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Abstract

We consider a non-stationary Stokes system in a thin porous medium of thickness € which is
perforated by periodically distributed solid cylinders of size €, and containing a fissure of width 7.
Passing to the limit when e goes to zero, we find a critical size 7. ~ £3 in which the flow is described
by a 2D quasi-stationary Darcy law coupled with a 1D quasi-stationary Reynolds problem.
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1 Introduction

The aim of this work is to prove the convergence of the homogenization process for the non-stationary
Stokes system in a thin porous medium D, of thickness ¢ which is perforated by periodically dis-
tributed solid cylinders of size e and contains a fissure {0 < 29 < 1.} of width ..

We consider the fluid flow through a periodic distribution of vertical cylinders and a fissure. The
periodic distribution of vertical cylinders and the fissure are confined between two parallel plates (see
Figure 1). A representative elementary volume for the thin porous medium is a cube of lateral length
e and vertical lentgth €. The cube is repeated periodically in the space between the plates. Each cube
can be divided into fluid part and a solid part, where the solid part has the shape of a vertical cylinder
of height €.

Figure 1: View of the domain D,,,

The question of a medium containing a fissure with properties different from those of the rest of
the material has been the subject of many studies previously, see Ciarlet et al [1], Panasenko [2] and
Chapter 13 of Sanchez-Palencia [3] among others. A similar problem of the one considered in this paper
with a fixed height domain, but for the Laplace’s equation, was studied in Bourgeat and Tapiero [4].
The peculiar behavior observed for the Laplace’s equation when 7. = £5 has motivated the analogous
study for the Stokes system in Bourgeat et al [5] (see [6] for the Navier-Stokes system and [7] for a
non-stationary Stokes system).

In Anguiano [8], we consider a non-stationary Stokes system in a thin porous medium of thickness
€ which is perforated by periodically distributed solid cylinders of size a.. We apply an adaptation
of the unfolding method in order to obtain rigorously quasi-stationary Darcy’s laws. The behavior
observed when a. ~ ¢ has motivated the fact of considering a thin porous medium containing a fissure.
In this sense, our aim in the present paper is to extend the study of Bourgeat et al [5] to the case of
a non-stationary Stokes system in a domain of small height e, perforated by periodically distributed
solid cylinders of size ¢, containing a fissure of width 7)., which makes necessary to rescale in the height
variable in order to work with a domain of height one. We find the same critical size as in Bourgeat et
al [5], what means that the evolutive model and the thin thickness of the domain do not modify the
critical size. However, the thin thickness of the domain leads us to use techniques of reduction of the
dimension together with homogenization in order to obtain more simplified effective models than those
obtained in Bourgeat et al [5]. More precisely, we obtain the following results corresponding to three
characteristic situations depending on the parameter 7. with respect to e:

o If . < €3 the fissure is not giving any contribution. In this case, in order to find the limit, we



use the results developed in Anguiano [8] and we obtain a 2D quasi-stationary Darcy’s law.

o If n. > £3 the fissure is dominant. We introduce a rescaling of the fissure in order to work
with a domain with size one, and then we prove that the limit of the velocity is a Dirac measure
concentrated on the line {x9 = 0} N{x3 = 0} representing the corresponding tangential line flow.
Meanwhile in the porous medium the effective velocity is equal to zero.

o If . =~ 3 with 773/8% — A, 0 < A < 400, it appears a coupling effect and the effective flow
behaves as 2D quasi-stationary Darcy flow in the porous medium coupled with the tangential
flow of the line {3 = 0} N {3 = 0}. Compared to the first case 7. < e, the effective velocity
has now an additional tangential component concentrated on {z2 = 0} N {x3 = 0}. Moreover,
the limit problem is now given by a new variational equation, in which appears the parameter
A, and consists of a 2D quasi-stationary Darcy law in the porous medium coupled with a 1D
quasi-stationary Reynolds problem on the line {zg = 0} N {z3 = 0}.

2 The domain and some notations

2.1 The domain
Let w C R? be smooth bounded connected open set and = w x (0,1) C R3. We define
Qp=QnN{z2 >0}, Q_=QnN{z2<0}, X=QnN{z2=0}, % =%Xn{z3=0}
For some 7y > 0 we define the domains
D =Q_U(noes +Q24)U(E x [0,m0]le2), D' =Dn{z3=0},

with €9 = (0, 1,0).

Let € > 0 be a small parameter devoted to tend to zero and 0 < 7. < 7y be a small parameter
devoted to tend to zero with ¢.

A periodic porous medium is defined by a domain w and an associated microstructure, or periodic
cell Y/ = [0,1]2, which is made of two complementary parts: the fluid part Y7, and the solid part Y
=Y’ an = ). More precisely, we assume tha is a smooth and connected se

Y;UY! =Y’ and Y/NY! M isel that V! i th and ted set
strictly included in Y. For k' = (k1,ks) € Z?, each cell Y}, = k' +Y” is divided in a fluid part Y]lk/ and
a solid part Ys’k,. We define Y =Y’ x (0,1) C R?, and is divided in a fluid part Y7 and a solid part Y.

We also denote

- _ + _
v, = Y YiF= U 7.
k'ez? k’eZi

all the solid parts in R? x (0,1), where Z% = {k’ € Z?, ko < 0} and Z2 = {k' € Z?, ko > 0}. It is
obvious that Ey = ((R? x (0,1)) \ (Y;” UY,")) NQ is the fluid part in €.

Following [9], we make the following assumptions on Yy, Ef, Yy and Y =Y, UY,:

i) Y} is an open connected set of strictly positive measure, with a locally Lipschitz boundary.

ii) Y has strictly positive measure in Y.



iii) E; and the interior of Y* are open sets with boundaries of class C%! and are locally located on
one side of their boundaries. Moreover E is connected.

We also define

Y:s,_a = EYS/_ x (0,1), v, = (nee2 + EYSH_) x (0,1), Sen. = 8(Ys,_5 Uyt )-

5,EMe 8,ENe
We denote by

25,75 = (Y,_UY," )NnD - the solid part of the domain D,

5,€Me

D.,. =D\ A.y,. - the fluid part of the domain D (including the fissure),
I, =% x (0,n¢)e2 - the fissure in D,
Qep. = Doy \ I, - the fluid part of the porous medium in D.

Let us define a domain with thickness ¢, given by Q° = QN {0 < 3 < ¢} C R?. We also define
Qi:Q+ﬂ{0<l‘3<€}, Qizgfﬂ{0<$3<€}, 262980{1‘2:0},

and
D® =Q° U (moez + Q) U (2° x [0,m0]e2) -

The microscale of a porous medium is the small positive number €. The domain w is covered
by a regular mesh of size e: for k' = (k1,ko) € Z?, each cell Y}, . = ek’ + Y is divided in a fluid

part Y’k, . and a solid part Y, ., ie. is similar to the unit cell Y rescaled to size . We define

Yiie =Y., _x(0,1)C R3, which is also divided in a fluid part Y}, e and a solid part Yy, ..

