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Abstract

We consider a non-stationary Stokes system in a thin porous medium of thickness ε which is
perforated by periodically distributed solid cylinders of size ε, and containing a fissure of width ηε.
Passing to the limit when ε goes to zero, we find a critical size ηε ≈ ε

2
3 in which the flow is described

by a 2D quasi-stationary Darcy law coupled with a 1D quasi-stationary Reynolds problem.
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1 Introduction

The aim of this work is to prove the convergence of the homogenization process for the non-stationary
Stokes system in a thin porous medium Dεηε of thickness ε which is perforated by periodically dis-
tributed solid cylinders of size ε and contains a fissure {0 ≤ x2 ≤ ηε} of width ηε.

We consider the fluid flow through a periodic distribution of vertical cylinders and a fissure. The
periodic distribution of vertical cylinders and the fissure are confined between two parallel plates (see
Figure 1). A representative elementary volume for the thin porous medium is a cube of lateral length
ε and vertical lentgth ε. The cube is repeated periodically in the space between the plates. Each cube
can be divided into fluid part and a solid part, where the solid part has the shape of a vertical cylinder
of height ε.
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Figure 1: View of the domain Dεηε

The question of a medium containing a fissure with properties different from those of the rest of
the material has been the subject of many studies previously, see Ciarlet et al [1], Panasenko [2] and
Chapter 13 of Sanchez-Palencia [3] among others. A similar problem of the one considered in this paper
with a fixed height domain, but for the Laplace’s equation, was studied in Bourgeat and Tapiero [4].

The peculiar behavior observed for the Laplace’s equation when ηε ≈ ε
2
3 has motivated the analogous

study for the Stokes system in Bourgeat et al [5] (see [6] for the Navier-Stokes system and [7] for a
non-stationary Stokes system).

In Anguiano [8], we consider a non-stationary Stokes system in a thin porous medium of thickness
ε which is perforated by periodically distributed solid cylinders of size aε. We apply an adaptation
of the unfolding method in order to obtain rigorously quasi-stationary Darcy’s laws. The behavior
observed when aε ≈ ε has motivated the fact of considering a thin porous medium containing a fissure.
In this sense, our aim in the present paper is to extend the study of Bourgeat et al [5] to the case of
a non-stationary Stokes system in a domain of small height ε, perforated by periodically distributed
solid cylinders of size ε, containing a fissure of width ηε, which makes necessary to rescale in the height
variable in order to work with a domain of height one. We find the same critical size as in Bourgeat et
al [5], what means that the evolutive model and the thin thickness of the domain do not modify the
critical size. However, the thin thickness of the domain leads us to use techniques of reduction of the
dimension together with homogenization in order to obtain more simplified effective models than those
obtained in Bourgeat et al [5]. More precisely, we obtain the following results corresponding to three
characteristic situations depending on the parameter ηε with respect to ε:

• If ηε � ε
2
3 the fissure is not giving any contribution. In this case, in order to find the limit, we
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use the results developed in Anguiano [8] and we obtain a 2D quasi-stationary Darcy’s law.

• If ηε � ε
2
3 the fissure is dominant. We introduce a rescaling of the fissure in order to work

with a domain with size one, and then we prove that the limit of the velocity is a Dirac measure
concentrated on the line {x2 = 0}∩ {x3 = 0} representing the corresponding tangential line flow.
Meanwhile in the porous medium the effective velocity is equal to zero.

• If ηε ≈ ε
2
3 with ηε/ε

2
3 → λ, 0 < λ < +∞, it appears a coupling effect and the effective flow

behaves as 2D quasi-stationary Darcy flow in the porous medium coupled with the tangential
flow of the line {x2 = 0} ∩ {x3 = 0}. Compared to the first case ηε � ε

2
3 , the effective velocity

has now an additional tangential component concentrated on {x2 = 0} ∩ {x3 = 0}. Moreover,
the limit problem is now given by a new variational equation, in which appears the parameter
λ, and consists of a 2D quasi-stationary Darcy law in the porous medium coupled with a 1D
quasi-stationary Reynolds problem on the line {x2 = 0} ∩ {x3 = 0}.

2 The domain and some notations

2.1 The domain

Let ω ⊂ R2 be smooth bounded connected open set and Ω = ω × (0, 1) ⊂ R3. We define

Ω+ = Ω ∩ {x2 > 0}, Ω− = Ω ∩ {x2 < 0}, Σ = Ω ∩ {x2 = 0}, Σ1 = Σ ∩ {x3 = 0}.

For some η0 > 0 we define the domains

D = Ω− ∪ (η0e2 + Ω+) ∪ (Σ× [0, η0]e2) , D′ = D ∩ {x3 = 0},

with e2 = (0, 1, 0).

Let ε > 0 be a small parameter devoted to tend to zero and 0 < ηε < η0 be a small parameter
devoted to tend to zero with ε.

A periodic porous medium is defined by a domain ω and an associated microstructure, or periodic
cell Y ′ = [0, 1]2, which is made of two complementary parts: the fluid part Y ′f , and the solid part Y ′s
(Y ′f

⋃
Y ′s = Y ′ and Y ′f

⋂
Y ′s = ∅). More precisely, we assume that Y ′s is a smooth and connected set

strictly included in Y ′. For k′ = (k1, k2) ∈ Z2, each cell Y ′k′ = k′+Y ′ is divided in a fluid part Y ′fk′
and

a solid part Y ′sk′ . We define Y = Y ′× (0, 1) ⊂ R3, and is divided in a fluid part Yf and a solid part Ys.

We also denote
Y −s =

⋃
k′∈Z2

−

Ysk′ , Y +
s =

⋃
k′∈Z2

+

Ysk′ ,

all the solid parts in R2 × (0, 1), where Z2
− = {k′ ∈ Z2, k2 < 0} and Z2

+ = {k′ ∈ Z2, k2 > 0}. It is
obvious that Ef =

(
(R2 × (0, 1)) \ (Y −s ∪ Y +

s )
)
∩ Ω is the fluid part in Ω.

Following [9], we make the following assumptions on Yf , Ef , Ys and Y ∗s = Y +
s ∪ Y −s :

i) Yf is an open connected set of strictly positive measure, with a locally Lipschitz boundary.

ii) Ys has strictly positive measure in Y .
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iii) Ef and the interior of Y ∗s are open sets with boundaries of class C0,1 and are locally located on
one side of their boundaries. Moreover Ef is connected.

We also define

Y −s,ε = εY ′−s × (0, 1), Y +
s,εηε = (ηεe2 + εY ′+s )× (0, 1), S̃εηε = ∂(Y −s,ε ∪ Y +

s,εηε).

We denote by

Ãεηε = (Y −s,ε ∪ Y +
s,εηε) ∩D - the solid part of the domain D,

D̃εηε = D \ Ãεηε - the fluid part of the domain D (including the fissure),

Ĩηε = Σ× (0, ηε)e2 - the fissure in D,

Ω̃εηε = D̃εηε \ Ĩηε - the fluid part of the porous medium in D.

Let us define a domain with thickness ε, given by Ωε = Ω ∩ {0 < x3 < ε} ⊂ R3. We also define

Ωε
+ = Ω+ ∩ {0 < x3 < ε}, Ωε

− = Ω− ∩ {0 < x3 < ε}, Σε = Ωε ∩ {x2 = 0},

and
Dε = Ωε

− ∪
(
η0e2 + Ωε

+

)
∪ (Σε × [0, η0]e2) .

The microscale of a porous medium is the small positive number ε. The domain ω is covered
by a regular mesh of size ε: for k′ = (k1, k2) ∈ Z2, each cell Y ′k′,ε = εk′ + εY ′ is divided in a fluid
part Y ′fk′ ,ε

and a solid part Y ′sk′ ,ε, i.e. is similar to the unit cell Y ′ rescaled to size ε. We define

Yk′,ε = Y ′k′,ε × (0, 1) ⊂ R3, which is also divided in a fluid part Yfk′ ,ε and a solid part Ysk′ ,ε.

Now, we denote by Aεηε , Dεηε , Iηε and Ωεηε the sets Ãεηε , D̃εηε , Ĩηε and Ω̃εηε , respectively, with
thickness ε, i.e.,

Aεηε = Ãεηε ∩ {0 < x3 < ε} - the solid part of the domain Dε,

Dεηε = D̃εηε ∩ {0 < x3 < ε} - the fluid part of the domain Dε (including the fissure),

Iηε = Ĩηε ∩ {0 < x3 < ε} - the fissure in Dε,

Ωεηε = Ω̃εηε ∩ {0 < x3 < ε} - the fluid part of the porous medium in Dε.

Finally we define

Ω+
εηε = Dεηε ∩ {x2 > ηε}, Ω−εηε = Dεηε ∩ {x2 < 0}, Γηε = ∂Σε × (0, ηε)e2,

and
D+ = D ∩ {x2 > 0}, D− = Ω− .
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Figure 2: View of the domain Dεηε from above (left) and lateral (right)

2.2 Some notations

Let us introduce some notations which will be useful in the following. For a vectorial function v =
(v1, v2, v3) and a scalar function w, we introduce the operators: Dε, ∇ε and divε by

(Dεv)i,j = ∂xjvi for i = 1, 2, 3, j = 1, 2,

(Dεv)i,3 =
1

ε
∂y3vi for i = 1, 2, 3,

∇εw = (∇x′w,
1

ε
∂y3w)t,

divεv = divx′v
′ +

1

ε
∂y3v3,

and moreover the operators Dηε , ∇ηε and divηε by

(Dηεv)i,1 = ∂x1vi for i = 1, 2, 3,

(Dηεv)i,2 =
1

ηε
∂y2vi for i = 1, 2, 3,

(Dηεv)i,3 =
1

ε
∂y3vi for i = 1, 2, 3,

∇ηεw = (∂x1w,
1

ηε
∂y2w,

1

ε
∂y3w)t,

divηεv = ∂x1v1 +
1

ηε
∂y2v2 +

1

ε
∂y3v3.

