Homogenization of an incompressible non-Newtonian flow
through a thin porous medium

Maria Anguiano and Francisco Javier Suarez-Grau

Abstract. In this paper, we consider a non-Newtonian flow in a thin porous medium €. of thickness
¢ which is perforated by periodically solid cylinders of size a.. The flow is described by the 3D
incompressible Stokes system with a nonlinear viscosity, being a power of the shear rate (power
law) of flow index 1 < p < 4o00. We consider the limit when domain thickness tends to zero and
we obtain different models depending on the magnitude a. with respect to e.
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1. Introduction

In this paper, we consider an incompressible viscous non-Newtonian flow through a thin porous
medium. The study of partial differential equations (PDE’s) in thin structures is a central tool in
the description of mechanics of continua and more generally, as the principal mode of analytical study
of models in the physical science. For example, in fluid mechanics the analysis of fluid-film bearings in
thin domains gives rise to different types of nonlinear Reynolds equations, see for instance [13, 22, 29].
There are many other works in the recent literature about PDE’s and thin structures, for instance
[4, 5, 14, 20, 25, 26, 28].

In the case of Newtonian flow in a porous medium such geometry leads to Darcy’s law as an
averaged momentum equation, connecting the velocity to the gradient of the pressure. A number
of papers address the derivation of Darcy’s law from the fundamental hydrodynamical equations
(see Lions [18] and Sanchez-Palencia [27] for derivation using homogenization). A good reference for
physical aspects of this problem, as well as mathematical ones, is the book [17]. However, for the
non-Newtonian flow the situation is completely different. The main reason is that the viscosity is a
nonlinear function of the symmetrized gradient of the velocity. For some flow regimes linear models,
analogous to Darcy’s law are used, but in other situations measurements indicate that the filtration
laws linking the velocity and gradient of the pressure are nonlinear. Bourgeat and Mikeli¢ in [8] consider
the stationary incompressible purely viscous non-Newtonian flow through a porous medium and use
the homogenization technique called the two-scale convergence (see [2, 24]). Further extensions are to
be found in [9, 15].

Thin porous media are common and of great importance for various industries and products.
These include papers and cartons, filters and filtration cakes, porous coatings, fuel cells, textiles, and
diapers and wipes, to name only a few. A thin porous medium is characterized by lateral dimensions
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much greater than its thickness. The above results about non-Newtonian flows relate to a fixed height
domain. Our aim in the present paper is to extend it to the case of a domain of small height e.

The thin porous medium considered involves two small parameters: the thickness of the domain
€ and the interspatial distance between obstacles a.. We consider a fluid flow through periodic vertical
cylinders confined between two parallel plates (see Figures 1 and 2). A representative elementary
volume for the thin porous medium is a cube of lateral length a. and vertical length €. The cube is
repeated periodically in the space between the plates. Each cube can be divided into fluid part and a
solid part, where the solid part has the shape of a vertical cylinder of length ¢ (see Figure 3).
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FIGURE 2. View of the domain

We consider that the viscosity satisfies the non linear power law. If u is the velocity and Du the
gradient velocity tensor, denoting the shear rate by D [u] = %(Du + D'u), the viscosity as a function
of the shear rate is given by

1y (Du]) = pD]P™?, 1<p<+oo,

where the matrix norm || is defined by |§|2 = Tr(€¢') with ¢ € R3, the two material parameters
1 > 0 and p are called the consistency and the flow index, respectively. Recall that p = 2 yields the
Newtonian fluid. For 1 < p < 2 the fluid is pseudoplastic (shear thinning), which is the characteristic
of high polymers, polymer solutions, and many suspensions, whereas for p > 2 the fluid is dilatant
(shear thickening), whose behavior is reported for certain slurries, like mud, clay, or cement, and
implies an increased resistance to flow with intensified shearing.

We consider fluids satisfying the non-Newtonian Stokes system, 1 < p < 400, in the thin porous
medium described above. Our purpose is to study the asymptotic behavior of this system when ¢ tends
to zero. The proof of our results is based on an adaptation of the unfolding method [3, 10, 11], which
is strongly related to the two-scale convergence method, but here it is necessary to combine it with a
rescaling in the height variable, in order to work with a domain of height one. The unfolding method
is a very efficient tool to study periodic homogenization problems where the size of the periodic cell
tends to zero. The idea is to introduce suitable changes of variables which transform every periodic
cell into a simpler reference set by using a supplementary variable (microscopic variable). Recently, in
[4], a generalization of the unfolding method to the case of locally periodic media has been introduced.
In particular, the behavior of the solutions of the Neumann problem for the Laplace operator in a
thin domain with a highly oscillatory boundary is studied.



Homogenization of an incompressible non-Newtonian flow through a thin porous medium 3

We show that the asymptotic behavior of this system depends on the parameter a. with respect
to e:

- If ac = g, with a./e = A\, 0 < A < 400, i.e. when the cylinder height is proportional to the
interspatial distance, with A the proportionality constant, we obtained a 2D Darcy’s law as
a homogenized model with a permeability function which depends on the parameter A and is
obtained through local Stokes problem in 3D.

- If ac > ¢, i.e. when the cylinder height is much smaller than the interspatial distance, we obtain
a 2D Darcy’s law, with the permeability function obtained by means of local Reynolds problem,
which is a considerable simplification.

- If a. < ¢, i.e. when the cylinder height is much larger than the interspatial distance, we obtain a
2D Darcy’s law as a homogenized model with a permeability function which is obtained through
local Stokes problem in 2D.

The paper is organized as follows. In Section 2, the domain and some the notations are introduced.
In Section 3, we formulate the problem and state our main result, which is proved in Section 6 by means
of an adaptation of the unfolding method. To apply this method, a priori estimates are stablished in
Section 4 and some compactness results are proved in Section 5.

2. The domain and some notations

A periodic porous medium is defined by a domain w and an associated microstructure, or periodic cell
Y’ = [~1/2,1/2]?, which is made of two complementary parts: the fluid part YJZ, and the solid part Y/
(YUY, =Y"and Y/ Y, = 0). More precisely, we assume that w is a smooth, bounded, connected
set in R?, and that Y/ is a smooth and connected set strictly included in Y.

The microscale of a porous medium is a small positive number a.. The domain w is covered
by a regular mesh of size a.: for ¥’ € Z?, each cell Y/’,as = a.k’ + a.Y’ is divided in a fluid part
Y}, o and a solid part Y/, ,_,
Y =Y’ x (0,1) € R3, and is divided in a fluid part Y and a solid part Y;, and consequently
Vira. = Yy, % (0,1) € R, which is also divided in a fluid part Yy,, 4. and a solid part Yy, a4, -

i.e. is similar to the unit cell Y’ rescaled to size a.. We also define
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FIGURE 3. Views of a periodic cell in 2D (left) and 3D (right)

The fluid part w. of a porous medium is defined by
We = UJ\ U )/SIk/,aE’
k'eT.

where T. = {k' € Z*: Y}, , Nw # 0}.

In order to apply the unfolding method, we will need the following notation. For k' € Z2, we
define x : R? — Z2 by

k(a') =k = 2" eY,. (1)

Remark that # is well defined up to a set of zero measure in R? (the set Ugez20Y}, ;). Moreover, for
every a. > 0, we have

/
X
m()-k’ = el ,..
aE yLe
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We will consider the open set . C R? given by
Qe ={(z1,22,23) Cwe xR: 0 < x3 < e} (2)

Then €. denotes the whole fluid part in the thin film.
We define Q; = w. x (0,1), @ =w x (0,1) and Q. = w x (0,¢). We have that

Qe =0\ {J Yopo. =20 {J Yo
k'eT: k'eT,

We denote by L (Y), Wul’p (Y), the functional spaces

L(Y) = {v el (Y): / lv[Pdy < 4o0,v(y + K ,ys3) = v(y) VK € Z?, ae. y < Y},
%

loc
and

loc

wiew) = v e Whr ) n L) - /Y VylPdy < 400}

We denote by : the full contraction of two matrices: for A = (a; ;)1<ij<2 and B = (b; j)1<i j<2,
we have A: B = Z?,j:l aijbij.

