
Derivation of a coupled Darcy-Reynolds equation for a fluid
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Abstract. We study the asymptotic behavior of a fluid flow in a thin porous medium of thickness
ε, which characteristic size of the pores ε, and containing a fissure of width ηε. We consider the

limit when the size of the pores tends to zero and we find a critical size ηε ≈ ε
2
3 in which the flow

is described by a 2D Darcy law coupled with a 1D Reynolds problem. We also discuss the other
cases.
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1. Introduction

The aim of this work is to apply the two-scale convergence method (see Allaire [2] and Nghetseng
[9]) to the homogenized of a Stokes system in a thin porous medium Dεηε of thickness ε which is
perforated by periodically distributed solid cylinders of size ε and contains a fissure {0 ≤ x2 ≤ ηε}
of width ηε. But here, it is necessary to combine the two-scale convergence method in the horizontal
variables with a rescaling in the height variable in order to work with a domain of height one.

We consider the fluid flow through a periodic distribution of vertical cylinders and a fissure. The
periodic distribution of vertical cylinders and the fissure are confined between two parallel plates (see
Fig. 1). A representative elementary volume for the thin porous medium is a cube of lateral length ε
and vertical lentgth ε. The cube is repeated periodically in the space between the plates. Each cube
can be divided into fluid part and a solid part, where the solid part has the shape of a vertical cylinder
of height ε.
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Figure 1. View of the domain Dεηε
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Homogenization has been applied to the study of perforated materials for a long time. The
question of a medium containing a fissure with properties different from those of the rest of the material
has been the subject of many studies previously, see Ciarlet et al [8], Panasenko [10] and Chapter 13 of
Sanchez-Palencia [11] among others. A similar problem of the one considered in this paper with a fixed
height domain, but for the Laplace’s equation, was studied in Bourgeat and Tapiero [5]. The peculiar

behavior observed for the Laplace’s equation when ηε ≈ ε
2
3 has motivated the analogous study for the

Stokes system in Bourgeat et al [6] (see Zhao and Yao [14] for the Navier-Stokes system).
All the above results relate to a fixed height domain. Our aim in the present paper is to extend the

study of Bourgeat et al [6] to the case of a porous medium of small height ε. We find the same critical
size as in Bourgeat et al [6], what means that the thickness of the domain does not have any influence
in the relation between the fissure parameter ηε with respect to porosity parameter ε. However,
the thickness of the domain leads us to use techniques of reduction of the dimension together with
homogenization in order to obtain more simplified effective models than those obtained in Bourgeat et
al [6]. More precisely, we obtain the following results corresponding to three characteristic situations
depending on the parameter ηε with respect to ε:

• If ηε � ε
2
3 the fissure is not giving any contribution. In this case, in order to find the limit, we

use the theory developed by Allaire [2] and Nguesteng [9] of two-scale convergence only in the
horizontal variables and we obtain a 2D Darcy’s law.
• If ηε � ε

2
3 the fissure is dominant. We introduce a rescaling in the fissure in order to work with

a domain with size one, and then we prove that the limit of the velocity is a Dirac measure
concentrated on the line {x2 = 0}∩{x3 = 0} representing the corresponding tangential line flow.
Meanwhile in the porous medium the effective velocity is equal to zero.
• If ηε ≈ ε

2
3 with ηε/ε

2
3 → λ, 0 < λ < +∞, it appears a coupling effect and the effective flow

behaves as 2D Darcy flow in the porous medium coupled with the tangential flow of the line
{x2 = 0} ∩ {x3 = 0}. Compared to the first case ηε � ε

2
3 , the effective velocity has now an

additional tangential component concentrated on {x2 = 0} ∩ {x3 = 0}. Moreover, the limit
problem is now given by a new variational equation, in which appears the parameter λ, and
consists of a 2D Darcy law in the porous medium coupled with a 1D Reynolds problem on the
line {x2 = 0} ∩ {x3 = 0}.

2. The domain and some notations

Let ω ⊂ R2 be smooth bounded connected open set and Ω = ω × (0, 1) ⊂ R3. We define

Ω+ = Ω ∩ {x2 > 0}, Ω− = Ω ∩ {x2 < 0}, Σ = Ω ∩ {x2 = 0}, Σ1 = Σ ∩ {x3 = 0}.

For some η0 > 0 we define the domains

D = Ω− ∪ (η0e2 + Ω+) ∪ (Σ× [0, η0]e2) , D′ = D ∩ {x3 = 0},

with e2 = (0, 1, 0).
Let ε > 0 be a small parameter devoted to tend to zero and 0 < ηε < η0 be a small parameter

devoted to tend to zero with ε.
A periodic porous medium is defined by a domain ω and an associated microstructure, or periodic

cell Y ′ = [0, 1]2, which is made of two complementary parts: the fluid part Y ′f , and the solid part Y ′s
(Y ′f

⋃
Y ′s = Y ′ and Y ′f

⋂
Y ′s = ∅). More precisely, we assume that Y ′s is a smooth, closed and connected

set strictly included in Y ′. For k′ = (k1, k2) ∈ Z2, each cell Y ′k′ = k′+Y ′ is divided in a fluid part Y ′fk′
and a solid part Y ′sk′ . We define Y = Y ′ × (0, 1) ⊂ R3, and is divided in a fluid part Yf and a solid
part Ys.

We also denote

Y −s =
⋃

k′∈Z2
−

Ysk′ , Y +
s =

⋃
k′∈Z2

+

Ysk′ ,
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all the solid parts in R2 × (0, 1), which are closed subsets of R3, where Z2
− = {k′ ∈ Z2, k2 < 0} and

Z2
+ = {k′ ∈ Z2, k2 > 0}. It is obvious that Ef = (R2 × (0, 1)) \ (Y −s ∪ Y +

s ) is an open subset of R3.

Following [1], we make the following assumptions on Yf , Ef , Ys and Y ∗s = Y +
s ∪ Y −s :

i) Yf is an open connected set of strictly positive measure, with a locally Lipschitz boundary.

ii) Ys has strictly positive measure in Y .
iii) Ef and the interior of Y ∗s are open sets with boundaries of class C0,1 and are locally located on

one side of their boundaries. Moreover Ef is connected.

The microscale of a porous medium is the small positive number ε. The domain ω is covered
by a regular mesh of size ε: for k′ = (k1, k2) ∈ Z2, each cell Y ′k′,ε = εk′ + εY ′ is divided in a fluid

part Y ′fk′ ,ε and a solid part Y ′sk′ ,ε, i.e. is similar to the unit cell Y ′ rescaled to size ε. We define

Yk′,ε = Y ′k′,ε × (0, 1) ⊂ R3, which is also divided in a fluid part Yfk′ ,ε and a solid part Ysk′ ,ε.

We also define

Y −s,ε =
⋃

k′∈Z2
−

Ysk′ ,ε, Y +
s,εηε = ηεe2 +

⋃
k′∈Z2

+

Ysk′ ,ε, S̃εηε = ∂(Y −s,ε ∪ Y +
s,εηε).

We denote by

Ãεηε = (Y −s,ε ∪ Y +
s,εηε) ∩D - the solid part of the domain D,

D̃εηε = D \ Ãεηε - the fluid part of the domain D (including the fissure),

Ĩηε = Σ× (0, ηε)e2 - the fissure in D,

Ω̃εηε = D̃εηε \ Ĩηε - the fluid part of the porous medium in D.

