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Abstract

We consider a non-stationary Stokes system in a thin porous medium Ωε of thickness ε which is
perforated by periodically solid cylinders of size aε. We are interested here to give the limit behavior
when ε goes to zero. To do so, we apply an adaptation of the unfolding method. Time-dependent
Darcy’s laws are rigorously derived from this model depending on the comparison between aε and
ε.
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1 Introduction

The aim of this work is to apply an adaptation of the unfolding method (see Arbogast et al. [1],
Casado-Dı́az [2] and Cioranescu et al. [3]) to the homogenization of a non-stationary Stokes system in
a thin porous medium Ωε of thickness ε which is perforated by periodically solid cylinders of size aε.
The unfolding method is a very efficient tool to study periodic homogenization problems where the size
of the periodic cell tends to zero. The idea is to introduce suitable changes of variables which transform
every periodic cell into a simpler reference set by using a supplementary variable (microscopic variable),
but here it is necessary to combine it with a rescaling in the height variable, in order to work with a
domain of height one.

We consider the fluid flow through periodic vertical cylinders confined between two parallel plates
(see Figures 1 and 2). A representative elementary volume for the thin porous medium is a cube of
lateral length aε and vertical length ε. The cube is repeated periodically in the space between the
plates. Each cube can be divided into fluid part and a solid part, where the solid part has the shape
of a vertical cylinder of length ε (see Figure 3).
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Figure 1: Views from lateral (left) and from above (right)

"
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Figure 2: View of the domain

Thin porous media are common and of great importance for various industries and products. These
include papers and cartons, filters and filtrateion cakes, porous coatings, fuel cells, textiles, and diapers
and wipes, to name only a few. A thin porous medium is obviously characterized by lateral dimensions
much greater than its thickness. As an example, the thickness of the so-called gas diffusion layers of
proton exchange membrane fuel cells is typically on the order of 200µm, whereas its lateral dimension
is on the order of 20cm, leading here to a ratio lateral dimension/thickness on the order of 103.

In 1856, H. Darcy [4] investigated water flow through a sand column and found that the driving
force and fluid transport obeyed the relation

u = −K
µ
∇p,
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where p is the pressure, µ is the viscosity of the fluid, K is the permeability tensor, and u is the flux.
In 1949, H.C. Brinkman [5] introduced another extension to the traditional form of Darcy’s law which
is used to account for transitional flow between boundaries

β∆u+ u = −K
µ
∇p,

where β is the effective viscosity.

The Stokes equations for a viscous fluid in a porous medium yield the Darcy’s law as a homogenized
model. Quite early, many papers have been devoted to the derivation of Darcy’s law by means of
homogenization, using formal asymptotic expansions (see for example Keller [6], Lions [7] and Sanchez-
Palencia [8]). The first rigorous proof (including the difficult construction of a pressure extension)
appeared in Tartar [9]. Further extensions are to be found in Allaire [10], Lipton and Avellaneda [11]
and Mikelic [12].

The above results relate to a fixed height domain. Our aim in the present paper is to extend
them to the case of a non-stationary Stokes system in a domain of small height ε. In particular, time-
dependent Darcy’s law and time-dependent Brinkman’s law are rigorously derived from this model as
the parameter ε tends to zero.

We show that the asymptotic behavior of this system depends on the parameter aε with respect to
ε:

- If aε ≈ ε, with aε/ε → λ, 0 < λ < +∞, i.e. when the cylinder height is proportional to the
interspatial distance with λ the proportionality constant, we obtained a time-dependent Darcy’s
law as an homogenized model with a permeability tensor which depends on the parameter λ and
is obtained through local stationary Stokes problems in 3D.

- If aε � ε, i.e. when the cylinder height is much smaller than the interspatial distance, we obtain
a pure 2D time-dependent Darcy’s law, with the permeability tensor obtained by means of local
stationary Stokes problems in 2D, which is a considerable simplification.

- If aε � ε, i.e. when the cylinder height is much larger than the interspatial distance, a time-
dependent Brinkman’s law is derived as an homogenized model with local stationary Stokes
problems in 2D.

The paper is organized as follows. In Section 2, the domain and some the notations are introduced.
In Section 3, we formulate the problem and state our main result, which is proved in Section 6 by means
of an adaptation of the unfolding method. To apply this method, a priori estimates are stablished in
Section 4 and some compactness results are proved in Section 5.

2 The domain and some notations

A periodic porous medium is defined by a domain ω and an associated microstructure, or periodic cell
Y ′ = [−1/2, 1/2]2, which is made of two complementary parts: the fluid part Y ′f , and the solid part Y ′s
(Y ′f

⋃
Y ′s = Y ′ and Y ′f

⋂
Y ′s = ∅). More precisely, we assume that ω is a smooth, bounded, connected

set in R2, and that Y ′s is a smooth and connected set strictly included in Y ′.
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The microscale of a porous medium is a small positive number aε. The domain ω is covered by a
regular mesh of size aε: for k′ ∈ Z2, each cell Y ′k′,aε = aεk

′+aεY
′ is divided in a fluid part Y ′fk′ ,aε

and a

solid part Y ′sk′ ,aε , i.e. is similar to the unit cell Y ′ rescaled to size aε. We also define Y = Y ′×(0, 1) ∈ R3,

and is divided in a fluid part Yf and a solid part Ys, and consequently Yk′,aε = Y ′k′,aε × (0, 1) ∈ R3,
which is also divided in a fluid part Yfk′ ,aε and a solid part Ysk′ ,aε .

Y �
sk� ,aε

Y �
fk� ,aε

Y �
k�,aε

Yk�,aε

Yfk� ,aε

Ysk� ,aε

Figure 3: Views of a periodic cell in 2D (left) and 3D (right)

The fluid part ωε of a porous medium is defined by

ωε = ω\
⋃
k′∈Tε

Y ′sk′ ,aε ,

where Tε = {k′ ∈ Z2 : Y ′k′,aε ∩ ω 6= ∅}.

In order to apply the unfolding method, we will need the following notation. For k′ ∈ Z2, we define
κ : R2 → Z2 by

κ(x′) = k′ ⇐⇒ x′ ∈ Y ′k′,1 . (2.1)

Remark that κ is well defined up to a set of zero measure in R2 (the set ∪k′∈Z2∂Y ′k′,1). Moreover, for
every aε > 0, we have

κ

(
x′

aε

)
= k′ ⇐⇒ x′ ∈ Y ′k′,aε .

We will consider the open set Ωε ⊂ R3 given by

Ωε = {(x1, x2, x3) ∈ ωε × R : 0 < x3 < ε}. (2.2)

Then Ωε denotes the whole fluid part in the thin film.

We define Ω̃ε = ωε × (0, 1) and Ω = ω × (0, 1). We have that

Ω̃ε = Ω\
⋃
k′∈Tε

Ysk′ ,aε = Ω ∩
⋃
k′∈Tε

Yfk′ ,aε .

We denote by L2
] (Y ), H1

] (Y ), the functional spaces

L2
] (Y ) =

{
v ∈ L2

loc(Y ) :

∫
Y
|v|2dy < +∞, v(y′ + k′, y3) = v(y) ∀k′ ∈ Z2, a.e. y ∈ Y

}
,

and

H1
] (Y ) =

{
v ∈ H1

loc(Y ) ∩ L2
] (Y ) :

∫
Y
|∇yv|2dy < +∞

}
.

We denote by Oε a generic real sequence which tends to zero with ε and can change from line to
line and by C a generic positive constant which also can change from line to line.

4



3 Setting and main results

Along this paper, the points x ∈ R3 will be decomposed as x = (x′, x3) with x′ ∈ R2, x3 ∈ R. We also
use the notation x′ to denote a generic vector of R2.

In this section we describe the asymptotic behavior of a viscous fluid in the geometry Ωε described
in Section 2. The proof of the corresponding results will be given in the next sections.

Our results are referred to the non-stationary Stokes system. Namely, let us consider a sequence
(uε, pε) ∈ L2(0, T ;H1

0 (Ωε))
3 × L2(0, T ;L2(Ωε)), which satisfies

∂uε
∂t
− µ∆uε +∇pε = f in (0, T )× Ωε,

div uε = 0 in (0, T )× Ωε,
uε(0, x) = u0

ε(x), x ∈ Ωε,

(3.3)

where T > 0, Ωε is defined by (2.2) and µ > 0 is the viscosity. The right-hand side f is of the form

f(t, x) = (f ′(t, x′), 0), a.e. x ∈ Ω,

where f is assumed in L2((0, T )× ω)2. We deal the problem with Dirichlet boundary condition, i.e.

uε = 0 on (0, T )× ∂Ωε. (3.4)

In the sequel, we always assume that

ε−1/2(a2
ε + ε2)−1/2

∥∥u0
ε

∥∥
L2(Ωε)3

+ ε−1/2
∥∥Du0

ε

∥∥
L2(Ωε)3×3 ≤ C. (3.5)

For any fixed ε, under the assumptions on f(t, x) and u0
ε, a classical result (see Temam [13]) shows that

(3.3)-(3.4) has at least one weak solution (uε, pε) ∈ L2(0, T ;H1
0 (Ωε))

3 × L2((0, T ) × Ωε), where pε is
uniquely defined up to an additive constant, i.e. it is uniquely defined if we consider the corresponding
equivalence class: pε ∈ L2(0, T ;L2(Ωε)/R).

Our aim is to study the asymptotic behavior of uε and pε when ε tends to zero. For this purpose,
we use the dilatation in the variable x3

y3 =
x3

ε
, (3.6)

in order to have the functions defined in an open set with fixed height.

Namely, we define ũε ∈ L2(0, T ;H1
0 (Ω̃ε))

3, p̃ε ∈ L2(0, T ;L2(Ω̃ε)/R) by

ũε(t, x
′, y3) = uε(t, x

′, εy3), p̃ε(t, x
′, y3) = pε(t, x

′, εy3), a.e. (t, x′, y3) ∈ (0, T )× Ω̃ε.

