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Abstract

The existence of a global attractor in L2(Ω) is established for a reaction-
diffusion equation on a bounded domain Ω in Rd with Dirichlet boundary
conditions, where the reaction term contains an operator F : L2(Ω) →
L2(Ω) which is nonlocal and possibly nonlinear. Existence of weak solu-
tions is established, but uniqueness is not required. Compactness of the
multivalued flow is obtained via estimates obtained from limits of Galerkin
approximations. In contrast with the usual situation, these limits apply
for all and not just for almost all time instants.

1 Introduction

A simple population model with spatial dependence is given by the reaction-
diffusion equation

∂u

∂t
= ∆u+ u (1− u) , (1)

on a bounded domain Ω in Rd with Dirichlet boundary conditions. The long
term dynamics of this model is well understood.

In the above model the population at a point x ∈ Ω depends only on its
value at this point, apart from the diffusivity term. More realistically, it could
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depend on the population size at other points, in particularly at near by points.
For example, it could depend on the average over a small neighbourhood

uδ(t, x) =

∫
B(x;δ)

u(t, y) dy

/ ∫
B(x;δ)

dy ,

for some small δ > 0 instead of on u(t, x) itself. This leads to a nonlocal PDE

∂u

∂t
= ∆u+ uδ (1− uδ) . (2)

Alternatively, uδ(t, x) could be some other functional of the solution u(·, t)
evaluated at the point x.

There are many applications of nonlocal effects in partial differential equa-
tions in the literature, e.g., in combustion theory [13] and the Navier-Stokes
equations [5]. The nonlocal term is often an integral operator and the equations
are then called “integro-differential” equations. Boltzmann equations are a very
well known class of integro-differential, but are first order unlike those of interest
here. However, the nonlocal term could be different, see, e.g., the review article
by Bates [3]. There is a large literature on the existence, regularity and blow–up
of solutions of nonlocal evolution equations, see for example [15, 16, 17] and the
papers cited therein.

Global attractors for nonlocal evolution equations have been investigated
recently for the globally modified Navier-Stokes equations by Caraballo et al.
[5], for m-Laplacian parabolic equations with a nonlocal nonlinearity by Chen [6]
and by Hilhorst et al [8] for a nonlocal Kuramoto–Sivashinsky equation. Several
aspects of reaction-diffusion equations are being analyzed over the last years,
particularly, their asymptotic behaviour, see for example [14,15] and [17]. In
this paper we consider general nonlinear nonlocal terms in autonomous reaction-
diffusion equations, which generate strict multivalued semiflows. In particular,
we establish the existence of a global attractor after first proving weak solutions
and the compactness of attainability sets of the multivalued semiflow. For this
we use estimates obtained as limits of Galerkin approximations which hold for
every time instant and not just for almost all time instants. The problem
is formulated in the next section and dissipativity estimates are presented in
Section 3 with some longer proofs given at the end of the paper in Section 7.
The existence of weak solutions is established in Section 4, while the generation
of a strict multivalued semiflow and the existence of a global attractor are shown
in Section 5. Finally an explicit example is presented in Section 6.

2 Setting of the problem

Let Ω ⊂ RN be a bounded open set, it satisfies the Poincaré inequality, i.e.,
there exists a constant λΩ > 0 such that∫

Ω

u2(x)dx ≤ λ−1
Ω

∫
Ω

(∇u(x))
2
dx, ∀u ∈ H1

0 (Ω). (3)
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Let (·, ·) denote the scalar product in L2 (Ω) and ‖·‖L2(Ω) the corresponding

norm in L2(Ω). In addition, let 〈·, ·〉 denote the duality product between spaces
H1

0 (Ω) and H−1(Ω).

Consider the following initial boundary value problem for a nonlocal reaction–
diffusion equation with zero Dirichlet boundary condition in Ω,

∂u

∂t
+Au = F(u) in Ω× (0, T ) ,

u = 0 on ∂Ω× [0, T ],
u(x, 0) = u0(x), for x ∈ Ω,

(4)

where A is a uniformly parabolic operator in divergence form with aij = aji ∈
L∞(Ω), 1 ≤ i, j ≤ N , for which there exist constants λA, ΛA > 0 such that

λA |η|2 ≤
N∑

i,j=1

aij(x) ηi ηj ≤ ΛA |η|2

and

Au(x) := −
N∑

i,j=1

∂xj

(
aij(x) ∂xiu(x)

)
(5)

for all x ∈ Ω and η ∈ RN .

Remark 1 The operator induced by A can be interpreted as

A ∈ L
(
H1

0 (Ω), H−1(Ω)
)

and is symmetric with

〈Av, v〉 ≥ λA ‖∇v‖2L2(Ω) for all v ∈ H1
0 (Ω).

Since H1
0 (Ω) is included in L2 (Ω) with compact injection, as a consequence of

the Hilbert-Schmidt Theorem there exists a nondecreasing sequence of positive
real numbers,

0 < λ1 ≤ λ2 ≤ ... ≤ λk ≤ ......,

with limn→∞ λn = +∞ and there exists an orthonormal basis {wk : k ≥ 1} of
L2 (Ω). Moreover, {wk : k ≥ 1} is an orthogonal basis of H1

0 (Ω) with Awk =
λk wk for all k ≥ 1, where

(u, v)H1
0 (Ω)

Def.
= 〈Au, v〉 .

The operator F : L2(Ω) → L2(Ω) fulfills the following assumptions:

a) F is continuous with respect to the L2 norm.
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b) there exist β ∈ (0, λA λΩ) and Cβ > 0 with

(u, F(u)) ≤ β ‖u‖2L2(Ω) + Cβ for every u ∈ L2(Ω), (6)

c) there is some nondecreasing Ψ : [0,∞) → R such that for all u ∈ L2(Ω),

‖F(u)‖2L2(Ω) ≤ Ψ
(
‖u‖L2(Ω)

)
(7)

In special cases F will also be assumed to satisfy a local Lipschitz condition:

d) For all R > 0 there exists LR such that if v, w ∈ L2 (Ω) with ‖v‖L2(Ω) ≤ R,

‖w‖L2(Ω) ≤ R, then

‖F(v)−F(w)‖L2(Ω) ≤ LR ‖v − w‖L2(Ω) . (8)

Remark 2 In the subsequent statements and proofs, condition (c) can be
easily replaced by the slightly weaker assumption that there is a nondecreasing
function Ψ̃ : [0,∞)→ R such that for every u ∈ H1

0 (Ω) with Au ∈ H1
0 (Ω),

|〈F(u), A u〉| ≤ Ψ̃
(
‖u‖L2(Ω)

)
. (9)

‖F(u)‖2L2(Ω) ≤ Ψ̃
(
‖u‖H1,2(Ω)

)
. (10)

3 Dissipativity estimates

Both the existence of weak solutions and of bounded absorbing sets in L2(Ω),
H1

0 (Ω), respectively, are based on the following a priori estimates. Their proofs
do not require the uniquenss of weak solutions for a given initial value. Some
of the auxiliary results are formulated for Galerkin approximations, and their
(quite technical) proofs are postponed to § 7.