Let us define a domain with thickness ε, given by Ωε = Ω ∩ {0 < x3 < ε} ⊂ R3. We also define

Ωε+ = Ω+ ∩ {0 < x3 < ε}, Ωε− = Ω− ∩ {0 < x3 < ε}, Σε = Ωε ∩ {x2 = 0},

and

Dε = Ωε− ∪
(
η0e2 + Ωε+

)
∪ (Σε × [0, η0]e2) .

Now, we denote by Aεηε , Dεηε , Iηε and Ωεηε the sets Ãεηε , D̃εηε , Ĩηε and Ω̃εηε , respectively, with
thickness ε, i.e.,

Aεηε = Ãεηε ∩ {0 < x3 < ε} - the solid part of the domain Dε,

Dεηε = D̃εηε ∩ {0 < x3 < ε} - the fluid part of the domain Dε (including the fissure),

Iηε = Ĩηε ∩ {0 < x3 < ε} - the fissure in Dε,

Ωεηε = Ω̃εηε ∩ {0 < x3 < ε} - the fluid part of the porous medium in Dε.

Finally we define (see Fig. 2)

Ω+
εηε = Dεηε ∩ {x2 > ηε}, Ω−εηε = Dεηε ∩ {x2 < 0}, Γηε = ∂Σε × (0, ηε)e2,

and

D+ = D ∩ {x2 > 0}, D− = Ω− .

Let us introduce some notations which will be useful in the following. For a vectorial function
v = (v1, v2, v3) and a scalar function w, we introduce the operators: Dε, ∇ε and divε by

(Dεv)i,j = ∂xjvi for i = 1, 2, 3, j = 1, 2, (Dεv)i,3 =
1

ε
∂y3vi for i = 1, 2, 3,

∇εw = (∇x′w,
1

ε
∂y3w)t, divεv = divx′v

′ +
1

ε
∂y3v3,
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Figure 2. View of the domain Dεηε from above (left) and lateral (right)

and moreover the operators Dηε , ∇ηε and divηε by

(Dηεv)i,1 = ∂x1vi, (Dηεv)i,2 =
1

ηε
∂y2vi, (Dηεv)i,3 =

1

ε
∂y3vi for i = 1, 2, 3,

∇ηεw = (∂x1
w,

1

ηε
∂y2w,

1

ε
∂y3w)t, divηεv = ∂x1

v1 +
1

ηε
∂y2v2 +

1

ε
∂y3v3.

We denote by Oε a generic real sequence which tends to zero with ε and can change from line to
line. We denote by C a generic positive constant which can change from line to line.

3. Setting and main results

Hereinafter, the points x ∈ R3 will be decomposed as x = (x′, x3) with x′ ∈ R2, x3 ∈ R. We also use
the notation x′ to denote a generic vector of R2.

In this section we describe the asymptotic behavior of an incompressible viscous Newtonian fluid
in the thin porous medium with a fissure. The proof of the corresponding results will be given in the
next sections.

Our results are referred to the Stokes system. Namely, for f ∈ C(D)3 let us consider a sequence
(uε, pε) ∈ H1

0 (Dεηε)
3 × L2

0(Dεηε), which satisfies{
−µ∆uε +∇pε = f in Dεηε ,

div uε = 0 in Dεηε ,
(1)

where µ > 0 is the viscosity and L2
0(Dεηε) is the space of functions of L2(Dεηε) with null integral. The

right-hand side f is of the form

f(x) = (f ′(x′), 0), a.e. x ∈ Dεηε ,

where f ′ is assumed in C1(D)2. This choice of f is usual when we deal with thin domains. Since the
thickness of the domain ε is small then the vertical component of the force can be neglected and,
moreover the force can be considered independent of the vertical variable.

Finally, we may consider Dirichlet boundary conditions without altering the generality of the
problem under consideration,

uε = 0 on ∂Dεηε . (2)

It is well known that (1)-(2) has a unique solution (uε, pε) ∈ H1
0 (Dεηε)

3×L2
0(Dεηε) (see [12] for more

details).
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Our aim is to study the asymptotic behavior of uε and pε when ε tends to zero. For this purpose,
we use the dilatation in the variable x3

y3 =
x3

ε
, (3)

in order to have the functions defined in an open set with fixed height D̃εηε given in Section 2.

Namely, we define ũε ∈ H1
0 (D̃εηε)

3, p̃ε ∈ L2
0(D̃εηε) by

ũε(x
′, y3) = uε(x

′, εy3), p̃ε(x
′, y3) = pε(x

′, εy3), a.e. (x′, y3) ∈ D̃εηε .

Using the transformation (3), the system (1) can be rewritten as{
−µ∆εũε +∇εp̃ε = f in D̃εηε ,

divε ũε = 0 in D̃εηε ,
(4)

with Dirichlet boundary condition, i.e.

ũε = 0 on ∂D̃εηε . (5)

Our goal then is to describe the asymptotic behavior of this new sequence (ũε, p̃ε).
Moreover, in order to study the behavior of ũε, p̃ε in the fissure we rewrite our equations in the

unit cylinder Ĩ1 = Σ× (0, 1)e2 by introducing the change of variable

y2 =
x2

ηε
, (6)

which transform Ĩηε in a fixed domain Ĩ1. We define the new functions

Ũε(x1, y2, y3) = ũε(x1, ηεy2, y3), P̃ ε(x1, y2, y3) = p̃ε(x1, ηεy2, y3)− cεηε , (7)

with

cεηε =
1

|Ĩηε |

∫
Ĩηε

p̃ε dx
′dy3. (8)

Using the transformation (6), the system (4) can be rewritten as{
−µ∆ηε Ũε +∇ηε P̃ ε = f(x1, ηεy2) in Ĩ1,

divηε Ũε = 0 in Ĩ1,
(9)

with Dirichlet boundary condition, i.e.

Ũε = 0 on ∂Ĩ1. (10)

Our main result referred to the asymptotic behavior of the solution of (4) is given by the following
theorem.

Theorem 3.1. We distingue three cases depending on the relation between the parameter ηε with respect
to ε:

i) if ηε � ε
2
3 , then there exists (ṽ, p̃) ∈ L2(D)3×L2

0(D), with ṽ3 = 0 and p̃ independent of y3, such
that the solution (ε−2ũε, p̃ε) of problem (4)-(5) satisfies

ε−2ũε ⇀ ṽ in L2(D)3, p̃ε → p̃ in L2
0(D). (11)

Moreover, p̃ ∈ H1(D) ∩ L2
0(D) and (Ṽ , p̃) is the unique solution of the 2D Darcy law
Ṽ ′(x′) =

1

µ
K (f ′(x′)−∇x′ p̃(x′)) in D′,

divx′ Ṽ (x′) = 0 in D′,
Ṽ (x′) · n = 0 in ∂D′,

(12)

where Ṽ (x′) =
∫ 1

0
ṽ(x′, y3)dy3 and K ∈ R2×2 is a symmetric, positive, tensor defined by its

entries

Kij =

∫
Yf

Dyw
i(y) : Dyw

j(y) dy, i, j = 1, 2, (13)
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where wi(y), i = 1, 2, with
∫
Yf
wi3dy = 0, denotes the unique solution in H1

#(Yf )3 of the local

problem in 3D 
−∆yw

i +∇yqi = ei in Yf ,
divy w

i = 0 in Yf ,
wi = 0 in ∂(Y \ Yf ),

wi, qiY ′ − periodic.

