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Abstract. We consider a Newtonian flow in a thin porous medium Ωε of
thickness ε which is perforated by periodically distributed solid cylinders
of size aε. Generalizing [2], the fluid is described by the 3D incompress-
ible Navier-Stokes system where the external force takes values in the
space H−1, and the porous medium considered has one of the most com-
monly used distribution of cylinders: hexagonal distribution. By means
of an adaptation of the unfolding method, three different Darcy’s laws
are rigorously derived from this model depending on the magnitude aε

with respect to ε.
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1. Introduction

We consider a viscous fluid obeying the Navier-Stokes system in a thin porous
medium Ωε of thickness ε which is perforated by periodically distributed solid
cylinders of size aε. Here, ε and aε are dimensionless small parameters re-
lated to the thickness of the porous medium and to the interspatial distance
between the cylinders, respectively. On the boundary of the solid cylinders,
we prescribe Dirichlet boundary conditions. The aim of this work is to prove
the convergence of the homogenization process depending on the magnitude
aε with respect to ε.
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We consider a porous medium with one of the most commonly used
distribution of cylinders: hexagonal distribution. In order to define this dis-
tribution, we consider a domain ω which is a smooth, bounded, connected set
in R2, which will be associated to a microstructure. Below we give in detail
the microstructure associated to this distribution.

The domain: the microstructure associated to ω will be defined by using
two types of regular meshes, one composed by rhombuses and another by
hexagons. Thus, we define by R′ ⊂ R2 the reference rhombus and by H ′ ⊂ R2

the reference hexagon, which have an area of
√

3/2 (see Figure 1 for more
details).
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Figure 1. Views R′ cell (left) and H ′ cell (right)

Taking into account that the hexagonal distribution of cylinders can be
described by using meshes with rhombuses or hexagons (see Figure 4 for more
details), we denote by Y ′ = R′ or H ′, which is made of two complementary
parts: the fluid part Y ′f , and the solid part Y ′s (Y ′f

⋃
Y ′s = Y ′ and Y ′f

⋂
Y ′s = ∅).

More precisely, we assume that Y ′s is a smooth, closed and connected set
strictly included in Y ′.

We denote the proportion of the material in the cell Y ′ by

θ :=
|Y ′f |
|Y ′| =

2|Y ′f |√
3
. (1.1)

In order to go through every periodic cell in the hexagonal distribution,
we introduce the parameter k′(`′) : Z2 → Z2, which is defined by using the
hexagonal coordinate system (see Snyder el al. [8] for more details):

k1(`′) = `1 +
1

2
`2, k2(`′) =

√
3

2
`2 , ∀ `′ ∈ Z2 .

For sake of simplicity, in the following we denote k′ = k′(`′) omitting
the dependence of `′ ∈ Z2. Thus, the domain ω is covered by a regular mesh
of size aε

√
3/2: for k′ ∈ Z2, each cell Y ′k′,aε = aεk

′+aεY
′ is divided in a fluid

part Y ′fk′ ,aε and a solid part Y ′sk′ ,aε , i.e. is similar to the unit cell Y ′ rescaled

to size aε. We also define Y = Y ′ × (0, 1) ∈ R3, and is divided in a fluid part
Yf and a solid part Ys, and consequently Yk′,aε = Y ′k′,aε × (0, 1) ∈ R3, which



The transition between Navier-Stokes equations to Darcy equation 3

is also divided in a fluid part Yfk′ ,aε and a solid part Ysk′ ,aε (see Figures 2
and 3 for more details).
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Figure 2. Views of a hexagonal periodic cell in 2D (left)
and 3D (right)
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Figure 3. Views of a rhombohedral periodic cell in 2D (left)
and 3D (right)

Figure 4. Views of the hexagonal mesh (left), the rhombo-
hedral mesh (center) and both together (right)

Observe that the fluid part ωε of a porous medium with hexagonal
distribution is defined by

ωε = ω\
⋃
`′∈Tε

Y ′sk′ ,aε ,

where Tε = {`′ ∈ Z2 : Y ′k′,aε ∩ω 6= ∅}. We will consider the open set Ωε ⊂ R3

given by

Ωε = {(x1, x2, x3) ∈ ωε × R : 0 < x3 < ε}.
Then Ωε denotes the whole fluid part in the thin film (see Figure 5 for more
details).
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Figure 5. Views of Ωε by using the hexagonal mesh (left)
and the rhombohedral mesh (right)

We define Ω̃ε = ωε× (0, 1), Ω = ω× (0, 1) and Qε = ω× (0, ε). We have
that

Ω̃ε = Ω\
⋃
`′∈Tε

Ysk′ ,aε = Ω ∩
⋃
`′∈Tε

Yfk′ ,aε . (1.2)

The problem: let us consider the following Navier-Stokes system in Ωε: −µ∆uε + (uε · ∇)uε +∇pε = fε in Ωε,
div uε = 0 in Ωε,

uε = 0 on ∂Ωε,
(1.3)

where uε denotes the velocity field, pε is the (scalar) pressure, fε is the field
of exterior body force and µ > 0 is the viscosity.

In [2], we consider a non-Newtonian flow in a thin porous medium of
thickness ε which is perforated by periodically distributed solid cylinders of
size aε under a square distribution. The flow is described by the 3D incom-
pressible Stokes system with a nonlinear viscosity, being a power of the shear
rate (power law) of flow index 1 < p < +∞ and where the external force takes
values in the space L2. Applying an adaptation of the unfolding method, in-
troduced by Cioranescu et al. [4], three types of Darcy’s laws are obtained
rigorously depending on the relation of aε with respect to ε. The Newtonian
case, i.e. p = 2, has motived the fact of considering a much more general situ-
ation than the problem considered in [2]. In this sense, our aim in the present
paper is to generalize three aspects: we consider that the flow is described
by the 3D incompressible Navier-Stokes system, we suposse a larger space
for the external force, namely fε belongs to H−1 and depends on ε, and we
consider a porous medium with a hexagonal distribution of cylinders. Then,
we show that the asymptotic behavior of the Navier-Stokes system depends
on the parameter aε with respect to ε:

- If aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, i.e. when the cylinder height is
similar to the distance between the cylinders, with λ the proportionality
constant, we obtain a 2D Darcy law as an effective model with a perme-
ability tensor and a function which depend on the parameter λ and are
obtained through two local Stokes problems in 3D and a local Stokes
problem in 3D with an external force with microstructure, respectively.

