process U on
X if for any t ∈ R and any D̂ ∈ D, there exists a t̂0(t, D̂) ≤ t such that

U(t, t0)D(t0) ⊂ D0(t) for all t0 ≤ t̂0(t, D̂).

4



We denote by distX(O1,O2) the Hausdorff semi-distance in X between two sets
O1 and O2, defined as

distX(O1,O2) = sup
x∈O1

inf
y∈O2

dX(x, y) for O1, O2 ⊂ X.

Definition 3 It is said that D̂0 ⊂ P(X) is pullback attracting if

lim
t0→−∞

distX(U(t, t0)D(t0), D0(t)) = 0 for all D̂ ∈ D, t ∈ R.

There exists now a wide literature on pullback attractors (see, e.g., [15, 16, 30]),
but we would like to emphasize that these notions take the final time as fixed and
moves the initial time backwards towards −∞. Note that this does not mean that
we are moving backwards in time, but we consider the state of the system at time t
that had begun in earlier and earlier initial instants t0, i.e., t0 → −∞.

Definition 4 Let D̂0(t) ⊂ P(X). This family is said to be invariant with respect to
the process U if

U(t, t0)D0(t0) = D0(t) for all t0 ≤ t.

Denote the omega-limit set of D̂ by

Λ(D̂, t) :=
⋂
s≤t

⋃
t0≤s

U(t, t0)D(t0)
X

for all t ∈ R,

where {· · · }X is the closure in X.

Definition 5 The family of compact sets {A(t)}t∈R is said to be a pullback attractor
associated to the continuous process U if is invariant, attracts every {D(t)} ∈ D and
minimal in the sense that if {C(t)}t∈R is another family of closed attracting sets,
then A(t) ⊂ C(t) for all t ∈ R.

The general result on the existence of pullback attractor is a generalization of
the abstract theory for autonomous dynamical systems [31]:

Theorem 6 [Crauel et al. [8], Schmalfuss [30]] Assume that there exists a family
of compact pullback absorbing sets {B(t)}t∈R. Then, the family {A(t)}t∈R defined
by

A(t) =
⋃

bD∈D
Λ
(
D̂, t

)X
,

is the pullback attractor, where Λ
(
D̂, t

)
is the omega-limit set at time t of D̂ ∈ D,

where D is the universe of fixed nonempty bounded subsets of X.
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Another approach to the asymptotic dynamics of non-autonomous equations,
the uniform attractor, has been developed by Chepyzhov and Vishik [7]. The theory
of uniform attractors can be developed for a single non-autonomous process (see
[6, 7]).

Definition 7 A set K ⊆ X is said to be uniformly (with respect to t0 ∈ R) attracting
for the process {U(t, t0)} on X if for all t0 ∈ R and for any bounded set B ⊂ X,

lim
T→+∞

(
sup
t0∈R

distX(U(T + t0, t0)B,K)
)

= 0. (5)

Respectively, the process {U(t, t0)} is said to be uniformly asymptotically compact
(with respect to t0 ∈ R) if there exists a compact uniformly (with respect to t0 ∈ R)
attracting set of {U(t, t0)}.

Definition 8 A closed set A1 ⊆ X is said to be a uniform (with respect to t0 ∈ R)
attractor for a process {U(t, t0)} if it is the minimal closed uniformly (with respect
to t0 ∈ R) attracting set for this process. Minimality is meant in the sense that any
closed attracting set is contained in A1.

Theorem 9 [Chepyzhov and Vishik [5, 7], Haraux [11]] If a process {U(t, t0)} is
uniformly asymptotically (with respect to t0 ∈ R) compact, then it has the uniform
(with respect to t0 ∈ R) attractor A1. The set A1 is compact in X.

To describe the structures of uniform attractors and to perform a comparison
with the pullback attractor we introduce the notions of complete trajectory of a
process, kernel of a process and cross-section of the kernel (the terminology is due
to Chepyzhov and Vishik [6, 7]).

Definition 10 A map u : R→ X is called a complete trajectory of a process U(t, t0)
if

U(t, t0)u(t0) = u(t) for all t ≥ t0, t, t0 ∈ R.

Definition 11 The kernel K of a process U(t, t0) consists of all of its bounded com-
plete trajectories of the process U(t, t0).

Definition 12 The set
K(s) = {u(s) : u(·) ∈ K}

is said to be the kernel section at a time moment t = s, s ∈ R.