(14)

ii) if ηε � ε
2
3 and let (Ũε, P̃ ε) be a solution of (9)-(10). Then there exist Ũ ∈ L2(Ĩ1)3, independent

of y3, with Ũ2 = Ũ3 = 0, and P̃ ∈ L2
0(Ĩ1) only depending on x1, such that for a subsequence,

ηε
−2Ũε ⇀ Ũ in L2(Ĩ1)3, P̃ ε ⇀ P̃ in L2(Ĩ1),

where

Ũ1(x1, y2) =
y2(1− y2)

2µ

(
f1(x1, 0)− ∂x1

P̃ (x1)
)
. (15)

Moreover, it holds that

ηε
−3ũε

?
⇀ ṼδΣ1 in M(D)3, (16)

where Ṽ ∈ L2(Σ1)3, with Ṽ2 = Ṽ3 = 0, such that

Ṽ1(x1) =

∫ 1

0

Ũ1(x1, y2) dy2 =
1

12µ

(
f1(x1, 0)− ∂x1

P̃ (x1)
)
, (17)

and, in fact P̃ ∈ H1(Σ1) ∩ L2
0(Σ1) is the unique solution of the 1D Reynolds problem on Σ1 ∂x1

(
f1(x1, 0)− ∂x1

P̃ (x1))
)

= 0 in Σ1,(
f1(x1, 0)− ∂x1

P̃ (x1)
)
· n = 0 on ∂Σ1.

(18)

iii) if ηε ≈ ε
2
3 , with ηε/ε

2
3 → λ, 0 < λ < +∞, then there exist a Darcy velocity ṽ, a Reynolds velocity

Ṽ and a pressure field p̃ such that

ε−2ũε
?
⇀ ṽ + λ3ṼδΣ1

in M(D)3,
p̃ε → p̃ in L2(D),

(19)

where δΣ1 is the Dirac measure concentrated on Σ1, and M(D)3 is the space of Radon meaures

on D. The velocities ṽ and Ṽ are linked with the pressure p̃ through the 2D Darcy law (12)
in D′ and the 1D Reynolds problem (18) on Σ1. The pressure field p̃ ∈ H1(D′) ∩ L2

0(D′) with
p̃(·, 0) ∈ H1(Σ1) ∩ L2

0(Σ1), is the unique solution of the variational problem∫
D′

1

µ
K (f ′(x′)−∇x′ p̃(x′)) · ∇x′ϕ(x′) dx′ +

λ3

12µ

∫
Σ1

(f1(x1, 0)− ∂x1
p̃(x1)) ∂x1

ϕ(x1, 0) dx1 = 0,

(20)
for every ϕ ∈ H1(D′) with ϕ(·, 0) ∈ H1(Σ1).

Remark 3.2. The coupled problem (20) corresponding to the critical case ηε ≈ ε
2
3 , with ηε/ε

2
3 → λ,

0 < λ < +∞, can be considered as the general one. In fact, if λ tends to infinity in (20) we recover
the 1D Reynolds problem (18), meanwhile if λ tends to zero we recover the 2D Darcy law (12).

4. A Priori Estimates

Let us begin with a lemma on Poincaré inequality in the porous medium Ω̃εηε , which will be very
useful (see for example Lemma 4.1 in [3]).

Lemma 4.1. There exists a constant C independent of ε, such that, for any function v ∈ H1(D̃εηε)
3

and v = 0 on S̃εηε , one has

‖v‖L2(Ω̃εηε )3 ≤ Cε ‖Dεv‖L2(Ω̃εηε )3×3 . (21)
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Next, we give an useful estimate in the fissure Ĩηε .

Lemma 4.2. There exists a constant C independent of ε, such that, for any function v ∈ H1(D̃εηε)
3

and v = 0 on S̃εηε , one has

‖v‖L2(Ĩηε )3 ≤ Cηε
1
2 (ηε + ε)

1
2 ‖Dεv‖L2(D̃εηε )3×3 . (22)

Proof. For any function w(y) ∈ H1(Ĩ1)3 with w = 0 in ∂Ĩ1, the Poincaré inequality in Ĩ1 states that∫
Ĩ1

|w|2 dz ≤ C
∫
Ĩ1

|∂z2w|
2
dz, (23)

where the constant C depends only on Ĩ1.

For every k′ ∈ Z2, by the change of variable

z1 = x1, z2 =
x2

ηε
, z3 =

x3

ε
, dz =

dx

εηε
, ∂z2 = ηε∂x2

,

we rescale (23) from Ĩ1 to Iηε . This yields that, for any function w(x) ∈ H1(Iηε)
3 with w = 0 in ∂Iηε ,

one has ∫
Iηε

|w|2 dx ≤ Cη2
ε

∫
Iηε

|∂x2w|
2
dx ≤ Cη2

ε

∫
Iηε

|Dxw|2 dx, (24)

with the same constant C as in (23). Finally, applying the dilatation (3) in (24), we obtain∫
Ĩηε

|w|2 dx′dy3 ≤ Cη2
ε

∫
Ĩηε

|Dεw|2 dx′dy3,

which gives

‖v‖L2(Ĩηε )3 ≤ Cηε‖Dεv‖L2(Ĩηε )3×3 . (25)

Next, if we choose a point y ∈ Aεηε , which is close to the point x ∈ Iηε , then we have

v(x)− v(y) = Dv(ξ)(x− y) ≤ (ε+ ηε)|Dv|.

Since v(y) = 0 because y ∈ Aεηε , we have

‖v(x)‖L2(Iηε )3 ≤ C(ε+ ηε)‖Dv‖L2(Iηε )3×3 ,

and applying the dilatation (3) gives

‖v‖L2(Ĩηε )3 ≤ C(ε+ ηε)‖Dεv‖L2(Ĩηε )3×3 .

Finally, multiplying the above inequality with (25) we obtain

‖v‖L2(Ĩηε )3 ≤ Cηε
1
2 (ηε + ε)

1
2 ‖Dεv‖L2(Ĩηε )3×3 ≤ Cηε

1
2 (ηε + ε)

1
2 ‖Dεv‖L2(D̃εηε )3×3 , (26)

which is the desired estimate (22).
�

Let us give the classical estimate, [4], for the a function in L2 when we deal with a thin fissure.

Lemma 4.3. Let v ∈ L2(Ĩηε) be such that
∫
Ĩηε

v dx′dy3 = 0. Then

‖v‖L2(Ĩηε ) ≤
C

ηε
‖∇εv‖H−1(Ĩηε )3 .

Now, we are in position to obtain some a priori estimates for ũεηε .
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Lemma 4.4. There exists a constant C independent of ε, such that the solution ũε ∈ H1(D̃εηε)
3 of the

problem (4) satisfies

‖ũε‖L2(Ω̃εηε )3 ≤ C(ηε
3
2 ε+ ε2), (27)

‖ũε‖L2(Ĩηε )3 ≤ C
(
ηε

5
2 + εηε + ηε

1
2 ε

3
2

)
, (28)

‖Dεũε‖L2(D̃εηε )3×3 ≤ C(ηε
3
2 + ε). (29)

Proof. Multiplying by ũε in the first equation of (4) and integrating over D̃εηε , we have

µ‖Dεũε‖2L2(D̃εηε )3×3 =

∫
D̃εηε

f ′ · ũ′ε dx′ . (30)

Using Hölder’s inequality and the assumption of f , we obtain that∫
D̃εηε

f ′ · ũ′ε dx′ ≤ Cηε
1
2 ‖f ′‖L∞(Ĩηε )2‖ũε‖L2(Ĩηε )3 + ‖f ′‖L2(Ω̃εηε )2‖ũε‖L2(Ω̃εηε )3 ,

and by inequalities (21) and (22), we have∫
D̃εηε

f ′ · ũ′ε dx′ ≤ C
(
ηε(ε+ ηε)

1
2 + ε

)
‖Dεũε‖L2(D̃εηε )3×3 ≤ C

(
ηε

3
2 + ηεε

1
2 + ε

)
‖Dεũε‖L2(D̃εηε )3×3 .