Using the transformation (3.6), the system (3.3) can be rewritten as
∂ũε
∂t
− µ∆x′ ũε − ε−2µ∂2

y3 ũε +∇x′ p̃ε + ε−1∂y3 p̃ε = f in (0, T )× Ω̃ε,

divx′ ũ
′
ε + ε−1∂y3 ũε,3 = 0 in (0, T )× Ω̃ε,

ũε(0, x
′, y3) = ũ0

ε(x
′, y3), (x′, y3) ∈ Ω̃ε,

(3.7)

with Dirichlet boundary condition, i.e.

ũε = 0 on (0, T )× ∂Ω̃ε.
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Our goal then is to describe the asymptotic behavior of this new sequence (ũε, p̃ε).

The sequence of solutions (ũε, p̃ε) ∈ L2(0, T ;H1
0 (Ω̃ε)

3) × L2(0, T ;L2(Ω̃ε)/R) is not defined in a

fixed domain independent of ε but rather in a varying set Ω̃ε. In order to pass the limit if ε tends
to zero, convergences in fixed Sobolev spaces (defined in Ω) are used which requires first that (ũε, p̃ε)
be extended to the whole domain Ω. Then, by definition, an extension (ũε, P̃ε) ∈ L2(0, T ;H1

0 (Ω))3 ×
L2(0, T ;L2(Ω)/R) of (ũε, p̃ε) is defined on (0, T ) × Ω and coincides with (ũε, p̃ε) on (0, T ) × Ω̃ε (we
will use the same notation, ũε, for the velocity in (0, T )× Ω̃ε and its continuation in (0, T )× Ω).

Our main result referred to the asymptotic behavior of the solution of (3.7) is given by the following
theorem.

Theorem 3.1. We distingue three cases depending on the relation between the parameter aε with
respect to ε:

i) if aε ≈ ε, with aε/ε → λ, 0 < λ < +∞, then the extension (ũε/a
2
ε, P̃ε) of the solution of

(3.7) converges weakly to (ũ′, P̃ ) in L2(0, T ;L2(Ω))2×L2(0, T ;L2(Ω)/R). Moreover, it holds that
(Ũ ′, P̃ ) is the unique solution of Darcy’s law

Ũ ′(t, x′) =
Aλ

µ

(
f ′(t, x′)−∇x′P̃ (t, x′)

)
in (0, T )× ω,

divx′Ũ
′(t, x′) = 0 in (0, T )× ω,

Ũ ′(t, x′) · n = 0 in (0, T )× ∂ω,

(3.8)

where Ũ ′(t, x′) =
∫ 1

0 ũ
′(t, x′, y3) dy3 and Aλ is a symmetric, positive, tensor defined by its entries

Aλij =

∫
Yf

Dλw
i(y) : Dλw

j(y) dy, i, j = 1, 2 ,

where Dλ = Dy′ + λ∂y3 and wi(y), for i = 1, 2, with
∫
Y w

i
3dy = 0, denote the unique solutions in

H1
] (Yf )3 of the local stationary Stokes problems in 3D

−∆λw
i +∇λqi = ei in Yf ,

divλw
i = 0 in Yf ,

wi = 0 in ∂Ys ,
wi, qi Y ′ − periodic,

with ∆λ = ∆y′ + λ2∂2
y3, ∇λ = ∇y′ + λ∂y3 and divλ = ∇x′ + λ∂y3.

ii) if aε � ε, then the extension (ũε/a
2
ε, P̃ε) of the solution of (3.7) converges, weakly in L2(0, T ;L2(ω))2×

L2(0, T ;L2(ω)/R), to the unique solution (ũ′, P̃ ) of Darcy’s law
ũ′(t, x′) =

A

µ

(
f ′(t, x′)−∇x′P̃ (t, x′)

)
in (0, T )× ω,

divx′ ũ
′(t, x′) = 0 in (0, T )× ω,

ũ′(t, x′) · n = 0 in (0, T )× ∂ω,

(3.9)

where A is a symmetric, positive, tensor defined by its entries

Aij =

∫
Y ′f

Dy′w
i(y′) : Dy′w

j(y′) dy′, i = 1, 2 , (3.10)
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where, for i = 1, 2, wi(y′) denote the unique solutions in H1
] (Y ′f )2 of the local stationary Stokes

problems in 2D 
−∆y′w

i +∇y′qi = ei in Y ′f
divy′w

i = 0 in Y ′f
wi = 0 in ∂Y ′s

wi, qi Y ′ − periodic.

(3.11)

iii) if aε � ε, then the extension (ũε/ε
2, (aε/ε)P̃ε) of the solution of (3.7) converges, weakly in

L2(0, T ;L2(Ω))2 × L2(0, T ;L2(ω)/R), to the unique solution (ũ′, P̃ ) of Brinkman’s law

−µ∂2
y3 ũ
′(t, x′, y3) + µA ũ′(t, x′, y3) = f ′(t, x′)−∇x′P̃ (t, x′) in (0, T )× Ω,

ũ′(t, x′, y3) = 0 on (0, T )× ∂Ω,

divx′

(∫ 1

0
ũ′(t, x′, y3)dy3

)
= 0 in (0, T )× ω,(∫ 1

0
ũ′(t, x′, y3)dy3

)
· n = 0 in (0, T )× ω ,

(3.12)

where A is given by (3.10).

4 A Priori Estimates

Let us begin with a lemma on Poincaré inequality in Ω̃ε. We reproduce the original proof of Tartar [9].

Let us introduce some notation which will be useful in the following. We introduce the operators:
Dε and divε, by

(Dεv)i,j = ∂xjvi for i = 1, 2, 3, j = 1, 2,

(Dεv)i,3 =
1

ε
∂y3vi for i = 1, 2, 3,

divεv = divx′v
′ +

1

ε
∂y3v3.

Lemma 4.1. There exists a constant C > 0 independent of ε, such that

‖v‖
L2(Ω̃ε)3

≤ C
√
a2
ε + ε2 ‖Dεv‖L2(Ω̃ε)3×3 , ∀v ∈ H1

0 (Ω̃ε)
3. (4.13)

Proof. For any function w(y) ∈ H1
0 (Yf )3, the Poincaré inequality in Yf states that∫
Yf

|w|2 dy′dy3 ≤ C
∫
Yf

|Dyw|2 dy′dy3, (4.14)

where the constant C depends only on Yf .

For every k′ ∈ Z2, by the change of variable

k′ + y′ =
x′

aε
, dy′ =

dx′

a2
ε

∂y′ = aε∂x′ , (4.15)
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we rescale (4.14) from Yf to Yfk′ ,aε . This yields that, for any function w(x′, y3) ∈ H1
0 (Yfk′ ,aε)

3, one has∫
Yfk′ ,aε

|w|2 dx′dy3 ≤ a2
εC

∫
Yfk′ ,aε

|Dx′w|2 dx′dy3 + ε2C

∫
Yfk′ ,aε

∣∣∣∣1ε∂y3w
∣∣∣∣2 dx′dy3 (4.16)

≤ C(a2
ε + ε2)

(∫
Yfk′ ,aε

|Dx′w|2 dx′dy3 +

∫
Yfk′ ,aε

∣∣∣∣1ε∂y3w
∣∣∣∣2 dx′dy3

)
,

with the same constant C as in (4.14). Summing the inequalities (4.16) for every k′ ∈ Tε, which cover
the domain Ω̃ε, gives the desired result (4.13).

We observe that using the hypothesis on the initial data (3.5), it is easy to deduce that

(a2
ε + ε2)−1/2

∥∥ũ0
ε

∥∥
L2(Ω̃ε)3

+
∥∥Dεũ

0
ε

∥∥
L2(Ω̃ε)3×3 ≤ C. (4.17)

Let us obtain some priori estimates for ũε.

Lemma 4.2. Assume that f ∈ L2((0, T )×ω)2. Then, for any initial condition ũ0
ε ∈ H1

0 (Ω̃ε)
3 satisfying

(4.17), there exists a constant C independent of ε, such that the solution ũε ∈ L2(0, T ;H1
0 (Ω̃ε))

3 of the
problem (3.7) satisfies

‖ũε‖L2((0,T )×Ω̃ε)3
≤ C(a2

ε + ε2), ‖Dεũε‖L2((0,T )×Ω̃ε)3×3 ≤ C
√
a2
ε + ε2, (4.18)

‖ũε‖L∞(0,T ;L2(Ω̃ε))3
≤ C

√
a2
ε + ε2,

∥∥∥∥∂ũε∂t
∥∥∥∥
L2((0,T )×Ω̃ε)3

≤ C. (4.19)

Proof. Multiplying by ũε in the first equation of (3.7), integrating over Ω̃ε and using the energy equality,
we have

1

2

d

dt
‖ũε(t)‖2L2(Ω̃ε)3

+ µ ‖Dεũε(t)‖2L2(Ω̃ε)3×3 =

∫
Ω̃ε

f · ũε dx′dy3. (4.20)

Using Cauchy-Schwarz’s inequality, Young’s inequality and (4.13), we obtain that∫
Ω̃ε

f · ũε dx′dy3 ≤ 1

2

C2

µ
(a2
ε + ε2) ‖f(t)‖2

L2(Ω̃ε)
+

1

2

µ

C2(a2
ε + ε2)

‖ũε(t)‖2L2(Ω̃ε)3

≤ 1

2

C2

µ
(a2
ε + ε2) ‖f(t)‖2

L2(Ω̃ε)
+

1

2
µ ‖Dεũε(t)‖2L2(Ω̃ε)3×3 .