We denote by Oε a generic real sequence which tends to zero with ε and can change from line to
line. We denote by C a generic positive constant which can change from line to line.
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3 Setting and main results

Hereinafter, the points x ∈ R3 will be decomposed as x = (x′, x3) with x′ ∈ R2, x3 ∈ R. We also use
the notation x′ to denote a generic vector of R2.

In this section, we describe the asymptotic behavior of an incompressible viscous fluid in a thin
porous medium with a fissure. The proof of the corresponding results will be given in the next sections.

Our results are referred to the non-stationary Stokes system. Namely, for f ∈ C([0, T ]×D)3 let us
consider a sequence (uε, pε) ∈ L2(0, T ;H1

0 (Dεηε))
3 × L2(0, T ;L2(Dεηε)), which satisfies

∂uε
∂t
− µ∆uε +∇pε = f in (0, T )×Dεηε ,

div uε = 0 in (0, T )×Dεηε ,
uε(0, x) = 0, x ∈ Dεηε ,

(3.1)

where T > 0, µ > 0 is the viscosity and Dεηε is defined in Section 2. The right-hand side f is of the
form

f(t, x) = (f ′(t, x′), 0), a.e. x ∈ D, (3.2)

where
f ′ ∈ C([0, T ]×D)2. (3.3)

This choice of f is usual when we deal with thin domains. Since the thickness of the domain ε is small
then the vertical component of the force can be neglected and, moreover the force can be considered
independent of the vertical variable.

Finally, we may consider Dirichlet boundary conditions without altering the generality of the prob-
lem under consideration,

uε = 0 on (0, T )× ∂Dεηε . (3.4)

For any fixed ε, under the assumptions of f and u0
ε, a classical result (see Temam [10]) shows that

(3.1)-(3.4) has at least one weak solution (uε, pε) ∈ L2(0, T ;H1
0 (Dεηε))

3 × L2(0, T ;L2(Dεηε)), where
pε is uniquely defined up to an additive constant, that is, it is uniquely defined if we consider the
corresponding equivalence class: pε ∈ L2(0, T ;L2(Dεηε)/R).

Our aim is to study the asymptotic behavior of uε and pε when ε tends to zero. For this purpose,
we use the dilatation in the variable x3

y3 =
x3

ε
, (3.5)

in order to have the functions defined in an open set with fixed height D̃εηε given in Section 2.

Namely, we define ũε ∈ L2(0, T ;H1
0 (D̃εηε))

3, p̃ε ∈ L2(0, T ;L2(D̃εηε)/R) by

ũε(t, x
′, y3) = uε(t, x

′, εy3), p̃ε(t, x
′, y3) = pε(t, x

′, εy3), a.e. (t, x′, y3) ∈ (0, T )× D̃εηε .

Using the transformation (3.5), the system (3.1) can be rewritten as
∂ũε
∂t
− µ∆εũε +∇εp̃ε = f in (0, T )× D̃εηε ,

divε ũε = 0 in (0, T )× D̃εηε ,

ũε(0, x
′, y3) = 0, (x′, y3) ∈ D̃εηε ,

(3.6)
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with Dirichlet boundary conditions

ũε = 0 on (0, T )× ∂D̃εηε , (3.7)

where we set ∆εw = ∆x′w + ε−2∂2
y3w and D̃εηε is defined in Section 2.

Our goal then is to describe the asymptotic behavior of this new sequence (ũε, p̃ε).

Moreover, in order to study the behavior of ũε, p̃ε in the fissure we rewrite our equations in the
unit cylinder Ĩ1 = Σ× (0, 1)e2 by introducing the change of variable

y2 =
x2

ηε
, (3.8)

which transform Ĩηε in a fixed domain Ĩ1. We define the new functions

Ũε(t, x1, y2, y3) = ũε(t, x1, ηεy2, y3), P̃ ε(t, x1, y2, y3) = p̃ε(t, x1, ηεy2, y3)− cεηε , (3.9)

with

cεηε =
1

|Ĩηε |

∫
Ĩηε

p̃ε(t, x
′, y3) dx′dy3. (3.10)

Using the transformation (3.8), the system (3.6) can be rewritten as
∂Ũε

∂t
− µ∆ηεŨε +∇ηεP̃ ε = f(t, x1, ηεy2) in (0, T )× Ĩ1,

divηε Ũε = 0 in (0, T )× Ĩ1,

Ũε(0, x1, ηεy2, y3) = 0, (x1, ηεy2, y3) ∈ Ĩ1,

(3.11)

with Dirichlet boundary conditions

Ũε = 0 on (0, T )× ∂Ĩ1, (3.12)

where we set ∆ηεw = ∂2
x1w + η−2

ε ∂2
y2w + ε−2∂2

y3w.

Our main result referred to the asymptotic behavior of the solution of (3.6) is given by the following
theorem.

Theorem 3.1. We distingue three cases depending on the relation between the parameter ηε with
respect to ε:

i) if ηε � ε
2
3 , then there exists (ṽ, p̃) ∈ L2((0, T ) × D)3 × L2(0, T ;L2(D)/R), with ṽ3 = 0 and p̃

independent of y3, such that the solution (ε−2ũε, p̃ε) of problem (3.6)-(3.7) satisfies

ε−2ũε ⇀ ṽ in L2((0, T )×D)3, p̃ε → p̃ in L2(0, T ;L2(D)/R). (3.13)

Moreover, p̃ ∈ L2(0, T ;H1(D)/R) and (Ṽ , p̃) is the unique solution of the 2D quasi-stationary
Darcy law (where t is only a parameter)

Ṽ ′(t, x′) =
1

µ
K
(
f ′(t, x′)−∇x′ p̃(t, x′)

)
in (0, T )×D′,

divx′ Ṽ (t, x′) = 0 in (0, T )×D′,
Ṽ (t, x′) · n = 0 in (0, T )× ∂D′,

(3.14)
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where Ṽ (t, x′) =
∫ 1

0 ṽ(t, x′, y3)dy3 and K ∈ R2×2 is a symmetric, positive, tensor defined by its
entries

Kij =

∫
Yf

Dyw
i(y) : Dyw

j(y) dy, i, j = 1, 2, (3.15)

where wi(y), i = 1, 2, with
∫
Yf
wi3dy = 0, denotes the unique solution in H1

#(Yf )3 of the local

stationary Stokes problems in 3D
−∆yw

i +∇yqi = ei in Yf ,

divy w
i = 0 in Yf ,

wi = 0 in ∂(Y \ Yf ),
wi, qi Y ′ − periodic.

(3.16)

ii) if ηε � ε
2
3 and let (Ũε, P̃ ε) be a solution of (3.11)-(3.12). Then there exist Ũ ∈ L2((0, T )× Ĩ1)3,

independent of y3, with Ũ2 = Ũ3 = 0, and P̃ ∈ L2(0, T ;L2(Ĩ1)/R) only depending on t and x1,
such that for a subsequence,

ηε
−2Ũε ⇀ Ũ in L2((0, T )× Ĩ1)3, P̃ ε ⇀ P̃ in L2(0, T ;L2(Ĩ1)/R),

where

Ũ1(t, x1, y2) =
y2(1− y2)

2

(
f1(t, x1, 0)− ∂x1P̃ (t, x1)

)
. (3.17)

Moreover, it holds that
ηε
−3ũε

?
⇀ ṼδΣ1 in L2(0, T ;M(D))3, (3.18)

where Ṽ ∈ L2((0, T )× Σ1)3, with Ṽ2 = Ṽ3 = 0, such that

Ṽ1(t, x1) =

∫ 1

0
Ũ1(t, x1, y2) dy2 =

1

12

(
f1(t, x1, 0)− ∂x1P̃ (t, x1)

)
, (3.19)

and, in fact P̃ ∈ L2(0, T ;H1(Σ1)/R) is the unique solution of the 1D quasi-stationary Reynolds
problem on Σ1 (where t is only a parameter) ∂x1

(
f1(t, x1, 0)− ∂x1P̃ (t, x1))

)
= 0 in (0, T )× Σ1,(

f1(t, x1, 0)− ∂x1P̃ (t, x1)
)
· n = 0 on (0, T )× ∂Σ1.