- If aε � ε, i.e. when the cylinder height is much larger than the dis-
tance between the cylinders, we obtain a 2D Darcy law as an effective
model with a permeability tensor and a function which are obtained
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through two local incomplete Stokes problems in 3D and a local incom-
plete Stokes problem in 3D with an external force with microstructure,
respectively.

- If aε � ε, i.e. when the cylinder height is much smaller than the dis-
tance between the cylinders, we obtain a 2D Darcy law as an effective
model with the permeability tensor and a function which are obtained
by means of two local Hele-Shaw problems in 2D and a local Hele-Shaw
problem in 2D with an external force with microstructure, respectively,
which is a considerable simplification.

The inertial term coming from the Navier-Stokes system provides ad-
ditional difficulties in the analysis, and we prove that this term does not
appear in the effective problems. The fact of considering a more general ex-
ternal force, namely fε belonging to H−1 instead of L2 and depending on ε,
introduces additional difficulties and some changes with respect to the results
in [2]. In particular, this allows us to consider general forces given in terms
of the divergence of a tensor field. This changes the order of convergence of
the velocity and the pressure and moreover, the limit external force does not
appear explicitly in the effective problems. However, the external force gives
rise to new functions in the effective problems which are defined by means of
local problems with external forces with microstructure, also given in terms
of the divergence of a tensor field. Finally, the hexagonal distribution of cylin-
ders gives rise to a new proportion of the material which is 2/

√
3 times the

corresponding proportion in the square distribution, and new permeability
tensors which are computed by means of local problems posed in the reference
cylinder.

The behavior of the flow of Newtonian fluids through periodic arrays of
cylinders has been studied extensively, mainly because of its importance in
many applications in heat and mass transfer equipment. However, the litera-
ture on Newtonian thin film fluid flows through periodic arrays of cylinders is
far less complete, although these problems have now become of great practical
relevance because take place in a number of natural and industrial processes.
This includes flow during manufacturing of fibre reinforced polymer compos-
ites with liquid moulding processes, passive mixing in microfluidic systems,
and paper making.

Recently, the homogenization of the Navier-Stokes system in a thin
porous medium with a square distribution has been studied in Fabricius et al.
[5] by the multiscale expansion method which is a formal but powerful tool
to analyse homogenization problems. They obtained the same three effective
models depending on the relation of aε with respect to ε. They consider that
the flow is only driven by the external pressure, but they claim that it is also
possible to include the force term in the system. In this paper, we rigorously
prove their claim assuming a general fε ∈ H−1. Moreover, the particular case
aε � ε has been also studied by Zhengan and Hongxing in [11] where it is
rigorously derived a 2D Darcy law with a permeability tensor depending on
local Stokes problems. We remark that a more accurate 2D Darcy law with a
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permeability tensor depending on local Hele-Shaw problems in this particular
case has been obtained in [5] by a formal method and in the present paper
by the unfolding method (see Theorem 2.1-iii) for more details).

The paper is organized as follows. In Section 2, we state our main result,
which is proved in Section 3.

2. Main result

Hereinafter the points x ∈ R3 will be decomposed as x = (x′, x3) with x′ ∈
R2, x3 ∈ R. We also use the notation x′ to denote a generic vector of R2.

We suppose that the second member of (1.3), fε ∈ H−1(Qε)
3, is of the

form
fε(x) = (f ′ε(x), 0), a.e. x ∈ Qε,

and there exists a positive constant C > 0 such that

‖fε‖H−1(Qε)3 ≤ Cε
1
2 , ∀ε > 0. (2.1)

This choice of fε is usual when we deal with thin domains. Since the thickness
of the domain, ε, is small then the vertical component of the force can be
neglected.

Under the assumption of fε, it is well known that (1.3) has at least one
weak solution (uε, pε) ∈ H1

0 (Ωε)
3 × L2

0(Ωε) (see Lions [6] for more details).
The space L2

0(Ωε) is the space of functions of L2(Ωε) with null integral.
Our aim is to study the asymptotic behavior of uε and pε when ε tends

to zero. For this purpose, we use the dilatation in the variable x3

y3 =
x3

ε
, (2.2)

in order to have the functions defined in the open set with fixed height Ω̃ε
defined by (1.2). Namely, we define ũε ∈ H1

0 (Ω̃ε)
3, p̃ε ∈ L2

0(Ω̃ε) by

ũε(x
′, y3) = uε(x

′, εy3), p̃ε(x
′, y3) = pε(x

′, εy3), a.e. (x′, y3) ∈ Ω̃ε,

and f̃ε ∈ H−1(Ω)3 by

f̃ε(x
′, y3) = fε(x

′, εy3) a.e. (x′, y3) ∈ Ω.

Let us introduce some notation which will be useful in the following.
For a vectorial function v = (v′, v3) and a scalar function w, we introduce
the operators: Dε, ∇ε and divε, by

(Dεv)i,j = ∂xj
vi for i = 1, 2, 3, j = 1, 2, (Dεv)i,3 =

1

ε
∂y3vi for i = 1, 2, 3,

∇εw = (∇x′w,
1

ε
∂y3w)t, divεv = divx′v

′ +
1

ε
∂y3v3.

We denote by L2
] (Y ), H1

] (Y ), the functional spaces

L2
] (Y ) =

{
v ∈ L2

loc(Y ) :

∫
Y

|v|2dy < +∞,

v(y′ + k′(`′), y3) = v(y) ∀`′ ∈ Z2, a.e. y ∈ Y
}
,
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and

H1
] (Y ) =

{
v ∈ H1

loc(Y ) ∩ L2
] (Y ) :

∫
Y

|∇yv|2dy < +∞
}
.

We denote by : the full contraction of two matrices: for A = (ai,j)1≤i,j≤2 and

B = (bi,j)1≤i,j≤2, we have A : B =
∑2
i,j=1 aijbij .

Using the transformation (2.2), the system (1.3) can be rewritten as
−µdivε (Dεũε) + (ũε · ∇ε)ũε +∇εp̃ε = f̃ε in Ω̃ε,

divε ũε = 0 in Ω̃ε,

ũε = 0 on ∂Ω̃ε.

(2.3)

Our goal then is to describe the asymptotic behavior of this new sequence

(ũε, p̃ε). The sequence of solutions (ũε, p̃ε) ∈ H1
0 (Ω̃ε)

3×L2
0(Ω̃ε) is not defined

in a fixed domain independent of ε but rather in a varying set Ω̃ε. In order to
pass the limit if ε tends to zero, convergences in fixed Sobolev spaces (defined
in Ω) are used which requires first that (ũε, p̃ε) be extended to the whole

domain Ω. Then, by definition, an extension (ũε, P̃ε) ∈ H1
0 (Ω)3 × L2

0(Ω) of

(ũε, p̃ε) is defined on Ω and coincides with (ũε, p̃ε) on Ω̃ε (we will use the

same notation, ũε, for the velocity in Ω̃ε and its continuation in Ω).