Proposition 3 If F satisfies hypothesis (b), then every weak solution u ∈
L2
(
0, T ; H1

0 (Ω)
)

of (4) with u′ ∈ L2
(
0, T ; H−1(Ω)

)
fulfills the estimates

∥∥u(t)
∥∥2

L2(Ω)
≤ M

L
+ e−L t

∥∥u(0)
∥∥2

L2(Ω)

λA

∫ t

0

‖∇u‖2L2(Ω) ds ≤
(

1

2
+
β

L

) ∥∥u(0)
∥∥2

L2(Ω)
+

(
Cβ +

βM

L

)
t

for every t ∈ [0, T ] with the constants M := 2Cβ > 0 and L := 2λΩ λA−2β > 0.

The proof is given in § 7.
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Proposition 4 Suppose that conditions (a) – (c) hold for F and that T < ∞.
Then there exists positive constants C0, C1 and C2 depending only on β, Cβ,
ΛA, λA and λΩ such that every weak solution u ∈ L2

(
0, T ; H1

0 (Ω)
)

of (4) with

u′ ∈ L2
(
0, T ; H−1(Ω)

)
and ‖u0‖L2(Ω) ≤ ρ satisfies the a priori estimates

‖u(s)‖2L2(Ω) ≤ C1 + e−C0 s ρ2∥∥∇u(t)
∥∥2

L2(Ω)
≤ C1 ·max{1, 1

t } ·
(
1+e−C2 t ρ2 + Ψ

(
C1 · (1 + e−C2 t ρ2)

))
for every 0 ≤ s < t ≤ T .

The proof, given below, uses analogous estimates for the Galerkin approxima-
tions in the following lemma, which is proved in the § 7.

Lemma 5 Let {wk : k ≥ 1} be an orthogonal basis of H1
0 (Ω) as in Remark 1.

For each n ∈ N, suppose that un(t) =

n∑
k=1

unk(t) · wk is a solution of


d

dt
(un(t), wk) + 〈Aun(t), wk〉 = (F(un(t)), wk)

(un(0), wk) = (u0, wk) , k = 1 . . . n.
(11)

If F : L2(Ω) → L2(Ω) satisfies the hypotheses (b) and (c), then there exist
positive constants C1, C2 and C3 depending only on β, Cβ, ΛA, λA and λΩ

such that whenever ‖u0‖L2(Ω) ≤ ρ, the following estimates holds for every s0, s,
t ∈ (0, T ] with 0 < s0 ≤ s ≤ t∥∥∇un(t)

∥∥2

L2(Ω)
≤ C1 · max

{
1, 1

t

}
·
(
1+e−C2 t ρ2 + Ψ

(
C1 (1 + e−C2 t ρ2)

))∫ t

s

‖u′n(ξ)‖L2 dξ ≤ C3 ·
√
t− s · const (s0, T, ρ) .

‖u′n(t)‖H−1(Ω) ≤ const (β, Cβ , ΛA, λA, λΩ, ρ) .

Proof of Proposition 4. The inclusions u ∈ L2
(
0, T ; H1

0 (Ω)
)

and u′ ∈
L2
(
0, T ; H−1(Ω)

)
always imply that u ∈ C0

(
[0, T ]; L2(Ω)

)
, see [7, § 5.9].

Let {wk : k ≥ 1} be an orthogonal basis of H1
0 (Ω) as in Remark 1. Then for

each n ∈ N,

un : [0, T ]→ H1
0 (Ω), t 7−→

n∑
k=1

(
u(t), wk

)
wk

is induced by the orthogonal projection of u(t) on span{w1 . . . wn} in L2(Ω).
It solves the perturbed nonlocal Galerkin problem{ d

dt (un(t), wk) + 〈Aun(t), wk〉 = (G(t), wk)

(un(0), wk) = (u0, wk) , k = 1 . . . n,
(12)

with the map G : [0, T ] → L2(Ω) defined by G(t) := F(u(t)) for each t ∈ [0, T ],
which depends only on time in combination with the weak solution u(·) (but not
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on un explicitly). In particular, G fulfills the conditions (a)–(c) (uniformly with
respect to time). Hence, Lemma 5 provides a priori estimates for each Galerkin
approximation un(·) depending essentially only on the L2 norm of the initial
value u0.

Since {wk, k ≥ 1} is an orthonormal basis of L2(Ω), the sequence (un(t))n∈N
converges to u(t) in L2(Ω) at each time t ∈ [0, T ]. The L2 bound of the H1

0

norm implies a weakly convergent subsequence of (un)n∈N in L2
(
0, T ; H1

0 (Ω)
)

and, its weak limit is u ∈ L2
(
0, T ; H1

0 (Ω)
)

(again). For each s0 ∈ (0, T ), we
even have a L∞ bound of the H1

0 norms of (un)n∈N in [s0, T ] and so Lemma 7

below guarantees the same estimates holds for
∥∥∇u(t)

∥∥2

L2(Ω)
at every time t ∈

[s0, T ], not just for Lebesgue-almost all such t.

Fixing s0 ∈ (0, T ) arbitrarily, the Galerkin approximations of any weak solution
u(·) with ‖u(0)‖L2(Ω) ≤ ρ are equi–continuous w.r.t. L2(Ω) in [s0, T ] due to the
second estimate in Lemma 5. Now the pointwise convergence of the Galerkin
approximations to u(·) implies the following statement directly:

Lemma 6 Suppose that the conditions (a)–(c) hold for F and that T < ∞.
For every ρ > 0, the subset of C0

(
[0, T ];L2(Ω)

)
consisting of all weak solutions

u ∈ L2
(
0, T ; H1

0 (Ω)
)

of (4) with u′ ∈ L2
(
0, T ; H−1(Ω)

)
and ‖u(0)‖L2(Ω) ≤ ρ

is equi-continuous in the subinterval [s0, T ] for every s0 ∈ (0, T ).