1,€7

Now, we denote by A, Dey,., I, and (), the sets gsna, 155”5, 1:;75 and ?257,5, respectively, with
thickness ¢, i.e.,

A = /Tans N{0 <z3 <e} - thesolid part of the domain D?,

D.,. = 55175 N{0 < x3 < e} - the fluid part of the domain D® (including the fissure),
I, = fng N{0 <z3 <e} - the fissure in D¢,

Qe = Doy N{0 < z3 < e} - the fluid part of the porous medium in DF.

Finally we define

Q;gk = Dy, N {z2 >0}, Q= Doy N{za <0}, Ty =09%° x (0,7)ez,

and
D+:Dﬂ{x2>0}, D™ =0Q_.
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Figure 2: View of the domain D,,_ from above (left) and lateral (right)

2.2 Some notations

Let us introduce some notations which will be useful in the following. For a vectorial function v =
(v1,v2,v3) and a scalar function w, we introduce the operators: D, V. and div. by

(Dév)i,j = 8$]'Ui for 7= 172737 ] = 1727
1 .
(Dev)s3 = —0yyv; for i =1,2,3,
€
1 t
Vew = (Vypw, gaygw) ,

1
div.v = divyv' + g8y3v37
and moreover the operators D, , V,_ and div,_ by
(Dp.v)i1 = Ogyv; for i=1,2,3,
1 .
(Dy.v)ip = —0y,v; for i=1,2,3,
Ne
1 .
(Dy.v)i3 = —0yyv; for i=1,2,3,
€
1 1.
Vyew = (83817"07 iayzwv gayaw) )

: 1 1
div, v = Oz, v1 + —0y,v2 + =0y, 3.
Tle €

We denote by O. a generic real sequence which tends to zero with € and can change from line to
line. We denote by C' a generic positive constant which can change from line to line.



3 Setting and main results

Hereinafter, the points # € R? will be decomposed as x = (z/,z3) with 2/ € R?, 23 € R. We also use
the notation z’ to denote a generic vector of R2.

In this section, we describe the asymptotic behavior of an incompressible viscous fluid in a thin
porous medium with a fissure. The proof of the corresponding results will be given in the next sections.

Our results are referred to the non-stationary Stokes system. Namely, for f € C([0,7] x D)? let us
consider a sequence (uc,p:) € L*(0,T; H} (D=, ))? x L*(0,T; L*(Dey,.)), which satisfies

Oug
ot

— pAu, +Vp. = fin (0,T) x Dey,,
divue =0in (0,T) x D.y,, (3.1)
us(0,2) =0, € Dgy,

where T > 0, i > 0 is the viscosity and De,, is defined in Section 2. The right-hand side f is of the
form

f(t,z) = (f'(t,2"),0), ae. =€ D, (3.2)

where

f' € C(0,T] x D). (3.3)

This choice of f is usual when we deal with thin domains. Since the thickness of the domain ¢ is small
then the vertical component of the force can be neglected and, moreover the force can be considered
independent of the vertical variable.

Finally, we may consider Dirichlet boundary conditions without altering the generality of the prob-
lem under consideration,

us =0on (0,7) x 0D,. (3.4)

For any fixed €, under the assumptions of f and u?, a classical result (see Temam [10]) shows that

(3.1)-(3.4) has at least one weak solution (ue,p:) € L*(0,T; H}(Dey.))? x L*(0,T; L*(Dy,.)), where

P is uniquely defined up to an additive constant, that is, it is uniquely defined if we consider the

corresponding equivalence class: p. € L?(0,T; L*(D.,_)/R).

Our aim is to study the asymptotic behavior of u. and p. when e tends to zero. For this purpose,

we use the dilatation in the variable z3
z3
Y3 = (3.5)

in order to have the functions defined in an open set with fixed height 56775 given in Section 2.

Namely, we define @. € L2(0,T; HY (D=.))?, p- € L*(0,T; L*(D-,.)/R) by

ﬂe(ta xlv y3) = Ug(t, xla €y3)a ﬁz—:(ta :U/) y3) = pe(tv xla €y3)’ a.€. (t7 CL‘,, y3) € (07 T) X Deng-
Using the transformation (3.5), the system (3.1) can be rewritten as

O,
ot

— pAciie +Vepe = fin (0,T) X Dey,
diveiie =0 in (0,7) x Day,, (3.6)
ﬂe(oaxlvy?)) = 07 ('77/7 y3) € DEUs?



with Dirichlet boundary conditions
G =0on (0,T) % OD.,,, (3.7)

where we set A;w = Aypw + 5_285310 and 1557,5 is defined in Section 2.
Our goal then is to describe the asymptotic behavior of this new sequence (u., p:).

Moreover, in order to study the behavior of @, p. in the fissure we rewrite our equations in the
unit cylinder I1 = ¥ x (0, 1)ey by introducing the change of variable
T2

Y2 = 177 ) (38)

which transform fm in a fixed domain I;. We define the new functions

Z;{a(ta-xlay%y?)) :as(tawbnsy%yfi)’ pa(t7xlay27y3) :ﬁé(taxlaney%yii) — Cenes (39)
with .
Cen. = —=— [ Pe(t, 7', y3) da'dys. (3.10)
|I775| Iﬁs

Using the transformation (3.8), the system (3.6) can be rewritten as

e - - _ ~
o~ MARUT+ Vi PT = f(t 21, ney2) in (0,T) x I,
div, U =0in (0,T) x I, (3.11)
u£(07x17n8y27y3) = Oa (3317775927.@3) € Ila
with Dirichlet boundary conditions
U =0on (0,T) x I, (3.12)

where we set Ay w = 92w+ 120, w + e 205w

Our main result referred to the asymptotic behavior of the solution of (3.6) is given by the following
theorem.

Theorem 3.1. We distingue three cases depending on the relation between the parameter n. with
respect to €:

i) if ne < e3, then there exists (0,p) € L*>((0,T) x D)3 x L*(0,T; L*(D)/R), with 93 = 0 and p
independent of y3, such that the solution (¢~ 27z, p.) of problem (8.6)-(3.7) satisfies

e 2. = in L*((0,T) x D)3, p. —p in L*(0,T;L*(D)/R). (3.13)

Moreover, p € L*(0,T; H'(D)/R) and (V,p) is the unique solution of the 2D quasi-stationary
Darcy law (where t is only a parameter)

V(t,a) = “K(f(t,2) - Vap(t,2) in (0,T) x D,

7
divy V(t,2') = 0 in (0,T) x D, (3.14)
V(t,a')-n 0 in (0,T) x 0D/,

7



iii)

where V t,x") fo o(t, 2", y3)dys and K € R**2 is a symmetric, positive, tensor defined by its
entries
K;j = y Dyw'(y) : Dyw’ (y)dy, i,j =1,2, (3.15)
7
where w'(y), i = 1,2, with fo widy = 0, denotes the unique solution in H%&(Yf)3 of the local
stationary Stokes problems in 3D
—Aywi—i—qu’: = e Yy,
div, w’ 0 inYy,
w' = 0 ind(Y\Yy),
Y’ — periodic.