These kernel sections are, essentially, the fibres of the pullback attractor: if U(·, ·)
is a process that has a pullback attractor A, then any backwards bounded trajectory
is contained in A(t), and we can deduce that if A(·) is bounded then A(t) = K(t)
(see for instance [3]). Observe that Theorem 9 implies the existence of a (fixed)
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compact attracting set K for U(·, ·), so that, from (5) and Theorem 3.11 in [3] it
also implies the existence of a pullback attractor, which is then uniformly included
in K. Just as A(t) must contain K(t) for each t, the uniform attractor must contain
the union of all the kernel sections (see [3]).

Lemma 13 If U(·, ·) has a uniform attractor A1, then⋃
t∈R
K(t) ⊆ A1.

3 Pullback and uniform attractors

Since the functions on the right hand side of (2) are locally Lipschitz with re-
spect to x and y, then for any t0 ∈ R and any (x0, y0) ∈ R2 there exists a
unique local solution of the model (2)-(3), denoted by u(t; t0, u0) := (x(t; t0, (x0, y0)),
y(t; t0, (x0, y0))), and this solution is a global solution one (7) is proved.

3.1 Pullback Attractor

In this section, we will show the existence of a pullback attractor in R2 of our
problem (2)-(3). First, thanks to the uniqueness of solution of (2)-(3), we can define
a process {U(t, t0), t0 ≤ t} in R2, by

U(t, t0)u0 = u(t; t0, u0) ∀u0 ∈ R2. (6)

The process defined by (6) is continuous in R2.

Proposition 14 Assume (H1)-(H3). Then, for any initial condition u0 ∈ R2, the
solution u of (2)-(3) satisfies

|u(t; t0, u0)|2 ≤ l1
l0
e−f0(t−t0) |u0|2 +

1
l0f0

e−f0t
∫ t

−∞
ef0sE2(s)ds, (7)

for all t ≥ t0, where l0 := min {1, a0} and l1 := max {1, a1}.

Proof. We deduce that

d

dt
y2(t) = −2a(t)xy − 2f(x)y2 + 2E(t)y.

We have
2f(x)y2 ≥ 2f0y

2,

and
2E(t)y ≤ f0y

2 +
1
f0
E2(t).
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Then, we can deduce

d

dt
y2(t) + f0y

2 + 2a(t)xy ≤ 1
f0
E2(t). (8)

Multiplying (8) by ef0t, we obtain that

d

dt

(
ef0ty2(t)

)
+ 2ef0ta(t)xy ≤ 1

f0
ef0tE2(t).

Integrating between t0 and t

ef0ty2(t) + 2
∫ t

t0

ef0sa(s)x(s)y(s)ds ≤ ef0t0y2
0 +

1
f0

∫ t

t0

ef0sE2(s)ds. (9)

Taking into account that y = x′, integrating by parts and using (H3), we have

2
∫ t

t0

ef0sa(s)x(s)y(s)ds = ef0ta(t)x2(t)− ef0t0a(t0)x2
0 −

∫ t

t0

x2(s)(a(s)ef0s)′ds

≥ ef0ta0x
2(t)− ef0t0a1x

2
0,

so that (9) becomes,

ef0t |u(t)|2 ≤ l1
l0
ef0t0 |u0|2 +

1
l0f0

∫ t

t0

ef0sE2(s)ds (10)

≤ l1
l0
ef0t0 |u0|2 +

1
l0f0

∫ t

−∞
ef0sE2(s)ds,

whence (7) follows.
We consider the universe of fixed nonempty bounded subsets of R2. Now, we

prove that there exists a pullback absorbing family for the process U(t, t0) defined
by (6).

Proposition 15 Under the assumptions in Proposition 14, the family D̂0 = {D0(t) :
t ∈ R} defined by D0(t) = BR2 (0, ρ0(t)), where ρ0(t) is the nonnegative number given
by

ρ2
0(t) = 1 +

1
l0f0

e−f0t
∫ t

−∞
ef0sE2(s)ds, ∀t ∈ R,

is pullback absorbing family for the process U defined by (6).

