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ANALYSIS OF THE EFFECTS OF A FISSURE FOR A
NON-NEWTONIAN FLUID FLOW IN A POROUS MEDIUM

MARÍA ANGUIANO† AND FRANCISCO JAVIER SUÁREZ-GRAU ‡

Abstract. We study the solution of a non-Newtonian flow in a porous medium which characteristic
size of the pores ε and containing a fissure of width ηε. The flow is described by the incompressible
Stokes system with a nonlinear viscosity, being a power of the shear rate (power law) of flow index
1<r<+∞. We consider the limit when size of the pores tends to zero and we obtain different models
depending on the magnitude ηε with respect to ε.
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1. Introduction

In this paper we consider an incompressible viscous non-Newtonian flow in a pe-
riodic porous medium with characteristic size of the pores ε and containing a fissure
{0≤xn≤ηε} of width ηε with ε,ηε two small parameters devoted to tend to zero (see
Figure 2.1). Modeling of non-Newtonian flow in fractured medium has encountered a
renewed interest because it is essential in hydraulic fracturing operations, largely used
for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact
with pre-existing rock fractures also during drilling operations, enhanced oil recovery,
environmental remediation, and other natural phenomena such as magma and sand
intrusions, and mud volcanoes.

The aim of this work is to find the effective system corresponding to the limit when
the size of the pores, and so the width of the fissure, tends to zero. Homogenization
has been applied to the study of perforated materials for a long time. The question
of a medium containing a fissure with properties different from those of the rest of the
material has been the subject of many studies previously, see Ciarlet et al. [8], Panasenko
[11] and Chapter 13 of Sanchez-Palencia [12] among others. A similar problem of the
one considered in this paper, but for the Laplace’s equation, was studied in Bourgeat
and Tapiero [4]. The peculiar behavior observed for the Laplace’s equation when ηε≈ε
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has motivated the analogous study for the Newtonian Stokes system in Bourgeat et al.
[5] (see Zhao and Yao [15] for the Newtonian Navier-Stokes system).

A lot of fluid used in industrial practice are modeled with a shear thinning law.
For this reason, in this paper we extend the previous studies obtained for Newtonian
fluids to the case of power law fluid, whose situation is completely different. The main
reason is that the viscosity is a nonlinear function of the symmetrized gradient of the
velocity. In this sense, we consider that the viscosity satisfies the non linear power law,
which is widely used for melted polymers, oil, mud, etc. If u is the velocity and Du the
gradient velocity tensor, denoting the shear rate by D[u] = 1

2 (Du+Dtu), the viscosity
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as a function of the shear rate is given by

ηr (D[u]) =µ|D [u]|r−2
, 1<r<+∞,

where the two material parameters µ>0 and r are called the consistency and the flow
index, respectively.

Recall that r= 2 yields the Newtonian fluid. For 1<r<2 the fluid is pseudoplastic
(shear thinning), which is the characteristic of high polymers, polymer solutions, and
many suspensions, whereas for r>2 the fluid is dilatant (shear thickening), whose be-
havior is reported for certain slurries, like mud, clay, or cement, and implies an increased
resistance to flow with intensified shearing.

We consider fluids satisfying the non-Newtonian Stokes system in the domain de-
scribed above, and our goal is to generalize the study of Bourgeat et al. [5] to the
non-Newtonian case. We first establish a priori estimates in the framework of Sobolev
spaces and variational formulations. To find these estimates and then the order of the
limits, we use a variant of the Korn’s inequality for this type of domain. The results
obtained here correspond to three characteristic situations depending on the parameter
ηε with respect to ε:

• If ηε�ε
r

2r−1 the fissure is not giving any contribution. In this case, in order to
find the limit, we use the theory developed by Allaire [2] and Nguesteng [10] of
two-scale convergence and we obtain a nonlinear Darcy’s law.

• If ηε�ε
r

2r−1 the fissure is dominant. We introduce a rescaling in the fissure
in order to work with a domain with height one, and then we prove that the
limit of the velocity is a Dirac measure concentrated on {xn= 0} representing
the corresponding tangential surface flow. Meanwhile in the porous medium
the effective velocity is equal to zero.

• If ηε≈ε
r

2r−1 with ηε/ε
r

2r−1 →λ, 0<λ<+∞, it appears a coupling effect and
the effective flow behaves as Darcy flow in the porous medium coupled with the
tangential flow of the surface {xn= 0}. Compared to the first case ηε�ε

r
2r−1 ,

the effective velocity has now an additional tangential component concentrated
on {xn= 0}. Moreover, the limit problem is now given by a new variational
equation, in which appears the parameter λ, and consists of a nonlinear Darcy
law in the porous medium and an additional Reynolds problem on the surface
{xn= 0}.

2. The domain and some notations
Let Ω⊂Rn, n= 2 or 3, be a bounded open domain and

Ω+ = Ω∩{xn>0}, Ω−= Ω∩{xn<0}, Σ = Ω∩{xn= 0}.

For some η0>0 we define the domain

D= Ω−∪(η0en+Ω+)∪(Σ× [0,η0]).

Let ε>0 and 0<ηε<η0 be two small parameters devoted to tend to zero. With
Ω we associate a microstructure through the periodic cell Y = (0,1)n made of two com-
plementary parts: the solid part A, which is a closed subset of Y , and the fluid part
Y ∗=Y \A. Defining Y k =k+Y , k∈Zn, we set Ak and Y ∗k =Y k \Ak as the solid and
fluid part in Y k respectively.

We also denote

A−=
⋃
k∈Zn−

Ak, A+ =
⋃
k∈Zn+

Ak,
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all the solid parts in Rn, where Zk−={k : k∈Zn, kn<0} and Zk+ ={k : k∈Zn, kn>0}.
It is obvious that E∗=Rn \(A−∪A+) is an open subset in Rn.

Following Allaire [1], we make the following assumptions on Y ∗, E∗, A and A∗=
A+∪A−:

i) Y ∗ is an open connected set of strictly positive measure, with a locally Lipschitz
boundary.

ii) A has strictly positive measure in Y .
iii) E∗ and the interior of A∗ are open sets with boundaries of class C0,1 and are

locally located on one side of their boundaries. Moreover E∗ is connected.
We also define

Y ∗kε =εY ∗k, k∈Zn,

A−ε =εA−, A+
εηε =ηεen+εA+, Sεηε =∂

(
A−ε ∪A+

εηε

)
.

We denote by

Aεηε =A−ε ∪A+
εηε - the solid part of the domain D,

Dεηε =D\Aεηε - the fluid part of the domain D (including the fissure),
Iηε = Σ×(0,ηε) - the fissure in D,
Ωεηε =Dεηε \Iηε - the fluid part of the porous medium,

and

Ω+
εηε =Dεηε ∩{xn>ηε}, Ω−εηε =Dεηε ∩{xn<0}, Γηε =∂Σ×(0,ηε).

Finally we define

D+ =D∩{xn>0}, D−= Ω− .

We denote by Oε a generic real sequence which tends to zero with ε and can change
from line to line. We denote by C a generic positive constant which can change from
line to line.