Therefore, from (30) we get

‖Dεũε‖L2(D̃εηε )3×3 ≤ C
(
ηε

3
2 + ηεε

1
2 + ε

)
.

Since ηεε
1
2 < ηε

3
2 if ε < ηε and ηεε

1
2 ≤ η

1
2
ε ε < ε if ηε < ε, the term ηεε

1
2 can be dropped. This gives

(29).
Applying (21) together with (29) we obtain (27). Finally, applying (22) and (29) we get

‖ũε‖L2(Ĩηε )3 ≤ C(ηε + ηε
1
2 ε

1
2 )(ηε

3
2 + ε) ≤ C

(
ηε

5
2 + εηε + ηε

2ε
1
2 + ηε

1
2 ε

3
2

)
.

Since ηε
2ε

1
2 < ηε

5
2 if ηε > ε and ηε

2ε
1
2 < ηε

1
2 ε

3
2 if ηε < ε, the term ηε

2ε
1
2 can be dropped, and (28)

holds.
�

In the next step we will estimate the pressure to the whole domain D. We give some properties

of the restricted operator, Rε, from H1
0 (D)3 into H1

0 (D̃εηε)
3 preserving divergence-free vectors, which

was introduced by Tartar [12]. Since the construction of the operator is local, having no obstacles in

Ĩηε means that we do not have to use the extension in that part. Next, we give the properties of the
operator Rε.

Lemma 4.5. There exists a linear continuous (restriction) operator Rε acting from H1
0 (D)3 into

H1
0 (D̃εηε)

3 such that

1. Rεv = v, if v ∈ H1
0 (D̃εηε)

3 (elements of H1
0 (D̃εηε)

3 are continuated by 0 to D)
2. divε(R

εv) = 0, if div v = 0

3. For any v ∈ H1
0 (D)3 (the constant C̃ is independent of v and ε),

‖Rεv‖L2(D̃εηε )3 ≤ C̃ ‖v‖L2(D)3 + C̃ε ‖Dεv‖L2(D)3×3 ,

‖DεR
εv‖L2(D̃εηε )3×3 ≤ C̃

ε
‖v‖L2(D)3 + C̃ ‖Dεv‖L2(D)3×3 .

In order to extend the pressure to the whole domain D, we define a function Fε ∈ H−1(D)3 by
the following formula (brackets are for the duality products between H−1 and H1

0 ):

〈Fε, v〉D = 〈∇εp̃ε, Rεv〉D̃εηε , for any v ∈ H1
0 (D)3, (31)
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where Rε is defined in Lemma 4.5. We calcule the right hand side of (31) by using (4) and we have

〈Fε, v〉D = 〈µ∆εũε, R
εv〉D̃εηε + 〈f,Rεv〉D̃εηε , (32)

and by using the third point in Lemma 4.5, for fixed ε, we see that it is a bounded functional on
H1

0 (D)3, and in fact Fε ∈ H−1(D)3.

Moreover, if v ∈ H1
0 (D̃εηε)

3 and we continue it by zero out of D̃εηε , we see from (31) and the
first point in Lemma 4.5 that Fε|D̃εηε = ∇εp̃ε.

Moreover, if div v = 0 by the second point in Lemma 4.5 and (31), 〈Fε, v〉D = 0 and this implies
(by the orthogonality property) that Fε is the gradient of some function in L2(D). This means that
Fε is a continuation of ∇εp̃ε to D, and that this continuation is a gradient. We also may say that p̃ε
has been continuated to D and we denote the extended pressure again by p̃ε and

Fε ≡ ∇εp̃ε, p̃ε ∈ L2
0(D).

Lemma 4.6. Let p̃ε be the extension of the pressure defined as above. Then

‖p̃ε‖L2(D) ≤ C

(
ηε

3
2

ε
+ 1

)
, (33)

‖p̃ε − cεηε‖L2(Ĩηε ) ≤ C
(
ηε

1
2 +

ε

ηε

)
, (34)

where cεηε is given by (8).

Proof. Let us first estimate ∇εp̃ε. To do this we estimate the right side of (32). Using Hölder’s
inequality and from (29) we have∣∣∣〈µ∆εũε, R

εv〉D̃εηε
∣∣∣ ≤ µ ‖Dεũε‖L2(D̃εηε )3×3 ‖DεR

εv‖L2(D̃εηε )3×3

≤ C
(
ηε

3
2 + ε

)
‖DεR

εv‖L2(D̃εηε )3×3 .

Using the assumption of f , we obtain∣∣∣〈f,Rεv〉D̃εηε ∣∣∣ ≤ C ‖Rεv‖L2(D̃εηε )3 .

Then, from (32), we deduce

|〈∇εp̃ε, v〉D| ≤ C
(
ηε

3
2 + ε

)
‖DεR

εv‖L2(D̃εηε )3×3 + C ‖Rεv‖L2(D̃εηε )3 .

Taking into account the third point in Lemma 4.5, we have

|〈∇εp̃ε, v〉D| ≤ C
(
ηε

3
2 + ε

)(1

ε
‖v‖L2(D)3 + ‖Dεv‖L2(D)3×3

)
+ C

(
‖v‖L2(D)3 + ε ‖Dεv‖L2(D)3×3

)
.

Then, as ε� 1, we see that there exists a positive constant C such that

|〈∇εp̃ε, v〉D| ≤ C

(
ηε

3
2

ε
+ 1

)
‖v‖H1

0 (D)3 ,

for any v ∈ H1
0 (D)3. Therefore, we obtain

‖∇εp̃ε‖H−1(D)3 ≤ C

(
ηε

3
2

ε
+ 1

)
,

and the estimate (33) follows by using the Nečas inequality in D.

Now, we prove the estimate (34). Let v ∈ H1
0 (Ĩηε)

3, then

〈∇εp̃ε, v〉Ĩηε = 〈µ∆εũε, v〉Ĩηε + 〈f, v〉Ĩηε .

We estimate the right hand side. Using Hölder’s inequality and (29) we have∣∣∣〈µ∆εũε, v〉Ĩηε
∣∣∣ ≤ C (ηε 3

2 + ε
)
‖Dεv‖L2(Ĩηε )3×3 .
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Using again Hölder’s inequality and assumption of f , we obtain that∣∣∣〈f, v〉Ĩηε ∣∣∣ ≤ Cηε 1
2 ‖f‖L∞(Ĩηε )3‖v‖L2(Ĩηε )3 ,

and by estimate (26), we have∣∣∣〈f, v〉Ĩηε ∣∣∣ ≤ C(ηε
3
2 + ηεε

1
2 )‖Dεv‖L2(Ĩηε )3×3 .

Then, we have

‖∇εp̃ε‖H−1(Ĩηε )3 ≤ C
(
ηε

3
2 + ηεε

1
2 + ε

)
.

Reasoning as in the proof of Lemma 4.4, we observe that ηεε
1
2 can be dropped and so we obtain

‖∇εp̃ε‖H−1(Ĩηε )3 ≤ C
(
ηε

3
2 + ε

)
.

Finally, taking into account that
∫
Ĩηε

(p̃ε − cεηε) dx′dy3 = 0, we use Lemma 4.3 and we obtain the

estimate (34). �

5. Proof of the main result

In view of estimates (27), (29) of the velocity and (33) of the pressure, the proof of Theorem 3.1 will be

divided in three characteristic cases: ηε � ε
2
3 , ηε ≈ ε

2
3 , with ηε/ε

2
3 → λ, 0 < λ < +∞, and ηε � ε

2
3 .