Lemma 7 Let X,Y be Banach spaces such that X is reflexive, and the in-
clusion X ⊂ Y is continuous. Assume that (un)n∈N is a bounded sequence in
L∞(t0, T ;X) such that un ⇀ u weakly in Lp(t0, T ;X) for some p ∈ [1,+∞)
and u ∈ C0([t0, T ];Y ).

Then, for every t ∈ [t0, T ], u(t) belongs to X and satisfies

‖u(t)‖X ≤ sup
n≥1
‖un‖L∞(t0,T ;X) .

Proof of Lemma 7. We denote

C := sup
n≥1
‖un‖L∞(t0,T ;X) .

As (un)n∈N is a bounded sequence in L∞(t0, T ;X), there exist a subsequence

(uµ) and v ∈ L∞(t0, T ;X) such that uµ
∗
⇀ v in L∞(t0, T ;X), i.e.,∫ T

t0

〈w∗(t), uµ(t)〉 dt −→
∫ T

t0

〈w∗(t), v(t)〉 dt ∀ w∗ ∈ L1(t0, T ;X ′),

where by 〈·, ·〉 we denote the duality product between X ′ and X.
In particular, we have this convergence for all w∗ ∈ Lp′(t0, T ;X ′). Then, uµ ⇀ v
weakly in Lp(t0, T ;X), and as we also have un ⇀ u weakly in Lp(t0, T ;X), then
v = u.
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Then, uµ
∗
⇀ u in L∞(t0, T ;X) and by the ∗−weak lower semicontinuity of the

norm, we obtain

‖u‖L∞(t0,T ;X) ≤ lim inf
µ→∞

‖uµ‖L∞(t0,T ;X) ≤ C. (13)

Now fix t ∈ [t0, T ]. By (13) there exists a sequence (tn)n∈N in [t0, T ] such that
tn → t and u(tn) ∈ X with ‖u(tn)‖X ≤ C for all n ∈ N.
As X is reflexive, there exist a subsequence (tµ) and x ∈ X such that u(tµ) ⇀ x
weakly in X. The inclusion X ⊂ Y is assumed to be continuous and so,

u(tµ) ⇀ x weakly in Y. (14)

Due to u ∈ C0([t0, T ];Y ), we have in addition that u(tn) → u(t) in Y . This
implies u(t) = x ∈ X.
Finally the weak lower semi-continuity of the norm implies for every t ∈ [t0, T ]

‖u(t)‖X = ‖x‖X ≤ lim inf
µ→∞

‖u(tµ)‖X ≤ C

4 Existence of weak solutions

Proposition 8 Suppose that hypotheses (a) – (c) hold for F : L2(Ω)→ L2(Ω).
Then, for every u0 ∈ L2(Ω), there exists a weak solution u ∈ L2

(
0, T ; H1

0 (Ω)
)

of problem (4). Moreover, u belongs to C0
(
[0, T ]; L2(Ω)

)
and, u|(0,T ] is locally

bounded in H1
0 (Ω).

Furthermore, if F is locally Lipschitz as in hypothesis (d), then the weak solu-
tion is unique.

Proof. The proof is based on a sequence of Galerkin approximations and the
a priori estimates in § 3. Let {wk, k ≥ 1} be an orthogonal basis of H1

0 (Ω) as in

Remark 1 and for each n ∈ N, consider a solution un(t) =

n∑
k=1

unk(t) wk of (11).

Fix s0 ∈ (0, T ) arbitrarily.
By Proposition 3, the sequence (un)n∈N is bounded in L2

(
0, T ; H1

0 (Ω)
)

Due to

Lemma 5, (u′n)n∈N is bounded both in L2
(
s0, T ; L2(Ω)

)
and L2(0, T ;H−1(Ω)).

Hence Alaoglu’s Theorem provides a subsequence (again denoted by) (un)n∈N
and functions u ∈ L2

(
0, T ; H1

0 (Ω)
)
, v ∈ L2

(
s0, T ; L2(Ω)

)
, w ∈ L2

(
0, T ; H−1(Ω)

)
with 

un −→ u weakly in L2
(
0, T ; H1

0 (Ω)
)

u′n −→ v weakly in L2
(
s0, T ; L2(Ω)

)
u′n −→ w weakly in L2

(
0, T ; H−1(Ω)

)
.
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In particular, u′ = v = w holds Lebesgue-almost everywhere, which a simple
check of the distributional derivative property reveals. This implies that u ∈
L2(0, T ; H−1(Ω)) ∩ C0

(
[0, T ];L2(Ω)

)
. Standard arguments conclude u(0) = u0

from un(0) −→ u0 in L2(Ω) for n→∞ (see e.g. [7, § 7.1]).

The sequence (un)n∈N is equi–continuous in C0
(
[s0, T ]; L2(Ω)

)
by Lemma 6.

Moreover, the set
{
un(t)

∣∣ t ∈ [s0, T ], n ∈ N
}

is relatively compact in L2(Ω)
as a consequence of Lemma 5 and the Sobolev Embedding Theorem. Hence
the Arzelà–Ascoli Theorem provides a further subsequence (again denoted by)
(un)n∈N with

un(t) −→ u(t) in L2(Ω) uniformly for t ∈ [s0, T ].

Hypothesis (a) on the continuity of F implies that F(un(t))→ F(u(t)) in L2(Ω)
for every t ∈ [s0, T ].

Taking the limit as n→∞ gives that u ∈ L2
(
s0, T ; H1

0 (Ω)
)

is a weak solution

to the partial differential equation in problem (4) with u′ ∈ L2
(
s0, T ; H−1(Ω)

)
.

Finally, u|[s0,T ] : [s0, T ]→ H1
0 (Ω) is bounded due to Proposition 4.

If F satisfies the local Lipschitz condition (d) in addition the uniqueness of
the weak solution follows by a standard argument.