Proof. Let D ⊂ R2 be bounded. Then, there exists d > 0 such that |u0| ≤ d for all
u0 ∈ D. Thanks to Proposition 14, we deduce that for every t0 ≤ t and any u0 ∈ D,
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|U(t, t0)u0|2 ≤
l1
l0
e−f0tef0t0 |u0|2 +

1
l0f0

e−f0t
∫ t

−∞
ef0sE2(s)ds

≤ l1
l0
e−f0tef0t0d2 +

1
l0f0

e−f0t
∫ t

−∞
ef0sE2(s)ds.

If we consider T (t,D) := f−1
0 log( l0l1 e

f0td−2), we have

|U(t, t0)u0|2 ≤ 1 +
1
l0f0

e−f0t
∫ t

−∞
ef0sE2(s)ds,

for all t0 ≤ T (t,D) and for all u0 ∈ D.
Consequently the family D̂0 = {D0(t) : t ∈ R} defined by D0(t) =

BR2 (0, ρ0(t)) is pullback absorbing for the process U defined by (6).

Now, as a direct consequence of the preceding results and Theorem 6, we have
the existence of the pullback attractor for the process U defined by (6).

Theorem 16 Under the assumptions in Proposition 14, the process U defined by
(6) possesses a pullback attractor A, which is given by

A(t) =
⋃

bD∈D
Λ
(
D̂, t

)
. (11)

3.2 Uniform Attractor

Now, we suppose that E is translation bounded in L2
loc(R; R), i.e.,

sup
t∈R

∫ t+1

t
E2(s)ds <∞. (12)

In this subsection, using Theorem 9, we will prove that, under the assumption (12),
the process {U(t, t0)} has a uniform (with respect to t0 ∈ R) attractor.

Remark 17 Observe that assumption (12) implies (H2).

Proposition 18 Assume (H1) and (H3). Let E satisfies (12). Then, the process
U defined by (6) is uniformly (with respect to t0 ∈ R) asymptotically compact.

Proof. Let D ⊂ R2 be bounded, and as in the proof of Proposition 15, let d > 0
such that |u0| ≤ d for all u0 ∈ D. Using (10), we have for any u0 ∈ D

|u(t; t0, u0)|2 ≤ l1
l0
e−f0tef0t0 |u0|2 +

1
l0f0

e−f0t
∫ t

t0

ef0sE2(s)ds

≤ l1
l0
e−f0tef0t0d2 +

1
l0f0

e−f0t
∫ t

t0

ef0sE2(s)ds, (13)
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for all t ≥ t0. We estimate the integral on the right-hand side of (13), taking into
account (12),∫ t

t0

e−f0(t−s)E2(s)ds ≤
∫ t

−∞
e−f0(t−s)E2(s)ds ≤

∑
n≥0

∫ t−n

t−(n+1)
e−f0(t−s)E2(s)ds

≤
∑
n≥0

e−f0n
∫ t−n

t−(n+1)
E2(s)ds = C1(1− e−f0)−1,

where C1 := supt∈R
∫ t+1
t E2(s)ds < ∞. Then, we can deduce that there exists a

positive constant Cα such that

|u(t; t0, u0)|2 ≤ l1
l0
e−f0(t−t0)d2 + Cα.

Replacing t by t+ t0, we have

|u(t+ t0; t0, u0)|2 ≤ l1
l0
e−f0td2 + Cα,

and if we consider t ≥ T (D) :=
log(

l1
l0
d2)

f0
, we obtain

|u(t+ t0; t0, u0)|2 ≤ 1 + Cα,

for all t0 and for all u0 ∈ D.
Then, the set B0 := BR2 (0, 1 + Cα) is compact and uniformly (with respect to

t0 ∈ R) attracting for the process U defined by (6). Therefore, the process U is
uniformly (with respect to t0 ∈ R) asymptotically compact.

We can now state a theorem about the existence of a uniform attractor of (2)-(3).
Taking into account Theorem 9 and Lemma 13, we can deduce the following result.

Theorem 19 Under the assumptions in Proposition 18, the process U defined by
(6) has a uniform attractor A1, which is compact in R2. Moreover, we have the
following relation: ⋃

t∈R
A(t) ⊆ A1, (14)

where A(t) is given by (11).

4 Pullback attractors for a class of ODEs more general
than almost periodic

In this section we use recent results due to Kloeden and Rodrigues [14], where the
authors introduced a class of functions which has the property that a bounded tem-
porally global solution of a nonautonomous ordinary differential equation belongs
to this class when the forcing terms do.
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Let BUC(R,R2) denotes the space of bounded and uniformly continuous func-
tions g : R → R2, with the supremum norm. We consider as in [14] the following
class of functions,

F := {g ∈ BUC(R,R2) : g has precompact range R(g)}.