(3.20)

iii) if ηε ≈ ε
2
3 , with ηε/ε

2
3 → λ, 0 < λ < +∞, then there exist a Darcy velocity ṽ, a Reynolds velocity

Ṽ and a pressure field p̃ such that

ε−2ũε
?
⇀ ṽ + λ3ṼδΣ1 in L2(0, T ;M(D))3,

p̃ε → p̃ in L2(0, T ;L2(D)/R),
(3.21)

where δΣ1 is the Dirac measure concentrated on Σ1, and M(D)3 is the space of Radon meaures
on D. The velocities ṽ and Ṽ are linked with the pressure p̃ through the 2D Darcy law (3.14)
in (0, T ) × D′ and the 1D Reynolds problem (3.20) on (0, T ) × Σ1. The pressure field p̃ ∈
L2(0, T ;H1(D′)/R) with p̃(·, 0) ∈ L2(0, T ;H1(Σ1)/R), is the unique solution of the variational
problem∫ T

0

∫
D′

1

µ
K
(
f ′(t, x′)−∇x′ p̃(t, x′)

)
· ∇x′ϕ(t, x′) dx′dt+

λ3

12

∫ T

0

∫
Σ1

(f1(t, x1, 0)− ∂x1 p̃(t, x1)) ∂x1ϕ(t, x1, 0) dx1dt = 0,

(3.22)
for every ϕ ∈ L2(0, T ;H1(D′)) with ϕ(·, 0) ∈ L2(0, T ;H1(Σ1)).
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Remark 3.2. The coupled problem (3.22) corresponding to the critical case ηε ≈ ε
2
3 , with ηε/ε

2
3 → λ,

0 < λ < +∞, can be considered as the general one. In fact, if λ tends to infinity in (3.22) we
recover the 1D quasi-stationary Reynolds problem (3.20), meanwhile if λ tends to zero we recover the
2D quasi-stationary Darcy law (3.14).

4 A Priori Estimates

Let us begin with a lemma on Poincaré inequality in the porous medium Ω̃εηε , which will be very useful
(see for example Lemma 4.1 in [8]).

Lemma 4.1. There exists a constant C independent of ε, such that, for any function v ∈ H1(D̃εηε)
3

and v = 0 on S̃εηε, one has
‖v‖

L2(Ω̃εηε )3
≤ Cε ‖Dεv‖L2(Ω̃εηε )3×3 . (4.23)

Next, we give an useful estimate in the fissure Ĩηε .

Lemma 4.2. There exists a constant C independent of ε, such that, for any function v ∈ H1(D̃εηε)
3

and v = 0 on S̃εηε, one has

‖v‖
L2(Ĩηε )3

≤ Cηε
1
2 (ηε + ε)

1
2 ‖Dεv‖L2(D̃εηε )3×3 . (4.24)

Proof. For any function w(y) ∈ H1(Ĩ1)3 with w = 0 in ∂Ĩ1, the Poincaré inequality in Ĩ1 states that∫
Ĩ1

|w|2 dz ≤ C
∫
Ĩ1

|∂z2w|
2 dz, (4.25)

where the constant C depends only on Ĩ1.

For every k′ ∈ Z2, by the change of variable

z1 = x1, z2 =
x2

ηε
, z3 =

x3

ε
, dz =

dx

εηε
, ∂z2 = ηε∂x2 , (4.26)

we rescale (4.25) from Ĩ1 to Iηε . This yields that, for any function w(x) ∈ H1(Iηε)
3 with w = 0 in ∂Iηε ,

one has ∫
Iηε

|w|2 dx ≤ Cη2
ε

∫
Iηε

|∂x2w|
2 dx ≤ Cη2

ε

∫
Iηε

|Dxw|2 dx, (4.27)

with the same constant C as in (4.25). Finally, applying the dilatation (3.5) in (4.27), we obtain∫
Ĩηε

|w|2 dx′dy3 ≤ Cη2
ε

∫
Ĩηε

|Dεw|2 dx′dy3,

which gives
‖v‖

L2(Ĩηε )3
≤ Cηε‖Dεv‖L2(Ĩηε )3×3 . (4.28)

Next, if we choose a point y ∈ Aεηε , which is close to the point x ∈ Iηε , then we have

v(x)− v(y) = Dv(ξ)(x− y) ≤ (ε+ ηε)|Dv|.
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Since v(y) = 0 because y ∈ Aεηε , we have

‖v(x)‖L2(Iηε )3 ≤ C(ε+ ηε)‖Dv‖L2(Iηε )3×3 ,

and applying the dilatation (3.5) gives

‖v‖L2(Ĩηε )3 ≤ C(ε+ ηε)‖Dεv‖L2(Ĩηε )3×3 .

Finally, multiplying the above inequality with (4.28) we obtain

‖v‖
L2(Ĩηε )3

≤ Cηε
1
2 (ηε + ε)

1
2 ‖Dεv‖L2(Ĩηε )3×3 ≤ Cηε

1
2 (ηε + ε)

1
2 ‖Dεv‖L2(D̃εηε )3×3 , (4.29)

which is the desired estimate (4.24).

Let us give the classical estimate, [11], for a function in L2 when we deal with a thin fissure.

Lemma 4.3. Let v ∈ L2(Ĩηε) be such that
∫
Ĩηε

v dx′dy3 = 0. Then

‖v‖
L2(Ĩηε )

≤ C

ηε
‖∇εv‖H−1(Ĩηε )3

.

Now, we are in position to obtain some a priori estimates for ũε.

Lemma 4.4. There exists a constant C independent of ε, such that the solution ũε ∈ H1
0 (D̃εηε)

3 of the
problem (3.6) satisfies

‖ũε‖L2((0,T )×Ω̃εηε )3
≤ C(ηε

3
2 ε+ ε2), (4.30)

‖ũε‖L2((0,T )×Ĩηε )3
≤ C

(
ηε

5
2 + εηε + ηε

1
2 ε

3
2

)
, (4.31)

‖Dεũε‖L2((0,T )×D̃εηε )3×3 ≤ C(ηε
3
2 + ε), (4.32)

‖ũε‖L∞(0,T ;L2(D̃εηε ))3
≤ C(ηε

3
2 + ε), (4.33)∥∥∥∥∂ũε∂t

∥∥∥∥
L2((0,T )×D̃εηε )3

≤ C,
∥∥∥∥∂ũε∂t

∥∥∥∥
L2((0,T )×Ĩηε )3

≤ Cη
1
2
ε . (4.34)

Proof. Multiplying by ũε in the first equation of (3.6), integrating over D̃εηε and using the energy
equality, we have

1

2

d

dt
‖ũε(t)‖2L2(D̃εηε )3

+ µ‖Dεũε(t)‖2L2(D̃εηε )3×3 =

∫
D̃εηε

f(t) · ũε(t) dx′dy3 . (4.35)

Using Cauchy-Schwarz’s inequality, we obtain that∫
D̃εηε

f(t) · ũε(t) dx′dy3 ≤ Cη
1
2
ε ‖f(t)‖

L∞(Ĩηε )3
‖ũε(t)‖L2(Ĩηε )3

+ ‖f(t)‖
L2(Ω̃εηε )3

‖ũε(t)‖L2(Ω̃εηε )3
,

and by inequalities (4.23) and (4.24), we have∫
D̃εηε

f(t) · ũε(t) dx′dy3 ≤ C
(
η

1
2
ε ηε

1
2 (ε+ ηε)

1
2 ‖f(t)‖

L∞(Ĩηε )3
+ ε‖f(t)‖

L2(Ω̃εηε )3

)
‖Dεũε(t)‖L2(D̃εηε )3×3 .
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Using Young’s inequality, we obtain that∫
D̃εηε

f(t) · ũε(t) dx′dy3 ≤
µ

2
‖Dεũε(t)‖2L2(D̃εηε )3×3 + C

(
ηε(ε+ ηε)

1
2 ‖f(t)‖

L∞(Ĩηε )3
+ ε‖f(t)‖

L2(Ω̃εηε )3

)2
.

Therefore, from (4.35) we get

d

dt
‖ũε(t)‖2L2(D̃εηε )3

+ µ‖Dεũε(t)‖2L2(D̃εηε )3×3 ≤ C
(
η2
ε(ε+ ηε)‖f(t)‖2

L∞(Ĩηε )3
+ ε2‖f(t)‖2

L2(Ω̃εηε )3

)
,(4.36)

and integrating between 0 and T and taking into account the assumption of f (3.2)-(3.3), in particular,
we have

‖ũε(T )‖2
L2(D̃εηε )3

+

∫ T

0
‖Dεũε(t)‖2L2(D̃εηε )3×3dt ≤ C

(
η2
εε+ η3

ε + ε2
)
.

Since η2
εε < η3

ε if ε < ηε and η2
εε ≤ ηεε

2 < ε2 if ηε < ε, the term η2
εε can be dropped. This gives

(4.32) and (4.33).

On the other hand, applying (4.23) in (4.36), we have

d

dt
‖ũε(t)‖2L2(D̃εηε )3

+ Cε−2‖ũε(t)‖2L2(Ω̃εηε )3
≤ C

(
η2
ε(ε+ ηε)‖f(t)‖2

L∞(Ĩηε )3
+ ε2‖f(t)‖2

L2(Ω̃εηε )3

)
,

and integrating between 0 and T and taking into account the assumption on f (3.2)-(3.3), in particular,
we have ∫ T

0
‖ũε(t)‖2L2(Ω̃εηε )3

dt ≤ Cε2
(
η2
εε+ η3

ε + ε2
)
.

Reasoning as before, the term η2
εε can be dropped. This gives (4.30). Finally, applying (4.24) and

(4.32) we get

‖ũε‖L2((0,T )×Ĩηε )3
≤ C(ηε + ηε

1
2 ε

1
2 )(ηε

3
2 + ε) ≤ C

(
ηε

5
2 + εηε + η2

εε
1
2 + ηε

1
2 ε

3
2

)
.