5 The multivalued semiflow of weak solutions

Define ΦF : [0,∞) × L2(Ω) → P
(
L2(Ω)

)
, where P

(
L2(Ω)

)
consists of all

nonempty subsets of L2(Ω), by

ΦF (t, u0) :=

{
u(t) ∈ L2(Ω)

∣∣ ∃ u(·) ∈ L2
(
0, t; H1

0 (Ω)
)

:

u′ ∈ L2
(
0, t; H−1(Ω)

)
, u(0) = u0 and

u is weak solution of (4) in Ω× (0, t)

}
.

(15)

It is clear that this multivalued map ΦF forms a strict multivalued semiflow on
L2(Ω) as in the the following definition of Kapustyan et al. [9, Definition 2.1].

Definition 9 Let (X, d) be a metric space and, P(X) consists of all its
nonempty subsets.
A map Φ : [0,∞) ×X → P(X) is called strict multivalued semiflow (m–semi-
flow) on X if it satisfies the following conditions:

(A) Φ(0, x) = {x} for all x ∈ X
(B) Φ(t+ s, x) = Φ(t, Φ(s, x)) for all s, t ≥ 0, x ∈ X.

Remark 10 Kapustyan et al. [9, Definition 2.1] define, in fact, a more gen-
eral m–semiflow Φ : [0,∞) × X → P(X), which satisfies condition (A), but
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instead of the equality condition (B), satisfies the following weaker inclusion
condition

(C) Φ(t+ s, x) ⊂ Φ(t, Φ(s, x)) for all s, t ≥ 0, x ∈ X.
The reason is that the counterpart of the setvalued mapping ΦF above for many
systems, in particular the 3-dimensional Navier–Stokes equations, is restricted
to weak solutions that satisfy an energy inequality. However, such energy in-
equalities only hold (or can only be proved to hold) for almost all time instants.
Hence a concatentation of weak solutions satisfying the energy inequality on ad-
jacent time intervals may not satisfy the energy inequality on the concatenated
time interval, which means that the strict property (B) need not hold. see also
Morillas & Valero [12]. This situation does not arise for the mapping ΦF defined
above for the problem (4) under consideration in this paper.

Every strict multivalued semiflow Φ : [0,∞) × X → P(X) (in the sense
of Definition 9) induces a map Φ̃ : [0,∞) × P(X) → P(X) in the following
canonical way:

Φ̃(t,M)
Def.
=

⋃
x∈M

Φ(t, x) for all nonempty M ⊂ X.

Obviously, it satisfies the corresponding conditions

(A∗) Φ̃(0,M) = M for all M ∈ P(X)

(B∗) Φ̃(t+ s,M) = Φ̃(t, Φ̃(s,M)) for all s, t ≥ 0, M ∈ P(X)

or in the general nonstrict case

(C∗) Φ̃(t+ s,M) ⊂ Φ̃(t, Φ̃(s,M)) for all s, t ≥ 0, M ∈ P(X)

Hence one usually does not distinguish between Φ̃ and Φ.

5.1 Global attractors of multivalued semiflows:
General results

Definition 11 A global attractor of a strict multivalued semiflow Φ on a metric
space (X, d) is a nonempty subset A of X which is Φ-invariant, i.e. Φ(t, A) =
A for all t ≥ 0, and attracts every bounded subset B of X, i.e.

distX (Φ(t, B), A)→ 0 as t→∞,

where distX is the Hausdorrf semi–distance on P(X). For a general non-strict
multivalued semiflow the attractor A is only required to be Φ-negativly invariant,
i.e. A ⊂ Φ(t, A) for all t ≥ 0 [11, Definition 6].

The existence of a global attractor is usually concluded from the compactness
or asymptotic compactness of the multivalued mapping Φ(t, ·) for t > 0:
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Definition 12 [11, Definition 4] A multivalued semiflow Φ on a metric space
(X, d) is called asymptotically upper semicompact if it satisfies the following
condition:
Let B ⊂ X be any bounded subset such that

⋃
t≥tB Φ(t, B) is bounded in (X, d)

for some tB ≥ 0. Then every sequence (ξn)n∈N with ξn ∈ Φ(tn, B) for some
sequence tn →∞ is precompact in X.

Theorem 13 [11, Theorem 2 & Remark 2]
Let the multivalued semiflow Φ : [0,∞) × X → P(X) be asymptotically upper
semicompact with nonempty compact values. Suppose for any t > 0 that Φ(t, ·) :
X → P(X) has closed graph. Furthermore assume that for every bounded subset
B ⊂ X, there exists tB > 0 such that

⋃
t≥tB Φ(t, B) is bounded in (X, d) .

Then Φ has a global attractor A in X given by

A =
⋃

B⊂X
Bbounded

⋂
t≥0

Φ(t, B).

For the parabolic differential equations considered here, however, we can draw
essentially the same conclusions without investigating asymptotic features of
Φ(t, ·) (for t→∞) explicitly:

Theorem 14 [11, Theorem 4 & Remark 7] Let Φ : [0,∞)×X → P(X) be a
multivalued semiflow such that for every t > 0, Φ(t, ·) : X → P(X) has closed
graph and compact values. Furthermore suppose the existence of a compact set
K ⊂ X such that for every bounded subset B ⊂ X,

distX (Φ(t, B),K)→ 0 as t→∞.

Then Φ has a compact global attractor and, it is the minimal closed set attracting
every bounded subset of X.

5.2 The main result about ΦF : existence of a global at-
tractor

The subsequent Propositions 16, 18 and 21 verify theta ΦF satisfies the assump-
tions of Theorem 14 above. Hence, the main result for the nonlocal reaction-
diffusion problem (4) is the following statement:

Theorem 15 Assume that Ω is a bounded open set and that F : L2(Ω) −→
L2(Ω) satisfies hypotheses (a)–(c).

Then the strict multivalued semiflow ΦF : [0,∞) × L2(Ω) → P(L2(Ω)) defined
in (15) has a compact global attractor in L2(Ω).
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5.3 Topological properties of ΦF

In combination with the Sobolev Embedding Theorem, the estimates in Proposi-
tion 4 and Proposition 8 (about existence of weak solutions) imply immediately:

Proposition 16 If F : L2(Ω) → L2(Ω) satisfies hypotheses (a) – (c) then
for every t ∈ (0,∞), the multivalued semiflow ΦF (t, ·) maps every nonempty
bounded subset of L2(Ω) into a nonempty and relatively compact subset of L2(Ω).

Lemma 17 Assume that Ω is a bounded open set and F : L2(Ω) −→ L2(Ω)
satisfies hypotheses (a)–(c).
Then, the multivalued map ΦF defined in (15) is a strict multivalued semiflow
on L2(Ω).