The class F includes periodic functions. We now consider the class FODE defined
by

FODE := {g : R× R2 → R2; is uniformly continuous in t ∈ R, uniformly in (x, y)

in compact subsets C ⊂ R2,with precompact range RC(g)},

where
RC(g) :=

⋃
(x,y)∈C

{g(t, x, y), t ∈ R}.

Functions in the class F belong trivially to the class FODE . For our problem, we
consider

g1(t, x, y) := y, (15)

g2(t, x, y) := −a(t)x− f(x)y + E(t), (16)

and we suppose that
a,E ∈ BUC(R,R). (17)

Proposition 20 Under assumption (17), g1 and g2 defined by (15)-(16) belong to
the class FODE.

Proof. We prove that g2 ∈ FODE . First, we have to prove that g2 is uniformly
continuous in t ∈ R, uniformly in (x, y) in compact subsets C ⊂ R2, i.e., we have to
prove that there is a function α0(θ, C), α0(θ, C) 7→ 0+ (θ 7→ 0+) such that

|g2(t1, x1, y1)− g2(t2, x2, y2)| ≤ α0(|t1 − t2|+ |x1 − x2|+ |y1 − y2| , C), (18)

for all (x1, y1), (x2, y2) ∈ C, where C ⊂ R2 is a compact subset, and t1, t2 ∈ R.
We deduce that there exists R(C) > 0, depending on the compact set C, such

that

|g2(t1, x1, y1)− g2(t2, x2, y2)| ≤ R |a(t1)− a(t2)|+R |y1 − y2|+ |E(t1)− E(t2)| ,

and using (17), we have (18) with α0(|t1 − t2| + |y1 − y2| , C) 7→ 0+ (|t1 − t2| +
|y1 − y2| 7→ 0+), so g2 is uniformly continuous in t ∈ R, uniformly in (x, y) in
compact subsets C ⊂ R2.

Finally, thanks to (17), in particular we have that a and E are bounded functions
in t ∈ R, and we can deduce that RC(g2) is precompact, where C ⊂ R2 is a compact
subset. Therefore, g2 ∈ FODE . On the other hand, g1 trivially belongs to FODE .
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Then, we can write (2) as

du

dt
= g(t, u), t ∈ R, (19)

with initial condition
u(t0) = u0, (20)

where u(t; t0, u0) := (x(t; t0, (x0, y0)), y(t; t0, (x0, y0))), t0 ∈ R and g(t, u) :=
(g1(t, x, y), g2(t, x, y)) belongs to the class FODE .

Thanks to Lemma 8 in [14], on account of the following Proposition, the com-
ponents sets of the pullback attractor and its entire solutions are in fact uniformly
continuous.

Proposition 21 Assume (H1) and (H3). Under assumption (17), problem (19)-
(20) generates a process which possesses a pullback attractor A = {A(t) : t ∈ R}
such that

⋃
t∈RA(t) is precompact.

Proof. Taking into account (17) we deduce that E satisfies (H2) and (12). Then,
thanks to Theorem 16, there exists the pullback attractor for the process defined by
(6). On the other hand, using Theorem 19, we have (14). Therefore,

⋃
t∈RA(t) is

bounded and therefore
⋃
t∈RA(t) is precompact.

Lemma 22 Under the assumptions in Proposition 21 we have that (φ1, φ2) belongs
to the class F for every entire solution (φ1, φ2) of the problem (19)-(20) taking values
in the pullback attractor.

Now, we present a simulation showing the pullback attractor for the non-autonomous
Van der Pol equation (4) for large |x|.

We consider the following parameters: µ = 2, a(t) = e−|t+2000|, E(t) = cos(t),
and the following initial conditions values: x(−2000) = 1.6 and y(−2000) = 1.

Notice that E satisfies (17) and a satisfies (H3) and (17). Also, we observe that

f(x) = −2(1− x2) ≥ 1 for |x| ≥
√

3
2 and satisfies (H1) for large |x|.