We denote by O. a generic real sequence which tends to zero with € and can change from line to
line, and by C a generic positive constant which can change from line to line.

3. Setting and main result

Along this section, the points = € R? will be decomposed as z = (z/,z3) with 2/ € R?, 23 € R. We
also use the notation 2’ to denote a generic vector of R2.

In this section we describe the asymptotic behavior of an incompressible viscous non-Newtonian
fluid in the geometry . described in Section 2. The proof of the corresponding results will be given
in the next sections.

Our results are referred to the non-Newtonian Stokes system. Namely, let us consider a sequence
(ue,pe) € Wy P(9:)% x L' (), 1 < p < 400, which satisfies

—div (np, (D [ue]) D jue]) + Vpe = fin Q.
divu, =01in €.,

3)

where Q. is defined by (2) and p’ = p/(p — 1) is the conjugate exponent of p. The right-hand side f
is of the form
flz) = (f'(2'),0), a.e. x€Q,
where f is assumed in L? (w)2. This choice of f is usual when we deal with thin domains. Since the
thickness of the domain, €, is small then the vertical component of the force can be neglected and,
moreover the force can be considered independent of the vertical variable.
We deal the problem with Dirichlet boundary condition, i.e.

u, =0 on 0f).. (4)

It is well known that (3)-(4) has a unique solution (ue,p.) € Wy*(€.)? x L? () (see the classical
theory [16, 18, 31]). This solution is unique up to an additive constant for p, i.e. it is unique if we
consider the corresponding equivalence class: p. € L? (2.)/R.

Our aim is to study the asymptotic behavior of u. and p. when ¢ tends to zero. For this purpose,

we use the dilatation in the variable z3
T3
Ys = ?7 (5)
in order to have the functions defined in an open set with fixed height.
Namely, we define @, € Wy (Q.)3, . € L? (.)/R by

U (2, y3) = ue(a',eys), Pe(a',y3) = pe(a’,ey3), a.e. (2',ys) € Q.
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Let us introduce some notation which will be useful in the following. For a vectorial function v = (v/, v3)

and a scalar function w, we will denote D, [v] = §(Darv + DLv) and 9y, [v] = 3(8y,v + 9}, v), where

we denote 9y, = (0,0, 8?; )t. Moreover, associated to the change of variables (5), we introduce the
operators: D, D, div. and V., by

1
D. [v] = = (Dev + Dlv),

2
(Dov)ij = Ogyv; for i=1,2,3, j =1,2,

(Dev)ig = faygvi for 1 =1,2,3,
€

. . 1
divoy = divg v + 58%1)3,

1
Vew = (Vyw, g(‘?ysw)t.

Using the transformation (5), the system (3) can be rewritten as

—div, (,U |DE [a5]|p—2 D, [ﬂa]) +Vep. = fin ﬁaa
div.ii. = 0in Q.,
with Dirichlet boundary condition, i.e.
ii. =0 on 09..

Our goal then is to describe the asymptotic behavior of this new sequence (., pe).
The sequence of solutions (i, p.) € Wy*(Q)? x L (Q.)/R is not defined in a fixed domain
independent of € but rather in a varying set {2.. In order to pass the limit if ¢ tends to zero, convergences
in fixed Sobolev spaces (defined in ) are used which requires first that (@, p.) be extended to the
whole domain €. Then, by definition, an extension (@, P.) € Wy ?(Q)3 x L (Q)/R of (i, p.) is
defined on Q and coincides with (4., p.) on . (we will use the same notation, ., for the velocity in

Q. and its continuation in €2).
In order to simplify the notation, we define S as the p-Laplace operator

SE) = 1¢"7%¢, VEERY, 1<p< oo

Our main result referred to the asymptotic behavior of the solution of (6) is given by the following
theorem.

Theorem 3.1. We distingue three cases depending on the relation between the parameter a. with respect

to €:

i) if ac ~ ¢, with ac/e — X\, 0 < A < +00, then the extension (ac "' i, P.) of the solution of (6)
converges weakly to (u, P) in WP (0,1; L (w)3) x L (w)/R. Moreover, it holds that (U, P), with
Us = 0, is the unique solution of Darcy’s law

m0—4W<0—me0mw
divy U'(2') =0 in w, (7)
U)-n=0in dw,

where U fo 2’ y3) dys and the permeability function A : R? — R? is monotone and
coercive, deﬁned by

M@wﬂwﬂwm Ve € R2, (8)
f
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Marfa Anguiano and Francisco Javier Suarez-Grau

where wt (y), for every & € R2 with Iy wgl (y)dy = 0, denote the unique solution in I/Vﬁl’p(Yf)3
of the local Stokes problem in 3D

_div»8 (DA[wE/]) + VS = ¢ i Yy,
diV)\U)E/ = 0 m Yf, (9)
w = 0 in oYy,

w78 Y — periodic,
where Dy [-] = Dy [-] + A0y, [, Va = Vy + A0y, and divy = Vi + Ay, .
if ac > €, then the extension (¢~ Pplue, P.) of the solution of (6) converges weakly to (u, P) in

WLP(0,1; LP(w)3) x v (w)/R. Moreover, it holds that (U, P), with Us = 0, is the unique solution
of Darcy’s law

1 -
U'(2) = ——— A (f’(x’) —VI/P(:C’)) in w,
,U2 (r+1) (10)
div, U T'(2') =0 in w,
U (m’) n=0in dw,

where U fo u 3) dys and the permeability function A* : R? — R? is monotone and

coercive, deﬁned by

' =2 y
A°O(§’>:/ ¢+ vynd | (¢4 v, )ay, Ve e R, (11)
£

where, 7€' (y'), for every € € R2, denote the unique solution in Wﬂl’p/ (Y;)n g (Y7)/R of the
local Reynolds problem

div, <’5 +vy,7rgf‘?’—2 (5, n vy/wa’))

<§/+V /7r5/’p/_2 (§’+V /wfl)> n = 0 in 9Y!
Yy Yy - s°

_pP
if ac < e, then the extension (ac * i, P.) of the solution of (6) converges weakly to (@, P) in

LP(Q)3 x LP (w) /R. Moreover, it holds that (U, P), with Us = 0, is the unique solution of Darcy’s
law

0 in Y]ﬁ,
(12)

' (a') = 240 (f’(x’) - vx,ﬁ(x')) in w,
- H
divy/U'(2") =0 in w, (13)
U')-n=0in dw,

where U fo 2’ y3) dys and the permeability function A° : R? — R? is monotone and
coercive, deﬁned by

A0 = /Y wf () dy, VE € B2, (14)
f

where w€ (y), for every & € R2, denote the unique solution in Wﬁ P(Yy)? of the local Stokes
problem in 2D

~divy S (By[ut]) + Vyr® = € in Yy,
diVy/U)g/ = 0 m Yf, (15)
wd = 0 in Y,

w78 Y — periodic.

Remark 3.2. The monotonicity and coerciveness properties of the permeability functions A*, A® and
A° given by (8), (11) and (14), respectively, can be found in [9].
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4. A Priori Estimates
Let us begin with a variant of the Korn’s inequality in the thin domain €2..

Lemma 4.1. There exists a constant C' independent of €, such that, for any function v € Wol’p(Qa)3
with 1 < p < +00, one has

i) if ac = e, with az/e - A\, 0 < X < +00, then
1
vl o (e.)z < ClaZ +€7)7 D]l oo, 2xa »

ii) if a. > ¢, then

HUHLP(QE)3 <Ce ||D[UH|LP(QE)3><3 )
iii) if a. < €, then

[0l Lo () < Cae ID[]l| Lo (g, ysxs -

Proof. Let us start with the proof of 7). We observe that the microscale of the porous medium a. is
similar or larger than the thickness of the domain &, which lead us to divide the domain . in small
cubes of lateral length a. and vertical length e.