(3.16)

[
w,q

if me > e3 and let e, Pe) be a solution of (3.11)-(3.12). Then there exist U € L2((0,T) x I;)?,
independent of ys, with Us = Us = 0, and P € L?(0,T; L2(Il)/R) only depending on t and x1,
such that for a subsequence,

ne 2US —~U in L*((0,T) x )3, P*— P in L*(0,T;L*(I,)/R),
where

Z:ﬁ(t, x1, y2) = M (fl(t,xl, 0) — 8m1p(t,$1)) . (3.17)

Moreover, it holds that 3
n. 3. > Vs, in L*(0,T; M(D))?, (3.18)
where V € L2((0,T) x £1)3, with Vo = V3 = 0, such that

1
~ ~ 1 ~
Vl(t,xl) = / Lll(t,a:l,yg) dy2 = E (fl(t,xl,O) — 6$1P(t,m1)> s (3.19)
0

and, in fact P e L2(0,T; H'(21)/R) is the unique solution of the 1D quasi-stationary Reynolds
problem on X1 (where t is only a parameter)

Oz, (fl(t,xl,O) - 8x1]5(t,x1))) =0 in(0,T)x %y,

. (3.20)
(fl(t,xl,o) - 8I1P(t,x1)> n=0 on(0,T)x 8.

if ne ~ 5%, with 775/5§ — A, 0 < X\ < 400, then there exist a Darcy velocity ¥, a Reynolds velocity
V and a pressure field p such that

e 20 =0+ NVos, in L*(0,T; M(D))?,

pe —p in L?(0,T; L*(D)/R), (3.21)

where Oy, is the Dirac measure concentrated on %1, and M(D)3 is the space of Radon meaures
on D. The velocities © and V are linked with the pressure p through the 2D Darcy law (3.14)
in (0,7) x D' and the 1D Reynolds problem (3.20) on (0,T) x 1. The pressure field p €
L0, T; HY(D')/R) with p(-,0) € L*(0,T; H'(21)/R), is the unique solution of the variational
problem

T 1
[ [ R () = Vi) - Vgl ) e 2 / (F1(t,21,0) = 0y (ts 21)) Doy ot 21, 0) darrc
D’ 1

(3.22)
for every ¢ € L*(0,T; HY(D')) with ¢(-,0) € L*(0,T; H*(X1)).



Remark 3.2. The coupled problem (3.22) corresponding to the critical case n. ~ 5%, with 775/6% — A,
0 < XA < +00, can be considered as the general one. In fact, if A tends to infinity in (3.22) we
recover the 1D quasi-stationary Reynolds problem (3.20), meanwhile if A tends to zero we recover the
2D quasi-stationary Darcy law (3.14).

4 A Priori Estimates

Let us begin with a lemma on Poincaré inequality in the porous medium ﬁene, which will be very useful
(see for example Lemma 4.1 in [8]).

Lemma 4.1. There exists a constant C independent of €, such that, for any function v € H" (1557,6)3
and v =0 on Sg,,., one has
HUHLz(QE%)S < Ce HDEUHLQ(‘QE%)M?, . (4.23)

Next, we give an useful estimate in the fissure fng.
Lemma 4.2. There exists a constant C independent of €, such that, for any function v € Hl(]_~75775)3

and v =0 on Sg,,., one has

1 1
HUHLQ(E,E):” < C7752 (775 + 8)2 ||D51)HL2(567]5)3X3 . (424)

Proof. For any function w(y) € H' (.71)3 with w = 0 in 913, the Poincaré inequality in I; states that
/~ lw|?dz < C/~ 8., w|* dz, (4.25)
11 Il

where the constant C' depends only on I~1
For every k' € Z2, by the change of variable
T9 T3 _dzx

z21 = T1, 22 = y 3= dz = B 82’2 = naaxm (426)
Ne € ENe

we rescale (4.25) from I to I,,.. This yields that, for any function w(z) € H*(I,.)? with w = 0 in 81,_,
one has

/ lw|? dz < cng/ |0, w|? dz < cng/ |Dyw|? dz, (4.27)

Ne Iﬁs Ihs
with the same constant C' as in (4.25). Finally, applying the dilatation (3.5) in (4.27), we obtain
[ lw|? da’dys < Cng/ | D.wl|? da’ dys,
Ne Ine
which gives
HU||L2(f,,€)3 = CUEHDEUHLQ(T%)M?,- (4.28)

Next, if we choose a point y € A,,,_, which is close to the point = € I,,_, then we have

v(z) —v(y) = Do()(x —y) < (e +ne)| Dol



Since v(y) = 0 because y € A, we have
[v(@)lL2(r,.)8 < C(e +n)|| Dol L2z, )33
and applying the dilatation (3.5) gives
HU”L2([ s <Cle+ na)HDaUHL? )3x3-
Finally, multiplying the above inequality with (4.28) we obtain
ol oz, s < Cned 0+ )5 1Detll i, yows < Cnd e + 23 1Dcol g, yoes (4.29)

which is the desired estimate (4.24).
O

Let us give the classical estimate, [11], for a function in L? when we deal with a thin fissure.

Lemma 4.3. Let v € LQ(EE) be such that [; vdx'dys =0. Then
Ne
HUHLz( HV U”H (T, )3

Now, we are in position to obtain some a priori estimates for ..

Lemma 4.4. There exists a constant C independent of €, such that the solution 4. € H} (D 5775) of the
problem (3.6) satisfies

el 20,7y x50 ) < Cneze +€2), (4.30)
Iell 20,7y T, )3 = € (7762 +ene + %és%) (4.31)
| Deticll 20 1y oy yoxs < Cn? +2), (4.32)
18 e 0. 1:12(B, 2 < C02 + ), (4.33)
Ot e 1
H Ot || L2((0.7) x Ben. )3 H L2((0,T)x T, )? = o (4.34)

Proof. Multiplying by . in the first equation of (3.6), integrating over 55775 and using the energy
equality, we have

1d

531 1O 5 o+ DO s = [ 70 (0 o' (435)

Dene

Using Cauchy-Schwarz’s inequality, we obtain that

1
F(0) - et) da'dys < Co2 | £ e o8O oz, o+ IF Ol s 31Ol g, o

DSWS

and by inequalities (4.23) and (4.24), we have

_ 3 1 1 _
5 f(t) - ue(t) dx'dyz < C <77€27762 (e +m:)2 ”f(t)HLoo(an)S + 5‘f(t)||L2(§E%)3) ”DEUE(t)”LQ(f)EnE)Wg'
ENe

10



Using Young’s inequality, we obtain that

- 7 - 1 2
7)) da'dys < NP 5 yoes + € (nele H ) 1T W) e o+ €1 W o p0)
ENe

Therefore, from (4.35) we get

d . -
@25, o+ MDA 5. e < C(MEE+MINFOL ez o+ NF O ) (4:36)

and integrating between 0 and 7" and taking into account the assumption of f (3.2)-(3.3), in particular,
we have

T
IIﬂg(Tﬂliz(ﬁw)ﬁ/o IDetie(O) 725, ysxsdt < C (n2e+n2 +€%).