Since ηε
2ε

1
2 < ηε

5
2 if ηε > ε and ηε

2ε
1
2 < ηε

1
2 ε

3
2 if ηε < ε, the term ηε

2ε
1
2 can be dropped, and (4.31)

holds.
Finally, we will prove (4.34). Now, we proceed formally. The rigorous proof schould be made using the
Galerkin approximations. First, multiplying by ∂ũε

∂t in the first equation of (3.6), integrating over D̃εηε

and using the energy equality, we have∥∥∥∥∂ũε(t)∂t

∥∥∥∥2

L2(D̃εηε )3
+ µ

1

2

d

dt
‖Dεũε(t)‖2L2(D̃εηε )3×3 =

∫
D̃εηε

f · ∂ũε
∂t

dx′dy3. (4.37)

Using Cauchy-Schwarz’s inequality and Young’s inequality, we obtain that∫
D̃εηε

f · ∂ũε
∂t

dx′dy3 ≤ 1

2
‖f(t)‖2

L2(D̃εηε )2
+

1

2

∥∥∥∥∂ũε(t)∂t

∥∥∥∥2

L2(D̃εηε )3
.

Then, we deduce∥∥∥∥∂ũε(t)∂t

∥∥∥∥2

L2(D̃εηε )3
+ µ

d

dt
‖Dεũε(t)‖2L2(D̃εηε )3×3 ≤ ‖f(t)‖2

L2(D̃εηε )2
,
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and integrating between 0 and T∫ T

0

∥∥∥∥∂ũε(t)∂t

∥∥∥∥2

L2(D̃εηε )3
dt+ µ ‖Dεũε(T )‖2

L2(D̃εηε )3×3 ≤
∫ T

0
‖f(t)‖2

L2(D̃εηε )2
dt.

Taking into account the assumption of f (3.2)-(3.3), we obtain the first estimate in (4.34). Now,
multiplying by ∂ũε

∂t in the first equation of (3.6) and integrating over Ĩηε , we have (4.37) in Ĩηε . Taking
into account that using Cauchy-Schwarz’s inequality and Young’s inequality, we have∫

Ĩηε

f · ∂ũε
∂t

dx′dy3 ≤ 1

2
ηε ‖f(t)‖2

L∞(Ĩηε )2
+

1

2

∥∥∥∥∂ũε(t)∂t

∥∥∥∥2

L2(Ĩηε )3
,

we deduce, in particular, that ∫ T

0

∥∥∥∥∂ũε(t)∂t

∥∥∥∥2

L2(Ĩηε )3
dt ≤ Cηε,

and we have proved the second estimate in (4.34).

In the next step we will estimate the pressure to the whole domain D. We give some properties
of the restricted operator, Rε, from H1

0 (D)3 into H1
0 (D̃εηε)

3 preserving divergence-free vectors, which
was introduced by Tartar [12]. Since the construction of the operator is local, having no obstacles in
Ĩηε means that we do not have to use the extension in that part. Next, we give the properties of the
operator Rε.

Lemma 4.5. There exists a linear continuous operator Rε acting from H1
0 (D)3 into H1

0 (D̃εηε)
3 such

that

1. Rεv = v, if v ∈ H1
0 (D̃εηε)

3

2. divε(R
εv) = 0, if div v = 0

3. For any v ∈ H1
0 (D)3 (the constant C̃ is independent of v and ε),

‖Rεv‖
L2(D̃εηε )3

≤ C̃ ‖v‖L2(D)3 + C̃ε ‖Dεv‖L2(D)3×3 ,

‖DεR
εv‖

L2(D̃εηε )3×3 ≤ C̃

ε
‖v‖L2(D)3 + C̃ ‖Dεv‖L2(D)3×3 .

In order to extend the pressure to the whole domain D, we define, for all T > 0, a function
Fε ∈ L2(0, T ;H−1(D))3 by the following formula (brackets are for the duality products between H−1

and H1
0 ):

〈Fε(t), v〉D = 〈∇εp̃ε(t), Rεv〉D̃εηε , for any v ∈ H1
0 (D)3, ∀t ∈ (0, T ), (4.38)

where Rε is defined in Lemma 4.5. We calcule the right hand side of (4.38) by using (3.6) and we have

〈Fε(t), v〉D = 〈µ∆εũε(t), R
εv〉

D̃εηε
+ 〈f(t), Rεv〉

D̃εηε
−
〈
∂ũε(t)

∂t
,Rεv

〉
D̃εηε

, (4.39)

and by using the third point in Lemma 4.5, for fixed ε, we deduce that Fε ∈ L2(0, T ;H−1(D))3.
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Moreover, if v ∈ H1
0 (D̃εηε)

3 and we continue it by zero out of D̃εηε , we see from (4.38) and the first
point in Lemma 4.5 that Fε|D̃εηε (t) = ∇εp̃ε(t), for all t ∈ (0, T ).

Moreover, if div v = 0 by the second point in Lemma 4.5 and (4.38), 〈Fε(t), v〉D = 0, for all
t ∈ (0, T ), and this implies (by the orthogonality property) that Fε(t) is the gradient of some function
in L2(D), for all t ∈ (0, T ). This means that Fε is a continuation of ∇εp̃ε to (0, T )×D, and that this
continuation is a gradient. We also may say that p̃ε has been continuated to (0, T )×D and we denote
the extended pressure again by p̃ε and

Fε ≡ ∇εp̃ε, p̃ε ∈ L2(0, T ;L2(D)/R).

Lemma 4.6. Let p̃ε be the extension of the pressure defined as above. Then, there exists a constant C
independent of ε such that

‖p̃ε‖L2(0,T ;L2(D)/R) ≤ C

(
ηε

3
2

ε
+ 1

)
, (4.40)

‖p̃ε − cεηε‖L2((0,T )×Ĩηε )
≤ C

(
ηε

1
2 +

ε

ηε

)
, (4.41)

where cεηε is given by (3.10).

Proof. Let us first estimate ∇εp̃ε. To do this we estimate the right side of (4.39). Using Cauchy-
Schwarz’s inequality and the third point in Lemma 4.5, we have∣∣∣〈µ∆εũε(t), R

εv〉
D̃εηε

∣∣∣ ≤ µ ‖Dεũε(t)‖L2(D̃εηε )3×3 ‖DεR
εv‖

L2(D̃εηε )3×3

≤ C ‖Dεũε(t)‖L2(D̃εηε )3×3

(
1

ε
‖v‖L2(D)3 + ‖Dεv‖L2(D)3×3

)
,

using the assumption of f , we obtain∣∣∣〈f(t), Rεv〉
D̃εηε

∣∣∣ ≤ C ‖f(t)‖
L2(D̃εηε )3

(
‖v‖L2(D)3 + ε ‖Dεv‖L2(D)3×3

)
,

and ∣∣∣∣∣
〈
∂ũε(t)

∂t
,Rεv

〉
D̃εηε

∣∣∣∣∣ ≤ C
∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(D̃εηε )3

(
‖v‖L2(D)3 + ε ‖Dεv‖L2(D)3×3

)
.

Then, from (4.39), we deduce

|〈∇εp̃ε(t), v〉D| ≤ C ‖Dεũε(t)‖L2(D̃εηε )3×3

(
1

ε
‖v‖L2(D)3 + ‖Dεv‖L2(D)3×3

)
+ C

(
‖f(t)‖

L2(D̃εηε )3
+

∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(D̃εηε )3

)(
‖v‖L2(D)3 + ε ‖Dεv‖L2(D)3×3

)
.

Then, as ε� 1, we see that there exists a positive constant C such that

|〈∇εp̃ε(t), v〉D| ≤ C

(
1

ε
‖Dεũε(t)‖L2(D̃εηε )3×3 + ‖f(t)‖

L2(D̃εηε )3
+

∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(D̃εηε )3

)
‖v‖H1

0 (D)3 ,
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for any v ∈ H1
0 (D)3. Consequently, we obtain

‖∇εp̃ε(t)‖H−1(D)3 ≤ C

(
1

ε
‖Dεũε(t)‖L2(D̃εηε )3×3 + ‖f(t)‖

L2(D̃εηε )3
+

∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(D̃εηε )3

)
,

and from the Nečas inequality in D , integrating between 0 and T , and from (4.32), the first estimate
in (4.34) and the assumption of f , we have the estimate (4.40).

Now, we prove the estimate (4.41). Let v ∈ H1
0 (Ĩηε)

3, then

〈∇εp̃ε(t), v〉Ĩηε = 〈µ∆εũε(t), v〉Ĩηε + 〈f(t), v〉
Ĩηε
−
〈
∂ũε(t)

∂t
, v

〉
Ĩηε

.

We estimate the right hand side. Using Cauchy-Schwarz’s inequality, we have∣∣∣〈µ∆εũε(t), v〉Ĩηε
∣∣∣ ≤ µ‖Dεũε(t)‖L2(Ĩηε )3×3‖Dεv‖L2(Ĩηε )3×3 ,

and ∣∣∣〈f(t), v〉
Ĩηε

∣∣∣ ≤ Cηε 1
2 ‖f(t)‖

L∞(Ĩηε )3
‖v‖

L2(Ĩηε )3
,

and by estimate (4.29), we have∣∣∣〈f(t), v〉
Ĩηε

∣∣∣ ≤ C(ηε
3
2 + ηεε

1
2 )‖Dεv‖L2(Ĩηε )3×3 .

Using again Cauchy-Schwarz’s inequality and estimate (4.29), we obtain∣∣∣∣∣
〈
∂ũε(t)

∂t
, v

〉
Ĩηε

∣∣∣∣∣ ≤ Cηε 1
2 (ηε + ε)

1
2

∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(Ĩηε )3

‖Dεv‖L2(Ĩηε )3×3 .