Our main result is referred to the asymptotic behavior of the solution
of (2.3) and is given by the following theorem.

Theorem 2.1. We distinguish three cases depending on the relation between
the parameter aε with respect to ε:

i) If aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, then the extension (ũε/aε, aεP̃ε)

of a solution of (2.3) converges weakly to (ũ, P̃ ) in H1
0 (0, 1;L2(ω)3) ×

L2
0(ω). Moreover, it holds that (Ũ , P̃ ), with Ũ3 = 0, is the unique solu-

tion of Darcy’s law
Ũ ′(x′) = − θ

µ

(
Aλ∇x′ P̃ (x′) + bλ(x′)

)
in ω,

divx′Ũ
′(x′) = 0 in ω,

Ũ ′(x′) · n = 0 in ∂ω,

(2.4)

where Ũ(x′) =
∫ 1

0
ũ(x′, y3) dy3, θ is given by (1.1), and the symmetric

and positive tensor Aλ ∈ R2×2 and the function bλ : R2 → R2 are
defined by their entries

Aλij =
1

|Y ′f |

∫
Yf

Dλw
i(y) : Dλw

j(y) dy,

bλi (x′) =
1

|Y ′f |

∫
Yf

wi(x
′, y) dy, i, j = 1, 2 .

For i = 1, 2, wi(y), with
∫
Y
wi3 dy = 0 and wi = 0 on y3 = 0, 1,

denote the unique solutions in H1
] (Yf )3 of the local Stokes problems in
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3D 
−∆λw

i +∇λqi = ei in Yf ,
divλw

i = 0 in Yf ,
wi = 0 in ∂Ys ,

wi, qi Y ′ − periodic,

and w(x′, y), with w = 0 on y3 = 0, 1, denotes the unique solution in
L2(ω;H1

] (Yf )2) of the local Stokes problem in 3D
−∆λw +∇λq = divλĜ in ω × Yf ,

divλw = 0 in ω × Yf ,
w = 0 in ω × ∂Ys ,

w, q Y ′ − periodic,

where Dλ = Dy′ + λ∂y3 , ∆λ = ∆y′ + λ∂2
y3 , ∇λ = ∇y′ +

√
λ∂y3 , divλ =

divy′ +λ∂y3 and Ĝ(x′, y) ∈ L2
] (ω×Y )2×3 is related to the external force

fε (see the proof for more details).

ii) If aε � ε, then the extension (ũε/aε, aεP̃ε) of a solution of (2.3) con-

verges weakly to (ũ, P̃ ) in L2(Ω)3 × L2
0(ω) with ũ = 0 on y3 = 0, 1.

Moreover, it holds that (Ũ , P̃ ), with Ũ3 = 0, is the unique solution of
Darcy’s law

Ũ ′(x′) = − θ
µ

(
A0∇x′ P̃ (x′) + b0(x′)

)
in ω,

divx′ Ũ
′(x′) = 0 in ω,

Ũ ′(x′) · n = 0 in ∂ω,

(2.5)

where Ũ(x′) =
∫ 1

0
ũ(x′, y3) dy3, θ is given by (1.1), and the symmetric

and positive tensor A0 ∈ R2×2 and the function b0 : R2 → R2 are defined
by their entries

A0
ij =

1

|Y ′f |

∫
Yf

Dy′w
i(y) : Dy′w

j(y) dy,

b0i (x
′) =

1

|Y ′f |

∫
Yf

wi(x
′, y) dy, i = 1, 2 .

For i = 1, 2, wi(y), with wi = 0 on y3 = 0, 1, denote the unique solutions
in H1

] (Yf )2 of the local incomplete Stokes problems in 3D
−∆y′w

i +∇y′qi = ei in Yf ,
divy′w

i = 0 in Yf ,
wi = 0 in ∂Ys,

wi, qi Y ′ − periodic,

and w(x′, y), with w = 0 on y3 = 0, 1, denotes the unique solution in
L2(ω;H1

] (Yf )2) of the local incomplete Stokes problem in 3D
−∆y′w +∇y′q = divy′Ĝ

′ in ω × Yf ,
divy′w = 0 in ω × Yf ,

w = 0 in ω × ∂Ys ,
w, q Y ′ − periodic,
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where Ĝ′(x′, y) ∈ L2
] (ω × Y )2×2 is related to the external force fε (see

the proof for more details).

iii) If aε � ε, then the extension (ũε/ε, εP̃ε) of a solution of (2.3) converges

weakly to (ũ, P̃ ) in H1(0, 1;L2(ω)3) × L2
0(ω). Moreover, it holds that

(Ũ , P̃ ), with Ũ3 = 0, is the unique solution of Darcy’s law
Ũ ′(x′) = − θ

12µ

(
A∞∇x′ P̃ (x′) + b∞(x′)

)
in ω,

divx′ Ũ
′(x′) = 0 in ω,

Ũ ′(x′) · n = 0 in ∂ω,

(2.6)

where Ũ(x′) =
∫ 1

0
ũ(x′, y3) dy3, θ is given by (1.1), and the symmetric

tensor A∞ ∈ R2×2 and the function b∞ : R2 → R2 are defined by their
entries

A∞ij =
1

|Y ′f |

∫
Y ′f

(ei +∇y′qi)ej dy′,

b∞i (x′) =
1

|Y ′f |

∫
Y ′f

(G3 +∇y′q) dy′, i, j = 1, 2 .

For i = 1, 2, qi(y′) denote the unique solutions in H1
] (Y ′f ) of the local

Hele-Shaw problems in 2D,
∆y′q

i = 0 in Y ′f ,
(∇y′qi + ei) · n = 0 in ∂Y ′s ,
qi Y ′ − periodic,

and q(x′, y′) denotes the unique solution in L2(ω;H1
] (Y ′f )) of the local

Hele-Shaw problem in 2D
−∆y′q = divy′G3 in ω × Y ′f ,

∇y′q · n = 0 = 0 in ∂Y ′s ,
q Y ′ − periodic,

where G3(x′, y′) ∈ L2
] (ω × Y ′)2 is related to the external force fε (see

the proof for more details).

3. Proof of the main result

In this section we prove our main result. In particular, Theorem 2.1 is proved
by means of an adaptation of the unfolding method (see Arbogast et al. [3]
and Cioranescu et al. [4]), which is strongly related to the two-scale conver-
gence method (see Allaire [1] and Nguetseng [7]). To apply this method, a
priori estimates are established and some compactness results are proved.