Since n2e < 12 if ¢ < 1. and n2e < n.e? < 2 if 5. < ¢, the term n2e can be dropped. This gives
(4.32) and (4.33).

On the other hand, applying (4.23) in (4.36), we have

d . —2~
dt Hue(t)||i2(5€ng)3 + Ce 2”“5@)”%2(65%)3 <C (773(6 + 77€)Hf(t)H2°o(fng)3 + 52||f(t)Hi2(§€ng)3)?

and integrating between 0 and 7" and taking into account the assumption on f (3.2)-(3.3), in particular,
we have

T
| 012, o < O3 (e 0+ ).

Reasoning as before, the term n2e¢ can be dropped. This gives (4.30). Finally, applying (4.24) and
(4.32) we get

- 11 3 5 1 1 3
el oy, o < Cne +med) (3 +6) < C (8 4 eme +m2ed 4 e ).

Since 77525% < 775% if ne > ¢ and 7752&:% < 775%5% if n. < g, the term 77526% can be dropped, and (4.31)
holds.

Finally, we will prove (4.34). Now, we proceed formally. The rigorous proof schould be made using the
Galerkin approximations. First, multiplying by 8@11; in the first equation of (3.6), integrating over 55,75
and using the energy equality, we have

|

Using Cauchy-Schwarz’s inequality and Young’s inequality, we obtain that

0

2 _
1d Ue

dx'dys. 4.37

ot v (4.37)

——|[Dete (b)), 5 aus = :
L2(55n6)3+ﬂ2 dt ” EuE( )|‘L2(D5n5)3><3 /Egngf

01i-(1)
ot

Dl 1 ) 1]|0a.(t)|
[ daldys < SIFON5 +H :
55775 ot 2 ” ( )HLZ(D5715)2 2 ot LQ(EEWE)S
Then, we deduce
dii(t)||” d RN 2
H ot o, o a1 yone < 1 ONzap e

11



and integrating between 0 and T’

[

Taking into account the assumption of f (3.2)-(3.3), we obtain the first estimate in (4.34). Now,
Otle T

multiplying by 3¢ in the first equation of (3.6) and integrating over I,_, we have (4.37) in fna- Taking
into account that using Cauchy-Schwarz’s inequality and Young’s inequality, we have

2

T
-+ p D (D, oo < [ WO, o

L2(5€7]s)3

il 1 ) 1]|0a:(t) |
R A IO ,
.o ot 2T 2l Ot |, s
we deduce, in particular, that
T\ A 2
Ot (t
/ ‘ uE( ) dt S C’rlg,
O VT
and we have proved the second estimate in (4.34). O

In the next step we will estimate the pressure to the whole domain D. We give some properties
of the restricted operator, R®, from Hg(D)? into H&(ﬁem)?’ preserving divergence-free vectors, which
was introduced by Tartar [12]. Since the construction of the operator is local, having no obstacles in
fne means that we do not have to use the extension in that part. Next, we give the properties of the
operator R®.

Lemma 4.5. There exists a linear continuous operator R° acting from H} (D)3 into H&(f)gns)?' such
that

1. Rfv=w,ifve H&(ﬁenE)S
2. dive(Rv) =0, ifdivo =0

3. For anyv € H}(D)? (the constant C is independent of v and ¢),

1Bl 25, s < Cllvllzepys + CellDevll L2 (pysxs »

C -
DR[| 25, yaxs < . vl g2(pys + C | Devll 2 pysxs -
In order to extend the pressure to the whole domain D, we define, for all T > 0, a function
F. € L?(0,T; H 1(D))3 by the following formula (brackets are for the duality products between H !
and H}):

(Fe(t),v)p = (Vepe(t), B70) 5, for any v e Hy(D)?, Vi€ (0,T), (4.38)
where R¢ is defined in Lemma 4.5. We calcule the right hand side of (4.38) by using (3.6) and we have
~ £ £ 8a5(t) 15
(Fu(t),0)p = (pdeie(t), R0, + (F0, R 5, — (P9 Re)  as0)
DEWE

and by using the third point in Lemma 4.5, for fixed ¢, we deduce that F. € L?(0,7; H *(D))3.
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Moreover, if v € H}(D.,.)? and we continue it by zero out of D, we see from (4.38) and the first
point in Lemma 4.5 that F.|5 () = Vepe(t), for all £ € (0,T).
ENe

Moreover, if dive = 0 by the second point in Lemma 4.5 and (4.38), (F:(t),v), = 0, for all
t € (0,T), and this implies (by the orthogonality property) that F.(¢) is the gradient of some function
in L?(D), for all t € (0, 7). This means that F. is a continuation of V.p. to (0,T) x D, and that this
continuation is a gradient. We also may say that p. has been continuated to (0,7") x D and we denote
the extended pressure again by p. and

F.=V.p., p.€ L*(0,T;L*(D)/R).

Lemma 4.6. Let p. be the extension of the pressure defined as above. Then, there exists a constant C
independent of € such that

3
2
1Pl 2 (0,72 (D)/R) < C (772 + 1) , (4.40)

~ 1 3
HpE - CETIEHLQ((O,T)XI:E) <C (7752 + 77) s (441)

£

where cep, is given by (3.10).

Proof. Let us first estimate V.p.. To do this we estimate the right side of (4.39). Using Cauchy-
Schwarz’s inequality and the third point in Lemma 4.5, we have

(ubeie(t). Bov)y | < wlDeiict)ll o, yons 1 DRV 2 jons

IN

- 1
C ||D€u€(t)||L2(55ns)3X3 <€ HUHLQ(D)3 + HDEU”LQ(D)3X3> 5
using the assumption of f, we obtain
‘<f(t), R€v>ﬁsns‘ S C Hf(t)HLz(ﬁGng)g <||UHL2(D)3 +¢€ HD€U||L2(D)3X3) y
and

Oii-(1)
<
<o|%

< auE (t) , RE,U>
ot Den.

Then, from (4.39), we deduce

(1ol 2(oys + € 1Dvll apyox) -

L2(55"s)3

- - 1
|<V5Pg(t),v>D| < C ||DEUE(t)||L2(55778)3X3 (5 ”U||L2(D)3 + HDEU”LQ(D)3X3)

(1)
+ c(||f<t>||L2(5w)3+H H

2(D )3) (HUHLQ(D)ii +e ||D5'U||L2(D)3><3> .
L DE”I&

Then, as £ < 1, we see that there exists a positive constant C such that

Oc (t)

. 1 .
[(Vepe(t),v)pl < C (5 HDEUE(t)HLz(ﬁme):’:xs + Hf(t)HLQ(f)%)B + ' ot

(B )3) ||UHH§(D)37
ENe
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for any v € H(D)3. Consequently, we obtain

Diic (1)
ot

L2(56n5)3> 7

and from the Necas inequality in D , integrating between 0 and 7', and from (4.32), the first estimate
in (4.34) and the assumption of f, we have the estimate (4.40).