5.1. Problem in the porous part ηε � ε
2
3

The proof of Theorem 3.1-i) will be developed in different lemmas.

In this subsection, we need to extend the velocity ũε by zero in the fissure Ĩηε , and we will denote
the extended veolcity by ṽε, i.e.

ṽε =

{
ũε in Ω̃εηε ,

0 in Ĩηε .
(35)

Lemma 5.1. Let ηε � ε
2
3 and let (ṽε, p̃ε) be the extended solution of (4)-(5). Then there exist sub-

sequences of ṽε and p̃ε still denoted by the same, and functions ṽ ∈ H1(0, 1;L2(ω)3) with ṽ3 = 0,
p̃ ∈ L2

0(D), which does not depend on y3, such that

ε−2ṽε ⇀ (ṽ′, 0) in H1(0, 1;L2(ω)3), p̃ε → p̃ in L2(D). (36)

Moreover, ṽ satisfies

divx′

(∫ 1

0

v′(x′, y3)dy3

)
= 0 in ω,

(∫ 1

0

v′(x′, y3)dy3

)
· n = 0 on ∂w. (37)

Proof. From estimates (27), (29) and (33), taking into account the extension of the velocity by zero

to D and ηε � ε
2
3 , we have the following estimates

‖ṽε‖L2(D)3 ≤ Cε2, ‖p̃ε‖L2(D) ≤ C,

‖Dx′ ṽε‖L2(D)3×2 ≤ Cε, ‖∂y3 ṽε‖L2(D)3 ≤ Cε2. (38)

Then there exist ṽ ∈ H1(0, 1;L2(ω)3) and p̃ ∈ L2
0(D) such that, for a subsequence still denoted by ṽε,

p̃ε, it holds

ε−2ṽε ⇀ ṽ in H1(0, 1;L2(ω)3), p̃ε ⇀ p̃ in L2(D), (39)

which implies
1

ε2
divx′ ṽ

′
ε ⇀ divx′ ṽ

′ in H1(0, 1;H−1(ω)). (40)

Since divεṽε = 0 in D, multiplying by ε−2 we obtain

1

ε2
divx′ ṽ

′
ε +

1

ε3
∂y3 ṽε,3 = 0, in D,
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which, combined with (40), implies that ∂y3 ṽε,3/ε
3 is bounded in H1(0, 1;H−1(ω)). This implies that

∂y3 ṽε,3/ε
2 tends to zero in H1(0, 1;H−1(ω)). Also, from the second estimate in (38), we have that

∂y3 ṽε,3/ε
2 tends to ∂y3 ṽ3 in L2(D)3. From the uniqueness of the limit, we have that ∂y3 ṽ3 = 0, which

implies that ṽ3 does not depend on y3.
It remains to prove that ṽ3 = 0. In order to do that, let us first show that p̃ only depends on x′.

As usual, we take a test function φ = (0, εφ3) in the momentum equation in (4). From convergences
(39), we deduce that ∂y3 p̃ = 0, which implies that p̃ only depends on x′. Next, as ṽ3 does not depend on
y3, we take a test function φ = (0, ε−2φ3(x′)) in (4), and passing to the limit we can deduce that ṽ3 = 0.

Next, we prove that the convergence of the pressure is in fact strong. As ṽ3 = 0, let wε = (w′ε, 0) ∈
H1

0 (D)3 be such that

wε ⇀ w in H1
0 (D)3. (41)

Then (brackets are for the duality products between H−1 and H1
0 ):

|< ∇εp̃ε, wε >D − < ∇x′ p̃, w >D| ≤ |< ∇εp̃ε, wε − w >D|+ |< ∇εp̃ε −∇x′ p̃, w >D| .

On the one hand, using the second convergence in (39), we have

|< ∇εp̃ε −∇x′ p̃, w >D| =
∫
D

(p̃ε − p̃) divx′ w
′ dx→ 0, as ε→ 0.

On the other hand, we have

|< ∇εp̃ε, wε − w >D| =
∣∣∣< ∇x′ p̃ε, Rε(w′ε − w′) >D̃εηε ∣∣∣

=
∣∣∣〈µ∆x′ ṽ

′
ε, R

ε(w′ε − w′)〉D̃εηε − 〈f
′, Rε(w′ε − w′)〉D̃εηε

∣∣∣ ,
and using Hölder’s inequality, estimate (29), the estimates of the restricted operator Rε applied to

Dx′ instead of Dε, and taking into account that ηε � ε
2
3 and ε� 1, we get

|< ∇εp̃ε, wε − w >D| ≤ C
(
ηε

3
2 + ε

)(1

ε
‖w′ε − w′‖L2(D)2 + ‖Dx′w

′
ε −Dx′w

′‖L2(D)2×2

)
+C

(
‖w′ε − w′‖L2(D)2 + ε‖Dx′w

′
ε −Dx′w

′‖L2(D)2×2

)
≤ C

(
‖w′ε − w′‖L2(D)2 + ε‖Dx′w

′
ε −Dx′w

′‖L2(D)2×2

)
→ 0 as ε→ 0,

by virtue (41) and the Rellich Theorem. This implies that ∇εp̃ε → ∇x′ p̃ strongly in H−1(D)3, which
implies the strong convergence of the pressure given in (36).

Finally, we prove (37). To do this, we consider w ∈ C1
c (ω) as test function in divεṽε = 0 in D,

which gives
1

ε2

∫
D

divx′ ṽε w(x′) dx′dy3 = 0.

From convergences (36), we get (37).
�

The proof of the following result will be showed by using the two-scale convergence introduced
by Nguesteng [9] in the L2-setting and developed by Allaire [2]. In this case, we use the two-scale

convergence in the horizontal variables. By
2
⇀ we denote the limit in the two-scale sense and by ] we

denote Y ′-periodicity.

Lemma 5.2. Let ηε � ε
2
3 and let ṽε be the extended solution of (4)-(5). Then there exist subsequences

of ṽε still denoted by the same, and v̂(x′, y′, y3) ∈ L2(D′;H1
#(Y )3) such that

ε−2ṽε
2
⇀ v̂(x′, y′, y3) in L2(D′ × Y )3, ε−1Dx′ ṽε

2
⇀ Dy′ v̂(x′, y′, y3) in L2(D′ × Y )3×3,

ε−2∂y3 ṽε
2
⇀ ∂y3 v̂(x′, y′, y3) in L2(D′ × Y )3,

(42)
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The weak limit v(x) and the two-scale limit v̂(x, y) are related as follows

ṽ(x′, y3) =

∫
Y ′
v̂(x′, y′, y3) dy′. (43)

Moreover, v̂ satisfies

divy v̂(x′, y′, y3) = 0 in D′ × Y, v̂ = 0 in Y \ Ys, (44)

divx′

(∫
Y

v̂(x′, y) dy

)
= 0 in D′,

(∫
Y

v̂(x′, y) dy

)
· n = 0 on ∂D′. (45)

Proof. From estimates (27) and (29) and taking into account that ηε � ε
2
3 , we get

‖ṽε‖L2(D)3 ≤ Cε2, ‖Dεṽε‖L2(D)3×3 ≤ Cε.
Thus, from Lemma 1.5 in [7], there exist subsequences of ṽε, still denoted by ṽε, and function v̂ ∈
L2(D1;H1

#(Y )3) such that the convergences given in (42) hold.

Relation (43) is a classical property relating weak convergence and two-scale convergence, see
Allaire [2] and Bourgeat and Mikelic [7] for more details. From divε ṽε = 0 in D and the convergences
(42), then (44) straightforward. Finally, (37) and (43) imply (45).