Some notations: in order to apply the unfolding method, we will need the
following notation. For `′ ∈ Z2, we define κ : R2 → Z2 by

κ(x′) = k′(`′) ⇐⇒ x′ ∈ Y ′k′,1 . (3.1)
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Remark that κ is well defined up to a set of zero measure in R2 (the set

∪`′∈Z2∂Y ′k′,1). Moreover, for every aε > 0, we have κ
(
x′

aε

)
= k′(`′) ⇐⇒

x′ ∈ Y ′k′,aε .
We will use 〈·, ·〉 to denote the duality product between H−1 and H1

0 .
We denote by Oε a generic real sequence which tends to zero with ε and
can change from line to line and by C a generic positive constant which can
change from line to line.
A priori estimates: let us begin with a lemma on the Poincaré inequality in

the domain Ω̃ε.

Lemma 3.1. There exists a constant C independent of ε, such that,

i) if aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, or aε � ε, then

‖ṽ‖L2(Ω̃ε)3 ≤ Caε ‖Dεṽ‖L2(Ω̃ε)3×3 , ∀ṽ ∈ H1
0 (Ω̃ε)

3, (3.2)

ii) if aε � ε, then

‖ṽ‖L2(Ω̃ε)3 ≤ Cε ‖Dεṽ‖L2(Ω̃ε)3×3 , ∀ṽ ∈ H1
0 (Ω̃ε)

3. (3.3)

Proof. The proof is similar to Lemma 4.2 and Remark 4.3 in [2] with p =
2. �

Remark 3.2. Observe that if fε ∈ H−1(Qε)
3 such that fε(x) = (f ′ε(x), 0),

then there exist f0
ε , f

1
ε , f

2
ε , f

3
ε with f iε ∈ L2(Qε)

2 for all 0 ≤ i ≤ 3, such that
f ′ε = f0

ε − divxGε, where Gε = (f1
ε , f

2
ε , f

3
ε ) ∈ L2(Qε)

2×3, and

‖fε‖H−1(Qε)3 =

(
3∑
i=0

‖f iε‖2L2(Qε)2

)1/2

. (3.4)

We remark that divxGε ∈ L2(Qε)
2 with entries (divxGε)k =

∑3
`=1 ∂x`

f `ε,k,

k = 1, 2. Moreover, applying the change of variables (2.2), we have that

f̃ ′ε = f̃0
ε−divεG̃ε, where f̃ iε ∈ L2(Ω)2 for all 0 ≤ i ≤ 3, and G̃ε = (f̃1

ε , f̃
2
ε , f̃

3
ε ) ∈

L2(Ω)2×3.

Remark 3.3. Observe that thanks to (3.4), the assumption (2.1) can be writ-
ten by

‖f0
ε ‖2L2(Qε)2 + ‖f1

ε ‖2L2(Qε)2 + ‖f2
ε ‖2L2(Qε)2 + ‖f3

ε ‖2L2(Qε)2 ≤ Cε, (3.5)

which implies, using the change of variables (2.2),

‖f̃0
ε ‖2L2(Ω)2 + ‖f̃1

ε ‖2L2(Ω)2 + ‖f̃2
ε ‖2L2(Ω)2 + ‖f̃3

ε ‖2L2(Ω)2 ≤ C, ∀ ε > 0. (3.6)

Let us obtain some a priori estimates for ũε.

Lemma 3.4. There exists a constant C independent of ε, such that if ũε ∈
H1

0 (Ω̃ε)
3 is the solution of (2.3), one has

i) if aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, or aε � ε, then

‖ũε‖L2(Ω̃ε)3 ≤ Caε, ‖Dεũε‖L2(Ω̃ε)3×3 ≤ C, (3.7)
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ii) if aε � ε, then

‖ũε‖L2(Ω̃ε)3 ≤ Cε, ‖Dεũε‖L2(Ω̃ε)3×3 ≤ C. (3.8)

Proof. Multiplying by ũε in the first equation of (2.3) and integrating over

Ω̃ε, we have

µ ‖Dεũε‖2L2(Ω̃ε)3×3 = 〈fε, ũε〉Ω̃ε
. (3.9)

Taking into account (3.4) and (3.6), we can deduce that

‖f̃ε‖H−1(Ω̃ε)3 =

(
3∑
i=0

‖f̃ iε‖2L2(Ω̃ε)2

)1/2

≤
(

3∑
i=0

‖f̃ iε‖2L2(Ω)2

)1/2

≤ C, (3.10)

and we obtain

〈f̃ε, ũε〉Ω̃ε
≤ C ‖Dũε‖L2(Ω̃ε)3×3 ≤ C ‖Dεũε‖L2(Ω̃ε)3×3 ,

and by (3.9), we have
‖Dεũε‖L2(Ω̃ε)3×3 ≤ C.

For the cases aε ≈ ε or aε � ε, taking into account (3.2), we obtain

‖ũε‖L2(Ω̃ε)3 ≤ Caε.
For the case aε � ε, proceeding similarly with (3.3), we obtain the first
estimate in (3.8). �

We turn to the case of the pressure. From equation (2.3), we easily

obtain that ∇εp̃ε is uniformly bounded in H−1(Ω̃ε)
3. Then, a well-known

theorem of functional analysis (see, e.g. Proposition 1.2, Chapter I, [10]),

states that p̃ε ∈ L2(Ω̃ε) with the following estimate

‖p̃ε‖L2
0(Ω̃ε) ≤ C(Ω̃ε) ‖∇εp̃ε‖H−1(Ω̃ε)3 .

In the above estimate, the constant depends on the domain Ω̃ε, and thus may
be not uniformly bounded when ε goes to zero. Then, the idea is to extend
the pressure to the whole domain Ω.
The Extension of (ũε, p̃ε) to the whole domain Ω: we will extend the solution
(ũε, p̃ε) to the whole domain Ω. It is easy to extend the velocity by zero in

Ω\Ω̃ε (this is compatible with the Dirichlet boundary condition on ∂Ω̃ε). We

will use the same notation, ũε, for the velocity in Ω̃ε and its continuation in
Ω. We note that the extension ũε belongs to H1

0 (Ω)3.
Now, we give some properties of the restricted operator from H1

0 (Ω)3

into H1
0 (Ω̃ε)

3 preserving divergence-free vectors. First, we extend the tech-
nique of Tartar [9] to the case of a thin domain, i.e. we define and give some
properties of the restricted operator Rε from H1

0 (Qε)
3 into H1

0 (Ωε)
3.