N 1 -
V5o )ll-spys < C ( DAL 5, v+ 1O 5, e+ |

Now, we prove the estimate (4.41). Let v € H&(EE)S, then

(Vepe(t),v)7 = (pActic(t),v)7 + (f(t),v)7 — <8a5t(t)’v>i :

We estimate the right hand side. Using Cauchy-Schwarz’s inequality, we have

‘ (At (t), U>fns < ,U«HDaae(t) ”L2(fns)3x3 ||D€UHL2(fn£)3x3a

and

[oxrs

and by estimate (4.29), we have

1
< Cn2 1 Ol ooz, ys 1Vl 27, s

(0.0,

I”IE

3 1
<Cne2 + UEEQ)HDEUHLz(an)st-

Using again Cauchy-Schwarz’s inequality and estimate (4.29), we obtain

‘ < aag t(t) | U>7n8 8715(15)

N

< 077:-:%(775 + 5)

”D“«‘UHLQ(Z’,E)SXS .

LQ(T’UE )3

Then, we have

Ot (t)
9

LQ(TWE)E}) 7

and taking into account that [7 (Pe — cep.)da’dys = 0, we use Lemma 4.3 and we can deduce
Ne

L2(E}5)3> ‘

Integrating between 0 and 7', and from the estimate (4.32), and the second estimate in (4.34), we have

~ ~ 3 1 1 1
Hvapa(t)HHﬂ(’f%)a <C <||Daue(t)||L2(’fns)3x3 + e +mee2 + 020 +¢)2

C

< ¢ Ot (t)
Ne

ot

~ ~ 3 1 1 1
[P (t) — cen. (t)||L2(an) <||D€U€(t)||L2(an)3x3 + M2 +me2 + 12 (N +€)2

5 (. 3
162 = conllagoyut,y < o (e e +meet )

Reasoning as in the proof of Lemma 4.4, we observe that 7755% can be dropped and so we obtain
(4.41). O
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5 Proof of the main result

In view of estimates (4.30), (4.32) of the velocity and (4.40) of the pressure, the proof of Theorem 3.1

will be divided in three characteristic cases: 7. < 53 Ne = 53, with 7. /53 — A, 0 < X < 400, and
2

Ne > €3.

5.1 Problem in the porous part 7. < es

The proof of Theorem 3.1-i) will be developed in different lemmas.

In this subsection, we need to extend the velocity . by zero in the fissure I~ns, and we will denote
the extended velocity by v, i.e.

- Ue in ﬁen ,
. ene 5.42
v { 0 inl,. (5.42)

Lemma 5.1. Let n. < e3 and let (U, Pe) be the extended solution of (3.6)-(3.7). Then there exist
subsequences of - and P. still denoted by the same, and functions v € L*(0,T; H'(0,1; L?(w)?)) with
93 =0, p € L*(0,T; L*(D)/R) independent of y3, such that

e 20 — (¥',0) in L*(0,T; H'(0,1; L*(w)?)), p. —p in L*(0,T;L*(D)/R). (5.43)

Moreover, U satisfies
1 1
div, (/ f/(t,x',yg)dyg) =0 in(0,T) xw, (/ ﬁl(t,m',yg)dyg),) n=0 on (0,T) x dw. (5.44)
0 0

Proof. From estimates (4.30), (4.32) and (4.40), taking into account the extension of the velocity by
zero to D and 7, < 6§, we have the following estimates

15l r2(0,myx Dy < C€%, 1Pell 2,020y m) < €

| Dariocll 20,1 x pysx2 < Cey |8ystell 20,1y x Dy < O

Now, we can use Lemma 5.1-(i) and Lemma 5.3-(i) in [8], because in the present paper a. ~ ¢ in the
porous part, in order to obtain (5.43), with the weak convergence of the pressure, and (5.44).

Finally, we prove that the convergence of the pressure is in fact strong. As 03 = 0, let w. = (w.,0) €
HZ (D)3 be such that
w. —w in Hi(D)>. (5.45)

We consider ¢ € CL(0,T). Then (brackets are for the duality products between H ! and H}):

T
’< Vepe(t), p(t)we >p — < Vurp, (P(t)w >p|dt
0
T T
< / |< Vepe(t), p(t)(we —w) >pldt +/ |< Vepe(t) — Vaup(t), o(t)w >pldt.
0 0

On the one hand, using the weak convergence of the pressure, we have
T
/ |< Vepe(t) — Vup(t), o(t)w >p|dt = / / Pe(t) — p(t)) divy o(#)w' da'dysdt — 0, as e — 0.
0
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On the other hand, we have

T T
/ ’< Vepe (1), Sp(t)(ws - w) >D‘ dt = / ’< Vz’ﬁe(t)7 (p(t)R%’U)é - w/) >55,, dt
0 0 €

:/OT

and using Cauchy-Schwarz’s inequality, estimate (4.32), the first estimate in (4.34), the estimates of

(AL TL(E), (R (we = w) g, +(f'(0) e R (we =)y, (5= e R (wi — )5, |dt,

the restricted operator R° applied to D, instead of D, and taking into account that 7. < 5 and
e K 1, we get

T
/O 1< Ve (t), olt) (we — w) >p|dt

T
<c (( [ ettt — ot
0

by virtue of (5.45) and the Rellich Theorem. This implies that V.p. — V5 strongly in L?(0,T; H~1(D))3,
which implies the strong convergence of the pressure given in (5.43). O

1/2 T 1/2
+¢€ </ SO(t)zHDm/wé — Da;/wl”%Q(D)zxzdt) ) —0 as € — 0,
0

Lemma 5.2. Letn. < e3 and let (Ue, Pe) be the extended solution of (3.6)-(3.7). Let (v,p) € L?((0,T)x
D)3 x L?(0,T; L?(D)/R) be given by Lemma 5.1. Then, p € L*(0,T; H*(D)/R) and (9,p) is the unique
solution of Darcy’s law (3.14).

Proof. We apply Theorem 3.1-(i) in [8], because in the present paper a. =~ ¢ in the porous part, in
order to obtain that (9,p) is the unique solution of Darcy’s law (3.14).