Thus, from (4.20), we deduce

d

dt
‖ũε(t)‖2L2(Ω̃ε)3

+ µ ‖Dεũε(t)‖2L2(Ω̃ε)3×3 ≤
C2

µ
(a2
ε + ε2) ‖f(t)‖2

L2(Ω̃ε)
, (4.21)

and integrating between 0 and T

‖ũε(T )‖2
L2(Ω̃ε)3

+ µ

∫ T

0
‖Dεũε(t)‖2L2(Ω̃ε)3×3 dt ≤

∥∥ũ0
ε

∥∥2

L2(Ω̃ε)3
+
C2

µ
(a2
ε + ε2)

∫ T

0
‖f(t)‖2

L2(Ω̃ε)
dt.
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Taking into account the assumption of f and (4.17), we obtain

‖ũε(T )‖2
L2(Ω̃ε)3

+ µ

∫ T

0
‖Dεũε(t)‖2L2(Ω̃ε)3×3 dt ≤ C(a2

ε + ε2),

and therefore, we deduce the second inequality in (4.18) and the first inequality in (4.19).

On the other hand, taking into account (4.13) in (4.21), we obtain

d

dt
‖ũε(t)‖2L2(Ω̃ε)3

+ µC(a2
ε + ε2)−1 ‖ũε(t)‖2L2(Ω̃ε)3

≤ C2

µ
(a2
ε + ε2) ‖f(t)‖2

L2(Ω̃ε)
,

and integrating between 0 and T

‖ũε(T )‖2
L2(Ω̃ε)3

+ µC(a2
ε + ε2)−1

∫ T

0
‖ũε(t)‖2L2(Ω̃ε)3

dt ≤
∥∥ũ0

ε

∥∥2

L2(Ω̃ε)3
+
C2

µ
(a2
ε + ε2)

∫ T

0
‖f(t)‖2

L2(Ω̃ε)
dt.

Taking into account the assumption of f and (4.17), we obtain

‖ũε(T )‖2
L2(Ω̃ε)3

+ µC(a2
ε + ε2)−1

∫ T

0
‖ũε(t)‖2L2(Ω̃ε)3

dt ≤ C(a2
ε + ε2),

and therefore, we deduce the first inequality in (4.18).

Finally, we will prove the second estimate in (4.19). Now, we proceed formally. The rigorous proof
schould be made using the Galerkin approximations. Multiplying by ∂ũε

∂t in the first equation of (3.7),

integrating over Ω̃ε and using the energy equality, we have∥∥∥∥∂ũε(t)∂t

∥∥∥∥2

L2(Ω̃ε)3
+ µ

1

2

d

dt
‖Dεũε(t)‖2L2(Ω̃ε)3×3 =

∫
Ω̃ε

f · ∂ũε
∂t

dx′dy3.

Using Cauchy-Schwarz’s inequality and Young’s inequality, we obtain that∫
Ω̃ε

f · ∂ũε
∂t

dx′dy3 ≤ 1

2
‖f(t)‖2

L2(Ω̃ε)
+

1

2

∥∥∥∥∂ũε(t)∂t

∥∥∥∥2

L2(Ω̃ε)3
.

Then, we deduce ∥∥∥∥∂ũε(t)∂t

∥∥∥∥2

L2(Ω̃ε)3
+ µ

d

dt
‖Dεũε(t)‖2L2(Ω̃ε)3×3 ≤ ‖f(t)‖2

L2(Ω̃ε)
,

and integrating between 0 and T∫ T

0

∥∥∥∥∂ũε(t)∂t

∥∥∥∥2

L2(Ω̃ε)3
dt+ µ ‖Dεũε(T )‖2

L2(Ω̃ε)3×3 ≤ µ
∥∥Dεũ

0
ε

∥∥2

L2(Ω̃ε)3×3 +

∫ T

0
‖f(t)‖2

L2(Ω̃ε)
dt.

Taking into account the assumption of f and (4.17), we obtain the second estimate in (4.19).
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4.1 The Extension of (ũε, p̃ε) to the whole domain (0, T )× Ω

In this section, we will extend the solution (ũε, p̃ε) to the whole domain (0, T ) × Ω. It is easy to
extend the velocity by zero in (0, T )× Ω\Ω̃ε (this is compatible with its Dirichlet boundary condition
on (0, T )×∂Ω̃ε). We will use the same notation, ũε, for the velocity in (0, T )× Ω̃ε and its continuation
in (0, T )× Ω. We note that the extension ũε belongs to L2(0, T ;H1

0 (Ω))3.

Now, we give some properties of the restricted operator from H1
0 (Ω)3 into H1

0 (Ω̃ε)
3 preserving

divergence-free vectors, which was introduced by Tartar [9].

Lemma 4.3. There exists a linear continuous operator Rε acting from H1
0 (Ω)3 into H1

0 (Ω̃ε)
3 such that

1. Rεv = v in Ω̃ε, if v ∈ H1
0 (Ω̃ε)

3

2. divε (Rεv) = 0 in Ω̃ε, if divεv = 0 in Ω

3. For any v ∈ H1
0 (Ω)3 (the constant C̃ is independent of v and ε),

‖Rεv‖L2(Ω̃ε)3
≤ C̃ ‖v‖L2(Ω)3 + C̃aε ‖Dεv‖L2(Ω)3×3 ,

‖DεRεv‖L2(Ω̃ε)3×3 ≤ C̃

aε
‖v‖L2(Ω)3 + C̃ ‖Dεv‖L2(Ω)3×3 .

In order to extend the pressure to the whole domain Ω, we define a function Fε ∈ L2(0, T ;H−1(Ω))3,
for all T > 0, by the following formula (brackets are for the duality products between H−1 and H1

0 ):

〈Fε(t), v〉Ω = 〈∇εp̃ε(t), Rεv〉Ω̃ε
, for any v ∈ H1

0 (Ω)3, ∀t ∈ (0, T ), (4.22)

where Rε is defined in Lemma 4.3. We calcule the right hand side of (4.22) by using (3.7) and we have

〈Fε(t), v〉Ω = µ 〈∆x′ ũε(t), Rεv〉Ω̃ε
+ µ

〈
ε−2∂2

y3 ũε(t), Rεv
〉

Ω̃ε
+ 〈f(t), Rεv〉Ω̃ε

−
〈
∂ũε(t)

∂t
,Rεv

〉
Ω̃ε

, (4.23)

and by using the third point in Lemma 4.3 and (4.18)-(4.19), for fixed ε we can deduce that Fε ∈
L2(0, T ;H−1(Ω))3.

Moreover, if v ∈ H1
0 (Ω̃ε)

3 and we continue it by zero out of Ω̃ε, we see from (4.22) and the first
point in Lemma 4.3 that Fε|Ω̃ε

(t) = ∇εp̃ε(t), for all t ∈ (0, T ).

Moreover, if divεv = 0 by the second point in Lemma 4.3 and (4.22), 〈Fε(t), v〉Ω = 0, for all
t ∈ (0, T ), and this implies that Fε(t) is the gradient of some function P̃ε(t) in L2(Ω), for all t ∈ (0, T ).
This means that Fε is a continuation of ∇εp̃ε to (0, T ) × Ω, and that this continuation is a gradient.
We also may say that p̃ε has been continuated to (0, T )× Ω and

Fε ≡ ∇εP̃ε, P̃ε ∈ L2(0, T ;L2(Ω)/R).

Lemma 4.4. Assume that f ∈ L2((0, T ) × ω)2. Then, for any initial condition ũ0
ε ∈ H1

0 (Ω̃)3 sat-
isfying (4.17) in Ω, there exists a constant C independent of ε, such that the extension (ũε, P̃ε) ∈
L2(0, T ;H1

0 (Ω))3 × L2(0, T ;L2(Ω)/R) of the solution (ũε, p̃ε) of the problem (3.7) satisfies

‖ũε‖L2((0,T )×Ω)3 ≤ C(a2
ε + ε2), ‖Dεũε‖L2((0,T )×Ω)3×3 ≤ C

√
a2
ε + ε2, (4.24)

‖ũε‖L∞(0,T ;L2(Ω))3 ≤ C
√
a2
ε + ε2,

∥∥∥∥∂ũε∂t
∥∥∥∥
L2((0,T )×Ω)3

≤ C, (4.25)
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∥∥∥P̃ε∥∥∥
L2(0,T ;L2(Ω)/R)

≤ C

(√
a2
ε + ε2

aε
+ 1

)
. (4.26)

Proof. We first estimate the velocity. Taking into account Lemma 4.2, it is clear that, after extension,
(4.24) and (4.25) hold.

Let us estimate ∇εP̃ε. Taking into account the third point in Lemma 4.3, we have∣∣∣〈∆x′ ũε(t), Rεv〉Ω̃ε

∣∣∣ ≤ ‖Dx′ ũε(t)‖L2(Ω̃ε)3×2 ‖Dx′Rεv‖L2(Ω̃ε)3×2

≤ ‖Dx′ ũε(t)‖L2(Ω̃ε)3×2

(
C̃

aε
‖v‖L2(Ω)3 + C̃ ‖Dεv‖L2(Ω)3×3

)
,

∣∣∣〈ε−2∂2
y3 ũε(t), Rεv

〉
Ω̃ε

∣∣∣ ≤ ∥∥∥∥1

ε
∂y3 ũε(t)

∥∥∥∥
L2(Ω̃ε)3

∥∥∥∥1

ε
∂y3Rεv

∥∥∥∥
L2(Ω̃ε)3

≤
∥∥∥∥1

ε
∂y3 ũε(t)

∥∥∥∥
L2(Ω̃ε)3

(
C̃

aε
‖v‖L2(Ω)3 + C̃ ‖Dεv‖L2(Ω)3×3

)
,

∣∣∣〈f(t), Rεv〉Ω̃ε

∣∣∣ ≤ ‖f(t)‖
L2(Ω̃ε)3

(
C̃ ‖v‖L2(Ω)3 + C̃aε ‖Dεv‖L2(Ω)3×3

)
,

and ∣∣∣∣∣
〈
∂ũε(t)

∂t
,Rεv

〉
Ω̃ε

∣∣∣∣∣ ≤
∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(Ω̃ε)3

(
C̃ ‖v‖L2(Ω)3 + C̃aε ‖Dεv‖L2(Ω)3×3

)
.