Lemma 3.5. There exists a (restriction) operator Rε acting from H1
0 (Qε)

3

into H1
0 (Ωε)

3 such that

1. Rεv = v, if v ∈ H1
0 (Ωε)

3 (elements of H1
0 (Ωε)

3 are continuated by 0 to
Qε)
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2. div (Rεv) = 0 in Ωε, if div v = 0 in Qε
3. For any v ∈ H1

0 (Qε)
3 (the constant C is independent of v and ε),

i) if aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, or aε � ε, then

‖Rεv‖L2(Ωε)3 ≤ C ‖v‖H1
0 (Qε)3 ,

‖DRεv‖L2(Ωε)3×3 ≤ C
1

aε
‖v‖H1

0 (Qε)3 ,

ii) if aε � ε, then

‖Rεv‖L2(Ωε)3 ≤ C ‖v‖H1
0 (Qε)3 ,

‖DRεv‖L2(Ωε)3×3 ≤ C
1

ε
‖v‖H1

0 (Qε)3 .

Proof. We argue similarly to the proof of Lemma 4.5 in [2] with p = 2. �

Now, using the restricted operatorRε defined in a thin domain, we define

the restricted operator from H1
0 (Ω)3 into H1

0 (Ω̃ε)
3 and give some properties.

Lemma 3.6. Let us define R̃εṽ = Rεv for any ṽ ∈ H1
0 (Ω)3, where ṽ(x′, y3) =

v(x′, εy3) and Rε is defined in Lemma 3.5. Then, there exists a constant C,
independent of ṽ and ε, such that

1. R̃εṽ = ṽ, if ṽ ∈ H1
0 (Ω̃ε)

3 (elements of H1
0 (Ω̃ε)

3 are continuated by 0 to
Ω)

2. divε (R̃εṽ) = 0 in Ω̃ε, if divε ṽ = 0 in Ω
3. For any ṽ ∈ H1

0 (Ω)3 (the constant C is independent of ṽ and ε),
i) if aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, or aε � ε, then∥∥∥R̃εṽ∥∥∥

L2(Ω̃ε)3
≤ C ‖ṽ‖H1

0 (Ω)3 ,∥∥∥DεR̃εṽ
∥∥∥
L2(Ω̃ε)3×3

≤ C
1

aε
‖ṽ‖H1

0 (Ω)3 .

ii) if aε � ε, then∥∥∥R̃εṽ∥∥∥
L2(Ω̃ε)3

≤ C ‖ṽ‖H1
0 (Ω)3 ,∥∥∥DεR̃εṽ

∥∥∥
L2(Ω̃ε)3×3

≤ C
1

ε
‖ṽ‖H1

0 (Ω)3 .

Proof. Considering the change of variables given in (2.2) and the estimates
given in Lemma 3.5, we obtain the desired result. �

Lemma 3.7. There exists a constant C independent of ε, such that the exten-
sion (ũε, P̃ε) ∈ H1

0 (Ω)3 × L2
0(Ω) of the solution (ũε, p̃ε) of (2.3) satisfies

i) if aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, or aε � ε,

‖ũε‖L2(Ω)3 ≤ Caε, ‖Dεũε‖L2(Ω)3×3 ≤ C,
∥∥∥P̃ε∥∥∥

L2
0(Ω)
≤ C 1

aε
, (3.11)

ii) if aε � ε,

‖ũε‖L2(Ω)3 ≤ Cε, ‖Dεũε‖L2(Ω)3×3 ≤ C,
∥∥∥P̃ε∥∥∥

L2
0(Ω)
≤ C 1

ε
. (3.12)
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Proof. Taking into account Lemma 3.4, it is clear that, after extension, the
two first estimates in (3.11) and (3.12) hold.

The mapping Rε defined in Lemma 3.5 allows us to extend the pressure
pε to Qε introducing Fε in H−1(Qε)

3:

〈Fε, ϕ〉Qε = 〈∇pε, Rε(ϕ)〉Ωε , for any ϕ ∈ H1
0 (Qε)

3 . (3.13)

We calcule the right hand side of (3.13) by using (1.3) and we have

〈Fε, ϕ〉Qε
= −µ

∫
Ωε

Duε : DRε(ϕ) dx+〈fε, Rε(ϕ)〉Ωε−
∫

Ωε

(uε·∇)uεRε(ϕ) dx .

(3.14)
Moreover, divϕ = 0 implies

〈Fε, ϕ〉Qε
= 0 ,

and the DeRham theorem gives the existence of Pε in L2
0(Qε) with Fε = ∇Pε.

We get for any ϕ̃ ∈W 1,p
0 (Ω)3, using the change of variables (2.2),

〈∇εP̃ε, ϕ̃〉Ω = −
∫

Ω

P̃ε divε ϕ̃ dx
′dy3

= −ε−1

∫
Qε

Pε divϕdx = ε−1〈∇Pε, ϕ〉Qε
.

Then, using the identification (3.14) of Fε,

〈∇εP̃ε, ϕ̃〉Ω = ε−1

(
−µ
∫

Ωε

Duε : DRε(ϕ) dx+ 〈fε, Rε(ϕ)〉Ωε

−
∫

Ωε

(uε · ∇)uεRε(ϕ) dx

)
,

and applying the change of variables (2.2),

〈∇εP̃ε, ϕ̃〉Ω = −µ
∫

Ω̃ε

Dεũε : DεR̃ε(ϕ̃) dx′dy3 + 〈f̃ε, R̃ε(ϕ̃)〉Ω̃ε

−
∫

Ω̃ε

(ũε · ∇ε)ũεR̃ε(ϕ̃) dx′dy3 ,

(3.15)

where R̃ε is given in Lemma 3.6.
Now, we estimate the right-hand side of (3.15). First, we consider aε ≈ ε

or aε � ε.
Using (3.7) and Lemma 3.6, we get∣∣∣∣µ∫

Ω̃ε

Dεũε : DεR̃ε(ϕ̃) dx′dy3

∣∣∣∣ ≤ C‖DεR̃ε(ϕ̃)‖L2(Ω̃ε)3×3

≤ C 1

aε
‖ϕ̃‖H1

0 (Ω)3 ,
(3.16)

and by (3.10) and Lemma 3.6, we have∣∣∣〈f̃ε, R̃ε(ϕ̃)〉Ω̃ε

∣∣∣ ≤ C‖DR̃ε(ϕ̃)‖L2(Ω̃ε)3×3

≤ C‖DεR̃ε(ϕ̃)‖L2(Ω̃ε)3×3 ≤ C
1

aε
‖ϕ̃‖H1

0 (Ω)3 .
(3.17)
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The inertial term can be written by∫
Ω̃ε