�

Lemma 5.3. Let ηε � ε
2
3 and let (ṽε, p̃ε) be the extended solution of (4)-(5). Let (ṽ, p̃) ∈ L2(D)3 ×

L2
0(D) be given by Lemma 5.1. Then, p̃ ∈ H1(D)∩L2

0(D) and (ṽ, p̃) is the unique solution of Darcy’s
law (12).

Proof. We choose φ+−(x′, y′, y3) ∈ D(D′+−;C∞] (Y )3) with φ+− = 0 in D′+− × Ys and satisfying

incompressibility condition (44). There exists η1 > 0 such that supp φ+(x′, y′, y3) ⊂ D \ Ĩηε for every
ηε ∈ (0, η1). Let ηε < η1. We define a test function φ+−

ε (x′, y3) = φ+−(x′, x′/ε, y3) in (4)-(5). In the
sequel, we use the elementary properties of the two-scale convergence. Using the two-scale convergence
of ε−2ṽε given in (42), we have∫

D+−

f · φ+−
ε dx→

∫
D′+−

∫
Y

f ′ · φ′+− dx′dy,

and using that divyφ+− = 0 in D′+− × Y and the strong convergence of the pressure (36), we have

〈∇εp̃ε, φ+−
ε 〉D+− = −

∫
D+−

p̃ε divx′ (φ
′
ε)

+− dx′dy3 → −
∫
D′+−

∫
Y

p̃ divx′φ
′
+−(x′, y) dx′dy, as ε→ 0.

Therefore, passing to the limit, we obtain

µ

∫
D′+−×Y

Dy′ v̂ : Dy′φ+− dx
′dy + µ

∫
D′+−×Y

∂y3 v̂ : ∂y3φ+− dx
′dy

=

∫
D′+−×Y

f ′ · φ′+− dx′dy −
∫
D′+−×Y

∇x′ p̃ · φ′+− dx′dy .

Consequently, there exists π̂ ∈ L2(D′;L2
0(Y )) such that (v̂, π̂) satisfies the homogenized problem

−µ∆y v̂ +∇yπ̂ = f ′(x′)−∇x′ p̃(x′) in Yf , (46)

divy v̂(x′, y) = 0 in Yf , (47)

(v̂, π̂) is Y ′ − periodic, v̂ = 0 in Y \ Yf , (48)

a.e. x′ ∈ D′, by using the variant of de Rham’s formula in a periodic setting (see Nguetseng [9] and
Temam [13]).

The derivation of (12) from the effective problems (46)-(48) is straightforward by using the local
problems (14) and definitions of the permeability functions (13).

Since Ṽ ′ ∈ L2(D′)2, thanks to (12), we get that p̃ belongs to H1(D′) ∩ L2
0(D′).

�
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Proof of Theorem 3.1-i). It remains to prove convergence (11) of the whole velocity ũε, i.e. to prove

ε−2‖ũε‖L2(Ĩηε )3 → 0. (49)

For this, it is sufficient to prove that

ε−2‖ũε‖L2(Ĩηε )3 → 0 for ηε � ε, (50)

and

ε−2‖ũε‖Lq(Ĩηε )3 → 0 for ε� ηε � ε
1
α , 1 < α <

3

2
, (51)

for a q which will be defined below.
Using (28) and using ηε � ε, we have

ε−2‖ũε‖L2(Ĩηε )3 ≤ C

(
ηε

5
2

ε2
+
ηε
ε

+
(ηε
ε

) 1
2

)
,

so that (50) easily holds. Using Hölder’s inequality with the conjugate exponents 2
q and 2

2−q we obtain

ε−2‖ũε‖Lq(Ĩηε )3 ≤ C

(
ηε

1
q+2

ε2
+
ηε

1
q+ 1

2

ε
+
ηε

1
q

ε
1
2

)
.

Now we take ηε = ε
1
α . Then we find that

ε−2‖ũε‖Lq(Ĩηε )3 ≤ C
(
ε

1
α ( 1

q+2)−2 + ε
1
α ( 1

q+ 1
2 )−1 + ε

1
qα− 1

2

)
. (52)

We seek an optimal q such that the right hand side in (52) tends to zero. It is easy to prove that we

have a convergence to zero for any q ∈
(

1, 2
2(α−1)+1

)
. Therefore, (51) holds and so we have (49).

�

5.2. Problem in the fissure part ηε � ε
2
3

The proof of Theorem 3.1-ii) will be developed in different lemmas.

Lemma 5.4. Let ηε � ε
2
3 and let (Ũε, P̃ ε) be the solution of (9)-(10). Then there exist subsequences of

Ũε and P̃ ε still denoted by the same, and functions Ũ ∈ L2(Ĩ1)3, independent of y3, with Ũ2 = Ũ3 = 0,

P̃ ∈ L2
0(Ĩ1) such that

ηε
−2Ũε ⇀ Ũ in L2(Ĩ1)3, P̃ ε ⇀ P̃ in L2(Ĩ1). (53)

Moreover, P̃ = P̃ (x1) and Ũ1 is given by expression (15).

Proof. Taking into account ηε � ε
2
3 and estimates (28), (29), (34) with the change of variable (6), we

have

‖Ũε‖L2(Ĩ1)3 ≤ Cηε
2, (54)

‖∂x1 Ũε‖L2(Ĩ1)3 ≤ Cηε, ‖∂y2 Ũε‖L2(Ĩ1)3 ≤ Cηε
2, (55)

‖∂y3 Ũε‖L2(Ĩ1)3 ≤ Cε ηε, (56)

‖P̃ ε‖L2(Ĩ1) ≤ C. (57)

From these estimates (54) and (57), there exist Ũ ∈ L2(Ĩ1)3, P̃ ∈ L2
0(Ĩ1) such that convergence (53)

holds. Moreover

ηε
−2∂y2 Ũε ⇀ ∂y2 Ũ in L2(Ĩ1)3. (58)

The estimate (56) implies that ε−1η−1
ε ∂y3Uε is bounded in L2(Ĩ1)3. This together with ηε � ε

2
3

implies that η−2
ε ∂y3Uε tends to ∂y3 Ũ = 0. This implies that Ũ does not depend on y3.
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As Ũ does not depend on y3, let ϕ ∈ C∞0 (Ĩ1)3 independent of y3. Taking into account that

divηε Ũε = 0 in Ĩ1, we have

ηε
−1

∫
Ĩ1

(
∂x1
Ũε1 + ηε

−1∂y2 Ũε2 + ε−1∂y3 Ũε3
)
ϕdx1dy2dy3

= −ηε−1

∫
Ĩ1

Ũε1∂x1ϕdx1dy2dy3 − ηε−2

∫
Ĩ1

Ũε2 · ∂y2ϕdx1dy2dy3 = 0.

Taking the limit ε→ 0 we obtain ∫
Ĩ1

Ũ2∂y2ϕdx1dy2dy3 = 0,

so that Ũ2 = Ũ2(x1).

Since Ũ , ∂y2 Ũ ∈ L2(Ĩ1)3 the traces Ũ(x1, 0), Ũ(x1, 1) are well defined in L2(Σ)3. Analogously to

the proof of Lemma 4.2 we choose a point β(x1,y3) ∈ Ãεηε , which is close to the point α(x1,y3) ∈ Σ,
then we have∫

Σ

|Ũε(x′, 0, y3)|2dx1dy3 =

∫
Σ

|ũε(x1, 0, y3)|2dx1dy3

≤ C

∫
Σ

(∫
(β(x1,y3),α(x1,y3))

Dεũε · (α(x1,y3) − β(x1,y3))d`

)2

dx1dy3,

so that, by Hölder’s inequality,

‖Ũε(x1, 0, y3)‖2L2(Σ)3 ≤ Cε‖Dεũε‖2L2(D̃εηε )3×3 .