Then, we have

‖∇εp̃ε(t)‖H−1(Ĩηε )3
≤ C

(
‖Dεũε(t)‖L2(Ĩηε )3×3 + ηε

3
2 + ηεε

1
2 + ηε

1
2 (ηε + ε)

1
2

∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(Ĩηε )3

)
,

and taking into account that
∫
Ĩηε

(p̃ε − cεηε)dx′dy3 = 0, we use Lemma 4.3 and we can deduce

‖p̃ε(t)− cεηε(t)‖L2(Ĩηε )
≤ C

ηε

(
‖Dεũε(t)‖L2(Ĩηε )3×3 + ηε

3
2 + ηεε

1
2 + ηε

1
2 (ηε + ε)

1
2

∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(Ĩηε )3

)
.

Integrating between 0 and T , and from the estimate (4.32), and the second estimate in (4.34), we have

‖p̃ε − cεηε‖L2((0,T )×Ĩηε )
≤ C

ηε

(
ηε

3
2 + ε+ ηεε

1
2

)
.

Reasoning as in the proof of Lemma 4.4, we observe that ηεε
1
2 can be dropped and so we obtain

(4.41).
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5 Proof of the main result

In view of estimates (4.30), (4.32) of the velocity and (4.40) of the pressure, the proof of Theorem 3.1

will be divided in three characteristic cases: ηε � ε
2
3 , ηε ≈ ε

2
3 , with ηε/ε

2
3 → λ, 0 < λ < +∞, and

ηε � ε
2
3 .

5.1 Problem in the porous part ηε � ε
2
3

The proof of Theorem 3.1-i) will be developed in different lemmas.

In this subsection, we need to extend the velocity ũε by zero in the fissure Ĩηε , and we will denote
the extended velocity by ṽε, i.e.

ṽε =

{
ũε in Ω̃εηε ,

0 in Ĩηε .
(5.42)

Lemma 5.1. Let ηε � ε
2
3 and let (ṽε, p̃ε) be the extended solution of (3.6)-(3.7). Then there exist

subsequences of ṽε and p̃ε still denoted by the same, and functions ṽ ∈ L2(0, T ;H1(0, 1;L2(ω)3)) with
ṽ3 = 0, p̃ ∈ L2(0, T ;L2(D)/R) independent of y3, such that

ε−2ṽε ⇀ (ṽ′, 0) in L2(0, T ;H1(0, 1;L2(ω)3)), p̃ε → p̃ in L2(0, T ;L2(D)/R). (5.43)

Moreover, ṽ satisfies

divx′

(∫ 1

0
ṽ′(t, x′, y3)dy3

)
= 0 in (0, T )× ω,

(∫ 1

0
ṽ′(t, x′, y3)dy3

)
· n = 0 on (0, T )× ∂w. (5.44)

Proof. From estimates (4.30), (4.32) and (4.40), taking into account the extension of the velocity by

zero to D and ηε � ε
2
3 , we have the following estimates

‖ṽε‖L2((0,T )×D)3 ≤ Cε2, ‖p̃ε‖L2(0,T ;L2(D)/R) ≤ C,

‖Dx′ ṽε‖L2((0,T )×D)3×2 ≤ Cε, ‖∂y3 ṽε‖L2((0,T )×D)3 ≤ Cε2.

Now, we can use Lemma 5.1-(i) and Lemma 5.3-(i) in [8], because in the present paper aε ≈ ε in the
porous part, in order to obtain (5.43), with the weak convergence of the pressure, and (5.44).

Finally, we prove that the convergence of the pressure is in fact strong. As ṽ3 = 0, let wε = (w′ε, 0) ∈
H1

0 (D)3 be such that
wε ⇀ w in H1

0 (D)3. (5.45)

We consider ϕ ∈ C1
c (0, T ). Then (brackets are for the duality products between H−1 and H1

0 ):∫ T

0
|< ∇εp̃ε(t), ϕ(t)wε >D − < ∇x′ p̃, ϕ(t)w >D| dt

≤
∫ T

0
|< ∇εp̃ε(t), ϕ(t)(wε − w) >D| dt+

∫ T

0
|< ∇εp̃ε(t)−∇x′ p̃(t), ϕ(t)w >D| dt.

On the one hand, using the weak convergence of the pressure, we have∫ T

0
|< ∇εp̃ε(t)−∇x′ p̃(t), ϕ(t)w >D| dt =

∫ T

0

∫
D

(p̃ε(t)− p̃(t)) divx′ ϕ(t)w′ dx′dy3dt→ 0, as ε→ 0.
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On the other hand, we have∫ T

0
|< ∇εp̃ε(t), ϕ(t)(wε − w) >D| dt =

∫ T

0

∣∣∣< ∇x′ p̃ε(t), ϕ(t)Rε(w′ε − w′) >D̃εηε
∣∣∣ dt

=

∫ T

0

∣∣∣∣〈µ∆x′ ṽ
′
ε(t), ϕ(t)Rε(w′ε − w′)〉D̃εηε +〈f ′(t), ϕ(t)Rε(w′ε − w′)〉D̃εηε−〈

∂ṽ′ε(t)

∂t
, ϕ(t)Rε(w′ε − w′)〉D̃εηε

∣∣∣∣ dt,
and using Cauchy-Schwarz’s inequality, estimate (4.32), the first estimate in (4.34), the estimates of

the restricted operator Rε applied to Dx′ instead of Dε, and taking into account that ηε � ε
2
3 and

ε� 1, we get∫ T

0
|< ∇εp̃ε(t), ϕ(t)(wε − w) >D| dt

≤ C

((∫ T

0
ϕ(t)2‖w′ε − w′‖2L2(D)2dt

)1/2

+ ε

(∫ T

0
ϕ(t)2‖Dx′w

′
ε −Dx′w

′‖2L2(D)2×2dt

)1/2
)
→ 0 as ε→ 0,

by virtue of (5.45) and the Rellich Theorem. This implies that∇εp̃ε → ∇x′ p̃ strongly in L2(0, T ;H−1(D))3,
which implies the strong convergence of the pressure given in (5.43).

Lemma 5.2. Let ηε � ε
2
3 and let (ṽε, p̃ε) be the extended solution of (3.6)-(3.7). Let (ṽ, p̃) ∈ L2((0, T )×

D)3×L2(0, T ;L2(D)/R) be given by Lemma 5.1. Then, p̃ ∈ L2(0, T ;H1(D)/R) and (ṽ, p̃) is the unique
solution of Darcy’s law (3.14).

Proof. We apply Theorem 3.1-(i) in [8], because in the present paper aε ≈ ε in the porous part, in
order to obtain that (ṽ, p̃) is the unique solution of Darcy’s law (3.14).

Finally, the classical theory of the elliptic equation implies existence of the unique solution p̃ belongs
to L2(0, T ;H1(D)/R).

Proof of Theorem 3.1-i). It remains to prove convergence (3.13) of the whole velocity ũε, i.e. to prove

ε−2‖ũε‖L2((0,T )×Ĩηε )3
→ 0. (5.46)

For this, it is sufficient to prove that

ε−2‖ũε‖L2((0,T )×Ĩηε )3
→ 0 for ηε � ε, (5.47)

and

ε−2‖ũε‖Lq((0,T )×Ĩηε )3
→ 0 for ε� ηε � ε

1
α , 1 < α <

3

2
, (5.48)

for a q which will be defined below.

Using (4.31) and using ηε � ε, we have

ε−2‖ũε‖L2((0,T )×Ĩηε )3
≤ C

(
ηε

5
2

ε2
+
ηε
ε

+
(ηε
ε

) 1
2

)
,
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so that (5.47) easily holds. Using Hölder’s inequality with the conjugate exponents 2
q and 2

2−q we obtain

ε−2‖ũε‖Lq((0,T )×Ĩηε )3
≤ C

(
ηε

1
q

+2

ε2
+
ηε

1
q

+ 1
2

ε
+
ηε

1
q

ε
1
2

)
.

Now we take ηε = ε
1
α . Then we find that

ε−2‖ũε‖Lq((0,T )×Ĩηε )3
≤ C

(
ε

1
α

(
1
q

+2
)
−2

+ ε
1
α

(
1
q

+ 1
2

)
−1

+ ε
1
qα
− 1

2

)
. (5.49)

We seek an optimal q such that the right hand side in (5.49) tends to zero. It is easy to prove that we

have a convergence to zero for any q ∈
(

1, 2
2(α−1)+1

)
. Therefore, (5.48) holds and so we have (5.46).

5.2 Problem in the fissure part ηε � ε
2
3

The proof of Theorem 3.1-ii) will be developed in different lemmas.

Lemma 5.3. Let ηε � ε
2
3 and let (Ũε, P̃ ε) be the solution of (3.11)-(3.12). Then there exist subse-

quences of Ũε and P̃ ε still denoted by the same, and functions Ũ ∈ L2((0, T )× Ĩ1)3, independent of y3,
with Ũ2 = Ũ3 = 0, P̃ ∈ L2(0, T ;L2(Ĩ1)/R) such that

ηε
−2Ũε ⇀ Ũ in L2((0, T )× Ĩ1)3, P̃ ε ⇀ P̃ in L2(0, T ;L2(Ĩ1)/R). (5.50)

Moreover, P̃ = P̃ (x1) and Ũ1 is given by expression (3.17).