For any function v(z) € W1P(Y)? with v = 0 in Y, using the results from Mjasnikov and
Mosolov [23], we have

/|w%hs0/’mgmﬂm | < p < +oo, (16)
Y, Y,

where the constant C' depends only on Y.
For every k' € Z2, by the change of variable
!/
d
k/—l—z’:x—, Zgzﬁ, dz:—x, Oy = ac0pry O0ny = €0y, (17)

as € € a?

we rescale (16) from Yy to Qp,.a. = Yf,, % (0,€). This yields that, for any function v(z) €
WhP(Qy,, a.)® with v =0 in 0Qs,, o, Where Qy,, 4. =Y x (0,¢), one has

St ,Qe

N

/ WPde < aC Dy [o]|? dz + £PC 10, [o]|P da (18)
Q ka/,as

fyrrae ka/-as

< e [ Dol s,
ka/ ae
with the same constant C' as in (16). Summing the inequalities (18) for all the periods Qy,, 4., gives
/ [v|P dz < C(a? +Ep)/ D, [v]|? dz.
Q. Qe
In fact, we must consider separately the periods containing a portion of dw, but they yield at a distance
O(ac) of dw, where v is zero, and then the corresponding inequality is immediately obtained.

For the case i7), since the thickness of the domain e is much smaller that the microscale of the
porous medium a,, if we proceed as the previous case, we would obtain

1oll Lo ye < Cae ID[] Lo yana s Yo € Wo'P ()™

However, we are able to obtain a more optimal estimate. Thus, for any function v(z’, z3) € Wl’p(Y]ﬁ X
(0,€))%, 1 <p < +o0, with v = 0 in I(Y; x (0,¢)), the Poincare inequality in Y} x (0,¢) states that

/ [v]P d2'dzs < Cap/ |0,,0]" d2' dws, (19)
Y[ x(0,¢) Y[ x(0,e)
where the constant C' is independent of €. For every k' € Z2, by the change of variable
!/ d !/
Far=2 g=% (20)

- )
ae a?
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we rescale (19) from Y7 to Yy, . This yields that, for any function v(z) € WP(Qy,, 0.)® with v =0
in 0Qs,, a., one has

J

with the same constant C' as in (19). Summing the inequalities (21), gives

/ [v|P dz < Csp/ |D,v|? dz,
. )

€

[v]? do < Csp/

|0z50|" dz < Cep/ | D v|” dz, (21)
ka/,as

frriae ka/,as

and by the classical Korn inequality, we have the desired result.

On the other hand, for the case iii), we observe that the microscale of the porous medium a,
is much smaller than the thickness of the domain e. Thus, if we proceed as the first case, we would
obtain

1ol o (a,y2 < CelD]l o, yaxa s Vo € WoP ()
Since a. < €, we are able to reproduce the original proof of Tartar [30] dividing the domain . in
small cubes of lateral length a. and vertical length a.. This will lead to a more optimal estimate with
a constant Ca,.
To do this, for every k € Z3, by the change of variable

T dx

k-+z:a—57 dz:?g, az:agax, (22)

we rescale (16) from Yy to Qy, 4. = a- k+a-Ys. This yields that, for any function v(z) € WP (Qy, 4.)>
with v = 0 in 0Qs, . Where Qs, . = ac k + a.Ys, one has

J

with the same constant C' as in (16). Summing for all the periods Q. = ac k + a Y, gives

J

Considering the change of variables given in (5), we obtain the following result for the domain

o] dz < Caig/ D [v]|” da,

frae ka,as

[v|P dx < Caé’/ D [v]|? de.
= QE

]

Q..

Lemma 4.2. There exists a constant C' independent of €, such that, for any function v € Wol’p(fvlg)?’,

with 1 < p < +00, one has
i) if ac = e, with az/e = A\, 0 < X < +o00, then
11l o @,y0 < C(a? + 7)o IDe[D] Lo, yoxs »
ii) if ac > ¢, then
||@||Lp(ﬁg)3 < Ce ||D8[5]HLP(§E)3X3 s
ili) if ac < ¢, then
H’Z)”LZD(QE)‘g < Ca. HDEMHLP(?)E)SM :

Remark 4.3. Observe that, taking into account the relation between a. and €, the estimates given in
Lemma 4.2 can be expressed as follows

i) ifa. = e, with ac/e = A\, 0 < A < +00, or a. < ¢, then
190 16,0 < Cae De[i]ll g, yoxa» V8 € WpP(Q)?, 1< p< oo, (23)

ii) if ac > €, then
190l 1o @,y < Ce IDe[d]ll o, yoxs - V0 € WoP(R:)?, 1< p < +oo. (24)
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Let us obtain some a priori estimates for ..

Lemma 4.4. There exists a constant C' independent of €, such that if G, € Wol’p(ﬁg)?’, with 1 < p <
+00, is the solution of the problem (6), one has

1) if ac = ¢, with ac/e = A, 0 < X\ < +00, or a. < ¢, then

Hﬂ5||LP(S~2E)3 <Cal™t, IDe [ﬁsmm(ﬁi)sxa <Cal™t, (25)
1
D2l o e < Cal ™, (26)
ii) if ac > €, then
- »_ . 1
||UsHLp(ﬁE)3 < Cer1, |D, [Usmm(ﬁs)sm < CerT1, (27)
. 1
”DEUEHLP(QE)SXS < Cev1. (28)
roof. Multiplyin Ue 1In the first equation o and Integrating over ~E, we have
Proof. Multiplying by @, in the fi i f (6) and integrating Q h
y /~ ID. 6] [P Do [] : D, [iie] da’dys = /~ f i da’dys. (29)
Qe Qe

Using Holder’s inequality and the assumption of f, we obtain that
~ [ e dx/dyg <C Ha6||Lp(§5)3 ,
Q.
and by (29), we have
1D (2 1 yons < C el gy - (30)

For the cases a. ~ € or a. < ¢, taking into account (23), we obtain
1
H]D)e [a€H|LP(§E)3><3 < Caap_17

and, consequently, from classical Korn’s inequality we obtain (26). Now, from the previous estimate
and (23), we deduce
P
||/EL5||LP(§E)3 <Cal™'.
For the case a. > ¢, proceeding similarly with (24), we obtain the desired result. (I

4.1. The Extension of (., p.) to the whole domain 2
In this section, we will extend the solution (., p.) to the whole domain . It is easy to extend the
velocity by zero in Q\ﬁE (this is compatible with its Dirichlet boundary condition on 99.). We will
use the same notation, 4., for the velocity in ﬁa and its continuation in €. It is well known that
extension by zero preserves LP and VVO1 P norms for 1 < p < +oo. We note that the extension .
belongs to W, (€2)3.

Now, we give some properties of the restricted operator from VVO1 P(Q)3 into VVO1 P (55)3 preserving
divergence-free vectors. First, we extend the technique of Tartar [30], Allaire [1] and Mikelié¢ [21] (see,
for instance, [8] for more details) to the case of a thin domain.

Lemma 4.5. There ezists a (restriction) operator R acting from Wy ?(Q.)® into Wy (Q.)%, 1 < p <
400, such that
1. Rv=v,ifve WoP ()3 (elements of Wy (Q.)® are continuated by 0 to Q.)
2. div(Ryv) =0 in Q, if dive =0 in Q.
3. Foranyv € Wol’p(Qe)g’ (the constant C is independent of v and €),
1) if ae e, with ac/e = X\, 0 < X\ < 400, or a. < €, then
12

IN

Ol o, ye Cllollpr(g.ys + Cac1Dvll 1o . yexs »

IN

C
HDR[E)UHLp(QE)SXB ;a HU”LP(QE)3 +C HDUHLP(Q5)3X3 )
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ii) if a. > e, then

HR;’UHLP(QE)E‘ < COlollpeq.y +Cae 1Dv] Logqoyoxa s
C Qe
||DR;”HLp(QE)3x3 = 7 ||”||LP(Q5)3 +C? HD”HLp(QE)sxs-

Proof. Let us consider the linear map R, constructed in Lemma 1.1 in [8] from W, *(Y)3 to Wy (Y)3,
1 < p < 400, such that

||Rp”HW1,p(y)3 <C ||U||W1,p(y)3 ’ (31)
and R, coincides with v if v is zero on Yy (i.e., if v € Wy (Y})?) and divv = 0 implies div R,v = 0.
Then, R} is defined by applying R, to each Qx/ 0, = k’,’as x (0,¢). Consequently, the two first items
are satisfied. Finally, we will prove the third item. From (31), by the change of variable (17), as in
Lemma 4.1, we have

/Q |Rev|” da:Jrag/Q |DI/R5v\pdx+5p/Q |02y Rev|P do < C (/Q v dx + (a’E’Jrsp)/

QE

| Dv|? dz) ,

and 3.-1) for a. ~ ¢ and 3.-ii) follow. Similarly, from (31), by the change of variable (22), as in Lemma

4.1, we have
/ |R.v|? dx—i—a’g’/ |DR.v|Pdz < C </ |v]? dx + aﬁ/ | Dvl|? dx) ,
Q Q. Q Qe

€ €

and 3.-1) follows for a. < ¢. O
Then, the following estimates in the fixed domain 2 are available.