Finally, the classical theory of the elliptic equation implies existence of the unique solution p belongs
to L?(0,T; H'(D)/R).
O

Proof of Theorem 3.1-i). It remains to prove convergence (3.13) of the whole velocity ., i.e. to prove

5_2Ha5”L2((0,T)><fn5)3 — 0. (5.46)

For this, it is sufficient to prove that
e el 2oy w1,y — O forme <e, (5.47)

and

2y~ 1 3
€ 2Hu5HLq((O’T)an6)3 =0 fore<gn<er ,1<a< > (5.48)

for a ¢ which will be defined below.
Using (4.31) and using 7. < &, we have

5
2

1
—9~ Ne Ne Ne 2
€ HUEHLQ((O,T)XTWE):’ < C < ) + z + (;) ) 3
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so that (5.47) easily holds. Using Holder’s inequality with the conjugate exponents % and ﬁ we obtain

l+2 l+l 1
—2(~ B TNe 4 Ned 2 | Met
€ ||u5||LlZ((O7T)XI775)3 <C ( 2 + € + 5% ) '

Now we take n. = ea. Then we find that

o~ 1(1li9)_29 1141\ 1 11
oy < © (5074 Al it ), (5.49

We seek an optimal ¢ such that the right hand side in (5.49) tends to zero. It is easy to prove that we
). Therefore, (5.48) holds and so we have (5.46).
O

have a convergence to zero for any ¢q € (1, 2(?21)“

2
3

5.2 Problem in the fissure part 7. > ¢

The proof of Theorem 3.1-i7) will be developed in different lemmas.

Lemma 5.3. Let n. > €3 and let (U=, P?) be the solution of (3.11)-(3.12). Then there exist subse-
quences ofl/{8 and P still denoted by the same, and functions U e L*((0,T) x 1)3, independent of ys,
with Uy = Us = 0, P € L2(0,T; L2(1;)/R) such that

ne U —~ U in L2((0,T) x I,)?, P°—=P in L*0,T;L*(I,)/R). (5.50)

Moreover, P = P(x1) and Uy is given by expression (3.17).

Proof. Taking into account 7, > e5 and estimates (4.31), (4.32), (4.33), (4.41) with the change of
variable (3.8), we have

14N Lo oy w7y < O (5.51)

100U 2oy Tys < Ctes 00U 0.0y 7yys < O (5.52)
100U |2 0.1y x T,y < CE s (5.53)

(2P .2y < O (5.54)

17 207 02(7) /m) < C- (5.55)

From the estimates (5.51) and (5.55), there exist 2/ € L2((0,T) x I,)3, P € L*(0,T; L*(I;)/R) such
that convergence (5.50) holds. Moreover

N 20,U° — DU in L2((0,T) x I;)?, (5.56)
and from (5.54), there exists W € L>®(0,T; L2(I;))? such that
ne UE B W in L°(0,T; L2 (1)), (5.57)

The estirnate (5.53) implies that e~ 17 19,,U° is bounded in L?((0,T) x I,)3. This together with
Ne > £ implies that n_ 28%(/{5 tends to 8%1/{ = (. This implies that ¢ does not depend on Y3.
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As U does not depend on y3, let ¢ € C§° ((0,T) x 1:1)3 independent of y3. Taking into account that
div,. U = 0in (0,T) x I, we have

n! / /~ (0005 + 071 00,005 + =710, ) o davy dyadyst
Iy

T T
= —7751/ | UT 0y, ¢ dxidyadysdt — 7782/ U5 - Oy, p dz1dyadysdt = 0.
0 Il 0 Il

Taking the limit € — 0 we obtain
T ~
/ /~ UQ8y2(p dxldygdygdt = 0,
o JI

so that Uy = Us(t, z1).

Since U, 8,,U € L2((0,T) x I;)? the traces U(t, z1,0), U(t, z1,1) are well defined in L2((0,T) x £)3.
Analogously to the proof of Lemma 4.2 we choose a point 8, y,) € Aep., which is close to the point
Qg y3) € 2, then we have

T T
/ /|u€(t7x/707y3)|2dxldy3dt = / /|ﬂs(t,$1,0»y3)2d$1dy3dt
0 % 0 P
T
<o LU
0 = B

so that, by Cauchy-Schwarz’s inequality,
1245 (£, 1,0, y3) | 22 0.1y xsys < CellDeic |

2
Daﬂg . (a(:cl,yg) — 5(x17y3))d£> dl’ldygdt,

(@1.,y3) % (21,y3))

L2((0,T)% Dey, )3%3"
Taking into account estimate (4.32) and 7. > z—:§, we have
775_2“5[5(7575U1,07y3)H%2((07T)x2)3 <Cene—0 ase—0,

which implies that

Z:{(tv .%'1,0) = 07
and analogously .
U(t,z1,1) =0.
Consequently )
Uy =0.

It remains to prove that Us = 0. In order to do that, as U does not depend on ys3, we take a test
function v = (0,0, v3(z1,y2)) in (3.11),

d
dt

in D'(0,7). We consider ¢ € CL([0,T]) such that ¢(T) = 0 and (0) # 0. Multiplying by ¢ and
integrating between 0 and 7', we have

1 ~
</ Z/f3( )’U3 d.Tlddey3> 8 Z/f3 )’Ug d.l‘ldyzdyg + ? /ﬂ 8521/{:;:(?5)1}3 diL‘lddeyg = 0,
Il € Il

T

d

—/ dt ()/ Us (tyvs dx1dyzdy3dt+/ 92 U5 (t)v3 dw1 dyadysdt
0 I

/ 1)3 dﬂ?ldygdygdt =0.
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We pass to the limit when e tends to zero, and using the convergences (5.56) and (5.57) with
- d -
v3p(t) € L2((0,T) x 1), vgﬁcp(t) e L0, T; L*(I)),

we can deduce that Us = 0.

Finally, we compute the expression of U/ given in (3.17). First, we take a test function v = (0,0, ev3)
n (3.11), and we obtain

d
€ </ Z/{3( Jvs dxldygdy;;) + 8/ U3 t)vs dr1dyadys + — / 5 (t)vs dx1dyadys
/ U3 dl’ldygdyg - /v Paﬁysvg dxldygdyg = 0,
I

in D'(0,T). Multiplying by ¢ and integrating between 0 and T, we have
Td
—8/ dt o(t) U3( Jvs dz1dysdysdt + E/ / t)vs dz1dysdysdt
0
/ t)vs dxidysdysdt + — / / t)vs dx1dysdysdt
I

—/ o(t) /~ P68y3U3 dx1dysdysdt = 0.

0 i

We pass to the limit when € tends to zero, and using the estimate (5.53), the convergences (5.50) and
(5.57) with

<ot € £0.T: L2 (1),

vsp(t) € L2((0,T) x 1), vs—

we can deduce that P does not depend on ;.
We take a test function v = (0, n.v2,0), independent of ys3, in (3.11), and we obtain
d 1 2 77€
ey L{2( Yve dx1dyadys | + ne 8 Z/IQ t)vg dzydyadys + a8 0,,Us (t)v2 dr1dyadys
€ Il

pe 3@;202 dxidyzdys = ?75/ fava dz1dyadys,
A

in D’(0,T). Multiplying by ¢ and integrating between 0 and 7', we have
T d 5
—775/ @(t)/~ Us (t)va dz1dyadysdt + 7)5/ / 02 U (t)va day dyadysdt
0