Proof. It is easy to check that ΦF is well defined. Moreover, ΦF satisfies
condition (A) in Definition 9.
Let us now prove that ΦF (t + s, u0) ⊂ ΦF (t,ΦF (s, u0)) also holds for all
t, s ∈ R+, u0 ∈ L2 (Ω). Consider y ∈ ΦF (t+ s, u0). Then from the definition of
ΦF , there exists a solution u ∈ D (u0) such that u(t + s) = y. As s ∈ R+,
then u(s) ∈ ΦF (s, u0), and the result follows if we prove y ∈ ΦF (t, u(s)).
Let u(·) = u(· + s). It is straightforward to prove by a change of variable
that u is a weak solution and u(t) = u(t + s) = y, u(0) = u(s). Then
y ∈ ΦF (t, u(s)) ⊂ ΦF (t,ΦF (s, u0)).

Now we shall prove that ΦF (t,ΦF (s, u0)) ⊂ ΦF (t+ s, u0).
Let y ∈ ΦF (t,ΦF (s, u0)), then there exist z1, u1 (·) ∈ D (u0), and u2 (·) ∈ D (z1),
verifying

u1(0) = u0, u1(s) = z1,

u2(0) = z1, u2(t) = y.

We shall check that there is u (·) ∈ D (u0) verifying u(0) = u0, u(t+ s) = y. As
u1, u2 ∈ C0

(
[0, T ]; L2(Ω)

)
, we can define u as

u(r) =

{
u1(r), if 0 ≤ r ≤ s,
u2(r − s), if s ≤ r.

If we prove that u is a weak solution, then it is evident that y ∈ ΦF (t+ s, u0).
For any v ∈ C∞0 ([0, T ]× Ω), using the change of variable τ = r − s, and the
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definition of u1 and u2, we have∫ T

0

〈
∂

∂r
u, v

〉
dr +

∫ T

0

[〈Au, v〉 − (F(u), v)] dr

=

∫ s

0

〈
∂

∂r
u1, v

〉
dr +

∫ s

0

[〈Au1, v〉 − (F(u1), v)] dr

+

∫ T

s

〈
∂

∂r
u2(r − s), v

〉
dr +

∫ T

s

[〈Au2(r − s), v〉 − (F(u2(r − s)), v)] dr

=

∫ s

0

〈
∂

∂r
u1, v

〉
dr +

∫ s

0

[〈Au1, v〉 − (F(u1), v)] dr

+

∫ T−s

0

〈
∂

∂r
u2, v

〉
dr +

∫ T−s

0

[〈Au2, v〉 − (F(u2), v)] dr.

Since u1, u2 are weak solutions, then the two last integrals are equal to zero.
Hence, u is a weak solution.

Proposition 18 Suppose hypotheses (a) – (c) for F : L2(Ω)→ L2(Ω).
For every t > 0, the graph of the multivalued map ΦF (t, ·) : L2(Ω)→ P(L2(Ω))
is closed with respect to the norm topology in L2(Ω).

Proof.
Choose sequences (un)n∈N, (ξn)n∈N in L2(Ω) converging to u, ξ respectively with
ξn ∈ ΦF (t, un) for every n ∈ N.
By definition of ΦF , there exists a weak solution vn(·) ∈ L2

(
0, t; H1

0 (Ω)
)

of (4)

for each n ∈ N such that vn(0) = un, vn(t) = ξn and v′n ∈ L2
(
0, t; H−1(Ω)

)
.

This implies vn(·) ∈ C0
(
[0, t]; L2(Ω)

)
.

Due to the uniform bounds in Proposition 3, the Alaoglu Theorem provides a
subsequence (again denoted by) (vn(·))n∈N and some w ∈ L2

(
0, T ; H1

0 (Ω)
)

with

w′ ∈ L2
(
0, T ; H−1(Ω)

)
and{

vn −→ w weakly in L2
(
0, T ; H1

0 (Ω)
)

v′n −→ w′ weakly in L2
(
0, T ; H−1(Ω)

)
.

In particular, w ∈ C0
(
[0, t]; L2(Ω)

)
.

Fixing s0 ∈ (0, t) arbitrarily, the sequence of restrictions vn(·)|[s0,t] is equi-
continuous according to Lemma 6 and, all their values are in a relatively com-
pact subset of L2(Ω) due to Proposition 4 and the Sobolev Embedding Theo-
rem. Hence the Arzelà–Ascoli Theorem ensures a subsequence of

(
vn(·)|[s0,t]

)
n∈N

which converges uniformly in C0
(
[s0, t]; L

2(Ω)
)
.

By means of Cantor’s diagonal construction, we obtain a subsequence (again
denoted by) (vn(·))n∈N and some v ∈ C0

(
(0, t]; L2(Ω)

)
such that for every

s0 ∈ (0, t),
vn|[s0,t] −→ v|[s0,t] uniformly w.r.t. L2(Ω).

12



The Mazur Lemma implies v(s) = w(s) ∈ H1
0 (Ω) for Lebesgue-almost every

s ∈ [0, t]. Finally, hypothesis (a) about the continuity of F and the weak
convergences mentioned above lead to the conclusion that for every ϕ ∈ H1

0 (Ω),
the limit of

(v′n, ϕ) + 〈Avn, ϕ〉 = (F(vn), ϕ)

for n→∞ is
(v′, ϕ) + 〈Av, ϕ〉 = (F(v), ϕ)

Lebesgue-almost everywhere in [0, t].

As regards the claim that ξ ∈ ΦF (t, u), we still have to check v(0) = u. Following
the standard arguments (as in [7, § 7.1 c], for example), the weak solution
property of vn, v ∈ L2

(
0, t; H1

0 (Ω)
)

guarantees
−
∫ t

0

(
(vn, η

′) + 〈Avn, η〉
)
ds =

∫ t

0

(F(vn), η) ds + (un, η(0))

−
∫ t

0

(
(v, η′) + 〈Av, η〉

)
ds =

∫ t

0

(F(v), η) ds + (v(0), η(0))

for every η ∈ C1
(
[0, t]; H1

0 (Ω)
)

with η(t) = 0. The convergence of (vn)n∈N
mentioned above leads to (un, η(0)) −→ (v(0), η(0)) for every η(0) ∈ H1

0 (Ω),

i.e. v(0) = lim
n→∞

un = u in L2(Ω).