Proof. Taking into account ηε � ε
2
3 and estimates (4.31), (4.32), (4.33), (4.41) with the change of

variable (3.8), we have
‖Ũε‖

L2((0,T )×Ĩ1)3
≤ Cηε2, (5.51)

‖∂x1Ũε‖L2((0,T )×Ĩ1)3
≤ Cηε, ‖∂y2Ũε‖L2((0,T )×Ĩ1)3

≤ Cηε2, (5.52)

‖∂y3Ũε‖L2((0,T )×Ĩ1)3
≤ Cε ηε, (5.53)

‖Ũε‖
L∞(0,T ;L2(Ĩ1))3

≤ Cηε, (5.54)

‖P̃ ε‖
L2(0,T ;L2(Ĩ1)/R)

≤ C. (5.55)

From the estimates (5.51) and (5.55), there exist Ũ ∈ L2((0, T ) × Ĩ1)3, P̃ ∈ L2(0, T ;L2(Ĩ1)/R) such
that convergence (5.50) holds. Moreover

ηε
−2∂y2Ũε ⇀ ∂y2Ũ in L2((0, T )× Ĩ1)3, (5.56)

and from (5.54), there exists W̃ ∈ L∞(0, T ;L2(Ĩ1))3 such that

ηε
−1Ũε ∗⇀ W̃ in L∞(0, T ;L2(Ĩ1))3. (5.57)

The estimate (5.53) implies that ε−1η−1
ε ∂y3Ũε is bounded in L2((0, T ) × Ĩ1)3. This together with

ηε � ε
2
3 implies that η−2

ε ∂y3Ũε tends to ∂y3Ũ = 0. This implies that Ũ does not depend on y3.
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As Ũ does not depend on y3, let ϕ ∈ C∞0 ((0, T )× Ĩ1)3 independent of y3. Taking into account that

divηε Ũε = 0 in (0, T )× Ĩ1, we have

ηε
−1

∫ T

0

∫
Ĩ1

(
∂x1Ũε1 + ηε

−1∂y2Ũε2 + ε−1∂y3Ũε3
)
ϕdx1dy2dy3dt

= −ηε−1

∫ T

0

∫
Ĩ1

Ũε1∂x1ϕdx1dy2dy3dt− ηε−2

∫ T

0

∫
Ĩ1

Ũε2 · ∂y2ϕdx1dy2dy3dt = 0.

Taking the limit ε→ 0 we obtain ∫ T

0

∫
Ĩ1

Ũ2∂y2ϕdx1dy2dy3dt = 0,

so that Ũ2 = Ũ2(t, x1).

Since Ũ , ∂y2Ũ ∈ L2((0, T )× Ĩ1)3 the traces Ũ(t, x1, 0), Ũ(t, x1, 1) are well defined in L2((0, T )×Σ)3.

Analogously to the proof of Lemma 4.2 we choose a point β(x1,y3) ∈ Ãεηε , which is close to the point
α(x1,y3) ∈ Σ, then we have∫ T

0

∫
Σ
|Ũε(t, x′, 0, y3)|2dx1dy3dt =

∫ T

0

∫
Σ
|ũε(t, x1, 0, y3)|2dx1dy3dt

≤ C

∫ T

0

∫
Σ

(∫
(β(x1,y3),α(x1,y3)

)
Dεũε · (α(x1,y3) − β(x1,y3))d`

)2

dx1dy3dt,

so that, by Cauchy-Schwarz’s inequality,

‖Ũε(t, x1, 0, y3)‖2L2((0,T )×Σ)3 ≤ Cε‖Dεũε‖2L2((0,T )×D̃εηε )3×3 .

Taking into account estimate (4.32) and ηε � ε
2
3 , we have

ηε
−2‖Ũε(t, x1, 0, y3)‖2L2((0,T )×Σ)3 ≤ Cεηε → 0 as ε→ 0,

which implies that
Ũ(t, x1, 0) = 0 ,

and analogously
Ũ(t, x1, 1) = 0 .

Consequently
Ũ2 = 0 .

It remains to prove that Ũ3 = 0. In order to do that, as Ũ does not depend on y3, we take a test
function v = (0, 0, v3(x1, y2)) in (3.11),

d

dt

(∫
Ĩ1

Ũε3(t)v3 dx1dy2dy3

)
+

∫
Ĩ1

∂2
x1Ũ

ε
3(t)v3 dx1dy2dy3 +

1

η2
ε

∫
Ĩ1

∂2
y2Ũ

ε
3(t)v3 dx1dy2dy3 = 0,

in D′(0, T ). We consider ϕ ∈ C1
c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) 6= 0. Multiplying by ϕ and

integrating between 0 and T , we have

−
∫ T

0

d

dt
ϕ(t)

∫
Ĩ1

Ũε3(t)v3 dx1dy2dy3dt+

∫ T

0
ϕ(t)

∫
Ĩ1

∂2
x1Ũ

ε
3(t)v3 dx1dy2dy3dt

+
1

η2
ε

∫ T

0
ϕ(t)

∫
Ĩ1

∂2
y2Ũ

ε
3(t)v3 dx1dy2dy3dt = 0.
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We pass to the limit when ε tends to zero, and using the convergences (5.56) and (5.57) with

v3ϕ(t) ∈ L2((0, T )× Ĩ1), v3
d

dt
ϕ(t) ∈ L1(0, T ;L2(Ĩ1)),

we can deduce that Ũ3 = 0.

Finally, we compute the expression of Ũ given in (3.17). First, we take a test function v = (0, 0, εv3)
in (3.11), and we obtain

ε
d

dt

(∫
Ĩ1

Ũε3(t)v3 dx1dy2dy3

)
+ ε

∫
Ĩ1

∂2
x1Ũ

ε
3(t)v3 dx1dy2dy3 +

ε

η2
ε

∫
Ĩ1

∂2
y2Ũ

ε
3(t)v3 dx1dy2dy3

+
1

ε

∫
Ĩ1

∂2
y3Ũ

ε
3(t)v3 dx1dy2dy3 −

∫
Ĩ1

P̃ ε∂y3v3 dx1dy2dy3 = 0,

in D′(0, T ). Multiplying by ϕ and integrating between 0 and T , we have

−ε
∫ T

0

d

dt
ϕ(t)

∫
Ĩ1

Ũε3(t)v3 dx1dy2dy3dt+ ε

∫ T

0
ϕ(t)

∫
Ĩ1

∂2
x1Ũ

ε
3(t)v3 dx1dy2dy3dt

+
ε

η2
ε

∫ T

0
ϕ(t)

∫
Ĩ1

∂2
y2Ũ

ε
3(t)v3 dx1dy2dy3dt+

1

ε

∫ T

0
ϕ(t)

∫
Ĩ1

∂2
y3Ũ

ε
3(t)v3 dx1dy2dy3dt

−
∫ T

0
ϕ(t)

∫
Ĩ1

P̃ ε∂y3v3 dx1dy2dy3dt = 0.

We pass to the limit when ε tends to zero, and using the estimate (5.53), the convergences (5.50) and
(5.57) with

v3ϕ(t) ∈ L2((0, T )× Ĩ1), v3
d

dt
ϕ(t) ∈ L1(0, T ;L2(Ĩ1)),

we can deduce that P̃ does not depend on y3.

We take a test function v = (0, ηεv2, 0), independent of y3, in (3.11), and we obtain

ηε
d

dt

(∫
Ĩ1

Ũε2(t)v2 dx1dy2dy3

)
+ ηε

∫
Ĩ1

∂2
x1Ũ

ε
2(t)v2 dx1dy2dy3 +

1

ηε

∫
Ĩ1

∂2
y2Ũ

ε
2(t)v2 dx1dy2dy3

−
∫
Ĩ1

P̃ ε∂y2v2 dx1dy2dy3 = ηε

∫
Ĩ1

f2v2 dx1dy2dy3,

in D′(0, T ). Multiplying by ϕ and integrating between 0 and T , we have

−ηε
∫ T

0

d

dt
ϕ(t)

∫
Ĩ1

Ũε2(t)v2 dx1dy2dy3dt+ ηε

∫ T

0
ϕ(t)

∫
Ĩ1

∂2
x1Ũ

ε
2(t)v2 dx1dy2dy3dt

+
1

ηε

∫ T

0
ϕ(t)

∫
Ĩ1

∂2
y2Ũ

ε
2(t)v2 dx1dy2dy3dt−

∫ T

0
ϕ(t)

∫
Ĩ1

P̃ ε∂y2v2 dx1dy2dy3dt

= ηε

∫ T

0
ϕ(t)

∫
Ĩ1

f2v2 dx1dy2dy3dt.

We pass to the limit when ε tends to zero, and using the convergences (5.50) and (5.57) with

v2ϕ(t) ∈ L2((0, T )× Ĩ1), v2
d

dt
ϕ(t) ∈ L1(0, T ;L2(Ĩ1)),
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we can deduce that P̃ = P̃ (t, x1). Now, taking into account that Ũ does not depend on y3 and
Ũ2 = Ũ3 = 0, we take a test function v = (v1(x1, y2), 0, 0) in (3.11),

d

dt

(∫
Ĩ1

Ũε1(t)v1 dx1dy2dy3

)
+

∫
Ĩ1

∂2
x1Ũ

ε
1(t)v1 dx1dy2dy3 +

1

η2
ε

∫
Ĩ1

∂2
y2Ũ

ε
1(t)v1 dx1dy2dy3

−
∫
Ĩ1

P̃ ε∂x1v1 dx1dy2dy3 =

∫
Ĩ1

f1(t, x1, ηεy2)v1 dx1dy2dy3,

in D′(0, T ). Multiplying by ϕ and integrating between 0 and T , we have

−
∫ T

0

d

dt
ϕ(t)

∫
Ĩ1

Ũε1(t)v1 dx1dy2dy3dt+

∫ T

0
ϕ(t)

∫
Ĩ1

∂2
x1Ũ

ε
1(t)v1 dx1dy2dy3dt

+
1

η2
ε

∫ T

0
ϕ(t)

∫
Ĩ1

∂2
y2Ũ

ε
1(t)v1 dx1dy2dy3dt−

∫ T

0
ϕ(t)

∫
Ĩ1

P̃ ε∂x1v1 dx1dy2dy3dt

=

∫ T

0
ϕ(t)

∫
Ĩ1

f1(t, x1, ηεy2)v1 dx1dy2dy3dt.