Taking into account estimate (29) and ηε � ε
2
3 , we have

ηε
−2‖Ũε(x1, 0, y3)‖2L2(Σ)3 ≤ Cεηε → 0 as ε→ 0,

which implies that

Ũ(x1, 0) = 0 ,

and analogously

Ũ(x1, 1) = 0 .

Consequently

Ũ2 = 0 .

It remains to prove that Ũ3 = 0. In order to do that, as Ũ does not depend on y3, we take a test
function v = (0, 0, v3(x1, y2)) in (9), and passing to the limit, with the convergence (58), we can deduce

that Ũ3 = 0.
Finally, we compute the expression of Ũ given in (15). First, we take a test function v =

(0, ηεv2, εv3) in (9), and passing to the limit, with the convergences (53), we can deduce that P̃

only depends on x1. Now, taking into account that Ũ does not depend on y3 and Ũ2 = Ũ3 = 0, we
take a test function v = (v1(x1, y2), 0, 0) in (9), and passing to the limit, we obtain the ODE

−µ∂2
y2 Ũ1(x1, y2) = f1(x1, 0)− ∂x1

P̃ (x1),

Ũ1(x1, 0) = Ũ1(x1, 1) = 0,

which gives the expression (15) for Ũ1.
�

Proof of Theorem 3.1-ii). It remains to prove the convergence (16) of the whole velocity to the func-

tion V given by (17), and also prove that P̃ ∈ H1(Σ) ∩ L2
0(Σ) is the unique solution of the Reynolds

problem (18).
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Taking as test function ϕ ∈ C∞(D), independent of y3, in the equation divε ũε = 0 in D, we
obtain∫

D

divε ũεϕdx
′dy3 = −

∫
D

ṽ′ε · ∇x′ϕdx′dy3 − ηε
∫
Ĩ1

(Ũε)′ · ∇x′ϕ(x1, ηεy2) dx1dy2dy3 = 0,

so that multiplying by ηε
−3,∫

Ĩ1

ηε
−2Ũε1∂x1

ϕ(x1, ηεy2) dx1dy2dy3 (59)

= −
∫
D

ηε
−3ṽε · ∇x′ϕdx′dy3 −

∫
Ĩ1

ηε
−2Ũε2∂x2

ϕ(x1, ηεy2) dx1dy2dy3.

Using (27) and taking into account ηε � ε
2
3 , we obtain

ηε
−3‖ṽε‖L2(D)3 ≤ C

(
ε

ηε
3
2

+
ε2

ηε3

)
→ 0 as ε→ 0. (60)

Taking the limit in (59) as ε→ 0, using convergence (53), Ũ2 = 0 and Ũ1 independent of y3, we have∫
Σ

Ũ1∂x1
ϕ(x1, 0) dx1dy2 = 0,

and by definition (17), we get∫
Σ1

(
f1(x1, 0)− ∂x1 P̃ (x1)

)
∂x1ϕ(x1, 0) dx1 = 0.

Consequently, P̃ ∈ H1(Σ1)∩L2
0(Σ1) and is the unique solution of (18). Finally, we consider ϕ ∈ C0(D)3,

independent of y3, and so we have∫
D

ηε
−3ũεϕdx

′dy3 =

∫
D

ηε
−3ṽεϕdx

′dy3 +

∫
Ĩ1

ηε
−2Ũεϕ(x1, ηεy2) dx1dy2dy3.

Using (60), convergence (53) and Ũ2 = Ũ3 = 0, we obtain∫
D

ηε
−3ũεϕdx

′dy3 →
∫

Σ

Ũ1(x1, y2)ϕ1(x1, 0) dx1dy2

=

∫
Σ1

Ṽ1(x1)ϕ1(x1, 0) dx1 = 〈Ṽ1(x1)δΣ1 , ϕ〉M(D)3,C0(D)3 ,

which implies (16). �

5.3. Effects of coupling ηε ≈ ε
2
3

The conclusion of the previous two subsections is that for any sequence of solutions (ṽε, p̃ε) with

ηε � ε
2
3 and (Ũε, P̃ ε) with ηε � ε

2
3 , and letting ε→ 0, we can extract subsequences still denoted by

ṽε, p̃ε, Ũε, P̃ ε and find functions ṽ ∈ H1(0, 1;L2(ω)3) with ṽ3 = 0, p̃ ∈ H1(D) ∩ L2
0(D), Ũ ∈ L2(Ĩ1)3,

independent of y3, with Ũ2 = Ũ3 = 0, P̃ ∈ H1(Σ) ∩ L2
0(Σ) such that

ε−2ṽε ⇀ (ṽ′, 0) in H1(0, 1;L2(ω)3), p̃ε → p̃ in L2(D),

ηε
−2Ũε ⇀ (Ũ1, 0, 0) in L2(Ĩ1)3, P̃ ε ⇀ P̃ in L2(Ĩ1).

(61)

Moreover such limit functions ṽ, p̃, Ũ , P̃ necessarily satisfy the equations

Ṽ ′(x′) =
1

µ
K (f ′(x′)−∇x′ p̃(x′)) in D′,

Ũ1(x1, y2) =
y2(1− y2)

2µ

(
f1(x1, 0)− ∂x1

P̃ (x1)
)

in Ĩ1,
(62)

where Ṽ ′(x′) =
∫ 1

0
ṽ′(x′, y3)dy3.
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We are going to find the connection between the functions p̃ and P̃ , i.e. to find the coupling
effects between the solution in the porous part and in the fissure.

Lemma 5.5. Let ηε ≈ ε
2
3 , with ηε/ε

2
3 → λ, 0 < λ < +∞, and let p̃ε ∈ L2

0(D), p̃ ∈ H1(D) ∩ L2
0(D),

P̃ ∈ H1(Σ) ∩ L2
0(Σ) be such that (61) and (62) hold. Then,∫

D′

1

µ
K (f ′(x′)−∇x′ p̃(x′)) · ∇x′ϕ(x′) dx′ +

λ3

12µ

∫
Σ1

(
f1(x1, 0)− ∂x1 P̃ (x1)

)
∂x1ϕ(x1, 0) dx1 = 0,

(63)
for every ϕ ∈ H1(D′) with ϕ(·, 0) ∈ H1(Σ1).

Proof. Let ϕε(x
′, y3) = ϕ(x′, εy3) ∈ H1(D) with ϕ ∈ H1(D) and ϕ(·, 0) ∈ H1(Σ). Taking into account

the definitions (35) of ṽε and (7) of Ũε, and from divε ũε = 0 in D we have∫
D

ε−2ũε·∇εϕε dx′dy3 =

∫
D

ε−2ṽε·∇εϕε dx′dy3+

(
ηε

ε
2
3

)3 ∫
Ĩ1

ηε
−2Ũε·∇εϕε(x1, ηεy2, y3) dx1dy2dy3 = 0,

and by the definition of ϕε, we can deduce∫
D

ε−2ṽε · ∇ϕ(x′, εy3) dx′dy3 +

(
ηε

ε
2
3

)3 ∫
Ĩ1

ηε
−2Ũε · ∇ϕ(x1, ηεy2, εy3) dx1dy2dy3 = 0.