5.4 Absorbing sets of ΦF in L2(Ω) and H1
0 (Ω)

Definition 19 Let Φ be a multivalued semiflow on a metric space (X, d).
A subset M ⊂ X is called bounded absorbing set of Φ in X if it satisfies the
following conditions that

(i) M is bounded in (X, d), i.e. there exist x0 ∈ X and ρ > 0 with
d(x, x0) ≤ ρ for all x ∈M ,

(ii) for every bounded set B ⊂ X, there exists tB ≥ 0 such that
Φ(t, B) ⊂M holds for all t ≥ tB.

Proposition 20 If F : L2(Ω)→ L2(Ω) satisfies hypothesis (b), then

M0 :=

{
v ∈ L2(Ω) : ‖v‖2L2(Ω) ≤

M

L
+ 1

}
.

is a bounded absorbing set of the multivalued semiflow ΦF in L2 (Ω).

Proof. According to Proposition 3, every weak solution u ∈ L2
loc

(
0,∞; H1

0 (Ω)
)

of (4) with u′ ∈ L2
loc

(
0,∞; H−1(Ω)

)
satisfies at every time t ≥ 0

‖u(t)‖2L2(Ω) ≤
M

L
+ e−Lt ‖u(0)‖2L2(Ω) .

13



For every bounded set B ⊂ L2(Ω), there exists some tB ≥ 0 such that all u0 ∈ B
and t ≥ tB fulfill

e−Lt ‖u0‖2L2(Ω) ≤ 1

and so, all weak solutions u ∈ L2
loc

(
0,∞; H1

0 (Ω)
)

of (4) with u(0) ∈ B satisfy

‖u(t)‖2L2(Ω) ≤
M

L
+ 1 ∀ t ≥ tB .

Proposition 21 If F : L2(Ω) −→ L2(Ω) satisfies hypothesis (a) – (c), then
the multivalued semiflow ΦF of problem (4) has a bounded absorbing set in
H1

0 (Ω) in the following sense:
There exists a bounded set M1 ⊂ H1

0 (Ω) such that for every bounded subset
B ⊂ L2(Ω), there exists some tB ≥ 0 with ΦF (t, B) ⊂M1 for all t ≥ tB.

Proof. It results from Proposition 20 and the a priori estimates in Proposi-
tion 4. Consider

M1 :=

{
v ∈ H1

0 (Ω) : ‖v‖2L2(Ω) ≤
M

L
+ 1, ‖∇v‖2L2(Ω) ≤ C1 (2 + Ψ(2 C1))

}
and the constants C1, C2 mentioned in Proposition 4 and depending only on β,
Cβ , ΛA, λA and λΩ. For every bounded set B ⊂ L2(Ω), there exists a finite
time tB ≥ 1 such that all u0 ∈ B satisfy

e−L tB ‖u0‖L2(Ω) ≤ 1, e−C2 tB ‖u0‖L2(Ω) ≤ 1

Then every v ∈ ΦF (t, u0) with t ≥ tB and u0 ∈ B fulfills v ∈M1.

6 An example

Let Ω ⊂ RN be a bounded open set with a smooth boundary. Let us consider the
following problem for a nonlocal reaction-diffusion equation with zero Dirichlet
boundary condition in Ω,

∂u

∂t
−∆u = f(u)u (1− u) , in Ω× (0,+∞) ,

u = 0, on ∂Ω× (0,+∞) ,
u(x, 0) = u0(x), x ∈ Ω,

(16)

where we now define

u(x) =
1

|B(x; δ)|

∫
B(x;δ)∩Ω

u(y)dy, (17)
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for some small δ > 0, and f : R −→ R, f is continuous and there exists a
constant C > 0 such that f satisfies

|f(r)| ≤ C, for all r ∈ R,

and
rf(r) ≥ 0, for all r ∈ R.

Remark 22 This structure is chosen to simplify the estimates presented below.
In particular, |B(x; δ)| in the denominator of (17) could be replaced by |B(x; δ)∩
Ω| if the domain Ω satisfies a uniform interior cone condition, since this would
ensure that |B(x; δ) ∩ Ω| is uniformly bounded from below.

We observe that this problem is a particular case. If we consider aij = δij ,
we have A = −∆, λA = ΛA = 1 and F(u)(x) = f(u(x))u (1− u).

Now, we will prove the hypothesis (6) and (10).
We observe that thanks to the assumptions of f ,∫

Ω

uF(u)dx =

∫
Ω

uf(u)u (1− u) dx

=

∫
Ω

uf(u)udx−
∫

Ω

uf(u)u2dx

≤ 1

4

∫
Ω

uf(u)dx+

∫
Ω

uf(u)u2dx−
∫

Ω

uf(u)u2dx

=
1

4

∫
Ω

uf(u)dx

≤ 1

4

∫
Ω

(
λΩ

2
|u|2 +

|f(u)|2

2λΩ

)
dx

=
λΩ

8
‖u‖2L2(Ω) +

C2

8λΩ
|Ω| ,

and then we have (6) with β = λΩ

8 ∈ (0, λΩ) and Cβ = C2

8λΩ
|Ω| > 0.

We also have∫
Ω

|F(u)(x)|2 dx ≤ C
(∫

Ω

u2dx+

∫
Ω

u4dx− 2

∫
Ω

u3dx

)
.

Taking into account that

|u| =

∣∣∣∣∣ 1

B(x; δ)

∫
B(x;δ)∩Ω

u(y)dy

∣∣∣∣∣
≤ 1

|B(x; δ)|

(∫
B(x;δ)∩Ω

u2(y)dy

)1/2(∫
B(x;δ)∩Ω

1dy

)1/2

≤ 1

|B(0; δ)|1/2
‖u‖L2(Ω) ,
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we observe that if we consider m ≥ 1, we have∫
Ω

|u|m dx ≤ |Ω|
|B(0; δ)|m/2

‖u‖mL2(Ω) . (18)

We also obtain ∫
Ω

(F(u))2dx ≤ C |Ω|
|B(0; δ)|

‖u‖2L2(Ω)

+
C |Ω|
|B(0; δ)|2

‖u‖4L2(Ω)

+
2C |Ω|

|B(0; δ)|3/2
‖u‖3L2(Ω) ,

and then we have (7) with Φ
(
‖u‖L2(Ω)

)
= C|Ω|
|B(0;δ)| ‖u‖

2
L2(Ω) + C|Ω|

|B(0;δ)|2 ‖u‖
4
L2(Ω) +

2C|Ω|
|B(0;δ)|3/2 ‖u‖

3
L2(Ω).

We observe that if u ∈ L2 (Ω), then F(u) ∈ L∞ (Ω) ⊂ L2 (Ω) .