3. Setting and main results
In the following, the points x∈Rn will be decomposed as x= (x′,xn) with x′∈Rn−1,

xn∈R. We use the notation ·̃ to denote a generic function of Rn−1.
In this section we describe the asymptotic behavior of an incompressible viscous non-

Newtonian fluid in the porous medium with a fissure. The proof of the corresponding
results will be given in the next sections.

Our results are referred to the non-Newtonian Stokes system. Namely, for f ∈
C(D)n let us consider a sequence (uεηε ,pεηε)∈W

1,r
0 (Dεηε)

n×Lr′0 (Dεηε), 1<r<+∞,
which satisfies {

−div
(
µ|D[uεηε ]|

r−2D [uεηε ]
)

+∇pεηε =f in Dεηε ,

divuεηε = 0 in Dεηε ,
(3.1)

where µ>0 is the consistency, r′= r/(r−1) is the conjugate exponent of r and Lr
′

0 (Dεηε)

is the space of functions of Lr
′
(Dεηε) with null integral. We may consider Dirichlet

boundary conditions without altering the generality of the problem under consideration,

uεηε = 0 on ∂Dεηε . (3.2)
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Figure 2.1. View of the domain Dεηε

It is well known that (3.1)-(3.2) has a unique solution (uεηε ,pεηε)∈W
1,r
0 (Dεηε)

n×
Lr
′

0 (Dεηε) for every ε,ηε>0 (see the classical theory [14] for more details).
Our aim is to study the asymptotic behavior of uεηε and pεηε when ε tends to zero.
As usual, in order to study the behavior of uεηε , pεηε in the fissure we rewrite our

equations in the unit cylinder I1 = Σ×(0,1) by introducing the change of variable

z=
xn
ηε
, (3.3)

which transform Iηε in a fixed domain I1. We define the new functions

Uεηε(x′,z) =uεηε(x
′,ηεz), P εηε(x′,z) =pεηε(x

′,ηεz)−cεηε , (3.4)

and

Ũεηε = (Uεηε1 ,Uεηε2 ,. ..,Uεηεn−1),

with

cεηε =
1

|Iηε |

∫
Iηε

pεηε dx. (3.5)

Let us introduce some notation which will be useful in the following. For a vectorial
function v= (ṽ,vn), we will denote Dx′ [v] = 1

2 (Dx′v+Dt
x′v) and ∂z [v] = 1

2 (∂zv+∂tzv),

where we denote ∂z = (0,0, ∂∂z )t, and associated to the change of variables (3.3), we
introduce the operators: Dηε , Dηε and divηε , by

Dηε [v] =
1

2

(
Dηεv+Dt

ηεv
)
, divηεv= divx′ ṽ+

1

ηε
∂zvn,

(Dηεv)i,j =∂xjvi for i= 1,. ..,n, j= 1,. ..,n−1, (Dηεv)i,n=
1

ηε
∂zvi for i= 1,. ..,n.
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Using the transformation (3.3), the system (3.1) can be rewritten as{
−divηε

(
µ |Dηε [Uεηε ]|r−2Dηε [Uεηε ]

)
+∇ηεP εηε =f(x′,ηεz) in I1,

divηεUεηε = 0 in I1,
(3.6)

with Dirichlet boundary condition,

Uεηε = 0 on ∂Σ×(0,1). (3.7)

In order to simplify the notation, we define Sr as the r-Laplace operator

Sr(ξ) = |ξ|r−2
ξ, ∀ξ∈Rn×nsym , 1<r<+∞,

and K :Rn→Rn as a function defined by

K(ξ) =

∫
Y ∗
wξ(y)dy, ∀ξ∈Rn, (3.8)

where wξ(y), for every ξ∈Rn, denote the unique solution in W 1,r
# (Y ∗)n (# denotes

Y -periodicity) of the local problem
−divyS

(
D[wξ]

)
+∇yπξ = ξ in Y ∗,
divyw

ξ = 0 in Y ∗,
wξ = 0 in ∂A,

wξ,πξ Y −periodic.

(3.9)

Our main result referred to the asymptotic behavior of the solution of (3.1)-(3.2) is
given by the following theorem.
Theorem 3.1. Let ηε≈ε

r
2r−1 , with ηε/ε

r
2r−1 →λ, 0<λ<+∞, 1<r<+∞ and let

(uεηε ,pεηε) be the solution of problem (3.1)-(3.2). Then there exist a Darcy velocity

v∈Lr(D)n, a Reynolds velocity V ∈Lr(Σ)n, with Vn= 0, and a pressure p∈W 1,r′(D)
such that

ε−
r
r−1uεηε

?
⇀v+λ

2r−1
r−1 VδΣ in M(D),

pεηε→p in Lr
′
(D),

(3.10)

where δΣ is the Dirac measure concentrated on Σ, and M(D)n is the space of Radon
measures on D. The velocities v and V are given by

v(x) =
1

µ
K (f(x)−∇p(x)), in D, (3.11)

Ṽ(x′) =
1

2
r′
2 (r+1)µr′−1

Sr′
(
f̃(x′,0)−∇x′P (x′)

)
, V= (Ṽ,0), in Σ, (3.12)

where the pressure P ∈W 1,r′(Σ) is connected with the pressure p by the relation

p(x′,0) =P (x′)+ C̃, C̃ ∈R.

Moreover, the pressure p∈VΣ ={ϕ∈W 1,r′(D) : ϕ(·,0)∈W 1,r′(Σ)} is the unique solution
of the variational problem∫

D

v(x) ·∇ϕ(x)dx+λ
2r−1
r−1

∫
Σ

Ṽ(x′) ·∇x′ϕ(x′,0)dx′= 0, ∀ϕ∈VΣ. (3.13)
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Remark 3.2. Formally, (3.13) is the weak formulation of the following boundary value
problem {

−divv(x)−λ
2r−1
r−1 divx′

(
Ṽ(x′)δΣ

)
= 0 in D,

v(x) ·ν+λ
2r−1
r−1 Ṽ(x′)δ∂Σ · ν̃ = 0 on ∂D,

(3.14)

where ν is the outward normal to ∂D and ν̃ is the outward normal to ∂Σ.
In the case λ= 0, i.e. ηε�ε

r
2r−1 , then the fissure is not giving any contribution. In

fact, if λ tends to zero in (3.14) we obtain the following Darcy’s law on D{
−divv(x) = 0 in D,
v(x) ·ν = 0 on ∂D,

(3.15)

where v is given by (3.11).
On the other hand, in the case λ= +∞, i.e. ηε�ε

r
2r−1 , then the fissure is dominant.

In fact, multiplying (3.14) by λ−
2r−1
r−1 and tending λ to +∞, we obtain the following

Reynolds problem on Σ {
−divx′ Ṽ(x′) = 0 in Σ,

Ṽ(x′) · ν̃= 0 on ∂Σ ,
(3.16)

where Ṽ is given by (3.12).