(ũε · ∇ε)ũε R̃ε(ϕ̃) dx′dy3 = −
∫

Ω̃ε

ũε⊗̃ũε : Dx′R̃ε(ϕ̃) dx′dy3 (3.18)

+
1

ε

(∫
Ω̃ε

∂y3 ũε,3ũεR̃ε(ϕ̃) dx′dy3 +

∫
Ω̃ε

ũε,3∂y3 ũε R̃ε(ϕ̃) dx′dy3

)
,

where (u⊗̃w)ij = uiwj , i = 1, 2, j = 1, 2, 3.
We consider separately the two terms in the right-hand side of (3.18):
(i) The estimate of the first part of the right-hand side of (3.18) has the

form
‖ũε‖2L4(Ω̃ε)3

‖Dx′R̃ε(ϕ̃)‖L2(Ω̃ε)3×2 .

We introduce the interpolation parameter θ = 1
4 , where 1

4 = θ
2 + 1−θ

6 ,
and we have the interpolation

‖ũε‖L4(Ω̃ε)3 ≤ ‖ũε‖θL2(Ω̃ε)3
‖ũε‖1−θL6(Ω̃ε)3

,

and by the the Sobolev embedding, H1
0 ↪→ L6, and the estimate (3.7), we

obtain

‖ũε‖L4(Ω̃ε)3 ≤ ‖ũε‖θL2(Ω̃ε)3
‖Dũε‖1−θL2(Ω̃ε)3×3

≤ C a
1
4
ε .

Then by Lemma 3.6,∣∣∣∣∫
Ω̃ε

ũε⊗̃ũε : Dx′R̃ε(ϕ̃) dx′dy3

∣∣∣∣ ≤ C a− 1
2

ε ‖ϕ̃‖H1
0 (Ω)3 .

(ii) The estimate of the second part of the right-hand side of (3.18) has
the form

C

ε
‖∂y3 ũε‖L2(Ω̃ε)3‖ũε‖L4(Ω̃ε)3‖R̃ε(ϕ̃)‖L4(Ω̃ε)3 .

Working as in item (i) and using Lemma 3.6, we have

‖ũε‖L4(Ω̃ε)3 ≤ C a
1
4
ε ,

and

‖R̃ε(ϕ̃)‖L4(Ω̃ε)3 ≤ ‖R̃ε(ϕ̃)‖θ
L2(Ω̃ε)3

‖DR̃ε(ϕ̃)‖1−θ
L2(Ω̃ε)3×3

≤ Ca−
3
4

ε ‖ϕ̃‖H1
0 (Ω)3 ,

and by estimate (3.7), we get

1

ε

∣∣∣∣∫
Ω̃ε

(
∂y3 ũε,3ũεR̃ε(ϕ̃) dx′dy3 +

∫
Ω̃ε

ũε,3∂y3 ũε R̃ε(ϕ̃) dx′dy3

)∣∣∣∣
≤ C a−

1
2

ε ‖ϕ̃‖H1
0 (Ω)3 .

Then, from (3.18) we can deduce that∣∣∣∣∫
Ω̃ε

(ũε · ∇ε)ũε R̃ε(ϕ̃) dx′dy3

∣∣∣∣ ≤ C a− 1
2

ε ‖ϕ̃‖H1
0 (Ω)3 ,

Taking into account the previous estimate, (3.16) and (3.17) in (3.15), we
have

|〈∇εP̃ε, ϕ̃〉Ω| ≤ C
1

aε
‖ϕ̃‖H1

0 (Ω)3 ,
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and so we have the third estimate in (3.11)

Finally, if we argue similarly for the case aε � ε, we obtain the third
estimate in (3.12). �

Adaptation of the Unfolding method: let us introduce the adaption of the
unfolding method in which we divide the domain Ω in hexagonal cylinders or
parallelepipeds of base of size aε

√
3/2 and vertical length 1. For this purpose,

given the extension (ũε, P̃ε) ∈ H1
0 (Ω)3 × L2

0(Ω), ũε also extended by zero

outside of Ω, we define (ûε, P̂ε) by

ûε(x
′, y) = ũε

(
aεκ

(
x′

aε

)
+ aεy

′, y3

)
, a.e. (x′, y) ∈ ω × Y, (3.19)

P̂ε(x
′, y) = P̃ε

(
aεκ

(
x′

aε

)
+ aεy

′, y3

)
, a.e. (x′, y) ∈ ω × Y, (3.20)

where the function κ is defined in (3.1).

Remark 3.8. For `′ ∈ Tε, the restriction of (ûε, P̂ε) to Y ′k′,aε × Y does not

depend on x′, whereas as a function of y it is obtained from (ũε, P̃ε) by using
the change of variables

y′ =
x′ − aεk′

aε
,

which transforms Yk′,aε into Y .

Let us obtain some a priori estimates for the sequences (ûε, P̂ε).

Lemma 3.9. There exists a constant C independent of ε, such that (ûε, P̂ε)
defined by (3.19)-(3.20) satisfies

i) if aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, or aε � ε,

‖Dy′ ûε‖L2(ω×Y )3×2 ≤ Caε, ‖∂y3 ûε‖L2(ω×Y )3 ≤ Cε,

‖ûε‖L2(ω×Y )3 ≤ C aε,
∥∥∥P̂ε∥∥∥

L2
0(ω×Y )

≤ C 1

aε
,

ii) if aε � ε,

‖Dy′ ûε‖L2(ω×Y )3×2 ≤ Caε, ‖∂y3 ûε‖L2(ω×Y )3 ≤ Cε,

‖ûε‖L2(ω×Y )3 ≤ C ε,
∥∥∥P̂ε∥∥∥

L2
0(ω×Y )

≤ C 1

ε
.

Proof. Using Lemma 3.7 and reasoning as in the proof of Lemma 4.9 in [2],
we have the desired result.

�
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Some compactness results: in this section we obtain some compactness re-
sults about the behavior of the sequences (ũε, P̃ε) and (ûε, P̂ε) satisfying a
priori estimates given in Lemma 3.7 and Lemma 3.9 respectively. If we argue
similarly to Section 5 in [2], we obtain the following results.

Lemma 3.10. For a subsequence of ε still denoted by ε, there exists P̃ ∈ L2
0(Ω),

independent of y3, such that

i) if aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, or aε � ε, then

aεP̃ε ⇀ P̃ in L2
0(Ω),

ii) if aε � ε, then

εP̃ε ⇀ P̃ in L2
0(Ω).