Therefore, thanks to Proposition 21 we can deduce that the non-autonomous
Van der Pol equation

x′′ − 2(1− x2)x′ + e−|t+2000|x = cos(t), (21)

with initial condition

x(−2000) = 1.6, y(−2000) = 1, (22)

generates a process which possesses a pullback attractor.
In Figure 1 we present a simulation showing the pullback attractor for the non-

autonomous Van der Pol equation (21)-(22).
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Figure 1: Numerical solution (x(t), y(t))

5 Upper Estimates for the Hausdorff Dimension of the
Pullback Attractor

In this section we obtain an upper bound for the Hausdorff dimension of the pullback
attractor of the process defined by (6). For this purpose, we use a method proposed
by Leonov et al. in [23] in the framework of cocycle dynamical systems.

Assume that a,E ∈ BUC(R,R) and satisfy the following additional conditions:

(H4) Boundedness in time, i.e., there exists a nonnegative constant E0 such that

|E(t)| ≤ E0, for all t ∈ R.

(H5) a ∈ C1(R,R) and there exists a nonnegative constant ã1 such that∣∣a′(t)∣∣ ≤ ã1, for all t ∈ R.
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(H6) The hull of the function g denoting the right-hand side of (2), is a compact
metric space, i.e., H(g) = {g(t+ ·, ·) : t ∈ R} is a compact metric space.

Notice that if a and E are bounded and uniformly continuous functions, then the
hull H(g) is a compact metric space where the closure is taken in the local uniform
convergence topology (see Proposition 2.5, Chapter V in [7] for more details).

In Section 3 we have proved that the solution mapping of (2)-(3) defines a process
given by (6) which has a pullback attractor {A(t)}t∈R ⊂ R2 defined by (11).

Also we can obtain a cocycle by considering

v′ = F(σtp, v),

v(0) = v0 ∈ R2,

 (23)

where p ∈ H(g), F(p, v) := p(0, v) and σ is defined as the shift mapping σt : H(g) 7→
H(g) given by

σt(g̃) := g̃(·+ t, ·),

for t ∈ R and g̃ ∈ H(g).
Then, the cocycle generated by (23) is given by

ϕ(t, p)v0 = v(t; p, v0),

where v(t; p, v0) denotes the solution of (23) with initial value v0 at t = 0. If we take
p = g ∈ H(g), then

ϕ(t, g)v0 = v(t; g, v0),

and (23) becomes
v′ = σtg(0, v),

v(0) = v0 ∈ R2,


i.e.,

v′ = g(t, v),

v(0) = v0 ∈ R2,


and we have

ϕ(t, g)v0 = U(t, 0)v0.

Then, our problem (2)-(3) generates a cocycle ({ϕ(t, p)·}p∈H(g),t∈R,R2) over the base
flow ({σt}t∈R,H(g)), where

ϕ(t, σsg)v0 = U(t+ s, s)v0. (24)
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If one introduces a new variable y = x′ + F (x), where F (x) =
∫ x
0 f(s)ds, then

(1) goes into the system
x′ = y − F (x),

y′ = −a(t)x+ E(t),

 (25)

with initial condition
x(t0) = x0, y(t0) = y0, (26)

where t0 ∈ R.
Now, to estimate the Hausdorff dimension of the pullback attractor associated

to the process defined by (6), we will use Theorem 2 in [23], which is stated in the
framework of cocycle dynamical systems. Then, for the cocycle generated by our
system, we need to verify:

i) There exists a family of compact sets {Ã(p)}p∈H(g) which is negatively invari-
ant for the cocycle defined by (24), i.e.

Ã(σtp) ⊂ ϕ(t, p)Ã(p), for all p ∈ H(g), t ≥ 0.

ii) There exists a compact set K̃ ⊂ R2 such that⋃
p∈H(g)

Ã(p) ⊂ K̃.

iii) There exists a continuous function V : H(g) × R2 → R with derivatives
d
dtV (σtp, ϕ(t, p)u0) along a given trajectory such that

λ1(σtp, ϕ(t, p)u0) + sλ2(σtp, ϕ(t, p)u0) +
d

dt
V (σtp, ϕ(t, p)u0) < 0, (27)

for all t ∈ R, u0 ∈ K̃, p ∈ H(g) and s ∈ (0, 1], where λi with i = 1, 2 are the
eigenvalues of the symmetrized Jacobian matrix of the right-hand side of (25)
arranged in nonincreasing order λ1 ≥ λ2.