Taking the limit as ε→ 0, using (61), ṽ3 = Ũ2 = Ũ3 = 0, ηε/ε
2
3 → λ, and taking into account that Ũ1

does not depend on y3, we obtain∫
D

ṽ′(x′, y3) · ∇x′ϕ(x′, 0) dx′dy3 + λ3

∫
Σ

Ũ1(x1, y2)∂x1ϕ(x1, 0, 0) dx1dy2 = 0,

and taking into account expressions (62) and (17), we get (63). �

We are going to prove the relation p̃(x1, 0) = P̃ (x1) + C, with C ∈ R. Then (20) follows from
(63).

Lemma 5.6. Let ηε ≈ ε
2
3 , ηε/ε

2
3 → λ, 0 < λ < +∞, and let p̃, P̃ be the limit pressures from (61).

Then, there exists C ∈ R such that

p̃(x1, 0) = P̃ (x1) + C, (64)

and p̃ ∈ H1(D′) ∩ L2
0(D′) with p̃(·, 0) ∈ H1(Σ1) ∩ L2

0(Σ1) is the unique solution of the variational
problem (20).

Proof. We need to extend the test functions considered in the proof of Lemma 5.3 to the fissure Ĩηε .

To do this, we define I ′ηε = Ĩηε ∩ {x3 = 0}, Bηε = D′− ∪ Σ1 ∪ I ′ηε and Y1 = Y f ∩ {x2 = 0}, and we

consider φ(y′) ∈ C∞# (Bηε)
3 be such that φ(y′) = 0 in Y ′ \ Y ′f . We define

φε(x
′) =


φ
(
x′

ε

)
in D′− ,

K2 e2 in I ′ηε , where K2 =

∫
Y1

φ2(y1, 0)dy1 .

Let ϕ ∈ C∞0 (B1), with B1 = D− ∪ Σ ∪ Ĩ1 be such that∫
Σ

ϕ(x1, 0, y3) dx1dy3 = 0, (65)

and divy (ϕ(x′, y3)φ(y′)) = 0 in Yf .
Taking in (4) as test function

wε(x
′, y3) =

 ϕ(x′, y3)φ
(
x′

ε

)
in D−,

ϕ
(
x1,

x2

ηε
, y3

)
K2 e2 in Ĩηε ,
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we obtain

µ

∫
Bηε

Dεũε : Dεwε dx
′dy3 =

∫
Bηε

f ′ · w′ε dx′dy3 −
∫
Bηε

p̃ε divε wε dx
′dy3. (66)

Taking into account that

K2

∫
Ĩηε

f ′ · ϕ′
(
x1,

x2

ηε
, y3

)
e2 dx

′dy3 = ηεK2

∫
Ĩ1

f ′ · ϕ′(x1, y2, y3)e2 dx1dy2dy3 → 0 as ε→ 0,

and by using estimates (55), (56), that∣∣∣∣∣K2

∫
Ĩηε

DεŨε∂x2
ϕ(x1,

x2

ηε
, y3) dx′dy3

∣∣∣∣∣ =

∣∣∣∣K2

∫
Ĩ1

Dηε Ũε∂y2ϕ(x1, y2, y3) dx1dy2dy3

∣∣∣∣ ≤ Cηε → 0 as ε→ 0,

from (66), we obtain

µ

∫
D−

Dεṽε : Dεwε dx
′dy3 =

∫
D−

f ′ ·w′ε dx′dy3+

∫
D−

p̃εdivε wε dx
′dy3+K2

∫
Ĩηε

p̃ε∂x2ϕ(x1,
x2

ηε
, y3) dx′dy3+Oε.

(67)
For the last term on the right hand side, we have

K2

∫
Ĩηε

p̃ε∂x2
ϕ(x1,

x2

ηε
, y3) dx′dy3 = K2

∫
Ĩηε

(p̃ε − cεηε)∂x2
ϕ(x1,

x2

ηε
, y3) dx′dy3

+K2

∫
Ĩηε

cεηε∂x2
ϕ(x1,

x2

ηε
, y3) dx′dy3,

where cεηε is defined in (8). Using (61), we obtain

K2

∫
Ĩηε

(p̃ε − cεηε)∂x2ϕ(x1,
x2

ηε
, y3) dx′dy3 = K2

∫
Ĩ1

P̃ ε∂y2ϕ(x1, y2, y3) dx1dy2dy3

→ K2

∫
Ĩ1

P̃ (x1)∂y2ϕ(x1, y2, y3) dx1dy2dy3 = −K2

∫
Σ

P̃ (x1)ϕ(x1, 0, y3) dx1dy3, as ε→ 0,
(68)

where P̃ ε is given by (7), and using (65), we have

K2cεηε

∫
Ĩηε

∂x2
ϕ(x1,

x2

ηε
, y3) dx′dy3 = K2cεηε

∫
Ĩ1

∂y2ϕ(x1, y2, y3)) dx1dy2dy3 = 0.

Passing to the limit in (67) similarly as in the proof of Lemma 5.3, we know that v̂ and p̃ are
related by the variational formulation of problem (46)-(48), and taking into account (68) and∫

D′−×Y
p̃(x′) divx′(ϕ(x′, y3)φ(y′)) dx′dy

= −
∫
D′−×Y

∇x′ p̃(x′)ϕ(x′, y3)φ(y′) dx′dy +

∫
Σ×Y1

p̃(x1, 0)ϕ(x1, 0, y3)φ2(y1, 0) dx1dy1dy3

= −
∫
D′−×Y

∇x′ p̃(x′)ϕ(x′, y3)φ(y′) dx′dy +K2

∫
Σ

p̃(x1, 0)ϕ(x1, 0, y3) dx1dy3,

then we have ∫
Σ

(
p̃(x1, 0)− P̃ (x1)

)
ϕ(x1, 0, y3) dx1dy3 = 0,

so that ∫
Σ1

(
p̃(x1, 0)− P̃ (x1)

)
ψ(x1) dx1 = 0,

for every ψ ∈ C∞0 (Σ1) such that
∫

Σ
ψ dx1 = 0. Finally we conclude that there exists a constant C ∈ R

such that (64) holds and p̃(x1, 0) ∈ H1(Σ1).
Using (64) into (63), we obtain the variational formulation (20) for the limit pressure p̃ in the

Banach space of functions v ∈ H1(D′) such that v(x1, 0) ∈ H1(Σ1). Since K ∈ R2×2 is a symmetric,
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positive, tensor given by (13), it can be proved that (20) has a unique solution in that Banach space
with the norm |v|H1(D′) + |v(x1, 0)|H1(Σ1).

�

Proof of Theorem 3.1-iii). It remains to prove the convergence (19) of the whole velocity.
Let ϕ ∈ C0(D)3. Then∫
D

ε−2ũε · ϕdx′dy3 =

∫
D

ε−2ṽε · ϕdx′dy3 +

(
ηε

ε
2
3

)3 ∫
Ĩ1

ηε
−2Ũε · ϕ(x1, ηεy2, y3) dx1dy2dy3 = 0.

Taking the limit as ε→ 0, using (61), ṽ3 = Ũ2 = Ũ3 = 0 and ηε/ε
2
3 → λ, we obtain∫

D

ε−2ũε · ϕdx′dy3 →
∫
D

ṽ′ · ϕ′ dx′dy3 + λ3

∫
Ĩ1

Ũ1(x1, y2)ϕ(x1, 0, y3) dx1dy2dy3.

Taking into account that∫
Ĩ1

Ũ(x1, y2)ϕ(x1, 0, y3) dx1dy2dy3 =

∫
Σ1

V(x1)

(∫ 1

0

ϕ(x1, 0, y3)dy3

)
dx1 = 〈VδΣ1

, ϕ〉M(D)3,C0(D)3 ,

where V(x1) is given by (17), we get (19). �
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