Then, from (4.23), we deduce∣∣∣〈∇εP̃ε(t), v〉
Ω

∣∣∣ ≤ ‖Dεũε(t)‖L2(Ω̃ε)3×3

(
C̃

aε
‖v‖L2(Ω)3 + C̃ ‖Dεv‖L2(Ω)3×3

)

+

(
‖f(t)‖

L2(Ω̃ε)3
+

∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(Ω̃ε)3

)(
C̃ ‖v‖L2(Ω)3 + C̃aε ‖Dεv‖L2(Ω)3×3

)
.

Then, as aε � 1, we see that there exists a positive constant C such that∣∣∣〈∇εP̃ε(t), v〉
Ω

∣∣∣ ≤ C

aε
‖Dεũε(t)‖L2(Ω̃ε)3×3 ‖v‖H1

0 (Ω)3

+

(
‖f(t)‖

L2(Ω̃ε)3
+

∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(Ω̃ε)3

)
‖v‖H1

0 (Ω)3 ,

and consequently∥∥∥∇εP̃ε(t)∥∥∥
H−1(Ω)3

≤ C

aε
‖Dεũε(t)‖L2(Ω̃ε)3×3 + ‖f(t)‖

L2(Ω̃ε)3
+

∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(Ω̃ε)3

.

From the classical inequality (see [9])∥∥∥P̃ε∥∥∥
L2(Ω)/R

≤ C(Ω)
∥∥∥∇εP̃ε∥∥∥

H−1(Ω)3
,
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we obtain ∥∥∥P̃ε(t)∥∥∥
L2(Ω)/R

≤ C

(
1

aε
‖Dεũε(t)‖L2(Ω̃ε)3×3 + ‖f(t)‖

L2(Ω̃ε)3
+

∥∥∥∥∂ũε(t)∂t

∥∥∥∥
L2(Ω̃ε)3

)
.

Integrating between 0 and T , and from (4.18)-(4.19) and the assumption of f , we have (4.26).

4.2 Adaptation of the Unfolding Method

The change of variable (3.6) does not provide the information we need about the behavior of ũε in the
microstructure associated to Ω̃ε. To solve this difficulty, we introduce an adaptation of the unfolding
method (see [1, 2, 3]), which is strongly related to the two-scale convergence method (see Allaire [14]
and Nghetseng [15]). For this purpose, given (ũε, P̃ε) ∈ L2(0, T ;H1

0 (Ω))3×L2(0, T ;L2(Ω)/R), we define
(ûε, P̂ε) by

ûε(t, x
′, y) = ũε

(
t, aεκ

(
x′

aε

)
+ aεy

′, y3

)
, a.e. (t, x′, y) ∈ (0, T )× w × Y, (4.27)

P̂ε(t, x
′, y) = P̃ε

(
t, aεκ

(
x′

aε

)
+ aεy

′, y3

)
, a.e. (t, x′, y) ∈ (0, T )× w × Y, (4.28)

where the function κ is defined in (2.1).

Remark 4.5. For k′ ∈ Tε and for all t ∈ (0, T ), the restriction of (ûε(t), P̂ε(t)) to Y ′k′,aε × Y does

not depend on x′, whereas as a function of y it is obtained from (ũε(t), P̃ε(t)) by using the change of
variables

y′ =
x′ − aεk′

aε
, (4.29)

which transforms Yk′,aε into Y .

Let us obtain some estimates for the sequences (ûε, P̂ε).

Lemma 4.6. Under the assumptions in Lemma 4.4, there exists a constant C independent of ε, such
that (ûε, P̂ε) defined by (4.27)-(4.28) satisfies∥∥Dy′ ûε

∥∥
L2((0,T )×ω×Y )3×2 ≤ Caε

√
a2
ε + ε2, ‖∂y3 ûε‖L2((0,T )×ω×Y )3 ≤ Cε

√
a2
ε + ε2, (4.30)

‖ûε‖L∞(0,T ;L2(ω×Y ))3 ≤ C
√
a2
ε + ε2, ‖ûε‖L2((0,T )×ω×Y )3 ≤ C

(
a2
ε + ε2

)
, (4.31)∥∥∥P̂ε∥∥∥

L2(0,T ;L2(ω×Y )/R)
≤ C

(√
a2
ε + ε2

aε
+ 1

)
. (4.32)

Proof. Let us obtain some estimates for the sequence ûε defined by (4.27). Taking into account the
definition (4.27) of ûε, we obtain∫

ω×Y

∣∣Dy′ ûε(t, x
′, y)

∣∣2 dx′dy ≤
∑
k′∈Tε

∫
Y ′
k′,aε

∫
Y

∣∣Dy′ ûε(t, x
′, y)

∣∣2 dx′dy
=

∑
k′∈Tε

∫
Y ′
k′,aε

∫
Y

∣∣Dy′ ũε(t, aεk
′ + aεy

′, y3)
∣∣2 dx′dy.
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We observe that ũε does not depend on x′, then we can deduce∫
ω×Y

∣∣Dy′ ûε(t, x
′, y)

∣∣2 dx′dy ≤ a2
ε

∑
k′∈Tε

∫
Y

∣∣Dy′ ũε(t, aεk
′ + aεy

′, y3)
∣∣2 dy.

By the change of variables (4.29), we obtain∫
ω×Y

∣∣Dy′ ûε(t, x
′, y)

∣∣2 dx′dy ≤ a2
ε

∑
k′∈Tε

∫
Y ′
k′,aε

∫ 1

0

∣∣Dx′ ũε(t, x
′, y3)

∣∣2 dx′dy3

≤ a2
ε

∫
ω×(0,1)

∣∣Dx′ ũε(t, x
′, y3)

∣∣2 dx′dy3.

Integrating between 0 and T , and taking into account (4.24), we have∫ T

0

∫
ω×Y

∣∣Dy′ ûε(t, x
′, y)

∣∣2 dx′dydt ≤ Ca2
ε

(
a2
ε + ε2

)
.

Similarly, using Remark 4.5 and definition (4.27), we have∫
ω×Y

∣∣∂y3 ûε(t, x′, y)
∣∣2 dx′dy ≤ a2

ε

∑
k′∈Tε

∫
Y

∣∣∂y3 ũε(t, aεk′ + aεy
′, y3)

∣∣2 dy.
By the change of variables (4.29), we obtain∫

ω×Y

∣∣∂y3 ûε(t, x′, y)
∣∣2 dx′dy ≤

∫
ω×(0,1)

∣∣∂y3 ũε(t, x′, y3)
∣∣2 dx′dy3,

integrating between 0 and T and taking into account (4.24), we have∫ T

0

∫
ω×Y

∣∣∂y3 ûε(t, x′, y)
∣∣2 dx′dydt ≤ Cε2(a2

ε + ε2),

so (4.30) is proved.

Similarly, using the definition (4.27) and the change of variables (4.29), we have∫
ω×Y

∣∣ûε(t, x′, y)
∣∣2 dx′dy ≤

∫
Ω

∣∣ũε(t, x′, y3)
∣∣2 dx′dy3.

Taking into account the first estimate in (4.25), we obtain the fist estimate in (4.31). On the other
hand, integrating between 0 and T and taking into account the fist estimate in (4.24), we have∫ T

0

∫
ω×Y

∣∣ûε(t, x′, y)
∣∣2 dx′dydt ≤ C (a2

ε + ε2
)2
,

and (4.31) holds.

Finally, let us obtain some estimates for the sequence P̂ε defined by (4.28). We observe that using
the definition (4.28) of P̂ε, we obtain∫

ω×Y

∣∣∣P̂ε(t, x′, y)
∣∣∣2 dx′dy ≤ ∑

k′∈Tε

∫
Y ′
k′,aε

∫
Y

∣∣∣P̃ε(t, aεk′ + aεy
′, y3)

∣∣∣2 dx′dy.
13



We observe that P̃ε does not depend on x′, then we can deduce∫
ω×Y

∣∣∣P̂ε(t, x′, y)
∣∣∣2 dx′dy ≤ a2

ε

∑
k′∈Tε

∫
Y

∣∣∣P̃ε(t, aεk′ + aεy
′, y3)

∣∣∣2 dy.
By the change of variables (4.29), we obtain∫

ω×Y

∣∣∣P̂ε(t, x′, y)
∣∣∣2 dx′dy ≤ ∫

ω×(0,1)

∣∣∣P̃ε(t, x′, y3)
∣∣∣2 dx′dy3.

Integrating between 0 and T and taking into account (4.26), we have

∫ T

0

∫
ω×Y

∣∣∣P̂ε(t, x′, y)
∣∣∣2 dx′dydt ≤ C (√a2

ε + ε2

aε
+ 1

)2

,

and (4.32) holds.

Remark 4.7. From (4.17) in Ω, it is easy to deduce(
a2
ε + ε2

)−1/2 ∥∥û0
ε

∥∥
L2(ω×Y )3

+ a−1
ε

∥∥Dy′ û
0
ε

∥∥
L2(ω×Y )3×2 + ε−1

∥∥∂y3 û0
ε

∥∥
L2(ω×Y )3

≤ C. (4.33)

5 Some compactness results

In this section we obtain some compactness results about the behavior of the sequences (ũε, P̃ε) and
(ûε, P̂ε) satisfying a priori estimates given in Lemma 4.4 and Lemma 4.6 respectively. We obtain
different behaviors depending on the magnitude aε with respect to ε. Namely, we find a critical regime
aε ≈ ε with aε/ε→ λ, 0 < λ < +∞, and therefore we distingue three different regimes.

Let us start giving a convergence result for the pressure P̃ε.