We pass to the limit when ε tends to zero, and using the convergences (5.50) and (5.57) with

v1ϕ(t) ∈ L2((0, T )× Ĩ1), v1
d

dt
ϕ(t) ∈ L1(0, T ;L2(Ĩ1)),

we obtain the ODE 
−∂2

y2Ũ1(t, x1, y2) = f1(t, x1, 0)− ∂x1P̃ (t, x1),

Ũ1(t, x1, 0) = Ũ1(t, x1, 1) = 0,

which gives the expression (3.17) for Ũ1.

Proof of Theorem 3.1-ii). It remains to prove the convergence (3.18) of the whole velocity to the func-
tion V given by (3.19), and also prove that P̃ ∈ L2(0, T ;H1(Σ)/R) is the unique solution of the Reynolds
problem (3.20).

Taking as test function ϕ ∈ C∞((0, T ) × D), independent of y3, in the equation divε ũε = 0 in
(0, T )×D, we obtain∫ T

0

∫
D

divε ũεϕdx
′dy3dt = −

∫ T

0

∫
D
ṽ′ε·∇x′ϕdx′dy3dt−ηε

∫ T

0

∫
Ĩ1

(Ũε)′·∇x′ϕ(t, x1, ηεy2) dx1dy2dy3dt = 0,

so that multiplying by ηε
−3,∫ T

0

∫
Ĩ1

ηε
−2Ũε1∂x1ϕ(t, x1, ηεy2) dx1dy2dy3dt (5.58)

= −
∫ T

0

∫
D
ηε
−3ṽε · ∇x′ϕdx′dy3dt−

∫ T

0

∫
Ĩ1

ηε
−2Ũε2∂x2ϕ(t, x1, ηεy2) dx1dy2dy3dt.

20



Using (4.30) and taking into account ηε � ε
2
3 , we obtain

ηε
−3‖ṽε‖L2((0,T )×D)3 ≤ C

(
ε

ηε
3
2

+
ε2

ηε3

)
→ 0 as ε→ 0. (5.59)

Taking the limit in (5.58) as ε → 0, using convergence (5.50), Ũ2 = 0 and Ũ1 independent of y3, we
have ∫ T

0

∫
Σ
Ũ1∂x1ϕ(x1, 0) dx1dy2dt = 0,

and by definition (3.19), we get∫ T

0

∫
Σ1

(
f1(t, x1, 0)− ∂x1P̃ (t, x1)

)
∂x1ϕ(t, x1, 0) dx1dt = 0.

Consequently, P̃ ∈ L2(0, T ;H1(Σ1)/R) and is the unique solution of (3.20). Finally, we consider
ϕ ∈ C0((0, T )×D)3, independent of y3, and so we have∫ T

0

∫
D
ηε
−3ũε · ϕdx′dy3dt =

∫ T

0

∫
D
ηε
−3ṽε · ϕdx′dy3dt+

∫ T

0

∫
Ĩ1

ηε
−2Ũε · ϕ(t, x1, ηεy2) dx1dy2dy3dt.

Using (5.59), convergence (5.50) and Ũ2 = Ũ3 = 0, we obtain∫ T

0

∫
D
ηε
−3ũε · ϕdx′dy3dt →

∫ T

0

∫
Σ
Ũ1(t, x1, y2)ϕ1(t, x1, 0) dx1dy2dt

=

∫ T

0

∫
Σ1

Ṽ1(t, x1)ϕ1(t, x1, 0) dx1 =

∫ T

0
〈Ṽ1(t, x1)δΣ1 , ϕ〉M(D)3,C0(D)3dt,

which implies (3.18).

5.3 Effects of coupling ηε ≈ ε
2
3

The conclusion of the previous two subsections is that for any sequence of solutions (ṽε, p̃ε) with

ηε � ε
2
3 and (Ũε, P̃ ε) with ηε � ε

2
3 , and letting ε → 0, we can extract subsequences still denoted

by ṽε, p̃ε, Ũε, P̃ ε and find functions ṽ ∈ L2(0, T ;H1(0, 1;L2(ω)3)) with ṽ3 = 0, p̃ ∈ L2(0, T ;H1(D)/R),
Ũ ∈ L2((0, T )× Ĩ1)3, independent of y3, with Ũ2 = Ũ3 = 0, P̃ ∈ L2(0, T ;H1(Σ)/R) such that

ε−2ṽε ⇀ (ṽ′, 0) in L2(0, T ;H1(0, 1;L2(ω)3)), p̃ε → p̃ in L2(0, T ;L2(D)/R),

ηε
−2Ũε ⇀ (Ũ1, 0, 0) in L2((0, T )× Ĩ1)3, P̃ ε ⇀ P̃ in L2(0, T ;L2(Ĩ1)/R).

(5.60)

Moreover such limit functions ṽ, p̃, Ũ , P̃ necessarily satisfy the equations

Ṽ ′(t, x′) =
1

µ
K
(
f ′(t, x′)−∇x′ p̃(t, x′)

)
in (0, T )×D′,

Ũ1(t, x1, y2) =
y2(1− y2)

2

(
f1(t, x1, 0)− ∂x1P̃ (t, x1)

)
in (0, T )× Ĩ1,

(5.61)

where Ṽ ′(t, x′) =
∫ 1

0 ṽ
′(t, x′, y3)dy3.

We are going to find the connection between the functions p̃ and P̃ , i.e. to find the coupling effects
between the solution in the porous part and in the fissure.
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Lemma 5.4. Let ηε ≈ ε
2
3 , with ηε/ε

2
3 → λ, 0 < λ < +∞, and let p̃ε ∈ L2(0, T ;L2(D)/R), p̃ ∈

L2(0, T ;H1(D)/R), P̃ ∈ L2(0, T ;H1(Σ)/R) be such that (5.60) and (5.61) hold. Then,∫ T

0

∫
D′

1

µ
K
(
f ′(t, x′)−∇x′ p̃(t, x′)

)
· ∇x′ϕ(t, x′) dx′dt+

λ3

12

∫ T

0

∫
Σ1

(
f1(t, x1, 0)− ∂x1P̃ (t, x1)

)
∂x1ϕ(t, x1, 0) dx1dt = 0,

(5.62)
for every ϕ ∈ L2(0, T ;H1(D′)) with ϕ(t, ·, 0) ∈ L2(0, T ;H1(Σ1)).

Proof. Let ϕε(t, x
′, y3) = ϕ(t, x′, εy3) ∈ L2(0, T ;H1(D)) with ϕ ∈ L2(0, T ;H1(D)) and ϕ(t, ·, 0) ∈

L2(0, T ;H1(Σ)). Taking into account the definitions (5.42) of ṽε and (3.9) of Ũε, and from divε ũε = 0
in (0, T )×D we have∫ T

0

∫
D
ε−2ũε · ∇εϕε dx′dy3dt =

∫ T

0

∫
D
ε−2ṽε · ∇εϕε dx′dy3dt+

(
ηε

ε
2
3

)3 ∫ T

0

∫
Ĩ1

ηε
−2Ũε · ∇εϕε(t, x1, ηεy2, y3) dx1dy2dy3dt = 0,

and by the definition of ϕε, we can deduce∫ T

0

∫
D
ε−2ṽε · ∇ϕ(t, x′, εy3) dx′dy3dt+

(
ηε

ε
2
3

)3 ∫ T

0

∫
Ĩ1

ηε
−2Ũε · ∇ϕ(t, x1, ηεy2, εy3) dx1dy2dy3dt = 0.

Taking the limit as ε → 0, using (5.60), ṽ3 = Ũ2 = Ũ3 = 0, ηε/ε
2
3 → λ, and taking into account that

Ũ1 does not depend on y3, we obtain∫ T

0

∫
D
ṽ′(t, x′, y3) · ∇x′ϕ(t, x′, 0) dx′dy3dt+ λ3

∫ T

0

∫
Σ
Ũ1(t, x1, y2)∂x1ϕ(t, x1, 0, 0) dx1dy2dt = 0,

and taking into account expressions (5.61) and (3.19), we get (5.62).

We are going to prove the relation p̃(t, x1, 0) = P̃ (t, x1) +C, with C ∈ R. Then (3.22) follows from
(5.62).

Lemma 5.5. Let ηε ≈ ε
2
3 , ηε/ε

2
3 → λ, 0 < λ < +∞, and let p̃, P̃ be the limit pressures from (5.60).

Then, there exists C ∈ R such that

p̃(t, x1, 0) = P̃ (t, x1) + C, (5.63)

and p̃ ∈ L2(0, T ;H1(D′)/R) with p̃(t, ·, 0) ∈ L2(0, T ;H1(Σ1)/R) is the unique solution of the variational
problem (3.22).

Proof. We need to extend the test functions considered in the proof of Lemma 5.2 to the fissure Ĩηε .