Lemma 4.6. Let us define f%;(fj) = Ry (v) for any v € Wy P(Q)3, 1 < p < +oo, where 5(x',y3) =
v(a',eys) and R}, is defined in Lemma 4.5. Then, there exists a constant C, independent of v and ¢,
such that

1. R;ﬁ :~17, ifve Wé’p(ﬁg)g (elements of Wol’p(ﬁg)3 are continuated by 0 to Q)

2. div. (R55) = 0 in Q., if div.d =0 in Q

3. For any o € WyP(Q)3, 1 < p < 400, (the constant C is independent of o and €),
1) if ac m e, with ac/e = X\, 0 < X\ < 400, or a; < ¢, then

‘ R,v Lo(@.)3 < Cllolleys + Cae | DDl po(q)oxs »
| b < S ol gy +C 11020
Polle@ysxs = a. Lr(Q)? evllLp(Q)3%3
ii) if a. > e, then
|70, < Clolniae + Cac Dbl agapsns
282 ol s +C D23 .
PN Lo (@ yox - Lp(Q)3 - eVliLr(q)3x3

Proof. Considering the change of variables given in (5) and the estimates given in Lemma 4.5, we
obtain the desired result. O

In order to extend the pressure to the whole domain Q, we define a function F. € W17 (Q)3
by the following formula (brackets are for the duality products between W—?" and WO1 Y
(Fe,0)g = (Vebe, R3T) ., for any & € WoP(9)°, (32)

€

where R; is defined in Lemma 4.6. We calcul the right hand side of (32) by using (6) and we have

<F87 17>Q = <diva (/u |D5 ['aa]lp_2 D, [aa]) 7R;1~]>§~2 + <fv R;"7>ﬁ > (33)

= €
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and by using Lemma 4.6, for fixed € we see that it is a bounded functional on VVO1 P(Q)3 (see the proof
of Lemma 4.7 below), and in fact F. € W~12'()3.

Moreover, if & € WP (Q.)? and we continue it by zero out of ., we see from (32) and the first
point in Lemma 4.6 that FE\QE = V.p..

Moreover, if div.v = 0 by the second point in Lemma 4.6 and (32), (F¢, ?), = 0 and this implies

that F. is the gradient of some function P.in )i (). This means that F; is a continuation of V_p. to
), and that this continuation is a gradient. We also may say that p. has been continuated to 2 and

F.=V.P., P.eL”(Q)/R.
Lemma 4.7. There exists a constant C independent of €, such that the extension (i, P.) € Wol’p(Q)3 X
LY (Q)/R, 1 < p < +00, of the solution (i, p.) satisfies
1) if ac = ¢, with ac/e = X\, 0 < X\ < +00, or a: < ¢, then

_»_ 1
HaEHLP(Sz)B <CaZ™, |D. [ﬂEH|LP(Q)3X3 < Cal™", (34)

1
1Dl gyons < Ca, (33)

ii) if ac > e, then
- p_ - 1

el o) < CeP=T, D [te]ll o (qyexs < CePT, (36)

. 1
HDEUEHLP(Q)”3 < Cer T, (37)

and, moreover, in every cases,

P| 38
H e @mr — (38)

Proof. Taking into account Lemma 4.4, we have, after extension, the estimates of the velocity.
Let us estimate V. FP; in the cases a. = € or a. < . We estimate the right side of (33). Using
Holder’s inequality and from (25) we have

‘<div8 (u D [ﬂ€]|p72 D. [ﬂs]) 7R21~)>§

IN

D.R5

~ p—1
/L“]D)s [Us]||Lp(§5)3><3 LP(§€)3X3

e

IA

Ca.

D.R:%

Lp(§£)3><3 :

Using the assumption of f, we obtain

<

DE ~ < DE ]
(7, va>ﬁa\ <o|&], 0.

Then, from (33), we deduce

’<v5155,@>9’ < Ca. e HR;&

Lr(Q.)?

Dgfz;@’

ACRES

Taking into account 3.-i) in Lemma 4.6, we have

~ 1 . 5 B B
’<VEPEW>Q‘ < Cac <a5 ||U||Lp(g)3 + ||D8U||Lp(g)3x3> +C (HU||LP(Q)3 +a. ||DEUHLp(Q)sx3> .
Then, as a. < 1, we see that there exists a positive constant C' such that
(VPo) | < Cllolygor e (39)

for any o € W, P(Q)3.
Now, we consider
p'—

- pP=2 . 1 - 2
P Pg — 7/ Pg Psdxldy37
€2 Jo

e
I

g
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where § € LP(Q), due to P. € L¥' (), and Jo gda'dys = 0. We define © = B[g], where B is the
Bogovskii operator associated to Q. By Theorem 3.1 in Chapter I11.3 in [16], we obtain that div.0 = g,
o € W, P(€2) and there exists a positive constant C' such that

8l s < C 1l ey - (40)
It is easy to prove that there exists a positive constant C' such that
p'—1

P. (41)

1301200y < €[2[0

and

P
L' (@)’
which, together with (39) and (40), give the estimate (38).

Finally, let us estimate V. P. in the case a. > . Similarly to the previous case, we estimate the
right side of (33) by using Holder’s inequality and from (27), and we have

(VePem) o[ =17

(VeP.5) | < Ce||D.R5o

+o|&; -
Lr(Q.)3%3 PollLe(e.)3

Taking into account 3.-ii) in Lemma 4.6, we have

~ 1. a - - -
(vP.o) | < ce (E 19l o gays + = |DEU||L,,(Q)3Xa> +C (19l gy + 0= D<o ayons ) -
Then, as a. < 1, we see that there exists a positive constant C' such that
’<VEP&"{}>Q‘ < C ||17||W01’1”(Q)3 )
for any o € Wy *(92)3. Using the Bogovskii operator as above, we have the estimate (38). O

4.2. Adaptation of the Unfolding Method

The change of variable (5) does not provide the information we need about the behavior of @, in the
microstructure associated to QE. To solve this difficulty, we introduce an adaptation of the unfolding
method (see [3, 10, 11]), which is strongly related to the two-scale convergence method (see [2, 24]).
Let us introduce the adaption of the unfolding method in which we divide the domain €2 in cubes of
lateral length a. and vertical length 1. For this purpose, given (i, P.) € W, (€)% x L? (Q)/R, we
define (@, P.) by

/

ielel) = (0 () +aafon)« ae. (@) cwx Y, (42)

€

/

Pg(x’,y) =P (agli (;C) + agy/,yz’,) , ae. (7/,y) EwxY, (43)

€

where the function « is defined in (1).

Remark 4.8. For k' € T, the restriction of (., If’e) to Yy, ,. X Y does not depend on x', whereas as

a function of y it is obtained from (U, P:) by using the change of variables
' ak!
y =T (44)

Qe

which transforms Yy o, into Y.

Let us obtain some estimates for the sequences (i, P:).