Remark 3.3. The monotonicity and coerciveness properties of the permeability
function K given by (3.8) can be found in sections 2 and 4 in [7], which implies that
(3.15) is well posed. On the other hand, the r′-Laplace operator is well know that is
monotone and coercive (see [9] for more details), which implies that (3.16) is well
posed. Therefore, the problem (3.13) is also well posed.

In Section 4 we establish a priori estimates of the velocity and the pressure. Section
5 is devoted to prove Theorem 3.1, whose proof is divided in three subsections. In Sub-
section 5.1 we analyze the problem in the porous part (ηε�ε

r
2r−1 ) while in Subsection

5.2 the problem in the fissure part (ηε�ε
r

2r−1 ) is analyzed, which give the rigorously
proof of (3.15) and (3.16), respectively. Finally, in Subsection 5.3 we prove that there is
a balanced interaction between the fissure and the porous medium giving Theorem 3.1.

4. A Priori Estimates
Let us begin with the following variant of the Korn’s inequality in the porous

medium Ωεηε , which will be very useful (see for example Bourgeat and Mikelic in [6]).
Lemma 4.1. There exists a constant C independent of ε, such that, for any function
v∈W 1,r(Dεηε)

n and v= 0 on Sεηε , one has

‖v‖Lr(Ωεηε )n ≤Cε‖D [v]‖Lr(Ωεηε )n×n , 1<r<+∞. (4.1)

Next, we give an useful estimate in the fissure Iηε .
Lemma 4.2. There exists a constant C independent of ε, such that, for any function
v∈W 1,r(Dεηε)

n and v= 0 on Sεηε , one has

‖v‖Lr(Iηε )n ≤Cηε
1
2 (ηε+ε)

1
2 ‖D[v]‖Lr(Dεηε )n×n , 1<r<+∞. (4.2)
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Proof. Because the thickness of Iηε is ηε, we have, by the classical Poincaré inequal-
ity,

‖v‖Lr(Iηε )n ≤Cηε‖Dv‖Lr(Iηε )n×n . (4.3)

Next, if we choose a point x1∈Aεηε , which is close to the point x∈ Iηε , then we have

v(x)−v(x1) =Dv(ξ)(x−x1)≤ (ε+ηε)|Dv|.

Since v(x1) = 0 because x1∈Aεηε , we have

‖v(x)‖Lr(Iηε )n ≤C(ε+ηε)‖Dv‖Lr(Iηε )n×n .

Multiplying the above inequality with (4.3) we obtain

‖v‖Lr(Iηε )n ≤Cηε
1
2 (ηε+ε)

1
2 ‖Dv‖Lr(Iηε )n×n ≤Cηε

1
2 (ηε+ε)

1
2 ‖Dv‖Lr(Dεηε )n×n , (4.4)

and from the classical Korn inequality we obtain (4.2).

Let us give the classical estimate [3], for the a function in Lr when we deal with a
fissure.
Lemma 4.3. There exists a constant C independent of ε, such that, for any function
v∈Lr(Iηε) with

∫
Iηε
vdx= 0, one has

‖v‖Lr(Iηε )≤
C

ηε
‖∇v‖W−1,r(Iηε )n , 1<r<+∞.

Now, we are in position to obtain some a priori estimates for uεηε .
Lemma 4.4. There exists a constant C independent of ε, such that if uεηε ∈
W 1,r

0 (Dεηε)
n, with 1<r<+∞, is the solution of the problem (3.1)-(3.2), one has

‖uεηε‖Lr(Ωεηε )n ≤C(ηε
2r−1
r εr−1 +εr)

1
r−1 , (4.5)

‖uεηε‖Lr(Iηε )n ≤C
(
ηε
r−1ηε

2r−1
r +εηε

r−1
) 1
r−1

+ηε
1
2 ε

r+1
2(r−1) , (4.6)

‖D [uεηε ]‖Lr(Dεηε )n×n ≤C(ηε
2r−1
r +ε)

1
r−1 , (4.7)

‖Duεηε‖Lr(Dεηε )n×n ≤C(ηε
2r−1
r +ε)

1
r−1 . (4.8)

Proof. Multiplying by uεηε in the first equation of (3.1) and integrating over Dεηε ,
we have

µ‖D[uεηε ]‖rLr(Dεηε )n×n =

∫
Dεηε

f ·uεηε dx. (4.9)

Using Hölder’s inequality and the assumption of f , we obtain that there exists a constant
C such that∫

Dεηε

f ·uεηε dx≤Cηε
1
r′ ‖f‖L∞(Iηε )n‖uεηε‖Lr(Iηε )n +‖f‖Lr′ (Ωεηε )n‖uεηε‖Lr(Ωεηε )n ,
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and by inequalities (4.1) and (4.2), we have∫
Dεηε

f ·uεηε dx≤C
(
ηε

1
r′ ηε

1
2 (ε+ηε)

1
2 +ε

)
‖D[uεηε ]‖Lr(Dεηε )n×n

≤C
(
ηε

1
r′ ηε+ηε

1
r′ ηε

1
2 ε

1
2 +ε

)
‖D[uεηε ]‖Lr(Dεηε )n×n .

Therefore, from (4.9) we get

‖D[uεηε ]‖Lr(Dεηε )n×n ≤C
(
ηε

1
r′ ηε+ηε

1
r′ ηε

1
2 ε

1
2 +ε

) 1
r−1

.

Since ηε
1
r′ ηε

1
2 ε

1
2 <ηε

1
r′ ηε if ε<ηε and η

1
r′
ε η

1
2
ε ε

1
2 ≤η

1
r′
ε ε<ε if ηε<ε, the term ηε

1
r′ ηε

1
2 ε

1
2

can be dropped. Taking into account that 1/r′+1 = (2r−1)/r, this gives (4.7) and from
the classical Korn inequality we have (4.8).

Applying (4.1) together with (4.7) we obtain (4.5). Finally, applying (4.2) and (4.7)
we get

‖uεηε‖Lr(Iηε )n ≤C(ηε+ηε
1
2 ε

1
2 )(ηε

2r−1
r +ε)

1
r−1

≤C
(
ηε
r−1ηε

2r−1
r +εηε

r−1
) 1
r−1

+
(
ηε

r−1
2 ηε

2r−1
r ε

r−1
2 +ηε

r−1
2 ε

r+1
2

) 1
r−1

.

Since ηε
r−1

2 ηε
2r−1
r ε

r−1
2 <ηε

r−1ηε
2r−1
r if ηε>ε and ηε

r−1
2 ηε

2r−1
r ε

r−1
2 <ηε

r−1
2 ε

r+1
2 if

ηε<ε, the term ηε
r−1

2 ηε
2r−1
r ε

r−1
2 can be dropped, and (4.6) holds.

In order to investigate the behavior of solutions to (3.1)-(3.2), as ε→0, we need
to extend the pressure pεηε to the whole of D. Extending the pressure is a difficult
task. The extension is closely related to the construction of a restriction operator. Such
extension for the case of a porous medium without fissure is given in Tartar [13] for the
case r= 2. We need a restriction operator, Rεr, between W 1,r

0 (D)n into W 1,r
0 (Dεηε)

n

with similar properties, which is given in [6]. Since the construction of the operator is
local, having no obstacles in Iηε means that we do not have to use the extension in that
part.