Now, we prove that F is continuous. We suppose that un −→ u strongly
in L2 (Ω), then we have to prove that F(un) −→ F(u) strongly in L2 (Ω). It
is sufficient to prove that there exists {uµ} ⊂ {un} such that F(uµ) −→ F(u)
strongly in L2 (Ω).

As un −→ u strongly in L2 (Ω), then (see [4]) there exists {uµ} ⊂ {un} such
that

uµ(x) −→ u(x) a.e. in Ω.

Then, as f is continuous we have

f(uµ(x)) −→ f(u(x)) a.e. in Ω. (19)

We observe that arguing as before we obtain

|uµ(x)− u(x)| = 1

|B(x; δ)|

∣∣∣∣∣
∫
B(x;δ)∩Ω

(uµ(y)− u(y)) dy

∣∣∣∣∣
≤ 1

|B(0; δ)|1/2
‖uµ − u‖L2(Ω) −→ 0,

and then
uµ(x) −→ u(x) a.e. in Ω. (20)

From (19) and (20) we have

F(uµ)(x) −→ F(u)(x) a.e. in Ω. (21)
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On the other hand, we observe that ‖uµ‖L2(Ω) is bounded because Ω is a

bounded domain and uµ −→ u strongly in L2 (Ω). Then, we have

|F(uµ(x))| ≤ C |uµ(x)| |1− uµ(x)| (22)

≤ C 1

|B(0; δ)|1/2
‖uµ‖L2(Ω)

(
1 +

1

|B(0; δ)|1/2
‖uµ‖L2(Ω)

)
≤ C̃,

where C̃ is a positive constant.
Then, from (21), (22) and by the Dominated Convergence Theorem, we

obatin
F(uµ) −→ F(u) strongly in L2 (Ω) ,

then F is continuous.
From Theorem 8 we have that there exists a weak solution u ∈ L2

(
0, T ; H1

0 (Ω)
)

of problem (16) with u′ ∈ L2
(
0, T ; H−1(Ω)

)
. According to Theorem 15, the

problem (16) defines a multivalued semiflow in L2 (Ω), which possesses a com-
pact global attractor A. Also, A is the minimal closed attracting set.

7 Proofs of the dissipativity estimates

Proof of Proposition 3. The uniform ellipticity condition of the linear
operator A and assumption (b) on the nonlocal operator F used in the energy
equality,

1

2

d

dt
‖u‖2L2(Ω) +

∫
Ω

u (Au) dx =

∫
Ω

u F(u) dx (23)

give
1

2

d

dt
‖u‖2L2(Ω) + λA ‖∇u‖2L2(Ω) ≤ β ‖u‖2L2(Ω) + Cβ . (24)

Hence, by the Poincaré inequality (3),

1

2

d

dt
‖u‖2L2(Ω) + λΩ λA ‖u‖2L2(Ω) ≤ β ‖u‖2L2(Ω) + Cβ .

i.e.,
d

dt
‖u‖2L2(Ω) ≤M − L ‖u‖

2
L2(Ω) , (25)

where M := 2Cβ > 0 and L := 2 λΩ λA − 2β > 0.

Multiplying by eLt, and integrating between 0 and t, it follows

eLt ‖u(t)‖2L2(Ω) ≤ ‖u(0)‖2L2(Ω) +M

∫ t

0

eLs ds

≤ ‖u(0)‖2L2(Ω) +M

∫ t

−∞
eLs ds,
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i.e., for every t ∈ [0, T ],

‖u(t)‖2L2(Ω) ≤
M

L
+ e−Lt ‖u(0)‖2L2(Ω) . (26)

Finally, integrating equation (24) with respect to time, we obtain

λA

∫ t

0

‖∇u‖2L2(Ω) ds

≤ 1

2

(
‖u0‖2L2(Ω) − ‖u(t)‖2L2(Ω)

)
+ β

∫ t

0

‖u‖2L2(Ω) ds + Cβ t

≤ ‖u0‖2L2(Ω)

(
1

2
+ β

∫ t

0

e−Ls ds

)
+

(
Cβ +

βM

L

)
t.

Proof of Lemma 5. Let {wk : k ≥ 1} denote an orthogonal basis of H1
0 (Ω)

as mentioned in Remark 1. For each n ≥ 1, let

un(t) =

n∑
k=1

unk(t) wk,

be a Galerkin approximation of problem (4) satisfying the finite dimensional
system of ordinary differential equations in the sense that{ d

dt (un(t), wk) + 〈Aun(t), wk〉 = (F(un(t)), wk)

(un(0), wk) = (u0, wk) , k = 1, . . . , n.
(27)

We observe that

Aun(t) =

n∑
k=1

unk(t) Awk =

n∑
k=1

unk(t) λk wk ∈ span {w1, . . . , wn} .

Then, multiplying equation (27) by unk(t) λk, summing from k = 1 to n, and
using property (c) of F , gives

〈u′n(t), Aun(t)〉 + ‖Aun(t)‖2L2(Ω) = (F(un(t)), Aun(t))

≤ 1
2

(
‖F(un(t))‖2L2(Ω) + ‖Aun(t)‖2L2(Ω)

)
≤ Ψ(un(t)) + 1

2 ‖Aun(t)‖2L2(Ω) (28)
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for Lebesgue-almost all t ∈ [0, T ]. On the other hand,

〈u′n(t), Aun(t)〉 = −
∫

Ω

N∑
i,j=1

∂xj

(
aij(x) ∂xi

un
)
u′n dx (29)

=

N∑
i,j=1

∫
Ω

aij(x) ∂xi
un (∂t ∂xj

un) dx

=
d

dt

(
1

2
· A [un, un]

)
(30)

for the symmetric bilinear form

A [u, v] :=

∫
Ω

N∑
i,j=1

aij(x) ∂xi
u ∂xj

v dx, u, v ∈ H1
0 (Ω).

since it is assumed that aij = aji, with i, j = 1, .., N , and these coefficients do
not depend on t.