Using the pullback attractor, {A(t)}t∈R, associated to the process defined by (6),
we define the family {Ã(p)}p∈H(g) by

Ã(p) =
{

A(s) if p = σsg,
{x ∈ R2 : x = limtn→+∞ xtn , xtn ∈ A(tn)} if p 6= σsg,

(28)

where s ∈ R and p ∈ H(g).
The set Ã(p) is compact for any p ∈ H(g). Moreover, the family {Ã(p)}p∈H(g) is

negatively invariant. Indeed, if p = σsg, taking into account (24) and the fact that
{A(t)}t∈R is invariant for the process U defined by (6), we obtain that ϕ(t, p)Ã(p) =
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Ã(σtp) for all t ≥ 0. If p 6= σsg, then p = limtn→+∞ σtng and it is easy to see that
ϕ(t, p)Ã(p) ⊇ Ã(σtp).

On the other hand, we can consider the following compact set

K̃ :=
⋃
t∈R
A(t) ⊂ R2,

and we have that ⋃
p∈H(g)

Ã(p) ⊂ K̃,

and, consequently, condition i)-ii) hold.
We can now establish our result on the estimate of the Haussdorff dimension of

the pullback attractor for our model. We denote by dimHK the Hausdorff dimension
of K.

Theorem 23 Assume (H1), (H3)-(H5), and that a,E ∈ BUC(R,R) satisfy (H6).
Then the pullback attractor of the process U defined by (6) satisfies

dimHA(t) ≤ 2− 2f0

m+ f0
, (29)

for all t ∈ R, where m is a positive number given by m := 5
4 + a2

1 + k(1 + 1
2 ã1 +E0),

where k is a positive number depending on the compact set K̃.

Proof. We need to verify iii).
It is easy to see that the eigenvalues of the symmetrized Jacobian matrix of the

right-hand side of (25) are

1
2

{
−f(x)±

√
f2(x) + (1− a(t))2

}
.

Hence, condition (27) can be written in the form

−f(x)(1 + s) + (1− s)
√
f2(x) + (1− a(t))2 + 2

d

dt
Vp(t, x, y) < 0, (30)

for all t ∈ R, (x, y) ∈ K̃ and p ∈ H(g). Here,

Vp(t, x, y) ≡ V (σtp, ϕ(t, p)(x, y))

is a function defined for (x, y) ∈ K̃, p ∈ H(g), and t ∈ R by the relation

V (σtp, x, y) :=
1
4

(1− s)(a(t)x2 + y2).
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Then

d

dt
Vp = −1

2
(1− s)a(t)F (x)x+

1
2

(1− s)E(t)y +
1
4

(1− s)a′(t)x2,

and inequality (30) is equivalent to the following

−f0(1 + s) + (1− s)ϑ(t, x, y) < 0, (31)

where

ϑ(t, x, y) :=
√
f2(x) + (1− a(t))2 − a(t)F (x)x+ E(t)y +

1
2
a′(t)x2.

Let us denote

m := max
t,x,y

ϑ(t, x, y).

We have iii) from (31), and due to Theorem 2 in [23] we obtain

dimHÃ(p) ≤ 1 +
−f0 +m

m+ f0
= 2− 2f0

m+ f0
, (32)

for all p ∈ H(g).
We have

ϑ(t, x, y) =−
(
γ
√
f2(x) + (1− a(t))2 − 1

2γ

)2

+ γ2
[
f2(x) + (1− a(t))2

]
+

1
4γ2

− a(t)F (x)x+ E(t)y +
1
2
a′(t)x2,

where γ 6= 0 is a varied parameter. Further,

ϑ(t, x, y) ≤ γ2
[
f2(x) + (1− a(t))2

]
+

1
4γ2
− a(t)F (x)x+ E(t)y +

1
2
a′(t)x2.

Applying the mean value theorem for integrals, we observe that

−a(t)F (x)x = −a(t)f(x∗)x2 ≤ 0.

where 0 < x∗ < x. Then, we have that

ϑ(t, x, y) ≤ γ2
[
f2(x) + (1− a(t))2

]
+

1
4γ2

+ E(t)y +
1
2
a′(t)x2.
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If we take the varied parameter γ2 = 1 and taking into account (H3), (H4) and (H5),
we deduce that there exists a positive constant k depending on the compact set K̃
such that

ϑ(t, x, y) ≤ 5
4

+ a2
1 + k(1 + E0 +

1
2
ã1),

and (28) and (32) imply (29).
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