Next, we give the properties of the restriction operator Rεr (see Lemma 1.2. in [6]
for more details).
Lemma 4.5. There exists a linear continuous operator Rεr acting from W 1,r

0 (D)n into
W 1,r

0 (Dεηε)
n, 1<r<+∞, such that

1. Rεrv=v, if v∈W 1,r
0 (Dεηε)

n

2. div(Rεrv) = 0, if divv= 0
3. For any v∈W 1,r

0 (D)n (the constant C is independent of v and ε),

‖Rεrv‖Lr(Dεηε )n ≤C ‖v‖Lr(D)n +Cε‖Dv‖Lr(D)n×n ,

‖DRεrv‖Lr(Dεηε )n×n ≤
C

ε
‖v‖Lr(D)n +C ‖Dv‖Lr(D)n×n .

In order to extend the pressure to the whole domain D, we define a function Fεηε ∈
W−1,r′(D)n by the following formula (brackets are for the duality products between
W−1,r′ and W 1,r

0 ):

〈Fεηε ,v〉D = 〈∇pεηε ,Rεrv〉Dεηε , for any v∈W 1,r
0 (D)n, (4.10)
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where Rεr is the operator defined in Lemma 4.5. We calcule the right hand side of (4.10)
by using (3.1) and we have

〈Fεηε ,v〉D =
〈

div
(
µ|D[uεηε ]|

r−2D [uεηε ]
)
,Rεrv

〉
Dεηε

+〈f,Rεrv〉Dεηε , (4.11)

and by using the third point in Lemma 4.5, for fixed ε, ηε we see that it is a bounded
functional on W 1,r

0 (D)3, and in fact Fεηε ∈W−1,r′(D)n.

Moreover, if v∈W 1,r
0 (Dεηε)

n and we continue it by zero out of Dεηε , we see from
(4.10) and the first point in Lemma 4.5 that Fεηε |Dεηε =∇pεηε .

On the other hand, if divv= 0 by the second point in Lemma 4.5 and (4.10), we have
that 〈Fεηε ,v〉Ω = 0 and this implies that Fεηε is the gradient of some function in Lr

′
(D).

This means that Fεηε is a continuation of ∇pεηε to D, and that this continuation is
a gradient. We also may say that pεηε has been continuated to D. We denote the
extended pressure again by pεηε and since it is defined up to a constant we take pεηε
such that

∫
D
pεηεdx= 0. Moreover, we have

Fεηε ≡∇pεηε .

For such extended pressure we obtain the following result.
Lemma 4.6. There exists a constant C independent of ε, such that if pεηε ∈Lr

′

0 (D),
with r′ the conjugate exponent of r and 1<r<+∞, is the extended pressure to the whole
domain D, one has

‖pεηε‖Lr′ (D)≤C

(
ηε

r′+1
r′

ε
+1

)
, (4.12)

‖pεηε−cεηε‖Lr′ (Iηε )≤C
(
ηε

1
r′ +

ε

ηε

)
, (4.13)

where cεηε is given by (3.5).
Proof. Let us first estimate ∇pεηε . To do this we estimate the right side of (4.11).

Using Hölder’s inequality and from (4.7) we have∣∣∣∣〈div
(
µ|D [uεηε ]|

r−2D[uεηε ]
)
,Rεrv

〉
Dεηε

∣∣∣∣≤µ‖D [uεηε ]‖
r−1
Lr(Dεηε )n×n ‖DR

ε
rv‖Lr(Dεηε )n×n

≤C
(
ηε

2r−1
r +ε

)
‖DRεrv‖Lr(Dεηε )n×n .

Using the assumption of f , we obtain that there exists a constant C such that∣∣∣〈f,Rεrv〉Dεηε ∣∣∣≤C ‖Rεrv‖Lr(Dεηε )n .

Then, from (4.11), we deduce∣∣〈∇pεηε ,v〉D∣∣≤C(ηε 2r−1
r +ε

)
‖DRεrv‖Lr(Dεηε )n×n +C ‖Rεrv‖Lr(Dεηε )n .

Taking into account the third point in Lemma 4.5, we have∣∣〈∇pεηε ,v〉D∣∣≤C(ηε 2r−1
r +ε

)(1

ε
‖v‖Lr(D)n +‖Dv‖Lr(D)n×n

)
+C

(
‖v‖Lr(D)n +ε‖Dv‖Lr(D)n×n

)
.
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Then, as ε�1, we can deduce that

∣∣〈∇pεηε ,v〉D∣∣≤C
(
ηε

2r−1
r

ε
+1

)
‖v‖W 1,r

0 (D)n ,

for any v∈W 1,r
0 (D)n. Therefore, we obtain

‖∇pεηε‖W−1,r′ (D)n ≤C

(
ηε

2r−1
r

ε
+1

)
,

and the estimate (4.12) follows by using the Nečas inequality in D.

Let v∈W 1,r
0 (Iηε)

n, then

〈∇pεηε ,v〉Iηε =
〈

div
(
µ|D [uεηε ]|

r−2D[uεηε ]
)
,v
〉
Iηε

+〈f,v〉Iηε .

We estimate the right hand side. Using Hölder’s inequality and (4.7) we have∣∣∣∣〈div
(
µ|D[uεηε ]|

r−2D[uεηε ]
)
,v
〉
Iηε

∣∣∣∣≤C(ηε 2r−1
r +ε

)
‖Dv‖Lr(Iηε )n×n .

Using again Hölder’s inequality and assumption of f , we obtain that there exists a
constant C such that ∣∣∣〈f,v〉Iηε ∣∣∣≤Cηε 1

r′ ‖f‖L∞(Iηε )n‖v‖Lr(Iηε )n ,

and by the estimate (4.4), we have∣∣∣〈f,v〉Iηε ∣∣∣≤C(ηε
2r−1
r +ηε

1
r′ ηε

1
2 ε

1
2 )‖Dv‖Lr(Iηε )n×n ,

Then, we have

‖∇pεηε‖W−1,r′ (Iηε )n ≤C
(
ηε

2r−1
r +ηε

1
r′ ηε

1
2 ε

1
2 +ε

)
.

Reasoning as in the proof of Lemma 4.4, we observe that ηε
1
r′ ηε

1
2 ε

1
2 can be dropped

and so we obtain

‖∇pεηε‖W−1,r′ (Iηε )n ≤C
(
ηε

2r−1
r +ε

)
.

Using Lemma 4.3 we obtain the estimate (4.13).

5. Proof of the main result

In view of estimates (4.5), (4.8) of the velocity and (4.12) of the pressure, the proof
of Theorem 3.1 will be divided in three characteristic cases: ηε�ε

r
2r−1 , ηε�ε

r
2r−1 and

ηε≈ε
r

2r−1 , with ηε/ε
r

2r−1 →λ, 0<λ<+∞.
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5.1. Problem in the porous part ηε�ε
r

2r−1

In this subsection, we need to extend the velocity uεηε by zero in the fissure Iηε ,
and we will denote the extended velocity by vεηε , i.e.

vεηε =

{
uεηε in Ωεηε ,
0 in Iηε .