1 (T
+/ t)vg d:cldygdyddt—/ o(t )/~ pe Oy, V2 dz1dyadysdt
Ne Jo 0 I

T
= 77&/ @(t) [ favo dzrdysdysdt.
0 i
We pass to the limit when € tends to zero, and using the convergences (5.50) and (5.57) with

vao(t) € LA((0,T) x 1), va-bop(t) € L0, T; L(Ty)),

dt
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we can deduce that P = P(t,xl). Now, taking into account that U does not depend on y3 and
Us = U3 = 0, we take a test function v = (vi(x1,¥2),0,0) in (3.11),

d
7 (/ L{l( )1 dxldygdy5> / Ul t)vy drdysdys + — / T (t)v1 dx1dyadys

/ P20, vy dydyadys —/ J1(t, 1, m=y2)v1 daidydys,
Iy

in D’(0,T). Multiplying by ¢ and integrating between 0 and 7', we have

T
d
—/ o(t) U1( Jv1 dz1dysdysdt +/ / t)v1 dz1dyadysdt
o dt” :
1 g 2 7€
+= o(t) [ 0,,Ui (t)v1 dr1dyedysdt — cp( ) | Pf0,,v1 dzydyadysdt
e Jo I 0 I

T
:/ o(t) | fi(t, 1, mey2)v1 deidyadysdt.
0 I

We pass to the limit when € tends to zero, and using the convergences (5.50) and (5.57) with

<oty € L0, T: L2 (1),

vip(t) € LQ((O,T) X fl), vy o

we obtain the ODE ~ i
_8521/[1 (t7 I, y2) = fl(ta Z1, 0) - axlp(t, 1}1)7

Ui (t,21,0) = Uy (t,21,1) =0,

which gives the expression (3.17) for U;.

Proof of Theorem 5.1-ii). It remains to prove the convergence (3.18) of the whole velocity to the func-
tion V given by (3.19), and also prove that P € L?(0,T; H'(X)/R) is the unique solution of the Reynolds
problem (3.20).

Taking as test function ¢ € C*°((0,T) x D), independent of ys, in the equation div. 4. = 0 in
(0,T) x D, we obtain
T T T ~
/ / div, . d2'dysdt = —/ / 0LV daf;'dygdt—ns/ /~(Ua)'-vxw(t,wl,ngyg)dmldygdygdt =0,
0 JD 0 JD 0o JI
so that multiplying by 7,73,

T
/ /~ Ne UL Dy p(t, 1, Meyy2) day dyadysdt (5.58)
0 I

T T
= —/ / Ne 20 - Vorp da' dysdt —/ /~ Ne U5 Oy p(t, 71, m:y2) dy dyadysd.
0 D 0 I

20



Using (4.30) and taking into account 7. > 6%, we obtain
c 2

€
||Us||L2 (0,m)xp)y3 < C ( + 0 3> -0 ase—0. (5.59)
775 €

Taking the limit in (5.58) as e — 0, using convergence (5.50), Us = 0 and U independent of ys3, we

have .
/ /7;113961%0@1,0) dzydy2dt = 0,

/ f1 t .’El, 8xlp(t :El)) Bxlgo(t,:cl, 0) dacldt = 0.
31

and by definition (3.19), we get

Consequently, P € L?(0,T; H'(X;)/R) and is the unique solution of (3.20). Finally, we consider
@ € Cy((0,T) x D)3, independent of y3, and so we have

T T T
/ /ns‘3ﬂs-<pdw’dy3dt=/ /ne‘3ﬁs-s0d:v’dy3dt+/ /~7]6_22/{6'@(ta$17n5y2)dl'ldy2d93dt-
0 D 0 D 0 I

Using (5.59), convergence (5.50) and Uy = Us = 0, we obtain

T T
/ /Uagﬂa'SOdmldy:%dt — / /Ul(t,flfl,yQ)SOl(twl,O)dl’1dy2dt
o Jp 0 Jy .
—/ Vi(t, x1)p1(t,21,0) dy —/ (Vi(t, 21)05,, ) Mm(D)?,co(p)2 At
o Jx 0

which implies (3.18). O

5.3 Effects of coupling 7. ~ ¢3

The conclusion of the previous two subsections is that for any sequence of solutions (U, p.) with

ne K 3 and (I/{E PE) with n. > 6% and letting ¢ — 0, we can extract subsequences still denoted
by ¥c, pe, U, P and find functions & € L?(0,T; H (0, 1,L2( 0)?)) with o3 = 0, p € L*(0,T; H'(D)/R),
U € L*((0,T) x 1), independent of y3, with Uy =Us = 0, P € L2(0,T; H'(X)/R) such that

e 7?0 — (¢,0) in L*(0, T; H'(0,1; L*(w)*)), p- —p in L*(0,T;L*(D)/R),

(5.60)
n."2UF — (Uy,0,0) in L2((0,T) x I;)3, P°— P in L?(0,T;L*(I;)/R).
Moreover such limit functions @, p,U, P necessarily satisfy the equations
~ 1
V'(t,a") = =K (f'(t,2") — Vp(t,2")) in (0,T) x D',
w (5.61)

. 1— - _
it ) = 20 (f10,00,0) - 0, Pt)) i (0.7) < T,

where V'(t,z') fo (t,2', y3)dys.

We are going to find the connection between the functions p and P, i.e. to find the coupling effects
between the solution in the porous part and in the fissure.
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Lemma 5.4. Let 1. ~ 6§, with 175/6% = A, 0 < XA < +4oo, and let p. € L*(0,T;L*(D)/R), p €
L%*(0,T; HY(D)/R), P € L*(0,T; H(X)/R) be such that (5.60) and (5.61) hold. Then,

T ra
[ AR (et - Vapteat) Vgt a3 [ (50010 = 01, Ple.21)) B.0) v ~
0 D’

(5.62)
for every ¢ € L*(0,T; HY(D')) with o(t,-,0) € L*(0,T; H'(1)).

Proof. Let o.(t,2',y3) = p(t, 2’ ey3) € L?(0,T; H'(D)) with ¢ € L*(0,T; Hl( )) and ¢(t,-,0) €
L?(0,T; H'(X)). Taking into account the definitions (5.42) of ¥ and (3.9) of &%, and from div, @, = 0
n (0,7) x D we have

/ / 24, - Ve dz'dyzdt = / / 20e - Vepedr dygdt—i—( > / / 775_21/{8 Vepe(t, x1,ny2, y3) dridysdy:
53

and by the definition of ., we can deduce

/ / 20, - Ve(t, o', eys) da’ dy3dt+< > / /775 2UE -V o(t, w1, mey2, ey3) drydyadysdt = 0.

Taking the limit as ¢ — 0, using (5.60), U3 = Uy =Us = 0, 775/6% — A, and taking into account that
U1 does not depend on y3, we obtain

T T
/ / ' (t, 2 y3) - Vao(t,2',0) dx’ dysdt + )\3/ / Ui (t, z1,y2)0z,¢(t, 21, 0,0) dzrdyadt = 0,
o Jp 0 Jx

and taking into account expressions (5.61) and (3.19), we get (5.62). O

We are going to prove the relation p(t, z1,0) = P(t,z1) + C, with C' € R. Then (3.22) follows from
(5.62).