Lemma 4.9. There exists a constant C independent of €, such that (1, ]55) defined by (42)-(43) satisfies
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i) if ac m e, with ac/e = X\, 0 < X < 400, ora. < g,

||Dy’[ﬁ€]||m(wxy)3x2 Scaapjv ||8y3[ ]HLp(wa <Ceal” 1» (45)
_p 1
||Dy’ﬁs||Lp(wa)3x2 <Cal™', ||8y3UsHLp(wxy <Ceal” 17 (46)
el o (wxyys < Cal T, (47)
ii) if ac > e,

N 1 . p_
HDy’[Us]”LP(wa)Bw§Oas gr-t, Hays[us]”m(wxy)s <Cer-1, (48)

N 1 . p_
HDy’UEHLp(wxy)sz <CacerT, Haysuean(wxy)a <Cer1, (49)
el oo xyye < CePT, (50)

and, moreover, in every cases,

51
e wxy)/rR = (51)

Proof. Let us obtain some estimates for the sequence . defined by (42). Taking into account the
definition (42) of 4., we obtain

/ Dy [ie (2!, y)][" da'dy < > / / Dy [de (2, )] da'dy
wXxY W eT.
- Z/ /m (e (ack + acy’, s)]|P de’dy.
k€T,

We observe that @, does not depend on ', then we can deduce

/ Dy Ll ) da'dy < a2 3 / Dy [ (ak + acy/ ys)]* dy.
w X

k'eT.

By the change of variables (44), we obtain

[yl ) dr'ay
wxY

IN

a? Z/ / Dy [t (2, y3)]|” da’dys

k'eT.

IN

a? / Do [ (&, y)]|P da’dys.
% (0,1)

Taking into account the second estimates in (34) and (36), we get the first estimates in (45) and (48)
respectively.
Similarly, using Remark 4.8 and definition (42), we have

| ol ol da'dy < a2 30 [ 10, ek + el )

wXY k/eT

By the change of variables (44) and the second estimate in (34), in the cases a. &~ ¢ or a. < &, we
obtain

[ ola P sy < [ oy, 6 ) da'dys < Cral
wxY wx(0,1)
so (45) is proved. Consequently, from classical Korn’s inequality, we also have (46). Analogously, using
the second estimate in (36), we get the second estimate in (48) and, from classical Korn’s inequality,
we have (49).

Similarly, using the definition (42), the change of variables (44) and the first estimate in (34), in

the cases a. ~ € or a. < €, we have
2

P~
/ lie(2! )|? da'dy < CaZ T,
wXY
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and (47) holds. Analogously, using the first estimate in (36), we get (50).
Finally, let us obtain some estimates for the sequence P. defined by (43). We observe that using
the definition (43) of P., we obtain

Lo Pl wews 32

We observe that P. does not depend on z’, then we can deduce

/ b (2, y)’ dx'dy < aZ
wx Y k'€T.

By the change of variables (44), we obtain

. P’
/ a(x',y)‘ dx’dyé/
wXY

wx(0,1)
Taking into account (38), we have (51). O

P.(a:-k +a.y, ys)’ dx'dy.

/

P.(a.k' +acy/, yg)‘ dy.

’

~ p
P.(z, ys)‘ dx'dys.

5. Some compactness results

In this section we obtain some compactness results about the behavior of the sequences (., }55) and
(116,155) satisfying a priori estimates given in Lemma 4.7 and Lemma 4.9 respectively. We obtain
different behaviors depending on the magnitude a. with respect to €.

Let us start giving a convergence result for the pressure P..

Lemma 5.1. For a subsequence of € still denote by ¢ there exists P € Lp/(Q)/R such that
P. =~ P in L” (Q)/R. (52)

Proof. Observe that estimate (38) implies, up to a subsequence, the existence of P € L? (€2)/R such
that (52) holds. O

We will give a convergence result for ..

Lemma 5.2. For a subsequence of € still denote by €,

i) if ac ~ ¢ with a./e — \, 0 < X\ < +00, then there exists 1 € WHP(0,1; LP(w)3) where @3 = 0,
and . =0 on 022, such that

ae T Ge — (@',0) in WHP(0,1; LP(w)?), (53)
ii) if ac > ¢, then there exists 1 € W1P(0,1; LP(w)3) where @3 = 0, and @ = 0 on 9%, such that

e~ — (@,0) in W"P(0,1; LP(w)?), (54)
ili) if ac < €, then there exists U € LP(Q)?’ where 43 =0, and @ =0 on 02, such that

as P la, — (@,0) in LP(Q)P. (55)

Moreover, in every cases

1 1
div, </ ﬂ'(x’,yg)dy3> =0in w, (/ ﬂ’(x’,yg)dy;),) n=0on Ow. (56)
0 0

Proof. We proceed in four steps.
Step 1. Critical case a. &~ €. In this case, the estimates (34)-(35) read

P _1_ P _
||a5”LP(Q)3 <Cal™", ||D1'17’EHL1>(Q)3><2 <Cal™", ||8y3a5||LP(Q)3 < Cal™. (57)
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The above estimates imply the existence 4 € W1P(0,1; LP(w)?), such that, up to a subsequence, we

have
D

ac "M — @ in WHP(0,1; LP (w)?), (58)
which implies
az 7T divy @il — divgd in WHP(0,1; WL (w)). (59)
Since div.i. = 0 in Q, multiplying by a. ="' we obtain
__p_ _2p—1
ac 7 divyd + %ag " B dies =0, inQ, (60)
2p—1

which, combined with (59) and a. /e — A, implies that a;faygﬂs 5 is bounded in W12(0, 1; W 1% (w)).
This implies that a: * ' 9y, 3 tends to zero in WHP(0,1; W1 (w)). Also, from (58), we have that

ae T 'Oy, Ue 3 tends to dy,u3 in LP(Q). From the uniqueness of the limit, we have that d,,a3 = 0,
which implies that @3 does not depend on ys.

It remains to prove that iis = 0. In order to do that, let us first show that P only depends on .
As usual, we take a test function v = (0, ev3) in the momentum equation in (6). From convergences
(52) and (53), we deduce that 8,,3P = 0, which 1mp11es that P only depends on 2. Next, as i3 does

not depend on ys, we take a test function v = (0, ac * " vsz(2’)) in (6), and passing to the limit, using
monotonicity arguments, we can deduce that ug = 0.

Step 2. Supercritical case a. > €. In this case, the estimates (34)-(35) read
lell Loy < Ce71, || Daviic | pogyone < Ce7T,  [18yyiel pogys < Ce77. (61)

The proof is similar to the Step 1 by taking € instead of a., so we omit it.
Step 3. Subcritical case a. < . In this case, the estimates (34)-(35) read

P _ _1 1
el o (s < CaZ™, || Daviie]| poyon> < CaZ™", [10yytie| oye < Ceal ™" (62)

The first estimate of (62) implies the existence @ € LP(Q2)3, such that, up to a subsequence, con-
vergence (55) holds. On the other hand, (60) combined with (55) implies that e lac ¥ ' 9, e 3 is
bounded in LP(0,1; W1 (w)). Thls implies that a- ” "9y, 7. 3 tends to zero in LP(0,1; W1 (w)).

Also, from (55), we have that ac 7"y, e 3 tends to dy,a in W12 (0,1; LP(w)). From the uniqueness
of the limit, we have that d,,1s = 0, which implies that 3 does not depend on ys3. Finally, reasoning
similarly as the step 1, we deduce that us = 0.

Step 4. In this step we prove (56). To do this, we consider v € C}(w) as test function in div.a. = 0
in 2, which gives

/ divyal v(z") da'dys = 0.
Q

In the cases a. ~ ¢ and a. < &, multiplying by a- =" and from convergences (53) and (55) we get
(56). Finally, in the case a. > &, multiplying by e #°1 and from convergence (54), we get (56). O

Now, we give a convergence result for the pressure P..
Lemma 5.3. For a subsequence of ¢ still denote by e there exists P € L¥' (wxY)/R such that

P. =~ Pin L (wxY)/R. (63)
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Proof. The estimate (51) implies the existence P:wxY — Rsuch that (63) holds. By semicontinuity
and the previous estimate of P., we have

. P
/ 'P(:c',y)’ dr'dy < C,
wxY

which shows that P belongs to L? (w x Y). O
Next, we give a convergence result for ..