(5.1)

Lemma 5.1. Let ηε�ε
r

2r−1 with 1<r<+∞ and let (vεηε ,pεηε) be the extended solution
of (3.1)-(3.2). Then there exist subsequences of vεηε and pεηε still denoted by the same,

and functions v∈Lr(D)n, p∈Lr′(D) such that

ε−
r
r−1 vεηε⇀v in Lr(D)n, pεηε→p in Lr

′
(D). (5.2)

Moreover, v satisfies

divv= 0 in D, v ·ν= 0 on ∂D. (5.3)

Proof. From estimates (4.5) and (4.12), taking into account the extension of the
velocity by zero to D and ηε�ε

r
2r−1 , we have the following estimates

‖vεηε‖Lr(D)n ≤Cε
r
r−1 , ‖pεηε‖Lr′ (D)≤C.

Then there exist v∈Lr(D)n and p∈Lr′(D) such that, for a subsequence still denoted
by vεηε , pεηε , it holds

ε−
r
r−1 vεηε⇀v in Lr(D)n, pεηε⇀p in Lr

′
(D).

Next, we prove that the convergence of the pressure is in fact strong. Let wε∈W 1,r
0 (D)n

be such that wε⇀w in W 1,r
0 (D)n. Then (brackets are for the duality products between

W−1,r′ and W 1,r
0 ):

|<∇pεηε ,wε>D−<∇p,w>D|≤ |<∇pεηε ,wε−w>D|+ |<∇pεηε−∇p,w>D|.

On the one hand, we have

|<∇pεηε−∇p,w>D|=
∫
D

(pεηε−p)divwdx→0, as ε→0.

On the other hand, we have

|<∇pεηε ,wε−w>D|=
∣∣<∇pεηε ,Rεr(wε−w)>Dεηε

∣∣
=
∣∣∣〈div

(
µ|D[uεηε ]|

r−2D[uεηε ]
)
,Rεr(wε−w)〉Dεηε −〈f,R

ε
r(wε−w)〉Dεηε

∣∣∣ ,
and using Hölder’s inequality, estimate (4.7), the estimates of the restricted operator
Rεr given in Lemma 4.5, ηε�ε

r
2r−1 and ε�1, we get

|<∇pεηε ,wε−w>D|≤C
(
ηε

2r−1
r +ε

)(1

ε
‖wε−w‖Lr(D)n +‖Dwε−Dw‖Lr(D)n×n

)
+C

(
‖wε−w‖Lr(D)n +ε‖Dwε−Dw‖Lr(D)n×n

)
≤C

(
‖wε−w‖Lr(D)n +ε‖Dwε−Dw‖Lr(D)n×n

)
→0 as ε→0.

Therefore, we have that ∇pεηε→∇p strongly in W−1,r′(D)n, which implies the strong
convergence of the pressure given in (5.2).
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Finally, from divvεηε = 0 in D and the weak convergence of the velocity given in
(5.2), we easily obtain (5.3).

The proof of the following result will be showed by using the two-scale convergence
introduced by Nguesteng [10] in the L2-setting and developed by Allaire [2], who also

introduced the Lr-setting. By
2
⇀ we denote the limit in the two-scale sense.

Lemma 5.2. Let ηε�ε
r

2r−1 with 1<r<+∞ and let vεηε be the extended solution
of (3.1)-(3.2). Then there exist subsequences of vεηε still denoted by the same, and

v̂(x,y)∈Lr(D;W 1,r
# (Y ∗)n) such that

ε−
r
r−1 vεηε

2
⇀v̂(x,y) in Lr(D×Y ∗)n, ε−

1
r−1Dvεηε

2
⇀Dy v̂(x,y) in Lr(D×Y ∗)n×n.

(5.4)
The weak limit v(x) and the two-scale limit v̂(x,y) are related as follows

v(x) =

∫
Y ∗
v̂(x,y)dy. (5.5)

Moreover, v̂ satisfies

divy v̂(x,y) = 0 in Y ∗, v̂= 0 in Y \Y ∗, (5.6)

divx

(∫
Y ∗
v̂(x,y)dy

)
= 0 in D,

(∫
Y ∗
v̂(x,y)dy

)
·ν= 0 on ∂D. (5.7)

Proof. From estimates (4.5) and (4.8) and taking into account that ηε�ε
r

2r−1 , we
get

‖vεηε‖Lr(D)n ≤Cε
r
r−1 , ‖Dvεηε‖Lr(D)n×n ≤Cε

1
r−1 .

Thus, from Lemma 1.5 in [6], there exist subsequences of vεηε , still denoted by vεηε , and

a function v̂∈Lr(D;W 1,r
# (Y ∗)n) such that the convergences given in (5.4) hold.

Relation (5.5) is a classical property relating weak convergence and two-scale
convergence, see Allaire [2] and Bourgeat and Mikelic [6] for more details. From
divvεηε = 0 in D, then (5.6) straightforward. Finally, (5.3) and (5.5) imply (5.7).

Lemma 5.3. Let ηε�ε
r

2r−1 with 1<r<+∞ and let (vεηε ,pεηε) be the extended solution

of (3.1)-(3.2). Let (v,p)∈Lr(D)n×Lr′(D) be given by Lemma 5.1. Then, p∈W 1,r′(D)
and (v,p) is the unique solution of Darcy’s law (3.15).

Proof. Considering ϕ∈W 1,r
0 (D)n, we define wε(x) =ϕ(x)−ε−

r
r−1 vεηε(x) as test

function in (3.1)-(3.2) and we have∫
D

µSr(D[vεηε ]) :D[wε]dx= 〈f−∇pεηε ,wε〉D.

Observe that

Sr(D[vεηε ]) =εrSr(D[ε−
r
r−1 vεηε ]).
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Therefore,∫
D

µSr(D[vεηε ]) :D[wε]dx=

∫
D

µεrSr(D[ε−
r
r−1 vεηε ]) :D[ϕ]dx−

∫
D

µ|εD[ε−
r
r−1 vεηε ]|rdx.

Using Hölder and Young inequalities in the first term of the right hand side, we can
deduce ∫

D

µSr(D[vεηε ]) :D[wε]dx≤
∫
D

µ

r
|εD[ϕ]|r−

∫
D

µ

r
|εD[ε−

r
r−1 vεηε ]|rdx,

and so the variational formulation of problem (3.1)-(3.2) is equivalent to∫
D

µ

r
|εD[ϕ]|r−

∫
D

µ

r
|εD[ε−

r
r−1 vεηε ]|rdx≥

∫
D

f ·wεdx−〈∇pεηε ,wε〉D. (5.8)

Now, we choose ψ(x,y)+−∈D(D+−;C∞# (Y ∗)n). There exists η1>0 such that supp

ψ(x,y)+−⊂D/Iηε for every ηε∈ (0,η1). Let ηε<η1. We define ψε(x)+−=ψ(x,x/ε)+−

and we insert ϕ=ψ+−
ε in (5.8). In the sequel, we use the elementary properties of the

two scale convergence. Using the two-scale convergence of ε−
r
r−1 vεηε given in (5.4), we

have ∫
D+−

f ·wεdx→
∫
D+−

∫
Y

f ·(ψ− v̂)dxdy,

and using divvεηε = 0 in D and the strong convergence of the pressure (5.2), we have

〈∇pεηε ,wε〉D+− =

∫
D+−

pεηε divψεdx→
∫
D+−

∫
Y

pdivxψ(x,y)dxdy, as ε→0.