Lemma 5.5. Let 7. ~ 5§7 775/5% — X, 0 <\ < +00, and let p, P be the limit pressures from (5.60).
Then, there exists C' € R such that

ﬁ(ta I, 0) = p(tvxl) +C, (563)

andp € L?(0,T; H'(D'")/R) with p(t,-,0) € L*(0,T; H'(X1)/R) is the unique solution of the variational
problem (3.22).

Proof. We need to extend the test functions considered in the proof of Lemma 5.2 to the fissure f’?a‘
To do this, we define I} = I, N {x3 = 0}, B,, = D_ UX U, and Y1 = Yy N {zz = 0}, and we
consider ¢(y') € CF (B, ) be such that ¢(y') =0in Y’ \ Y. We define

10} (%) in D",

Kyey inlI,, where Ko = [ ¢a(y1,0)dy: .
Y

de(2') =
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Let ¢ € C§°(By), with By =D_UX U 71 be such that
(5.64)

/ QD(LUl, O) y3) dxldy3 =0.
b
Taking in (3.6) as test function

we (2, y3) = 6
) ‘P($1,%793> K2 €2 in I”]s?

we obtain
i / e (t) - we dz'dys —I—,u/ D (t) : Dewe da'dys = f(t)wt daz/dy;;—i—/ Pe(t) dive we da'dys.
dt an an Bﬂs BTIE

We consider ¢ € CL([0,T]) such that ¥(T) = 0 and v(0) # 0. Multiplying by 1 and integrating

between 0 and T, we have

T T
- dz/)(t)/ e (t) - we da’dysdt + M/ P(t) Dt (t) : Dew, do'dysdt — (5.65)
0 B 0 By,

Ne
T T
_ / o) [ 7). dadysdt + / o) / 5o(1) div, w. da’ dysdt.
0 B’I]E 0 B"]s

Using (5.51), we have

T d ~ e Z2 /
K, —(t) [ Us(t) ¢ |z, —,y3 | d'dysdt
0 dt Tle

ITIE

T q
= KQUE/O dtw(t)/f US(t) - ¢ (1,2, y3) da1dyadysdt

<Cn2 =0 ase—0.

We observe that
/ / f(t (961, ,y3> eo dx'dysdt

T
= TISK2/ Y(t) [ f( ) - @' (21, Y2, y3)ea drrdyadysdt — 0 as e — 0,
0

and by the definition of w, in f’]s and using estimates (5.52), (5.53), we deduce

In. e

T
~ T
|K2 | v [ D@0, ) do' s
0

Dy U (1) 0y, 0(1, Y2, y3) dl‘ldyzdy:adt‘ <Cn.—0 ase—0,
Iy

= ’Kz /OT¢(t)
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Then, from (5.65), we can deduce that
T d T
- / Lot / ic(t) - wo da' dysdt + / o) [ Dava(t): Dow. da'dysdt  (5.66)
o dt D_ 0 D_

T T
= [ [ 50 wladapars [ o) [ 0w didg
0 D_ 0

)

T
- s
+K2/ w(t)/~ pe@)@a#@h*n27y3)dx'dy3dt+05-
0 7

nNe

For the last term on the right hand side, we have

T ) 2 T T
K / () / Be ()0, 2 ys) ddysdt — Ky / (t) / Con (010,001, 22, )y
0 I 0

ne € ne e

T -
e /0 (1) / (5e(t) — cona () Duaip(1, 2. y3) da’dysdt,

I, e
where ¢, is defined in (3.10).
Using (5.60), we obtain

T
K / (1) /I (5o(0) = con (1) Deyplar, 2. ys) ' dys

T
e / (1) / PE ()0, 1, o, ) dardydyadt (5.67)
0 I

T T
— K2/ Y(t) [ P(t,x1)0y,0(x1, 2, y3) dridyzdysdt = —K2/ ¢(t)/ P(t,z1)¢(x1,0,y3) deidysdt,
0 i 0 >

as e — 0, where P¢ is given by (3.9), and using (5.64), we have

£

T . T
Kz/ ?/)(t)cans(t)/~ Onyp(w1, =2, y3) da’dysdt = Kz/ Y(t)Cen. (t)/w Oy, (71, Y2, y3) dx1dy2dysdt = 0.
0 I, 0 I

Passing to the limit in (5.66) similarly as in the proof of Theorem 6.1-(i) in [8] by using an adaptation
of the unfolding method, and taking into account (5.67) and

T
/ (1) / B(t, 2') diver (2! ys)6(y)) dadydt
0 D/_><Y
T
. / (1) / Voi(t, ol ys)b(y') da’dydt
0 D" xY
T
+/ ¢(t)/ ﬁ(t,fl,O)SO(mlaOa93)¢2(yl,0) dfld?/ldy?,dt
ZXYl

OT T
/ w(t) / vx’ﬁ(t’l‘/)(p(mlvy3)¢(y/) dl’,dydt +K2/ ¢(t) / ﬁ(t?$1?0)¢($170’y3) dxldy?)dta
0 ' XY 0 b

then we have

/OT w(t)/z (ﬁ(t, x1,0) — P(t,:rl)) o(x1,0,y3) drydysdt = 0,
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so that
[ (b0 = Pltan)) ot ) dnat =,
(0.T)x 1

for every ¥ € C3°((0,T) x 1) such that [, 9dz; =0, a.e. t € (0,T). Finally we conclude that there
exists a constant C' € R such that (5.63) holds and p(t,21,0) € L?(0,T; H'(X1)/R).

Using (5.63) into (5.62), we obtain the variational formulation (3.22) for the limit pressure p in
the Banach space of functions v € L2(0,7; H'(D')) such that v(t,z1,0) € L*(0,T; H*(¥1)). Since
K € R?*2 is a symmetric, positive, tensor given by (3.15), it can be proved that (3.22) has a unique
solution in that Banach space with the norm |v[z2( 7,11 (D)) + [v(21,0)| 20,751 (51))-

O]

Proof of Theorem 3.1-iii). It remains to prove the convergence (3.21) of the whole velocity.

Let ¢ € Cop((0,T) x D)3. Then

T T
/ / e 24, - o dx’ dysdt = / / 20, - o da’ dysdt
o JD o JD

3 T
+ (%) / /~ ne U - p(t, 21, mey2, y3) drdysdysdt = 0.
€3 o Jh
Taking the limit as ¢ — 0, using (5.60), 03 = U =Us =0 and 775/5% — A, we obtain

T T T
/ / e 20, - pdx'dysdt — / / v - da’ dyzdt + )\3/ Ui (L, x1,y2)9(t, 21, 0, y3) dzy dyadysdt.
o Jp o Jp o Jn

Taking into account that

T
/ - u(t7$17y2)80(t7371,0793) dmlddey?)dt
0 I

T 1 T
2/ / V(t, z1) (/ @(t,$1,07y3)dy3> dxydt :/ (Vis:1, ©) m(D)3,co(p)3 L,
0 Jx 0 0

where V(t, 1) is given by (3.19), we get (3.21). O
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