Lemma 5.1. We distingues three regimes depending on the relation between the parameter aε with
respect to ε:

i) if aε ≈ ε with aε/ε → λ, 0 < λ < +∞, or aε � ε, then for a subsequence of ε still denote by ε
there exists P̃ ∈ L2(0, T ;L2(Ω)/R) such that

P̃ε ⇀ P̃ in L2((0, T )× Ω), (5.34)

ii) if aε � ε, then for a subsequence of ε still denote by ε there exists P̃ ∈ L2(0, T ;L2(Ω)/R) such
that

aε
ε
P̃ε ⇀ P̃ in L2((0, T )× Ω). (5.35)

Proof. Taking into account the estimate of the pressure (4.26), we realize that we have to distingue
three different cases. Namely, the critical case aε ≈ ε, the supercritical case aε � ε and the sub-
critical case aε � ε. Observe that in the critical and supercritical cases, the estimate (4.26) reads

14



∥∥∥P̃ε∥∥∥
L2(0,T ;L2(Ω)/R)

≤ C, which implies the existence P̃ : (0, T ) × Ω → R such that (5.34) holds. By

semicontinuity and the previous estimate of P̃ε, we have∫ T

0

∫
Ω

∣∣∣P̃ (t)
∣∣∣2 dx′dy3dt ≤ C,

which shows that P̃ belongs to L2(0, T ;L2(Ω)/R). For the subcritical case, the estimate (4.26) reads∥∥∥P̃ε∥∥∥
L2(0,T ;L2(Ω)/R)

≤ Cε/aε. Reasoning similarly, we have (5.35).

We will give a convergence result for ũε.

Lemma 5.2. For a subsequence of ε still denote by ε,

i) if aε ≈ ε with aε/ε → λ, 0 < λ < +∞, then there exists ũ ∈ L2(0, T ;H1(0, 1;L2(ω))3) where
ũ3 = 0, and ũ = 0 on (0, T )× ∂Ω, such that

ũε
a2
ε

⇀ (ũ′, 0) in L2(0, T ;H1(0, 1;L2(ω))3), (5.36)

ii) if aε � ε, then there exists ũ ∈ L2(0, T ;L2(Ω)3) where ũ3 = 0 and ũ′ does not depend on y3, with
ũ = 0 on (0, T )× ∂Ω, such that

ũε
a2
ε

⇀ (ũ′, 0) in L2(0, T ;L2(ω)3), (5.37)

iii) if aε � ε, then there exist ũ ∈ L2(0, T ;H1(0, 1;L2(ω))3) where ũ3 = 0, w̃ ∈ L2(0, T ;H2(0, 1;H−1(ω))),
with ũ = w̃ = 0 on (0, T )× ∂Ω, such that

ũε
ε2

⇀ (ũ′, 0) in L2(0, T ;H1(0, 1;L2(ω))3), (5.38)

ũε,3
ε3

⇀ w̃ in L2(0, T ;H2(0, 1;H−1(ω))), (5.39)

divx′ ũ
′ + ∂y3w̃ = 0 in (0, T )× Ω . (5.40)

Furthermore, it holds

divx′

(∫ 1

0
ũ′(t, x′, y3)dy3

)
= 0 in (0, T )× ω,

(∫ 1

0
ũ′(t, x′, y3)dy3

)
· n = 0 on (0, T )× ∂ω. (5.41)

Proof. Taking into account the estimate of the velocity (4.24) for every case, we argue similarly to the
proof of Lemma 5.2 in [16].

Now, we give a convergence result for the pressure P̂ε.

Lemma 5.3. We distingues three regimes depending on the relation between the parameter aε with
respect to ε:
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i) if aε ≈ ε with aε/ε → λ, 0 < λ < +∞, or aε � ε, then for a subsequence of ε still denote by ε
there exists P̂ ∈ L2(0, T ;L2(ω × Y )/R) such that

P̂ε ⇀ P̂ in L2((0, T )× ω × Y ), (5.42)

ii) if aε � ε, then for a subsequence of ε still denote by ε there exists P̂ ∈ L2(0, T ;L2(ω × Y )/R)
such that

aε
ε
P̂ε ⇀ P̂ in L2((0, T )× ω × Y ). (5.43)

Proof. In i) the estimates (4.32) reads
∥∥∥P̂ε∥∥∥

L2(0,T ;L2(ω×Y )/R)
≤ C, which implies the existence P̂ :

(0, T )×ω×Y → R such that (5.42) holds. By semicontinuity and the previous estimate of P̂ε, we have∫ T

0

∫
ω×Y

∣∣∣P̂ (t)
∣∣∣2 dx′dydt ≤ C,

which shows that P̂ belongs to L2(0, T ;L2(ω × Y )/R). In ii), we have that the estimate (4.32) reads∥∥∥P̂ε∥∥∥
L2(0,T ;L2(ω×Y )/R)

≤ Cε/aε. Reasoning similarly, we have (5.43).

Next, we give a convergence result for ûε.

Lemma 5.4. For a subsequence of ε still denote by ε,

i) if aε ≈ ε with aε/ε → λ, 0 < λ < +∞, then there exist û ∈ L2(0, T ;L2(ω;H1
] (Y )3)), ŵ ∈

L∞(0, T ;L2(ω;L2
] (Y )3)), with û = ŵ = 0 on (0, T )× ω × Ys, such that

ûε
a2
ε

⇀ û in L2(0, T ;L2(ω;H1(Y )3)), (5.44)

ûε
aε

∗
⇀ ŵ in L∞(0, T ;L2(ω × Y ))3, (5.45)

divλû = 0 in (0, T )× ω × Y, (5.46)

divx′

(∫
Y
û′(t, x′, y)dy

)
= 0 in (0, T )× ω,

(∫
Y
û′(t, x′, y)dy

)
· n = 0 on (0, T )× ∂ω, (5.47)

where divλ = divy′ + λ∂y3,

ii) if aε � ε, then there exist û ∈ L2(0, T ;L2(ω;H1
] (Y ′)3)) independent of y3, ŵ ∈ L∞(0, T ;L2(ω;L2

] (Y )3)),
with û = ŵ = 0 on (0, T )× ω × Y ′s , such that

ûε
a2
ε

⇀ û in L2(0, T ;L2(ω;H1(Y ′)3)), (5.48)

ûε
aε

∗
⇀ ŵ in L∞(0, T ;L2(ω × Y ))3, (5.49)

divy′ û
′ = 0 in (0, T )× ω × Y ′. (5.50)

divx′

(∫
Y ′
û′(t, x′, y′)dy′

)
= 0 in (0, T )× ω,

(∫ ′
Y
û′(t, x′, y′)dy′

)
· n = 0 on (0, T )× ∂ω,

(5.51)
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iii) if aε � ε, then there exist û ∈ L2(0, T ;L2(Ω;H1
] (Y ′)3)), ŵ ∈ L∞(0, T ;L2(ω × Y ))3, with û =

ŵ = 0 on ω × Ys, such that

ûε
ε2

⇀ (ũ′, 0) in L2(0, T ;H1(0, 1;L2(ω × Y ′)3)), (5.52)

ûε
ε

∗
⇀ ŵ in L∞(0, T ;L2(ω × Y ))3, (5.53)

a−1
ε ε−1Dy′ ûε ⇀ Dy′ û in L2(0, T ;L2(ω × Y )3×2), (5.54)

divy′ û
′ = 0 in (0, T )× ω × Y. (5.55)

Proof. We proceed in four steps.
Step 1. Critical case aε ≈ ε. In this case, the estimates (4.30)-(4.31) read

‖ûε‖L2((0,T )×ω×Y )3 ≤ Ca
2
ε, ‖Dyûε‖L2((0,T )×ω×Y )3×3 ≤ Ca2

ε, ‖ûε‖L∞(0,T ;L2(ω×Y ))3 ≤ Caε. (5.56)

Taking into account the Dirichlet condition, the above estimates imply the existence û, ŵ : (0, T )×ω×
Y → R3, such that, up to a subsequence, convergences (5.44)-(5.45) hold. By semicontinuity and the
estimates given in (5.56), we have∫ T

0

∫
ω×Y
|û|2 dx′dydt ≤ C,

∫ T

0

∫
ω×Y
|Dyû|2 dx′dydt ≤ C, sup

t∈(0,T )
ess ‖ŵ(t)‖L2(ω×Y )3 ≤ C,

which shows that û ∈ L2(0, T ;L2(ω;H1(Y )3)), ŵ ∈ L∞(0, T ;L2(ω × Y ))3.

It remains to prove the Y ′-periodicity of û in y′. To do this, we observe that by definition of ûε
given by (4.27), we have

ûε(t, x1 + ε, x2,−1/2, y2, y3) = ûε(t, x
′, 1/2, y2, y3) a.e. (t, x′, y2, y3) ∈ (0, T )× ω × (−1/2, 1/2)× (0, 1) ,

which, dividing by a4
ε and taking into account convergence (5.44), gives

û(t, x′,−1/2, y2, y3) = û(t, x′, 1/2, y2, y3) a.e. (t, x′, y2, y3) ∈ (0, T )× ω × (−1/2, 1/2)× (0, 1) .

Analogously, we can prove

û(t, x′, y1,−1/2, y3) = û(t, x′, y1, 1/2, y3) a.e. (t, x′, y1, y3) ∈ (0, T )× ω × (−1/2, 1/2)× (0, 1) .

These equalities prove the periodicity of û.

Since divεũε = 0 in (0, T ) × Ω, then by definition of ûε we have a−1
ε divy′ û

′
ε + ε−1∂y3 ûε,3 = 0.

Multipying by a−1
ε , we obtain

a−2
ε divy′ û

′
ε +

aε
ε
a−2
ε ∂y3 ûε,3 = 0, in (0, T )× ω × Y, (5.57)

which combined with (5.44) and aε/ε→ λ, proves (5.46).