Therefore, passing to the limit in the variational formulation (5.8) and taking into
account (5.7), we get∫

D+−

∫
Y

µ

r
|D[ψ]|rdxdy−

∫
D+−

∫
Y

µ

r
|D[v̂]|rdxdy≥〈f(x)−∇p(x),

∫
Y

(ψ− v̂)dy〉D+− .

Consequently, there exists π̂∈Lr′(D;Lr
′
(Y ∗)/R) such that (v̂, π̂) satisfies the homoge-

nized problem

−divy
(
µ|Dy[v̂]|r−2Dy[v̂]

)
+∇yπ̂=f(x)−∇p(x) in Y ∗, (5.9)

divy v̂(x,y) = 0 in Y ∗, (5.10)

(v̂, π̂) is Y −periodic, v̂= 0 in Y \Y ∗, (5.11)

by using the variant of de Rham’s formula in a periodic setting (see Nguetseng [10] and
Temam [14]). Reasoning as in Theorem 8 in [6], we get that the pressure p belongs to
W 1,r′(D).

Finally, the derivation of (3.15) from the effective problems (5.9)-(5.11) is straight-
forward by using the local problems (3.9) and definitions of the permeability functions
(3.8).

It remains to prove the convergence of the whole velocity

ε−
r
r−1uεηε⇀v in Lr(D)n, (5.12)
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which is equivalent to prove that the velocity in the fissure tends to zero, i.e. to prove

ε−
r
r−1 ‖uεηε‖Lr(Iηε )n→0. (5.13)

For this, it is sufficient to prove that

ε−
r
r−1 ‖uεηε‖Lr(Iηε )n→0 for ηε�ε, (5.14)

and

ε−
r
r−1 ‖uεηε‖Lq(Iηε )n→0 for ε�ηε�ε

1
α , 1<α<

2r−1

r
, (5.15)

for a q which will be defined below.
Using (4.6) and using ηε�ε, we have

ε−
r
r−1 ‖uεηε‖Lr(Iηε )n ≤C

(
ηε

1+ 2r−1
r(r−1)

ε
r
r−1

+
ηε
ε

+
(ηε
ε

) 1
2

)
,

so that (5.14) easily holds. Using Hölder’s inequality with the conjugate exponents r
q

and r
r−q we obtain

ε−
r
r−1 ‖uεηε‖Lq(Iηε )n ≤C

(
ηε

1
q+ r

r−1

ε
r
r−1

+
ηε

1
q− 1

r+1

ε
+
ηε

1
q− 1

r+ 1
2

ε
1
2

)
.

Now we take ηε=ε
1
α . Then we find that

ε−
r
r−1 ‖uεηε‖Lq(Iηε )n ≤C

(
ε

1
α ( 1

q+ r
r−1 )− r

r−1 +ε
1
α ( 1

q− 1
r+1)−1 +ε

1
α ( 1

q− 1
r+ 1

2 )− 1
2

)
.

We seek an optimal q such that the right hand side in (5.1) tends to zero. It is easy to

prove that we have a convergence to zero for any q∈
(

1, r
r(α−1)+1

)
. Therefore, (5.15)

holds and so we have (5.13).

5.2. Problem in the fissure part ηε�ε
r

2r−1

Using estimates in Lemma 4.4, the functions (3.4) and compactness, we prove the
following lemma.
Lemma 5.4. Let ηε�ε

r
2r−1 with 1<r<+∞ and let (Uεηε ,P εηε) be the solution of

(3.6)-(3.7). Then there exist subsequences of Uεηε and P εηε still denoted by the same,
and functions U ∈Lr(I1)n, with Un= 0, P ∈Lr′(I1) such that

ηε
− r
r−1Uεηε⇀U in Lr(I1)n, P εηε⇀P in Lr

′
(I1). (5.16)

Moreover, P =P (x′)∈W 1,r′(Σ) and Ũ is given by

Ũ(x′,z) =
2
r′
2

r′µr′−1

((
1

2

)r′
−
∣∣∣∣12−z

∣∣∣∣r′
)
|f̃(x′,0)−∇x′P (x′)|r

′−2(f̃(x′,0)−∇x′P (x′)).

(5.17)

Proof. Taking into account ηε�ε
r

2r−1 and estimates (4.6), (4.8), (4.13) we have

‖Uεηε‖Lr(I1)n ≤Cηε
r
r−1 , (5.18)
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‖∇x′Uεηε‖Lr(I1)n×(n−1) ≤Cηε
1
r−1 , (5.19)

‖∂zUεηε‖Lr(I1)n−1 ≤Cηε
r
r−1 , (5.20)

‖P εηε‖Lr′ (I1)≤C. (5.21)

From the estimates (5.18) and (5.21), there exist U ∈Lr(I1)n, P ∈Lr′(I1) such that
convergence (5.16) holds. Moreover

ηε
− r
r−1 ∂zUεηε⇀∂zU in Lr(I1)n.

Let ϕ∈C∞0 (I1)n, then

ηε
− 1
r−1

∫
I1

(
divx′ Ũεηε +ηε

−1∂zUεηεn

)
ϕdx

=−ηε−
1
r−1

∫
I1

ŨεηεDx′ϕdx−ηε−
r
r−1

∫
I1

Uεηεn ·∂zϕdx= 0.

Taking the limit ε→0 we obtain ∫
I1

Un∂zϕdx= 0,

so that Un=Un(x′).
Since U , ∂zU ∈Lr(I1)n the traces U(x′,0), U(x′,1) are well defined in Lr(Σ)n. Anal-

ogously to the proof of Lemma 4.2 we choose a point βx′ ∈Aεηε , which is close to the
point αx′ ∈Σ, then we have∫

Σ

|Uεηε(x′,0)|rdx′=
∫

Σ

|uεηε(x′,0)|rdx′≤C
∫

Σ

(∫
(βx′ ,αx′ )

Duεηε ·(αx′−βx′)d`

)r
dx′,

so that, by Hölder’s inequality,

‖Uεηε(x′,0)‖rLr(Σ)n ≤Cε‖Duεηε‖
r
Lr(Dεηε )n×n .

Taking into account estimate (4.8) and ηε�ε
r

2r−1 , we have

ηε
− r
r−1 ‖Uεηε(x′,0)‖rLr(Σ)n ≤Cεηε→0 as ε→0,

which implies that

U(x′,0) = 0,

and analogously

U(x′,1) = 0.