Lemma 3.11. For a subsequence of ε still denoted by ε,

i) if aε ≈ ε with aε/ε→ λ, 0 < λ < +∞, then there exists ũ ∈ H1(0, 1;L2(ω)3)
where ũ3 = 0, and ũ = 0 on y3 = 0, 1, such that

ũε
aε

⇀ (ũ′, 0) in H1(0, 1;L2(ω)3),

ii) if aε � ε, then there exists ũ ∈ L2(Ω)3 where ũ3 = 0, and ũ = 0 on
y3 = 0, 1, such that

ũε
aε

⇀ (ũ′, 0) in L2(Ω)3,

iii) if aε � ε, then there exists ũ ∈ H1(0, 1;L2(ω)3) where ũ3 = 0, and
ũ = 0 on y3 = 0, 1, such that

ũε
ε
⇀ (ũ′, 0) in H1(0, 1;L2(ω)3).

Moreover, in every case

divx′

(∫ 1

0

ũ′(x′, y3)dy3

)
= 0 in ω,

(∫ 1

0

ũ′(x′, y3)dy3

)
· n = 0 on ∂ω.

Lemma 3.12. For a subsequence of ε still denoted by ε,

i) if aε ≈ ε with aε/ε→ λ, 0 < λ < +∞, then there exists û ∈ L2(ω;H1
] (Y )3),

with û = 0 on ω × Ys and on y3 = 0, 1, such that

ûε
aε

⇀ û in L2(ω;H1(Y )3),

divλû = 0 in ω × Y,
where divλ = divy′ + λ∂y3 ,

ii) if aε � ε, then there exists û ∈ L2(Ω;H1
] (Y ′)3), with û = 0 on ω × Ys

and on y3 = 0, 1, such that

ûε
aε

⇀ û in L2(Ω;H1(Y ′)3),

divy′ û
′ = 0 in ω × Y,
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iii) if aε � ε, then there exists û ∈ H1(0, 1;L2
] (ω × Y ′)3), with û = 0 on

ω × Ys and on y3 = 0, 1, such that

ûε
ε
⇀ (û′, 0) in H1(0, 1;L2(ω × Y ′)3) ,

divy′ û
′ = 0 in ω × Y.

Moreover, in every case∫ 1

0

ũ(x′, y3) dy3 =
1

|Y ′|

∫
Y

û(x′, y) dy ,

and

divx′

(∫
Y

û′(x′, y)dy

)
= 0 in ω,

(∫
Y

û′(x′, y)dy

)
· n = 0 on ∂ω.

Lemma 3.13. For a subsequence of ε still denoted by ε, there exists P̂ ∈
L2

0(ω × Y ) such that

i) if aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, or aε � ε, then

aεP̂ε ⇀ P̂ in L2
0(ω × Y ), (3.21)

ii) if aε � ε, then

εP̂ε ⇀ P̂ in L2
0(ω × Y ). (3.22)

Proof of Theorem 2.1. We will multiply system (2.3) by a test function hav-
ing the form of the limit û (as explicated in Lemma 3.12), and we will use the
convergences given in the previous section in order to identify the effective
model in every case.

First of all, we choose a test function v(x′, y) ∈ D(ω;C∞] (Y )3) with

v(x′, y) = 0 ∈ ω × Ys (thus, v(x′, x′/aε, y3) ∈ H1
0 (Ω̃ε)

3). Multiplying (2.3) by
v(x′, x′/aε, y3), integrating by parts, and taking into account that reasoning
as in the proof of Lemma 3.7 for the inertial term we get∣∣∣∣∫

Ω̃ε

(ũε · ∇ε)ũε v dx′dy3

∣∣∣∣ ≤ C a 1
4
ε ‖v‖H1

0 (Ω̃ε)3 ,

then we have

µ

∫
Ω

Dx′ ũε : Dx′v dx
′dy3 +

µ

aε

∫
Ω

Dx′ ũε : Dy′v dx
′dy3

+
µ

ε2

∫
Ω

∂y3 ũε : ∂y3v dx
′dy3 −

∫
Ω

P̃ε divx′v
′ dx′dy3

− 1

aε

∫
Ω

P̃ε divy′v
′ dx′dy3 −

1

ε

∫
Ω

P̃ε ∂y3v3 dx
′dy3 = 〈f̃ε, v〉Ω̃ε

+Oε.

(3.23)
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We analyze the second member of (3.23). Taking into account Remark 3.2,
we observe that

〈f̃ε, v〉Ω̃ε
=

∫
Ω̃ε

f̃0
ε · v′ dx′dy3 +

∫
Ω̃ε

G̃′ε : Dx′v
′ dx′dy3

+
1

ε

∫
Ω̃ε

G̃ε,3 · ∂y3v′ dx′dy3 +
1

aε

∫
Ω̃ε

G̃′ε : Dy′v
′ dx′dy3,

(3.24)

where G̃′ε = (f̃1
ε , f̃

2
ε ) ∈ L2(Ω)2×2 and G̃ε,3 = f̃3

ε ∈ L2(Ω)2.

We define f̂ iε, 0 ≤ i ≤ 3, by

f̂ iε(x
′, y) = f̃ iε

(
aεκ

(
x′

aε

)
+ aεy

′, y3

)
, a.e. (x′, y) ∈ ω × Y ,

where the function κ is defined in (3.1). Reasoning as in Lemma 3.9 and
taking into account (3.5), there exists a constant C independent of ε, such
that

‖f̂ iε‖L2(ω×Y )2 ≤ C, 0 ≤ i ≤ 3,

and then for a subsequence of ε still denoted by ε, there exists f̂ i ∈ L2
] (ω×Y )2,

0 ≤ i ≤ 3, such that

f̂ iε ⇀ f̂ i in L2(ω × Y )2, 0 ≤ i ≤ 3. (3.25)

Now, by the change of variables given in Remark 3.8, from (3.23) and (3.24),
we obtain

µ

a2
ε

∫
ω×Y

Dy′ û
′
ε : Dy′v

′ dx′dy +
µ

ε2

∫
ω×Y

∂y3 û
′
ε : ∂y3v

′ dx′dy

−
∫
ω×Y

P̂ε divx′v
′ dx′dy − 1

aε

∫
ω×Y

P̂ε divy′v
′ dx′dy

=

∫
ω×Y

f̂0
ε · v′ dx′dy +

∫
ω×Y

Ĝ′ε : Dx′v
′ dx′dy

+
1

ε

∫
ω×Y

Ĝε,3 : ∂y3v
′ dx′dy +

1

aε

∫
ω×Y

Ĝ′ε : Dy′v
′ dx′dy +Oε ,

(3.26)

and

µ

a2
ε

∫
ω×Y

∇y′ ûε,3 · ∇y′v3 dx
′dy +

µ

ε2

∫
ω×Y

∂y3 ûε,3 · ∂y3v3 dx
′dy

−1

ε

∫
ω×Y

P̂ε ∂y3v3 dx
′dy +Oε = 0 ,

(3.27)

where Ĝ′ε = (f̂1
ε , f̂

2
ε ) ∈ L2(ω × Y )2×2, Ĝε,3 = f̂3

ε ∈ L2(ω × Y )2.
This variational formulation will be useful in the following steps. We

proceed similarly to the proof of Theorem 6.1 in [2], so we will only give
some details.