Lemma 5.4. For a subsequence of € still denote by ¢,
i) if ac = € with az/e = A, 0 < A < 400, then there exists U € Lp(w;Wul’p(Y):g), with @ = 0 on
w X Yy, such that
ae e — G in LP(w; WHP(Y)?), (64)
divyi =0 in w XY, (65)
where divy = divy + AOy,,
ii) if a. > e, then there exists 1 € WHP(0, 1; Lg(w xY")3), with @ = 0 on w x Yy and 43 independent
of ys, such that

TP 0. = @ in WHP(0,1; LP(w x Y')?), (66)
1

div,, (/ ﬂ’(x’,y)dyg) =0in wxY' and divyd =0in wxY, (67)
0

iii) if ae < €, then there exists 4 € LP(Q; Wﬁl’p(Y’)g’), with & = 0 on w x Yy and 43 independent of
ys, such that

ae "N — G in LP(Q;WHP(Y)3), (68)

divyd' =0in wxY. (69)

Moreover, in every cases

div, (/ ﬁ’(x’,y)dy) =01in w, (/ a’(x’,y)dy) ‘n=0 on Ow. (70)
Y 1%

Proof. We proceed in four steps.
Step 1. Critical case a. =~ ¢. In this case, the estimates (46)-(47) read

D

litell ooy < CaZ ' Dyt ey yons < Cal (71)

Taking into account the Dirichlet condition, the above estimates imply the existence @ : w x Y — R3,
such that, up to a subsequence, convergences (64) holds. By semicontinuity and the estimates given
in (71), we have

/ la|” do’dy < C, |D,a|” da'dy < C,
wXY wXY
which shows that @ € LP(w; WHP(Y)3).
It remains to prove the Y'-periodicity of 4 in y’. To do this, we observe that by definition of .
given by (42), we have

Ge(z1 + €, 22, —1/2,92,y3) = G (2',1/2,92,y3) a.e. (2',92,93) € w x (—1/2,1/2) x (0,1),
which, dividing by e7-7 and taking into account convergence (64), gives
w(x', —1/2,92,y3) = a(z',1/2,92,y3) ae. (¥',y2,93) € w x (=1/2,1/2) x (0,1).
Analogously, we can prove
(@' g1, —1/2,y3) = a(z',y1,1/2,y3) ae. (2',y1,y3) € w x (=1/2,1/2) x (0,1),

These equalities prove the periodicity of .
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Since div.u. = 0 in €2, then by definition of @. we have a;ldivy/&’e +€_18y3ﬁ5’3 = 0. Multiplying
1

P~! we obtain

by as
a: " divyal + %ag_ﬁa%ﬁs,g =0, nwxY, (72)
which, combined with (64) and a./e — A, proves (65).
Step 2. Supercritical case a. > €. In this case, the estimates (49)-(50) read
~ —P_ N 1 ~ _p_
HUEHLP(wa)S < Cert, ”Dy’HEHLp(wa)sm < CerTa, Haygusan(wa)s < Cer-t. (73)

Therefore from the first and third estimates, up to a subsequence and using a semicontinuity
argument, there exists @ € WP(0,1; LP(w x Y')3) such that
e Ta, = @ in WHP(0,1; LP(w x Y')3). (74)
And we can deduce that 5_ﬁas’1ﬁ5 tends to zero in W1P(0,1; LP(w x Y')?), which implies that
Efﬁagldivyfﬁs tends to zero. Since div.u. = 0 in €, then by definition of 4. we have agldivyfﬂfS +
£ 10y, 3 = 0. Multiplying by £~ 7T we obtain
efﬁagldivy/ﬂ’g e T 10,,0.3 =0, inwxY,

which, combined with (74), proves that d,,4s = 0.
Now, we prove (67). To do this, we consider v € C}(w x Y') as test function in az 'div, 4. +
5_18%11573 = 0, which gives

/ divyaL (', y") de'dy = 0.
wXxY

Multiplying by e~ #71 and from convergences (74) we get (67).
In order to proof the Y'-periodicity of 4 in y’, we proceed similarly to the step 1.
Step 3. Subcritical case a. < . In this case, the estimates (46)-(47) read

_p_ _p i
litcllpouyys < CaZ™ s Dyl pguyyons < CaZ ", 0yitcll pouyys < CeaZ™™.  (75)

Therefore from the two first estimates in (75), up to a subsequence and using a semicontinuity
1

argument, there exists @ € LP(Q; WhP(Y")3) satisfying (68). And we can deduce that e 'a. * "4, is
bounded in LP(Q; W1P(Y’)3) and tends to zero. This together the third estimate in (75) implies that

e ta: "1, is bounded in LP(w; W1P(Y)?) and tends to zero. Passing to the limit in (72), using (68),
we obtain (69).

Now, we prove that 3 is independent of y3. To do this, we consider v € C}(Q) as test function
in aZ'divy 4. + &1y, 1. 5 = 0, which gives

/ Dy, e 3v(2’, ys) da'dy = 0.
wxY

__P_
Multiplying by a. *~* and from convergence (68), we get 43 is independent of ys.

In order to proof the Y'-periodicity of @ in y’, we proceed similarly to the step 1.
Step 4. In order to prove (70), let us first prove the following relation between @ and 4,

1
/Y a(a, y)dy = /0 e ys)dys. (76)

For this, let us consider v € C}(w). We observe that using the definition (42) of 4., we obtain

L/},QE(x/ay)v(x’)dydx/: Z

/ / te(ack’ + azy/,y3) v(ak’ + acy')dydx' + O..
k'eT. Yk/',ag Y
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We observe that @, and v do not depend on z’, then we can deduce

// ie (2, y)o(z')dyda' = a? Z/ / e (ack' + azy',ys) v(ack’ + acy')dysdy’ + O..

k'eT:

By the change of variables (44), we obtain

//ugm y)v(x')dydz’

/ / te (', ys) v(2")dysda’
k€T,
// (', ys) v(@")dysda’ + O
wJ0O

Multiplying by a. * ' and taking into account the convergences (53) and (64) for the critical case,

(55) and (68) for the subcritical case, we obtain (70) thanks to (56). Finally, multiplying by £ 7°T and
taking into account the convergences (54) and (66) for the supercritical case, we obtain (70) thanks
o (56). O

6. Homogenized models

In this section, we will multiply system (6) by a test function having the form of the limit 4 (as
explicated in Lemma 5.4), and we will use the convergences given in the previous section in order to
identify the homogenized model in every cases.

Theorem 6.1. We distingue three cases:
i) if ac ~ e, with a./e — X\, 0 < X\ < 400, then (ac * ’IQE,PE) converges to the unique solution
(a(z',y), P(z')) in LP(w; WE2(Y)3) x L¥' (w)/R, with Jy s dy = 0, of the homogenized problem

—pdivy (S (Dy[a]) +Vag = f'—VaP in wxYy,
divaitt = 0 in wx Yy,
u = 0in wxY;

div,, </ f/(x',y)dy) = 0in w, (77)
Y
</ ﬁ’(m',y)dy) ‘n = 0on dw,
Y

y —a(x',y),q(x’,y) Y’ — periodic,

where Dy [-] = D, [] + A(’?ys [], Va=Vy + A0y, and divy = Vg + A0y,

ii) ifac > ¢, then (5 71, P.) converges to the unique solution (@(a’,y), P(z)) in WP (0, 1; LP (wx
Y")3) x L¥ (w)/R, with [y s dy = 0 and t3 independent of ys, of the homogenized problem

—p 0y, (S a —&-qu = f —VuaP in wxYy,

ley udy3 = 0 in wxYy

/—\

o = 0in wxY,
78
div, (/ ﬁ'(m’,y)dy) = 0in w, (78)
Y

(/ f/(x',y)dy) ‘n = 0on Ow,
Y
y = a/ (2 y), ¢« y) Y — periodic.
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iil) ifa. < e, then (ac  "die, P.) converges to the unique solution (i(z’,y), P(z')) in LP(; Wﬁl’p(Y’)?’)x
LP' (w)/R, with @3 = 0, of the homogenized problem

—pudivy S (Dy [@/]) +Vyd = f —VuP in wxYy,
divyd = 0 in wxYy,
¥ = 0in wxY,
divIr< («',y)d ) = 0in w, (79)
</u(x,y)dy>n = 0 on Jw,
Y

y =W (2, y),4(z",y) Y — periodic.