Consequently

Un= 0,
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which finishes (5.16). Finally, we need to indentify the effective system and compute
the expression of the solution. For this, thanks to Propositions 3.1 and 3.2 in Mikelić
and Tapiero [9] we have that the effective system is given by

−∂z
(
|∂zŨ |r−2∂zŨ

)
= 2

r
2µ
(
f̃(x′,0)−∇x′P (x′)

)
, in I1,

divx′
(∫ 1

0
Ũ(x′,z)dz

)
= 0 in Σ,

(∫ 1

0
Ũ(x′,z)dz

)
· ν̃= 0 on ∂Σ,

taking into account Proposition 3.3. in [9] we have that P =P (x′)∈W 1,r′(Σ) and thanks
to Proposition 3.4 in [9] we have that the expression of the solution is given by (5.17).

It remains to prove the convergence of the whole velocity

ηε
− 2r−1
r−1 uεηε

?
⇀VδΣ in M(D)n, (5.22)

where V(x′) =
∫ 1

0
U(x′,z)dz is given by (3.12), and also prove that the pressure P is the

unique solution of the Reynolds problem (3.16).
Taking as test function ϕ∈C∞(D) in divuεηε = 0 in D, we obtain∫

D

divuεηεϕdx=−
∫
D

vεηε ·∇ϕdx−ηε
∫
I1

Uεηε ·∇ϕ(x′,ηεz)dx
′dz= 0,

so that multiplying by ηε
− 2r−1
r−1 ,∫

I1

ηε
− r
r−1 Ũεηε ·∇x′ϕ(x′,ηεz)dx

′dz (5.23)

=−
∫
D

ηε
− 2r−1
r−1 vεηε ·∇ϕdx−

∫
I1

ηε
− r
r−1Uεηεn ∂nϕ(x′,ηεz)dx

′dz.

Using (4.5) and taking into account ηε�ε
r

2r−1 , we obtain

ηε
− 2r−1
r−1 ‖vεηε‖Lr(D)n ≤C

(
ε

ηε
2r−1
r

+
ε

r
r−1

ηε
2r−1
r−1

)
→0 as ε→0. (5.24)

Taking the limit in (5.23) as ε→0, using convergence (5.16) and Un= 0, we have∫
I1

Ũ ·∇x′ϕ(x′,0)dx′dz= 0,

and by definition (3.12), we get the Reynolds problem (3.16). Consequently, P is the
unique solution of (3.16) (see Proposition 3.4 in Mikelic and Tapiero [9] for more details).
Finally, we consider ϕ∈C0(D)n and so we have∫

D

ηε
− 2r−1
r−1 uεηεϕdx=

∫
D

ηε
− 2r−1
r−1 vεηεϕdx+

∫
I1

ηε
− r
r−1Uεηεϕ(x′,ηεz)dx

′dz.

Using (5.24) and convergence (5.16) and Un= 0, we obtain∫
D

ηε
− 2r−1
r−1 uεηεϕdx→

∫
I1

Ũ(x′,z)ϕ̃(x′,0)dx′dz

=

∫
Σ

Ṽ(x′)ϕ̃(x′,0)dx′= 〈V(x′)δΣ,ϕ〉M(D)n,C0(D)n ,

which implies (5.22).
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5.3. Effects of coupling ηε≈ε
r

2r−1

The conclusion of the previous two subsections is that for any sequence of solu-
tions (vεηε ,pεηε) with ηε�ε

r
2r−1 and (Uεηε ,P εηε) with ηε�ε

r
2r−1 , and letting ε→0,

we can extract subsequences still denoted by vεηε , pεηε , Uεηε , P εηε and find functions

v∈Lr(D)n, p∈W 1,r′(D), Ũ ∈Lr(I1)n−1, P ∈W 1,r′(Σ) such that

ε−
r
r−1 vεηε⇀v in Lr(D)n, pεηε→p in Lr

′
(D),

ηε
− r
r−1Uεηε⇀U in Lr(I1)n with U = (Ũ ,0), P εηε⇀P in Lr

′
(I1).

(5.25)

Moreover such limit functions v, p, U , P necessarily satisfy the equations

v=
1

µ
K (f(x)−∇p(x)) in D, v ·ν= 0 on ∂D,

Ũ = 2
r′
2

r′

((
1
2

)r′− ∣∣ 12−z∣∣r′) |f̃(x′,0)−∇x′P (x′)|r′−2(f̃(x′,0)−∇x′P (x′)) in I1.
(5.26)

We are going to find the connection between the functions p and P , i.e. to find the
coupling effects between the solution in the porous part and in the fissure.
Lemma 5.5. Let ηε≈ε

r
2r−1 , with ηε/ε

r
2r−1 →λ, 0<λ<+∞, 1<r<+∞, and let

{pεηε}⊂Lr
′
(D), p∈W 1,r′(D), P ∈W 1,r′(Σ) be such that (5.25) and (5.26) hold. Then,∫

D

1

µ
K (f(x)−∇p(x)) ·∇ϕ(x)dx

+λ
2r−1
r−1

∫
Σ

∣∣∣f̃(x′,0)−∇x′P (x′)
∣∣∣r′−2

2
r′
2 (r+1)µr′−1

(f̃(x′,0)−∇x′P (x′)) ·∇x′ϕ(x′,0)dx′= 0,

(5.27)

for every ϕ∈VΣ.
Proof. Let ϕ∈VΣ. Taking into account the definitions (5.1) of vεηε and (3.4) of

Uεηε , and from divuεηε = 0 in D we have∫
D

ε−
r
r−1uεηε ·∇ϕdx=

∫
D

ε−
r
r−1 vεηε ·∇ϕdx

+

(
ηε

ε
r

2r−1

) 2r−1
r−1

∫
I1

ηε
− r
r−1Uεηε ·∇ϕ(x′,ηεz)dx

′dz= 0.

Taking the limit as ε→0, using (5.25), Un= 0 and ηε/ε
r

2r−1 →λ, we obtain∫
D

v(x) ·∇ϕ(x)dx+λ
2r−1
r−1

∫
I1

Ũ(x′,z) ·∇x′ϕ(x′,0)dx′dz= 0,

and taking into account expressions (5.26) and (3.12), we get (5.27).
In the following result, we are going to prove the relation between the pressures p

and P .
Lemma 5.6. Let ηε≈ε

r
2r−1 , ηε/ε

r
2r−1 →λ, 0<λ<+∞, 1<r<+∞ and let p,P be the

limit pressures from (5.25). Then, there exists C̃ ∈R such that

p(x′,0) =P (x′)+ C̃, (5.28)

and p∈VΣ is the unique solution of the variational problem (3.13).
Proof. We need to extend the test functions considered in the proof of Lemma 5.3

to the fissure Iηε . To do this, we define Bηε =D−∪Σ∪Iηε and Y ′=Y
∗∩{xn= 0}, and



18 The effects of a fissure for a non-Newtonian fluid flow in a porous medium

we consider φ(y)∈C∞# (Bηε)
n be such that φ(y) = 0 in Y \Y ∗ and divyφ(y) = 0 in Y ∗.