Step 2. Supercritical case aε � ε. In this case, the estimates (4.30)-(4.31) read∥∥Dy′ ûε
∥∥
L2((0,T )×ω×Y )3×2 ≤ Ca2

ε, ‖∂y3 ûε‖L2((0,T )×ω×Y )3 ≤ Cεaε, (5.58)
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‖ûε‖L∞(0,T ;L2(ω×Y ))3 ≤ Caε ‖ûε‖L2((0,T )×ω×Y )3 ≤ Ca
2
ε. (5.59)

Therefore from the first estimate in (5.58) and (5.59), up to a subsequence and using a semicontinuity
argument, there exist û ∈ L2(0, T ;L2(Ω;H1(Y ′)3)), ŵ ∈ L∞(0, T ;L2(ω × Y ))3 such that

ûε
a2
ε

⇀ û in L2(0, T ;L2(Ω;H1(Y ′)3)), (5.60)

ûε
aε

∗
⇀ ŵ in L∞(0, T ;L2(ω × Y ))3.

Since ε−1a−1
ε ∂y3 ûε is bounded in L2((0, T ) × ω × Y )3, we observe that a−2

ε ∂y3 ûε is also bounded in
L2((0, T )× ω × Y )3 and tends to zero. This together (5.60) implies

a−2
ε ∂y3 ûε → ∂y3 û in L2(0, T ;L2(Ω;H1(Y ′)3)).

By the uniqueness of the limit, we deduce that ∂y3 û = 0 and so û does not depend on y3.

In order to proof the Y ′-periodicity of û in y′, we proceed similarly to the step 1.

Integrating (5.57) in the variable y3 between 0 and 1, and taking into account the convergence

(5.60), we deduce divy′
(∫ 1

0 û
′(t, x′, y)dy3

)
= 0. Since û′ does not depend on y3, we get (5.50).

Step 3. In order to prove (5.47) and (5.51), let us first prove the following relation between ũ and
û, ∫

Y
û(t, x′, y)dy =

∫ 1

0
ũ(t, x′, y3)dy3. (5.61)

For this, let us consider v ∈ C1
c (ω). We observe that using the definition (4.27) of ûε, we obtain

1

a2
ε

∫
ω

∫
Y
ûε(t, x

′, y)v(x′)dydx′ =
1

a2
ε

∑
k′∈Tε

∫
Y ′
k′,aε

∫
Y
ũε(t, aεk

′ + aεy
′, y3) v(aεk

′ + aεy
′)dydx′ +Oε.

We observe that ũε and v do not depend on x′, then we can deduce

1

a2
ε

∫
ω

∫
Y
ûε(t, x

′, y)v(x′)dydx′ =
∑
k′∈Tε

∫
Y ′

∫ 1

0
ũε(t, aεk

′ + aεy
′, y3) v(aεk

′ + aεy
′)dy3dy

′ +Oε.

By the change of variables (4.29), we obtain

1

a2
ε

∫
ω

∫
Y
ûε(t, x

′, y)v(x′)dydx′ =
1

a2
ε

∑
k′∈Tε

∫
Y ′
k′,aε

∫ 1

0
ũε(t, x

′, y3) v(x′)dy3dx
′

=
1

a2
ε

∫
ω

∫ 1

0
ũε(t, x

′, y3) v(x′)dy3dx
′ +Oε.

We consider ϕ ∈ C1
c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) 6= 0. Multiplying by ϕ and integrating

between 0 and T , we have

1

a2
ε

∫ T

0

∫
ω

∫
Y
ûε(t, x

′, y)v(x′)ϕ(t)dydx′dt =
1

a2
ε

∫ T

0

∫
ω

∫ 1

0
ũε(t, x

′, y3) v(x′)ϕ(t)dy3dx
′dt+Oε.
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Taking into account the convergences (5.36) and (5.44) for the critical case, and (5.37) and (5.48)
for the supercritical case, we obtain (5.61) for both cases. This together with (5.41) implies (5.47) and
(5.51).

Step 4. Subcritical case aε � ε. In this case, the estimates (4.30)-(4.31) read∥∥Dy′ ûε
∥∥
L2((0,T )×ω×Y )3×2 ≤ Cεaε, ‖∂y3 ûε‖L2((0,T )×ω×Y )3 ≤ Cε

2, (5.62)

‖ûε‖L∞(0,T ;L2(ω×Y ))3 ≤ Cε ‖ûε‖L2((0,T )×ω×Y )3 ≤ Cε
2. (5.63)

Therefore from the second estimate in (5.62) and (5.63), up to a subsequence and using a semicontinuity
argument, there exist v̂ ∈ L2(0, T ;H1(0, 1;L2(ω × Y ′)3)), ŵ ∈ L∞(0, T ;L2(ω × Y ))3 such that

ûε
ε2

⇀ v̂ in L2(0, T ;H1(0, 1;L2(ω × Y ′)3)), (5.64)

ûε
ε

∗
⇀ ŵ in L∞(0, T ;L2(ω × Y ))3.

Since ε−1a−1
ε Dy′ ûε is bounded in L2((0, T )× ω × Y )3×2, we observe that ε−2Dy′ ûε is also bounded in

L2((0, T )× ω × Y )3×2 and tends to zero. This together (5.64) implies

ε−2Dy′ ûε ⇀ Dy′ v̂ in L2(0, T ;H1(0, 1;L2(ω × Y ′)3×2)).

By the uniqueness of the limit, we deduce that Dy′ v̂ = 0 and so v̂ does not depend on y′.

Taking into account (5.38) and (5.64), and proceeding as in (5.61), we obtain

ũ(t, x′, y3) =

∫
Y ′
v̂(t, x′, y)dy′. (5.65)

Since v̂ does not depend on y′, we have that v̂ = (ũ′, 0).

From the first estimate in (5.62), up to a subsequence and using a semicontinuity argument, there
exists û ∈ L2(0, T ;L2(Ω;H1(Y ′)3)) such that

a−1
ε ε−1Dy′ ûε ⇀ Dy′ û in L2(0, T ;L2(ω × Y )3×2). (5.66)

Since divεũε = 0 in Ω, then by definition of ûε we have

a−1
ε ε−1divy′ û

′
ε + ε−2∂y3 ûε,3 = 0 in (0, T )× ω × Y,

which passing to the limit and taking into account that ũ3 = 0, we obtain (5.55).

In order to proof the Y ′-periodicity of û in y′, we proceed similarly to the step 1.

Remark 5.5. From (4.33), it is easy to deduce

i) if aε ≈ ε with aε/ε→ λ, 0 < λ < +∞, then there exists û0 ∈ L2(ω × Y )3, such that

û0
ε

aε
⇀ û0 in L2(ω × Y )3,
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ii) if aε � ε then there exists û0 ∈ L2(ω × Y ′)3, such that

û0
ε

aε
⇀ û0 in L2(ω × Y ′)3,

iii) if aε � ε, then there exists û0 ∈ L2(ω × Y )3, such that

û0
ε

ε
⇀ û0 in L2(ω × Y )3.

6 Homogenized models

In this section, we will multiply system (3.7) by a test function having the form of the limit û (see
Lemma 5.4), and we will use the convergences given in the previous section in order to identify the
homogenized model in every cases. This is the focus of the following theorem.

Theorem 6.1. We distingue the three cases:

i) if aε ≈ ε, with aε/ε → λ, 0 < λ < +∞, then (ûε/a
2
ε, P̂ε) converges to the unique solution

(û(t, x′, y), P̃ (t, x′)), with
∫
Y û3dy = 0, of the homogenized problem

−µ∆λû+∇λq̂ = f ′ −∇x′P̃ in (0, T )× ω × Yf ,
divλû = 0 in (0, T )× ω × Yf ,

û = 0 in (0, T )× ω × Ys
divx′

(∫
Y
û′(t, x′, y)dy

)
= 0 in (0, T )× ω,(∫

Y
û′(t, x′, y)dy

)
· n = 0 on (0, T )× ∂ω,

y′ → û, q̂ Y ′ − periodic,

(6.67)

where ∆λ = ∆y′ + λ2∂2
y3, ∇λ = ∇y′ + λ∂y3 and divλ = ∇x′ + λ∂y3.

ii) if aε � ε, then (ûε/a
2
ε, P̂ε) converges to the unique solution (û′(t, x′, y′), P̃ (t, x′)), with û3 = 0, of

the homogenized problem

−µ∆y′ û
′ +∇y′ q̂ = f ′ −∇x′P̃ in (0, T )× ω × Y ′f ,

divy′ û
′ = 0 in (0, T )× ω × Y ′f ,
û′ = 0 in (0, T )× ω × Y ′s

divx′

(∫
Y ′
û′(t, x′, y′)dy′

)
= 0 in (0, T )× ω,(∫

Y ′
û′(t, x′, y′)dy′

)
· n = 0 on (0, T )× ∂ω,

y′ → û′, q̂ Y ′ − periodic.

(6.68)

iii) if aε � ε, then (ũε/ε
2, (aε/ε)P̃ε) converges to the unique solution (ũ′(t, x′, y3), P̃ (t, x′)) of the
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homogenized problem

−µ∂2
y3 ũ
′ + µAũ′ = f ′ −∇x′P̃ in (0, T )× Ω ,

ũ′ = 0 on (0, T )× ∂Ω ,

divx′

(∫ 1

0
ũ′(t, x′, y3)dy3

)
= 0 in (0, T )× ω ,(∫ 1

0
ũ′(t, x′, y3)dy3

)
· n = 0 in (0, T )× ω .

(6.69)

where A is a symmetric, positive definite, tensor defined in (3.10) through the solution wi(y′),
i = 1, 2, of local stationary Stokes problems in 2D (3.11).

Furthermore, û′ε/(εaε) converges weakly to û′, which is given by the relation

û′(t, x′, y) =
2∑
i=1

ũi(t, x
′, y3)wi(y′) .