Step 1. Critical case aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞. We choose a
test function vε = (aεv

′, λεv3) in (3.26)-(3.27), passing to the limit using the
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convergence (3.25), Lemma 3.12-i) and the convergence (3.21), we obtain

µ

∫
ω×Yf

Dy′ û : Dy′v dx
′dy + µλ

∫
ω×Yf

∂y3 û : ∂y3v dx
′dy

=

∫
ω×Yf

Ĝ′ : Dy′v
′ dx′dy + λ

∫
ω×Yf

Ĝ3 : ∂y3v
′ dx′dy ,

where Ĝ′ = (f̂1, f̂2) ∈ L2
] (ω×Y )2×2 and Ĝ3 = f̂3 ∈ L2

] (ω×Y )2. The previous
variational formulation is equivalent to the effective system

−µ∆λû+∇λq̂ = −divλĜ−∇x′ P̃ in ω × Yf ,
divλû = 0 in ω × Yf ,
û = 0 in ω × Ys, û = 0 on y3 = 0, 1,

divx′

(∫
Y

û′(x′, y)dy

)
= 0 in ω,(∫

Y

û′(x′, y)dy

)
· n = 0 on ∂ω,

y′ → û(x′, y), q̂(x′, y) Y ′ − periodic,

(3.28)

where ∆λ = ∆y′+λ∂2
y3 , ∇λ = ∇y′+

√
λ∂y3 and divλ = divy′+λ∂y3 . Observe

that divλĜ ∈ L2
] (ω×Y )2 given by its entries (divλĜ)k =

∑2
`=1 ∂y` f̂

`
k+λ∂y3 f̂

3
k ,

k = 1, 2.

Step 2. Subcritical case aε � ε. We choose a test function of the form
vε = (aεv

′, aεεv3) in (3.26)-(3.27), passing to the limit using the convergence
(3.25), Lemma 3.12-ii) and the convergence (3.21), we obtain

µ

∫
ω×Yf

Dy′ û
′ : Dy′v

′ =

∫
ω×Yf

Ĝ′ : Dy′v
′ dx′dy .

The previous variational formulation is equivalent to the effective system

−µ∆y′ û
′ +∇y′ q̂ = −divy′Ĝ

′ −∇x′ P̃ in ω × Yf ,
divy′ û

′ = 0 in ω × Yf ,
û′ = 0 in ω × Ys, û = 0 on y3 = 0, 1,

divx′

(∫
Y

û′(x′, y)dy

)
= 0 in ω,(∫

Y

û′(x′, y)dy

)
· n = 0 on ∂ω,

y′ → û′(x′, y), q̂(x′, y) Y ′ − periodic.

(3.29)

Observe that divy′Ĝ
′ ∈ L2

] (ω×Y )2 given by its entries (divy′Ĝ
′)k =

∑2
`=1 ∂y` f̂

`
k,

k = 1, 2.
Step 3. Supercritical case aε � ε. We choose a test function vε = (εv′, 0)

in (3.26)-(3.27), passing to the limit using the convergence (3.25), Lemma
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3.12-iii) and the convergence (3.22), we obtain

µ

∫
ω×Y

∂y3 û
′ : ∂y3v

′dx′dy =

∫
ω×Yf

Ĝ3 : ∂y3v
′ dx′dy .

This variational formulation is equivalent to the effective system

−µ∂2
y3 û
′ +∇y′ q̂ = −∇x′ P̃ − ∂y3Ĝ3 in ω × Yf ,

divy′ û
′ = 0 in ω × Yf , û = 0 on y3 = 0, 1,

divx′

(∫
Y

û′(x′, y)dy

)
= 0 in ω,(∫

Y

û′(x′, y)dy

)
· n = 0 on ∂ω,

y′ → û′(x′, y), q̂(x′, y′) Y ′ − periodic.

(3.30)

Observe that ∂y3Ĝ3 ∈ L2
] (ω×Y )2 given by its entries (∂y3Ĝ3)k = f̂3

k , k = 1, 2.

Step 4. In this final step, we will eliminate the microscopic variable y
in the effective problem. The derivation of (2.4), (2.5) and (2.6) from the
effective problems (3.28), (3.29) and (3.30) respectively, is an easy algebra
exercise. Let us point that problems (2.4), (2.5) and (2.6) are well-posed
problems since they are simply second order elliptic equations for the pressure
P̃ (with Neumann boundary condition).

As is well-known, the local problems are also well-posed with periodic
boundary condition, and it is easily checked, by integration by parts, that

Aλij =

∫
Yf

Dλw
i(y) : Dλw

j(y) dy =

∫
Yf

wi(y)ejdy, i = 1, 2, j = 1, 2, 3.

Observe that condition
∫
Y
wi3 dy = 0, i = 1, 2, implies that Aλi3 = 0. Then

Aλ ∈ R2×2 and the definition implies that Aλ is symmetric and positive
definite. Remark that (3.30) can be expressed by means of local problems of
the same type for functions wi and w. These problems can be solved as the
classical derivation of the Reynolds equation, and wi and w can be explicitly
obtained by means of local problems for qi and q, respectively. As consequence
A∞ and b∞ are given, for i, j = 1, 2, by

A∞ij =
1

|Y ′f |

∫
Y ′f

(ei +∇y′qi)ej dy′, b∞i (x′) =
1

|Y ′f |

∫
Y ′f

(G3 +∇y′q) dy′,

where G3(x′, y′) = 6
∫ 1

0
Ĝ3(x′, y)dy3 − 12

∫ 1

0

(∫ y3
0
Ĝ3(x′, y′, s)ds

)
dy3 and Ĝ3

is defined in Step 1. �
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Maŕıa Anguiano
Departamento de Análisis Matemático
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Facultad de Matemáticas.
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