Proof. First of all, we choose a test function v(2',y) € D(w; C’;"(Y)?’) with v(z,y) = 0 € wx Y} (thus,
o(z!, @' fac, ys) € Wy (Q.)3). Multiplying (6) by v(z’, 2’ /ac,ys) and integrating by parts, we have

- 1 1
S+ (Dol + 4Dy bl + 203, 1) do'dg

1 1 -
P div,v' dz'dys — — P divy v’ da'dys — g/ P. 0,,v3 dz'dys
Q

ae
jf v dz'dys .

By the change of variables given in Remark 4.8, we obtain

I P AT /
w [ s(apvlad s 1o,l0d) (5Dl + 20, 0]) dr'dy

R 1 R 1 -
— P.divgv' do'dy — — P, divyv' da'dy — - P. 0y, vs da'dy (80)
wXY Qe Jwxy € Juxy
= fov'da’dy + O, .

wXxY

Q

This variational formulation will be useful in the following steps.

We proceed in three steps.
Step 1. Critical case a. =~ €, with a./e = X, 0 < A < 400.

First, we prove that P does not depend on the microscopic variable y. To do this, we consider
as test function a.v(z’,2’'/a.,y3) in (80), which gives

ST, [0+ %20z 70, 0]+ (D[] + % ,
s /wxy 5 <a5 Dy [] + e O [ug]) ' (Dy [v] + c Dy M) da' dy

—a. P divy v dz'dy — P. div,v' da'dy — e P. Dy, v3 da'dy (81)
wXxXY wXY € Jwxy

= a. f v da'dy + O .

wXY

Thus, passing to the limit when & tends to zero by using convergences (63) and (64), we have
/ Pdivyv dx'dy = 0,
XY
which shows that P does not depend on Y.

For all ¢ € D(w; CEO(Y)B) with ¢ =0 in w x Yy, divap =0 in w x Y and divy ([} ' dy) =0 in
w, we choose ve = (V.,ve,3) defined by

1-7
A~/
ol =¢ —a. "L, UES—/\ @3—% e 3,
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as a test function in (80). Due to monotonicity, we have
a a
" / S Dy 6] + %20y, [¢]) + (B [oe] + 220, [v2]) da’dy
wxY € 9

- P. div, v da'dy > / fvlda'dy + O, .

wXY wXxY
Thus, we can use the convergences (63) and (64). If we argue similarly as in [7], we have that the
convergence of the pressure P. is in fact strong. This implies that the convergence of the pressure P,
is also in fact strong (see Proposition 2.9 in [12]). Then, when passing to the limit, the second term
contributes nothing because the limit of P. does not depend on y and 4’ satisfies (70). Taking into
account that Ae/a. — 1, we obtain

i [ SEy I+ ) By o= il + X0y, o — i) d'dy

> f(¢ —d')dx'dy + O,

- wXY

which, due to Minty Lemma [18], is equivalent to
—pdivy (S(Dy[a])) = f" in wxY.
By density
p [ sEupplaray= [ gy (52)
wx w

XY
holds for every function v in the Hilbert space V' defined by

v(a',y) € LP(w; Wﬁl’p(Y)s), such that
V= diV)\U(q;/7y) =0 inwxY, divy (/ ’U(.Z‘/,y) dy) —0 inw,
N Y

v(z',y) =0 inwx Y, </ v(x',y)dy) n=0 onw
Y

By Lax-Milgram lemma, the variational formulation (82) in the Hilbert space V admits a unique
solution 4 in V. Reasoning as in [1], the orthogonal of V' with respect to the usual scalar product
in LP(w x Y) is made of gradients of the form V,q(z') + Vag(2',y), with ¢(z') € L* (w)/R and
gz’ y) € LV (w;Wﬁl’p(Y)). Therefore, by integration by parts, the variational formulation (82) is
equivalent to the effective system (77). It remains to prove that the pressure P(z’) arising as a
Lagrange multiplier of the incompressibility constraint div,.( fy a(x’,y)dy) = 0 is the same as the
limit of the pressure P.. This can be easily done by multiplying equation (6) by a test function with
divy equal to zero, and identifying limits. Since (77) admits a unique solution, then the complete
sequence (a;p/(p_l)ﬁa, P.) converges to the unique solution (@(z’,y), P(z')). This gives the desired
result. Finally, observe that from (76) and a3 = 0, we have that [, dsdy = 0.

Step 2. Supercritical case a. > €.

First, we show that P does not depend on the vertical variable y3. To do this, we consider as
test function v = (0,ev3(z’, 2’ /acs, y3)) in (80), and passing to the limit by using convergences (63)
and (66), we get

/ P 3y, vsda’dy = 0.
wxY

This shows that P does not depend on ys3.

Let us now prove that P does not depend on the microscopic variable 3. For this, we take now
as test function v = (a.v'(2’,2'/ac,y3),0) in (80). By using convergences (63) and (66), we get

/ P div, v dz'dy = 0,
wxY’
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which implies that P does not depend on y’. Thus, we conclude that P does not depend on the entire
variable y.

For all ¢ € D(w; CQ’O(Y)?’) with @3 independent of y3, ¢ = 0 in w X Y, satisfying (67) and (70),
we choose v, = ¢ — 5_%115, as a test function in (80). Using monotonicity, we have

wf s(EDrldranid) s (SDy ol + o) day

€

- P. divyv! da'dy > fovldd'dy +O. .

wXY wXY

Thus, we can use the convergences (63) and (66). If we argue similarly as the step 1, we have that the
convergence of the pressure P. is strong. Then, when passing to the limit, the second term contributes
nothing because the limit of P. does not depend on y and @’ satisfies (70). We obtain

p / S (0, [¢']) : Oy, [ — ] da'dy
wXY

> f (¢ —a")dd'dy + O,

o wXY

which, due to Minty Lemma [18], is equivalent to
—H 8.1/3 (S (81/3 [’al])) = f/ in wxY.

By density, and reasoning as in Step 1, this problem is equivalent to the effective system (78). Observe
that the first condition in (67) implies that ¢ does not depend on ys. Finally, observe that from (76)
and @3 = 0, we have that [, dsdy = 0.

Step 3. Subcritical case a. < €.

First, we show that P does not depend on the vertical variable y3. To do this, we consider as
test function v = (0,evs3(2’, 2" /ac,y3)) in (80), and passing to the limit by using convergences (63)
and (68), we get

/ P Dy, v dx’dy = 0.
wXY
This shows that P does not depend on ys3.

Now, we consider as test function v = (a0’ (2,2’ /a.,y3),0) in (80). Passing to the limit, we have
/ P div, v dz'dy = 0,
wXxY

which shows that P does not depend on 7/, and so p only depends on z’.
For all ¢ € D(w; CQ’O(Y)?’) with g independent of y3, ¢ = 0 in w x Y5, satisfying (69) and (70),
we choose

__pP_
— p—1
Ve = P — Qe Ug,

as a test function in (80). Using monotonicity, we have

Qa, a
i[5y lel+ %20, Iel) : (D o]+ Z0, o)) de'dy
- P. div, v da'dy > / [ -olda'dy + O, .
wXxY wXY

Thus, we can use the convergences (63) and (68). If we argue similarly as the step 1, we have that the
convergence of the pressure P- is strong. Then, when passing to the limit, the second term contributes
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nothing because the limit of P. does not depend on y and 4’ satisfies (70). We obtain
n[  S®ye):Dylp—ildrdy
wX

> (@ —da')yda'dy + O,

wXY

which, due to Minty Lemma [18], is equivalent to
—pdivy (S(Dy [@])) = f In wxY.