We define

φε(x) =

φ
(
x
ε

)
in D− ,

Knen in Iηε , where Kn=

∫
Y ′
φn(y′,0)dy′ .

Let ϕ∈C∞0 (B1), with B1 =D−∪Σ∪I1 be such that∫
Σ

ϕ(x′,0)dx′= 0. (5.29)

We define

ϕηε(x) =

{
ϕ(x) in D−
ϕ
(
x′, xnηε

)
in Iηε .

Taking in (3.1) as test function

wε(x) =

{
ϕ(x)φ

(
x
ε

)
−ε−

r
r−1 vεηε in D−,

ϕ
(
x′, xnηε

)
Knen in Iηε ,

we obtain ∫
Bηε

Sr(D[uεηε ]) :Dwεdx=

∫
Bηε

f ·wεdx−
∫
Bηε

pεηεdivwεdx. (5.30)

Taking into account that

Kn

∫
Iηε

f ·ϕ
(
x′,

xn
ηε

)
endx=ηεKn

∫
I1

f ·ϕ(x′,z)endx
′dz→0 as ε→0,

and by using estimates (5.19), (5.20), that∣∣∣∣∣Kn

∫
Iηε

Sr(D[Uεηε ])∂xnϕ(x′,
xn
ηε

)dx

∣∣∣∣∣=
∣∣∣∣Kn

∫
I1

Sr(Dηε [Uεηε ])∂zϕ(x′,z)dx′dz

∣∣∣∣
≤Cηε

1
r−1 →0, as ε→0,

from (5.30), we obtain∫
D−

Sr(D[vεηε ]) :Dwεdx (5.31)

=

∫
D−

f ·wεdx+

∫
D−

pεηεdivwεdx+Kn

∫
Iηε

pεηε∂xnϕ(x′,
xn
ηε

)dx+Oε.

For the last term on the right hand side, we have

Kn

∫
Iηε

pεηε∂xnϕ(x′,
xn
ηε

)dx

=Kn

∫
Iηε

(pεηε−cεηε)∂xnϕ(x′,
xn
ηε

)dx+Kn

∫
Iηε

cεηε∂xnϕ(x′,
xn
ηε

)dx,



Maŕıa Anguiano and Francisco Javier Suárez-Grau 19

where cεηε is defined in (3.5). Using (5.25) and (5.29) we obtain

Kn

∫
Iηε

(pεηε−cεηε)∂xnϕ(x′,
xn
ηε

)dx=Kn

∫
I1

P εηε∂zϕ(x′,z)dx′dz

→Kn

∫
I1

P (x′)∂zϕ(x′,z)dx′dz=−Kn

∫
Σ

P (x′)ϕ(x′,0)dx′, as ε→0,
(5.32)

where P εηε is given by (3.4), and

Kncεηε

∫
Iηε

∂xnϕ(x′,
xn
ηε

)dx=Kncεηε

∫
I1

∂zϕ(x′,z))dx′dz= 0.

Passing to the limit in (5.31) similarly as in the proof of Lemma 5.3, we know that
v̂ and p are related by the variational formulation of problem (5.9)-(5.11), and taking
into account (5.32) and∫

D×Y
p(x)divx(ϕ(x)φ(y))dxdy

=−
∫
D×Y

∇xp(x)ϕ(x)φ(y)dxdy+

∫
Σ×Y ′

p(x′,0)ϕ(x′,0)φn(y′,0)dx′dy′

=−
∫
D×Y

∇xp(x)ϕ(x)φ(y)dxdy+Kn

∫
Σ

p(x′,0)ϕ(x′,0)dx′,

then we have ∫
Σ

(p(x′,0)−P (x′))ϕ(x′,0)dx′= 0,

so that ∫
Σ

(p(x′,0)−P (x′))ψ(x′)dx′= 0,

for every ψ∈C∞0 (Σ) such that
∫

Σ
ψdx′= 0. Finally we conclude that there exists a

constant C̃ ∈R such that (5.28) holds and p(·,0)∈W 1,r′(Σ), i.e. p∈VΣ. Using (5.28)
and (5.27), we obtain the variational formulation for the limit pressure p in the space
VΣ in the form∫

D

1

µ
K (f(x)−∇p(x)) ·∇ϕ(x)dx

+λ
2r−1
r−1

∫
Σ

∣∣∣f̃(x′,0)−∇x′p(x′,0)
∣∣∣r′−2

2
r′
2 (r+1)µr′−1

(f̃(x′,0)−∇x′p(x′,0)) ·∇x′ϕ(x′,0)dx′= 0,

(5.33)

for every ϕ∈VΣ.
Since K and Sr′ are coercive and monotone (see Remark 3.3 for more details), it

can be proved that (5.33) has a unique solution in the Banach space VΣ/R equipped
with the norm |v|VΣ

= |v|W 1,r′ (D) + |v(·,0)|W 1,r′ (Σ), by direct application of Lax-Milgram
Theorem. Therefore the whole sequence converges to p, the unique solution of the
problem (3.13).

Proof. [Proof of Theorem 3.1] It remains to prove the convergence (3.10) of the
whole velocity.
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Let ϕ∈C0(D)n. Then∫
D

ε−
r
r−1uεηε ·ϕdx

=

∫
D

ε−
r
r−1 vεηε ·ϕdx+

(
ηε

ε
r

2r−1

) 2r−1
r−1

∫
I1

ηε
− r
r−1Uεηε ·ϕ(x′,ηεz)dx

′dz.

Taking the limit as ε→0, using (5.25), Un= 0 and ηε/ε
r

2r−1 →λ, we obtain∫
D

ε−
r
r−1uεηε ·ϕdx→

∫
D

v ·ϕdx+λ
2r−1
r−1

∫
I1

Ũ(x′,z)ϕ(x′,0)dx′dz.

Taking into account that∫
I1

Ũ(x′,z)ϕ(x′,0)dx′dz=

∫
Σ

V(x′)ϕ(x′,0)dx′= 〈VδΣ,ϕ〉M(D)n,C0(D)n ,

where V(x′) is given by (3.12), we get (3.10).

REFERENCES

[1] G. Allaire, Homogenization of the Stokes flow in a connected porous medium, Asymptotic Anal-
ysis, 2, 203-22, 1989.

[2] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23, 1482-1518, 1992.
[3] A. Bourgeat, H. ElAmri, R. Tapiero, Existence d’une taille critique pour une fissure dans un

milieu poreux, Second Colloque Franco Chilien de Mathematiques Appliquées, Cepadués Edts,
Tolouse, 67-80, 1991.

[4] A. Bourgeat, R. Tapiero, Homogenization in a perforated domain including a thin full interlayer,
Int. Ser. Num. Math., 114, 25-36, 1993.

[5] A. Bourgeat, E. Marušic-Paloka, A. Mikelić, Effective fluid flow in a porous medium containing
a thin fissure, Asymptot. Anal., 11, 241-262, 1995.
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mensionnel et une plaque, C. R. Acad. Sci., Paris, Série I, 305, 55-58, 1987.
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