To do this, we define I ′ηε = Ĩηε ∩ {x3 = 0}, Bηε = D′− ∪ Σ1 ∪ I ′ηε and Y1 = Y f ∩ {x2 = 0}, and we
consider φ(y′) ∈ C∞# (Bηε)

3 be such that φ(y′) = 0 in Y ′ \ Y ′f . We define

φε(x
′) =


φ
(
x′

ε

)
in D′− ,

K2 e2 in I ′ηε , where K2 =

∫
Y1

φ2(y1, 0)dy1 .
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Let ϕ ∈ C∞0 (B1), with B1 = D− ∪ Σ ∪ Ĩ1 be such that∫
Σ
ϕ(x1, 0, y3) dx1dy3 = 0. (5.64)

Taking in (3.6) as test function

wε(x
′, y3) =

 ϕ(x′, y3)φ
(
x′

ε

)
in D−,

ϕ
(
x1,

x2
ηε
, y3

)
K2 e2 in Ĩηε ,

we obtain

d

dt

(∫
Bηε

ũε(t) · wε dx′dy3

)
+µ

∫
Bηε

Dεũε(t) : Dεwε dx
′dy3 =

∫
Bηε

f ′(t)·w′ε dx′dy3+

∫
Bηε

p̃ε(t) divεwε dx
′dy3.

We consider ψ ∈ C1
c ([0, T ]) such that ψ(T ) = 0 and ψ(0) 6= 0. Multiplying by ψ and integrating

between 0 and T , we have

−
∫ T

0

d

dt
ψ(t)

∫
Bηε

ũε(t) · wε dx′dy3dt+ µ

∫ T

0
ψ(t)

∫
Bηε

Dεũε(t) : Dεwε dx
′dy3dt (5.65)

=

∫ T

0
ψ(t)

∫
Bηε

f ′(t) · w′ε dx′dy3dt+

∫ T

0
ψ(t)

∫
Bηε

p̃ε(t) divεwε dx
′dy3dt.

Using (5.51), we have∣∣∣∣∣K2

∫ T

0

d

dt
ψ(t)

∫
Ĩηε

Ũε2(t) · ϕ
(
x1,

x2

ηε
, y3

)
dx′dy3dt

∣∣∣∣∣
=

∣∣∣∣∣K2ηε

∫ T

0

d

dt
ψ(t)

∫
Ĩηε

Ũε2(t) · ϕ (x1, y2, y3) dx1dy2dy3dt

∣∣∣∣∣ ≤ Cη3
ε → 0 as ε→ 0.

We observe that

K2

∫ T

0
ψ(t)

∫
Ĩηε

f ′(t) · ϕ′
(
x1,

x2

ηε
, y3

)
e2 dx

′dy3dt

= ηεK2

∫ T

0
ψ(t)

∫
Ĩ1

f ′(t) · ϕ′(x1, y2, y3)e2 dx1dy2dy3dt→ 0 as ε→ 0,

and by the definition of wε in Ĩηε and using estimates (5.52), (5.53), we deduce∣∣∣∣∣K2

∫ T

0
ψ(t)

∫
Ĩηε

DεŨε(t)∂x2ϕ(x1,
x2

ηε
, y3) dx′dy3dt

∣∣∣∣∣
=

∣∣∣∣K2

∫ T

0
ψ(t)

∫
Ĩ1

DηεŨε(t)∂y2ϕ(x1, y2, y3) dx1dy2dy3dt

∣∣∣∣ ≤ Cηε → 0 as ε→ 0,
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Then, from (5.65), we can deduce that

−
∫ T

0

d

dt
ψ(t)

∫
D−

ũε(t) · wε dx′dy3dt+

∫ T

0
ψ(t)

∫
D−

Dεṽε(t) : Dεwε dx
′dy3dt (5.66)

=

∫ T

0
ψ(t)

∫
D−

f ′(t) · w′ε dx′dy3dt+

∫ T

0
ψ(t)

∫
D−

p̃ε(t)divεwε dx
′dy3dt

+K2

∫ T

0
ψ(t)

∫
Ĩηε

p̃ε(t)∂x2ϕ(x1,
x2

ηε
, y3) dx′dy3dt+Oε.

For the last term on the right hand side, we have

K2

∫ T

0
ψ(t)

∫
Ĩηε

p̃ε(t)∂x2ϕ(x1,
x2

ηε
, y3) dx′dy3dt = K2

∫ T

0
ψ(t)

∫
Ĩηε

cεηε(t)∂x2ϕ(x1,
x2

ηε
, y3) dx′dy3dt

+K2

∫ T

0
ψ(t)

∫
Ĩηε

(p̃ε(t)− cεηε(t))∂x2ϕ(x1,
x2

ηε
, y3) dx′dy3dt,

where cεηε is defined in (3.10).

Using (5.60), we obtain

K2

∫ T

0
ψ(t)

∫
Ĩηε

(p̃ε(t)− cεηε(t))∂x2ϕ(x1,
x2

ηε
, y3) dx′dy3dt

= K2

∫ T

0
ψ(t)

∫
Ĩ1

P̃ ε(t)∂y2ϕ(x1, y2, y3) dx1dy2dy3dt

→ K2

∫ T

0
ψ(t)

∫
Ĩ1

P̃ (t, x1)∂y2ϕ(x1, y2, y3) dx1dy2dy3dt = −K2

∫ T

0
ψ(t)

∫
Σ
P̃ (t, x1)ϕ(x1, 0, y3) dx1dy3dt,

(5.67)

as ε→ 0, where P̃ ε is given by (3.9), and using (5.64), we have

K2

∫ T

0
ψ(t)cεηε(t)

∫
Ĩηε

∂x2ϕ(x1,
x2

ηε
, y3) dx′dy3dt = K2

∫ T

0
ψ(t)cεηε(t)

∫
Ĩ1

∂y2ϕ(x1, y2, y3) dx1dy2dy3dt = 0.

Passing to the limit in (5.66) similarly as in the proof of Theorem 6.1-(i) in [8] by using an adaptation
of the unfolding method, and taking into account (5.67) and∫ T

0
ψ(t)

∫
D′−×Y

p̃(t, x′) divx′(ϕ(x′, y3)φ(y′)) dx′dydt

= −
∫ T

0
ψ(t)

∫
D′−×Y

∇x′ p̃(t, x′)ϕ(x′, y3)φ(y′) dx′dydt

+

∫ T

0
ψ(t)

∫
Σ×Y1

p̃(t, x1, 0)ϕ(x1, 0, y3)φ2(y1, 0) dx1dy1dy3dt

= −
∫ T

0
ψ(t)

∫
D′−×Y

∇x′ p̃(t, x′)ϕ(x′, y3)φ(y′) dx′dydt+K2

∫ T

0
ψ(t)

∫
Σ
p̃(t, x1, 0)ϕ(x1, 0, y3) dx1dy3dt,

then we have ∫ T

0
ψ(t)

∫
Σ

(
p̃(t, x1, 0)− P̃ (t, x1)

)
ϕ(x1, 0, y3) dx1dy3dt = 0,
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so that ∫
(0,T )×Σ1

(
p̃(t, x1, 0)− P̃ (t, x1)

)
ϑ(t, x1) dx1dt = 0,

for every ϑ ∈ C∞0 ((0, T ) × Σ1) such that
∫

Σ ϑ dx1 = 0, a.e. t ∈ (0, T ). Finally we conclude that there
exists a constant C ∈ R such that (5.63) holds and p̃(t, x1, 0) ∈ L2(0, T ;H1(Σ1)/R).

Using (5.63) into (5.62), we obtain the variational formulation (3.22) for the limit pressure p̃ in
the Banach space of functions v ∈ L2(0, T ;H1(D′)) such that v(t, x1, 0) ∈ L2(0, T ;H1(Σ1)). Since
K ∈ R2×2 is a symmetric, positive, tensor given by (3.15), it can be proved that (3.22) has a unique
solution in that Banach space with the norm |v|L2(0,T ;H1(D′)) + |v(x1, 0)|L2(0,T ;H1(Σ1)).

Proof of Theorem 3.1-iii). It remains to prove the convergence (3.21) of the whole velocity.

Let ϕ ∈ C0((0, T )×D)3. Then∫ T

0

∫
D
ε−2ũε · ϕdx′dy3dt =

∫ T

0

∫
D
ε−2ṽε · ϕdx′dy3dt

+

(
ηε

ε
2
3

)3 ∫ T

0

∫
Ĩ1

ηε
−2Ũε · ϕ(t, x1, ηεy2, y3) dx1dy2dy3dt = 0.

Taking the limit as ε→ 0, using (5.60), ṽ3 = Ũ2 = Ũ3 = 0 and ηε/ε
2
3 → λ, we obtain∫ T

0

∫
D
ε−2ũε · ϕdx′dy3dt→

∫ T

0

∫
D
ṽ′ · ϕ′ dx′dy3dt+ λ3

∫ T

0

∫
Ĩ1

Ũ1(t, x1, y2)ϕ(t, x1, 0, y3) dx1dy2dy3dt.

Taking into account that∫ T

0

∫
Ĩ1

Ũ(t, x1, y2)ϕ(t, x1, 0, y3) dx1dy2dy3dt

=

∫ T

0

∫
Σ1

V(t, x1)

(∫ 1

0
ϕ(t, x1, 0, y3)dy3

)
dx1dt =

∫ T

0
〈VδΣ1 , ϕ〉M(D)3,C0(D)3dt,

where V(t, x1) is given by (3.19), we get (3.21).
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