By density, and reasoning as in Step 1, this problem is equivalent to the homogenized system (79). It
is straightforward to obtain that ag = 0.
O

In the final step, we will eliminate the microscopic variable y in the homogenized problem. This
is the focus of the Theorem 3.1.

Proof of Theorem 3.1. In the cases a. ~ ¢, with a./e = A, 0 < A < 400 or a. < ¢, the derivation of

(7) and (13) from the homogenized problems (77) and (79) respectively, is straightforward by using

the local problems (9) and (15), and definitions of the permeability functions (8) and (14) respectively.
In the case a. > ¢, we proceed as the previous cases. We deduce that

(x; - —%A“ (F'@) = VuPa) i

div, U'(2') =0 in w,

Uz')-n=0in dw,

U/
U/ (83)

where U(z') = [

o @(a’,y3) dys and the permeability function A> : R? — R? is monotone and coercive,
defined by

A=) = /Y of () dy, V€ € R, (84)
f

where, wt’ (y'), for every &' € R?, denotes the unique solution in Wﬁl’p (Yf’)2 of the local Stokes problem
in 2D
—5/ in Yf,

0y, (9 [wE']) + V€

1
div,y, </ wg/dy;g) = 0 in Yf’, (85)
0
0 in 0Ys,

wé

wé (', y), 7 (2, ) Y’ — periodic.

We observe that (85) can be solved, and we can give a Reynolds type equation.
Take into account that

o [ ] = (00 [ 20, [+4])

5(0y, [wf,]) = 2_§S(8y3w£/)a
from Proposition 3.4 in [22], we deduce that
p’)

, o (1 |1
w* (y) = — 7 <2p,’y3
From the expression of the Darcy velocity (1.14) in [22], we have

P 2
1 ’
/ w* (y) dys = —————
0 27(p'+1)

Then, from (83)-(84) we have (10) and (11), and from the second equation in (85) we have (12).

21

)

implies

¢ 4V, € ‘p/_2 (5' n vymé') .

P’ =2 /
&+ Vynr6 ‘ (f' + Vyﬂr§ ) .




Homogenization of an incompressible non-Newtonian flow through a thin porous medium 23

O

Acknowledgments

The authors would like to thank the referees for the interesting and detailed remarks which allowed
to improve this paper.

References

[1] G. Allaire, Homogenization of the Stokes flow in a connected porous medium, Asymptotic Analysis 2
(1989) 203-222.

[2] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992) 1482-1518.

[3] T. Arbogast, J. Douglas J.R., and U. Hornung, Derivation of the double porosity model of single phase
flow via homogenization theory, STAM J. Math. Anal., 21 (1990), 823-836.

[4] J.M. Arrieta and M. Villanueva-Pesqueira, Unfolding operator method for thin domains with a locally
periodic highly oscillatory boundary, STAM J. Math. Anal., 48, 3 (2016) 1634-1671.

[5] S.R.M. Barros and M.C. Pereira, Semilinear elliptic equations in thin domains with reaction terms con-
centrating on boundary, J. Math. Anal. Appl. 441, 1 (2016) 375-392.

[6] M.E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad, Tr.
Semin. S.L. Sobolev 80 (1) (1980) 5-40.

[7] A. Bourgeat, E. Marusi¢-Paloka, and A. Mikelic, Effective fluid flow in a porous medium containing a
thin fissure, Asymptotic Analysis 10, 1-22 (1994).

[8] A. Bourgeat, A. Mikeli¢, Homogenization of a polymer flow through a porous medium, Nonlinear Analysis,
26 (1996), 1221-1253.

[9] A. Bourgeat, O. Gipouloux, E. Marusi¢-Paloka, Filtration law for polymer flow through porous media,
Multiscale Model. Simul., 1 (2003), no. 3, 432-457.

[10] J. Casado-Diaz, Two-scale convergence for nonlinear Dirichlet problems in perforated domains, Proc. Roy.
Soc. Edinburgh Sect. A, 130 (2000), 246-276.

[11] D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization, C.R. Acad. Sci.
Paris Ser. I, 335 (2002) 99-104.

[12] D. Cioranescu, A. Damlamian, and G. Griso, The periodic unfolding method in homogenization, STAM
J. Math. Anal. (4) 40, 1585-1620 (2008).

[13] A. Duvnjak, Derivation of non-linear Reynolds-type problem for lubrication of a rotating shaft, ZAMM-Z.
Angew. Math. Mech. 82 (2002) 5, 317-333.

[14] R. Ferreira, M.L. Mascarenhas and A. Piatnitski, Spectral analysis in thin tubes with axial heterogeneities.
Portugal Math. 72 (2015) 247-266.

[15] T. Fratrovi¢, E. Marusi¢-Paloka, Low-volume-fraction limit for polymer fluids, J. Math. Anal. Appl. 373
(2011) 399-409.

[16] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Springer-Verlag,
1994.

[17] U. Hornung, Homogenization and porous media, Interdisciplinary Applied Mathematics Series, vol. 6,
(Contributions from G. Allaire, M. Avellaneda, J.L. Auriault, A. Bourgeat, H. Ene, K. Golden, U. Hor-
nung, A. Mikelic, R. Showalter), Springer Verlag (1997). .

[18] J.L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-
Villars, Paris, 1969.

[19] J.L. Lions, Some methods in the mathematical analysis of systems and their contraol , Science Press,
Beijing, Gordon and Breach, New York (1981).

[20] T.A. Mel'nik and A.V. Popov, Asymptotic analysis of boundary value and spectral problems in thin
perforated domains with rapidly changing thickness and different limiting dimensions. (Russian) Mat. Sb.
203, 8 (2012) 97-124.

[21] A. Mikeli¢, Homogenization of Nonstationary Navier-Stokes equations in a domain with a grained bound-
ary, Ann. Mat. Pura Appl. (4) 158 (1991) 167-179.



24 Marfa Anguiano and Francisco Javier Suarez-Grau

[22] A. Mikelic and R. Tapiéro, Mathematical derivation of the power law describing polymer flow through a
thin slab, RATRO Modél. Math. Anal. Numér. 29, 1 (1995) 3-21.

[23] V.P. Mjasnikov, P.P. Mosolov, A proof of Korn inequality, Soviet Math. Doklady, 12 (1971) 1618-1622.

[24] G. Nghetseng, A general convergence result for a functional related to the theory of homogenization,
STAM J. Math. Anal., 20 (1989) 608-623.

[25] M.C. Pereira and R.P. Silva, Remarks on the p-Laplacian on thin domains, Progr. Nonlinear Differential
Equations Appl. 86 (2015) 389-403.

[26] M.C. Pereira, Asymptotic analysis of a semilinear elliptic equation in highly oscillating thin domains,
ZAMP-Z. Ang. Math. Phy. 67 (2016) 1-14.

[27] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Lecture Notes in Physics,
127 (1980) 398 pp.

[28] R.P. Silva, Global attractors for quasilinear parabolic equations on unbounded thin domains, Monatschefte
fur Mathematik, 180 (2016) 649-660.

[29] F.J. Sudrez-Grau, Asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a
rough boundary, Nonlinear Analysis, 117 (2015) 99-123.

[30] L. Tartar, Incompressible fluid flow in a porous medium convergence of the homogenization process. In:
Appendix to Lecture Notes in Physics, 127. Berlin: Springer-Velag, 1980.

[31] R. Temam, Navier-Stokes equations and nonlinear functional analysis, in: CBMS-NSF Regional Confer-
ence Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, 1983.

Maria Anguiano
Departamento de Anélisis Matemaético. Facultad de Matematicas.
Universidad de Sevilla, P. O. Box 1160, 41080-Sevilla (Spain)

e-mail: anguiano@us.es

Francisco Javier Sudrez-Grau

Departamento de Ecuaciones Diferenciales y Anélisis Numérico. Facultad de Matematicas.
Universidad de Sevilla, 41012-Sevilla (Spain)

e-mail: fjsgrau@us.es