Integrating from s and t, then gives

1

2
· A [un(t), un(t)] ≤ 1

2
· A [un(s), un(s)] +

∫ t

s

Ψ
(
‖un(ξ)‖L2(Ω)

)
dξ. (31)

Hence, it follows from the inequalities of coercivity and continuity

λA ‖∇un(s)‖2L2(Ω) ≤ A [un(s), un(s)] ≤ ΛA ‖∇un(s)‖2L2(Ω)

that

λA
2
· ‖∇un(t)‖2L2(Ω) ≤

ΛA
2
· ‖∇un(s)‖2L2(Ω) +

∫ t

s

Ψ
(
‖un(ξ)‖L2(Ω)

)
dξ. (32)

Integrating now the variable s between t0 := max{0, t− 1} and t, gives

λA
2
·min{t, 1} · ‖∇un(t)‖2L2(Ω) ≤ ΛA

2

∫ t

max{0,t−1}
‖∇un(s)‖2L2(Ω) ds +∫ t

max{0,t−1}
Ψ
(
‖un(s)‖L2(Ω)

)
ds.

On the other hand, integrating (24) with respect to time in [t0, t], it follows that

‖un(t)‖2L2(Ω) − ‖un(t0)‖2L2(Ω) + 2λA

∫ t

t0

‖∇un(s)‖2L2(Ω) ds

≤ 2β

∫ t

t0

‖un(s)‖2L2(Ω) ds+ 2Cβ .
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Then, using Proposition 3,

ΛA

∫ t

t0

‖∇un(s)‖2L2(Ω) ds ≤ ΛA
2β + 1

2λA
sup

s∈[t0,t]

‖un(s)‖2L2(Ω) +
Cβ ΛA
λA

≤ C2 ·
(

1 + e−L t ‖u0‖2L2(Ω)

)
(33)

for all t ≥ 0 with a constant C2 = C2(β,ΛA, λA, λΩ, Cβ) > 1. Thus, whenever
‖u0‖L2(Ω) ≤ ρ,

‖∇un(t)‖2L2(Ω) ≤
2 C2

λA min{t, 1}

(
1 + e−L t ρ2 + Ψ

(M
L

+ e−L t ρ2
))

. (34)

Moreover, this upper bound holds for every t ∈ (0, T ] — in contrast to the
immediate consequence of inequality (28) and the coercivity of A.

The next step is to establish an estimate for ‖u′n‖L∞(0,T ;H−1(Ω)). This fol-
lows essentially the arguments for the standard energy estimate, taking the
preceding a priori bounds into consideration.
For every v ∈ H1

0 (Ω), there is a unique representation v = v1 + v2 with v1 ∈
span{w1, . . . , wn} and (v2, wk) = 0 for k = 1, . . ., n since {wk, k ≥ 1} is an
orthonormal basis of L2(Ω).

For Lebesgue-almost every t ∈ [0, T ] it follows that(
u′n(t), v1

)
+
〈
Aun(t), v1

〉
=

(
F(un(t)), v1

)
〈u′n(t), v〉 = (u′n(t), v) =

(
u′n(t), v1

)
=

(
F(un(t)), v1

)
−
〈
Aun(t), v1

〉
≤ (‖F(un(t))‖L2 + ΛA ‖∇un(t)‖L2) ‖v1‖H1

0 (Ω).

Then, inequality (7) in assumption (c) of F implies that

〈u′n(t), v〉 ≤
(√

Ψ (‖un(t)‖L2) + ΛA ‖∇un(t)‖L2

)
‖v1‖H1

0 (Ω).

Hence, in view of the estimates (26) and (34),

‖u′n(t)‖H−1(Ω) ≤
√

Ψ (‖un(t)‖L2) + ΛA ‖∇un(t)‖L2

≤ const
(
β, Cβ , ΛA, λA, λΩ, ‖u0‖L2(Ω)

)
.

Finally, multiplying (27) by u′nk(t) and summing from k = 1 to n, it follows
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from inequality (10) in assumption (c) of F that

〈u′n(t), u′n(t)〉+ 〈Aun(t), u′n(t)〉 = (F(un(t)), u′n(t))

≤ ‖F(un(t))‖2L2(Ω) +
1

4
‖u′n(t)‖2L2(Ω)

≤ Ψ
(
‖un(t)‖L2(Ω)

)
+

1

4
‖u′n(t)‖2L2(Ω).

Using (30), this can be reformulated as

‖u′n(t)‖2L2(Ω) +
d

dt

(
1

2
A [un, un]

)
≤ Ψ

(
‖un(t)‖L2(Ω)

)
+

1

4
‖u′n(t)‖2L2(Ω)

i.e., for Lebesgue-almost every t ∈ [0, T ],

‖u′n(t)‖2L2(Ω) +
d

dt
A [un, un] ≤ 2 Ψ

(
‖un(t)‖L2(Ω)

)
.

Now fix s0 ∈ (0, T [ arbitrarily and integrate between s0 and T to obtain∫ T

s0

‖u′n(ξ)‖2L2(Ω) dξ +A [un(T ), un(T )] ≤ A [un(s0), un(s0)]

+ 2

∫ T

s0

Ψ
(
‖un(ξ)‖L2(Ω)

)
dξ.

The general inequalities of coercivity and continuity

0 ≤ λA ‖∇un(t)‖2L2(Ω) ≤ A [un(t), un(t)] ≤ ΛA ‖∇un(t)‖2L2(Ω) ,

imply that∫ T

s0

‖u′n(ξ)‖2L2(Ω) dξ ≤ ΛA ‖∇un(s0)‖2L2(Ω) + 2

∫ T

s0

Ψ
(
‖un(ξ)‖L2(Ω)

)
dξ.

Hence, from the estimates (26), (34) and the monotonicity of Ψ one concludes
that ∫ T

s0

‖u′n(ξ)‖2L2(Ω) dξ ≤ const(β,ΛA, λA, λΩ, Cβ , s0, T, ‖u0‖L2(Ω)).

Finally, Hölder’s inequality guarantees the claimed inequality for every s, t ∈
[s0, T ] with s < t, i.e.,∫ t

s

‖u′n(ξ)‖L2(Ω) dξ ≤ const
(
β,ΛA, λA, λΩ, Cβ , s0, T, ‖u0‖L2(Ω)

)
·
√
t− s .
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