Proof. First of all, we choose a test function v(x′, y) ∈ D(ω;C∞] (Y )3) with v(x′, y) = 0 ∈ ω× Ys (thus,

v(x′, x′/aε, y3) ∈ H1
0 (Ω̃ε)

3). Multiplying (3.7) by v(x′, x′/aε, y3) and integrating by parts, we have

d

dt

(∫
Ω
ũε(t) · v dx′dy3

)
+ µ

∫
Ω
Dx′ ũε(t) : Dx′v dx

′dy3 +
µ

aε

∫
Ω
Dx′ ũε(t) : Dy′v dx

′dy3

+
µ

ε2

∫
Ω
∂y3 ũε(t) : ∂y3v dx

′dy3 −
∫

Ω
P̃ε(t) divx′v

′ dx′dy3 −
1

aε

∫
Ω
P̃ε(t) divy′v

′ dx′dy3

−1

ε

∫
Ω
P̃ε(t) ∂y3v3 dx

′dy3 =

∫
Ω
f ′(t) · v′ dx′dy3 ,

in D′(0, T ). By the change of variables given in Remark 4.5, we obtain

d

dt

(∫
ω×Y

û′ε(t) · v′ dx′dy
)

+
µ

a2
ε

∫
ω×Y

Dy′ û
′
ε(t) : Dy′v

′ dx′dy +
µ

ε2

∫
ω×Y

∂y3 û
′
ε(t) : ∂y3v

′ dx′dy

−
∫
ω×Y

P̂ε(t) divx′v
′ dx′dy − 1

aε

∫
ω×Y

P̂ε(t) divy′v
′ dx′dy =

∫
ω×Y

f ′(t) · v′ dx′dy +Oε ,

and

d

dt

(∫
ω×Y

ûε,3(t) · v3 dx
′dy

)
+
µ

a2
ε

∫
ω×Y
∇y′ ûε,3(t) · ∇y′v3 dx

′dy +
µ

ε2

∫
ω×Y

∂y3 ûε,3(t) : ∂y3v dx
′dy

−1

ε

∫
ω×Y

P̂ε(t) ∂y3v3 dx
′dy +Oε = 0 .

We consider ϕ ∈ C1
c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) 6= 0. Multiplying by ϕ and integrating

between 0 and T , we have

−ϕ(0)

∫
ω×Y

(û0
ε)
′ · v′ dx′dy −

∫ T

0

d

dt
ϕ(t)

∫
ω×Y

û′ε(t) · v′ dx′dydt

+
µ

a2
ε

∫ T

0
ϕ(t)

∫
ω×Y

Dy′ û
′
ε(t) : Dy′v

′ dx′dydt+
µ

ε2

∫ T

0
ϕ(t)

∫
ω×Y

∂y3 û
′
ε(t) : ∂y3v

′ dx′dydt

−
∫ T

0
ϕ(t)

∫
ω×Y

P̂ε(t) divx′v
′ dx′dydt− 1

aε

∫ T

0
ϕ(t)

∫
ω×Y

P̂ε(t) divy′v
′ dx′dydt

=

∫ T

0
ϕ(t)

∫
ω×Y

f ′(t) · v′ dx′dydt+Oε ,

(6.70)
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and

−ϕ(0)

∫
ω×Y

û0
ε,3 · v3 dx

′dy −
∫ T

0

d

dt
ϕ(t)

∫
ω×Y

ûε,3(t) · v3 dx
′dydt

+
µ

a2
ε

∫ T

0
ϕ(t)

∫
ω×Y
∇y′ ûε,3(t) : ∇y′v3 dx

′dydt+
µ

ε2

∫ T

0
ϕ(t)

∫
ω×Y

∂y3 ûε,3(t) · ∂y3v dx′dydt

−1

ε

∫ T

0
ϕ(t)

∫
ω×Y

P̂ε(t) ∂y3v3 dx
′dydt+Oε = 0 .

(6.71)

This variational formulation will be useful in the following steps.

We proceed in three steps.
Step 1. Critical case aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞.

First, we prove that P̂ does not depend on the microscopic variable y. To do this, we consider as
test function aεv

′(x′, x′/aε, y3) in (6.70) and εv3(x′, x′/aε, y3) in (6.71), which gives

−aεϕ(0)

∫
ω×Y

(û0
ε)
′ · v′ dx′dy − aε

∫ T

0

d

dt
ϕ(t)

∫
ω×Y

û′ε(t) · v′ dx′dydt

+
µ

aε

∫ T

0
ϕ(t)

∫
ω×Y

Dy′ û
′
ε(t) : Dy′v

′ dx′dydt+ µ
aε
ε2

∫ T

0
ϕ(t)

∫
ω×Y

∂y3 û
′
ε(t) : ∂y3v

′ dx′dydt

−
∫ T

0
ϕ(t)

∫
ω×Y

P̂ε(t)divy′v
′ dx′dydt = aε

∫ T

0
ϕ(t)

∫
ω×Y

f ′(t) · v′ dx′dydt+Oε ,

−εϕ(0)

∫
ω×Y

û0
ε,3 · v3 dx

′dy − ε
∫ T

0

d

dt
ϕ(t)

∫
ω×Y

ûε,3(t) · v3 dx
′dydt

+µ
ε

a2
ε

∫ T

0
ϕ(t)

∫
ω×Y
∇y′ ûε,3(t) · ∇y′v3 dx

′dydt+
µ

ε

∫ T

0
ϕ(t)

∫
ω×Y

∂y3 ûε,3(t) · ∂y3v3 dx
′dydt

−
∫ T

0
ϕ(t)

∫
ω×Y

P̂ε(t) ∂y3v3 dx
′dydt+Oε = 0 .

We pass to the limit when ε tends to zero and using Remark 5.5, convergences (5.42), (5.44) and (5.45)
with

v
d

dt
ϕ(t) ∈ L1(0, T ;L2(ω × Y ))3, vϕ(t) ∈ L2(0, T ;L2(ω;H1(Y )3)), (6.72)

we have ∫ T

0
ϕ(t)

∫
ω×Y

P̂ (t)divyv(x′, y) dx′dydt = 0,

which shows that P̂ does not depend on y.

Now, we choose a test function vε = (v′(x′, x′/aε, y3), λ ε/aε v3(x′, x′/aε, y3)) in (6.70)-(6.71) with
v(x′, y)ϕ(t) = 0 in (0, T ) × ω × Ys, and satisfying incompressibility conditions (5.46) and (5.47), i.e.
divλ(v(x′, y)ϕ(t)) = 0 in (0, T ) × ω × Y and divx′(

∫
Y v
′(x′, y)ϕ(t) dy) = 0 in (0, T ) × ω respectively.

Taking into account (6.72), we pass to the limit when ε tends to zero and using Remark 5.5 and the
convergences (5.42), (5.44) and (5.45), we have

µ

∫ T

0
ϕ(t)

∫
ω×Y

Dy′ û(t) : Dy′v dx
′dydt+ µλ2

∫ T

0
ϕ(t)

∫
ω×Y

∂y3 û(t) : ∂y3v dx
′dydt

=

∫ T

0
ϕ(t)

∫
ω×Y

f ′(t) · v′ dx′dydt .
(6.73)
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By density (6.73) holds for every function w in the Hilbert space V defined by

V =


w(t, x′, y) ∈ L2(0, T ;L2(ω;H1

] (Y )3)), such that

divλw(t, x′, y) = 0 in (0, T )× ω × Y, divx′

(∫
Y
w(t, x′, y) dy

)
= 0 in (0, T )× ω,

w(t, x′, y) = 0 in (0, T )× ω × Ys,
(∫

Y
w(t, x′, y) dy

)
· n = 0 on (0, T )× ω

 .

By Lax-Milgram lemma, the variational formulation (6.73) in the Hilbert space V admits a unique
solution û in V . Reasoning as in [10], the orthogonal of V with respect to the usual scalar prod-
uct in L2((0, T ) × ω × Y ) is made of gradients of the form ∇x′q(t, x′) + ∇λq̂(t, x′, y), with q(t, x′) ∈
L2(0, T ;L2(ω)/R) and q̂(t, x′, y) ∈ L2(0, T ;L2(ω;H1

] (Y ))). Therefore, by integration by parts, the
variational formulation (6.73) is equivalent to the homogenized system defined in (6.67). It remains
to prove that the pressure P̃ (t, x′) arising as a Lagrange multiplier of the incompressibility constraint
divx′(

∫
Y û(t, x′, y)dy) = 0 is the same as the limit of the pressure P̃ε. This can be easily done by mul-

tiplying equation (3.7) by a test function with divλ equal to zero, and identifying limits. Since (6.67)
admits a unique solution, then the complete sequence (ûε/a

2
ε, P̂ε) converges to the unique solution

(û(t, x′, y), P̃ (t, x′)). This gives the desired result. Finally, observe that (5.61) and ũ3 = 0, we have
that

∫
Y û3dy = 0.

Step 2. Supercritical case aε � ε.

First, we show that P̂ does not depend on the vertical variable y3. To do this, we consider as
test function εv3(x′, x′/aε, y3) in (6.71). Taking into account (6.72), we pass to the limit when ε tends
to zero and using Remark 5.5, the convergences (5.42), (5.48) and (5.49) and the second estimate in
(5.58), we get ∫ T

0
ϕ(t)

∫
ω×Y

P̂ (t) ∂y3v3 dx
′dydt = 0.

This shows that P̂ does not depend on y3.

Since we have to consider test function v′ in (6.70) reflecting the behavior of û′, then we consider
test functions v′ independent of y3. Thus, let us now prove that P̂ does not depend on the microscopic
variable y′. For this, we take now as test function aεv

′(x′, x′/aε) in (6.70). Taking into account (6.72),
we pass to the limit when ε tends to zero and using Remark 5.5, the convergences (5.42), (5.48) and
(5.49), we get ∫ T

0
ϕ(t)

∫
ω×Y ′

P̂ (t) divy′v
′ dx′dy′dt = 0,

which implies that P̂ does not depend on y′. Thus, we conclude that P̂ does not depend on the entire
variable y.

Finally, we take as test function v′(x′, x′/aε) in (6.70) satisfying (5.50) and (5.51), i.e., we consider
divy′(v

′(x′, y′)ϕ(t)) = 0 in (0, T )×ω×Y ′ and divx′(
∫
Y ′ v

′(x′, y′)ϕ(t) dy′) = 0 in (0, T )×ω respectively.

Passing to the limit and taking into account that P̂ does not depend on y and that û′, v′ do not depend
on y3, we get

µ

∫ T

0
ϕ(t)

∫
ω×Y ′

Dy′ û
′
ε(t) : Dy′v

′ dx′dy′dt =

∫ T

0
ϕ(t)

∫
ω×Y ′

f ′(t) · v′ dx′dy′dt. (6.74)
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By density, and reasoning as in Step 1, the variational formulation (6.74) is equivalent to the homoge-
nized system (6.68) (it is easy to see that û3 = 0).

Step 3. Subcritical case aε � ε.

First, we show that P̂ does not depend on the vertical variable y3. To do this, we consider as test
function aεv3(x′, x′/aε, y3) in (6.71). Taking into account (6.72), we pass to the limit when ε tends to
zero and using Remark 5.5, the convergences (5.43), (5.52), (5.53) and (5.54), we get∫ T

0
ϕ(t)

∫
ω×Y

P̂ (t) ∂y3v3 dx
′dydt = 0.

This shows that P̂ does not depend on y3.

Now, we consider as test function (a2
ε/ε)v

′(x′, x′/aε, y3) in (6.70). Passing to the limit, we have∫ T

0
ϕ(t)

∫
ω×Y

P̂ (t) divy′v
′ dx′dydt = 0,

which shows that P̂ does not depend on y′, and so P̂ only depends on x′.

Taking into account convergences (5.38)-(5.39) and (5.54), and free divergence conditions (5.40)-
(5.41) and (5.55), we choose in (3.7) the following test function{

v′ε(x
′, y3) = v′(x′, y3) + aε

ε φ
′(x′, x′/aε, y3),

vε,3(x′, y3) = εv3(x′, y3) + aεφ3(x′, x′/aε, y3),

such that
divx′(v

′(x′, y3)ϕ(t)) + ∂y3(v3(x′, y3)ϕ(t)) = 0, in (0, T )× Ω,

divx′

(∫ 1

0
v′(x′, y3)ϕ(t)dy3

)
= 0, in (0, T )× ω,

divy′(φ
′(x′, y)ϕ(t)) = 0, in (0, T )× ω × Y.

Integrating by parts, applying the change of variables given in Remark 4.5 in the integrals involving
the test functions φ, multiplying by ϕ and integrating between 0 and T , we obtain

−ϕ(0)

∫
Ω

(ũ0
ε)
′ · v′ dx′dy3 −

∫ T

0

d

dt
ϕ(t)

∫
Ω
ũ′ε(t) · v′ dx′dy3dt

−εϕ(0)

∫
Ω
ũ0
ε,3 · v3 dx

′dy3 − ε
∫ T

0

d

dt
ϕ(t)

∫
Ω
ũε,3(t) · v3 dx

′dy3dt

µ

ε2

∫ T

0
ϕ(t)

∫
Ω
∂y3 ũ

′
ε(t) : ∂y3v

′ dx′dy3dt+
µ

εaε

∫ T

0
ϕ(t)

∫
ω×Y

Dy′ û
′
ε(t) : Dy′φ

′ dx′dydt

−aε
ε

∫ T

0
ϕ(t)

∫
ω×Y

P̂ε(t) divx′φ
′ dx′dydt− aε

ε

∫ T

0
ϕ(t)

∫
ω×Y

P̂ε(t) ∂y3φ3 dx
′dydt

=

∫ T

0
ϕ(t)

∫
Ω
f ′(t) · v′ dx′dy3dt+Oε.

(6.75)
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From the first estimate in (4.25), up to a subsequence and using a semicontinuity argument, there
exists ŵ ∈ L∞(0, T ;L2(Ω))3 such that

ũε
ε

∗
⇀ ŵ in L∞(0, T ;L2(Ω))3,

and from (4.17) in Ω, it is easy to deduce that there exists ũ0 ∈ L2(Ω)3, such that

ũ0
ε

ε
⇀ ũ0 in L2(Ω)3.

Taking into account

v
d

dt
ϕ(t) ∈ L1(0, T ;L2(Ω))3, vϕ(t) ∈ L2(0, T ;H1(0, 1;L2(ω))3), φ ϕ(t) ∈ L2(0, T ;L2(ω;H1(Y )3)),

we pass to the limit when ε tends to zero and using the above convergences, convergences (5.38) and
(5.54) for the velocity, and (5.43) for the pressure and taking into account that P̂ does not depend on
y3, we get

µ

∫ T

0
ϕ(t)

∫
Ω
∂y3 ũ

′(t) : ∂y3v
′ dx′dy3dt+ µ

∫ T

0
ϕ(t)

∫
ω×Y

Dy′ û
′(t) : Dy′φ

′ dx′dydt

−
∫ T

0
ϕ(t)

∫
ω×Y

P̂ (t) divx′φ
′ dx′dydt =

∫ T

0
ϕ(t)

∫
Ω
f ′(t) · v′ dx′dy3dt.

(6.76)

Let us now obtain a problem for ũ′ eliminating û′ and P̂ in (6.76). For this purpose, we define

û′(t, x′, y) =
2∑
i=1

ũi(t, x
′, y3)wi(y′), φ′(x′, y)ϕ(t) =

2∑
i=1

vi(x
′, y3)ϕ(t)wi(y′),

where wi, i = 1, 2 are the unique solution of the local problems (3.11). Then, (6.76) reads as follows

µ

∫ T

0
ϕ(t)

∫
Ω
∂y3 ũ

′(t) : ∂y3v
′ dx′dy3dt+µA

∫ T

0
ϕ(t)

∫
Ω
ũ′(t) · v′ dx′dy3dt=

∫ T

0
ϕ(t)

∫
Ω
f ′(t) · v′ dx′dy3dt ,

where A is defined in (3.10).

By density, and reasoning as in Step 1, this variational formulation is equivalent to the homogenized
system (6.69).

In the final step, we will eliminate the microscopic variable y in the homogenized problem. This is
the focus of the Theorem 3.1.

Proof of Theorem 3.1. In the cases aε ≈ ε, with aε/ε → λ, 0 < λ < +∞ or aε � ε, the derivation
of (3.8) and (3.9) from the homogenized problems (6.67) and (6.68) respectively, is an easy algebra
exercise. Let us point that problems (3.8) and (3.9) are well-posed problems since it is simply second
order elliptic equations for the pressure P̃ (with Neumann boundary condition). As is well-known,
the local problems are also well-posed with periodic boundary condition, and it is easily checked, by
integration by parts, that

Aλij =

∫
Yf

Dλw
i(y) : Dλw

j(y) dy =

∫
Yf

wi(y)ejdy, i = 1, 2, j = 1, 2, 3.
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Observe that condition
∫
Y w

i
3dy = 0, i = 1, 2, implies that Aλi3 = 0. Then Aλ ∈ R2×2 and the definition

implies that Aλ is symmetric and positive definite (analogously for A).

Observe that the case aε � ε is already proved in the proof of Theorem 6.1.
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The author has been supported by Junta de Andalućıa (Spain), Proyecto de Excelencia P12-FQM-2466,
and in part by European Commission, H2020-EU.1.1.-Excellent Science-European Research Council
(ERC) 639227.

References

[1] Arbogast T, Douglas J.R. J, Hornung U. Derivation of the double porosity model of single phase
flow via homogenization theory. SIAM J. Math. Anal.. 1990; 21: 823-836.

[2] Casado-Diaz J. Two-scale convergence for nonlinear Dirichlet problems in perforated domains. Proc.
Roy. Soc. Edinburgh Sect. A. 2000;130:246-276.

[3] Cioranescu D, Damlamian A, Griso G. Periodic unfolding and homogenization. C.R. Acad. Sci.
Paris Ser. I. 2002; 335: 99-104.

[4] Darcy H. Les Fontaines Publiques de la ville de Dijon. Dalmont: Paris; 1856.

[5] Brinkman HC. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of
particles. Applied Scientific Research. 1949;1: 23-34.

[6] Keller JB. Darcy’s law for flow in porous media and the two-space method. Lecture Notes in Pure
and Appl. Math: New York;1980: 54.

[7] Lions JL. Some methods in the mathematical analysis of systems and their control. Science Press:
Beijing. Gordon and Breach: New York;1981.

[8] Sanchez-Palencia E. Non-Homogeneous Media and Vibration Theory. Springer Lecture Notes in
Physics: Berlin; 1980:127

[9] Tartar L. Incompressible fluid flow in a porous medium convergence of the homogenization process.
Appendix to Lecture Notes in Physics Springer-Velag: Berlin;1980:127.

[10] Allaire G. Homogenization of the Stokes flow in a connected porous medium. Asymptotic Analysis.
1989;2: 203-222.

[11] Lipton R, Avellaneda M. A Darcy law for slow viscous flow past a stationary array of bubbles.Proc.
Roy. Soc. Edinburgh. 1990;11A: 71-79.

[12] Mikelic A. Homogenization of Nonstationary Navier-Stokes equations in a domain with a grained
boundary.Ann. Mat. Pura Appl.1991;158(4): 167-179.

26



[13] Temam R.Navier-Stokes equations. North-Holland Publishing Company: Amsterdam-New York-
Oxford;1979.

[14] Allaire G. Homogenization and two-scale convergence. SIAM J. Math. Anal..1992;23: 1482-1518.

[15] Nghetseng G. A general convergence result for a functional related to the theory of homogeniza-
tion.SIAM J. Math. Anal.. 1989;20: 608-623.

[16] Fabricius J, Koroleva Y, Wall P. A rigorous derivation of the time-dependent Reynolds equa-
tion.Asymptotic Analysis. 2013;84: 103-121.

27


