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1 Introduction and setting of the problem

Over the past one hundred years, mathematics have been used to understand and
predict the spread of diseases. Almost all mathematical models of diseases start from
the same basic premise: that the population can be subdivided into a set of distinct
classes, dependent upon their experience with respect to the disease. One line of
investigation classifies individuals as one of susceptible, infectious or recovered. Such
a model is termed as an SIR model.

The first SIR model for the transmission of infectious diseases, which was intro-
duced by Kermack and McKendrick [1] in 1927, is one of the fundamental models
of mathematical epidemiology [2, 3, 4]. Its classical form involves a system of au-
tonomous ordinary differential equations for three classes, the susceptibles S, infec-
tives I and recovereds R, of a constant total population.

Many generalizations of this model have been proposed and studied, for instance,
to include age structure, time delays, spatial diffusion and variable infectivity; see,
for example, [3, 5, 6]. More recently, non-autonomous versions of the SIR model and
related epidemic systems for which the total population may vary in time have been
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investigated [7, 8]. These non-autonomous versions of the SIR model have attracted
attention due to the seasonal variations in many diseases. For example, for the
spread of infectus childhood diseases Thieme [8] cites arguments that the school
system induces a time-hererogeneity in the per capita/capita infection rate, because
the chain of infections is interrupted or at least weakened by the vacations and new
individuals are recruited into a scene with higher infection risk at the beginning of
each school year. This requires the inclusion of time variable coefficients or forcing
terms in the models.

Here we study the SIR model introduced in [7]. The model is defined by the
following three ordinary differential equations

dS

dt
= aq(t)− aS + bI − γ SIN ,

dI

dt
= −(a+ b+ c)I + γ SIN ,

dR

dt
= cI − aR,


(1)

where
N(t) = S(t) + I(t) +R(t),

with initial condition

S(t0) = S0, I(t0) = I0, R(t0) = R0, (2)

where t0 ∈ R, the parameters a, b, c and γ are positive constants such that 2a > c,
a > b+ 2γ and q : R 7→ R is a continuous function such that satisfies q(t) ≥ q− > 0
for all t ∈ R and ∫ t

−∞
elsq2(s)ds < +∞, ∀t ∈ R, (3)

where l := min{2a− c, a− b− 2γ, 2a+ b+ c− 2γ} > 0.
There are basically two ways to define attraction of a compact and invariant

non–autonomous set for a process on a metric space. The first, and perhaps more
obvious, corresponds to the attraction in the sense of Lyapunov stability, which is
called forward attraction, and involves a moving target, while the second, called
pullback attraction, involves a fixed target set with progressively earlier starting
time. In general, these two types of attraction are independent concepts, while for
the autonomous case, they are equivalent. Physically, the pullback attractor provides
a way to assess an asymptotic regime at time t (the time at which we observe the
system) for a system starting to evolve from the remote past. The pullback dynamic
contains interesting dynamical properties, which allow us to understand the forward
attraction. The first aim of this paper is to show the existence of a pullback and
a uniform attractor for the process associated to (1)-(2). The fact that q is non-
autonomous is the main novelty of our problem.
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The dynamics induced by the class of periodic, almost periodic or almost au-
tomorphic continuous functions is not robust to small changes in the forcing term
in the sense that a bounded entire solution corresponding to a perturbed forcing
term may not belong to this class. Then, Kloeden and Rodrigues presented in [9]
an alternative extension of periodic and almost periodic functions. Namely, they
introduce the class of functions consisting of uniformly continuous functions, de-
fined on the real line and taking values in a Banach space, with the property that a
bounded entire solution of a non autonomous ODE belongs to this class when the
forcing term does. The fact that the forcing term belongs to the class more general
than almost periodic in a non-autonomous system means that the external force of
the phenomena modeled possesses different types of intensity along time. We also
consider that (1) includes a forcing term which belongs to this class of functions
introduced by Kloeden and Rodrigues in [9] .

On the other hand, the theory of topological dimension [10], developed in the
first half of the 20th century, is of little use in giving the scale of dimensional
characteristics of attractors. The point is that the topological dimension can take
integer values only. Hence the scale of dimensional characteristics compiled in this
manner turns out to be quite poor. For investigating attractors, the Hausdorff
dimension of a set is much better. This dimensional characteristic can take any
nonnegative value. Recently in [11] Lyapunov-type functions are introduced into
upper estimates for the Hausdorff dimension of negatively invariant sets of cocycles.
For this purpose, the methods proposed in [12, 13, 14] are further developed. The
second aim of this paper is to estimate the Hausdorff dimension of the pullback
attractor of (1)-(2) using the recent method proposed by Leonov et al. in [11].

The structure of the paper is as follows. In Section 2 we briefly recall some
abstract results about the theory of pullback and uniform attractors. In Section 3
we establish the existence and uniqueness of a positive solution for our model and
we prove a continuous dependence result with respect to initial data. Some sufficient
conditions ensuring the existence of such type of attractors for (1)-(2) are collected in
Section 4. We consider that the differential equations of non-autonomous SIR model
are subjected to a periodic forcing term in Section 5. In Section 6 we consider that
(1) includes a forcing term which belongs to a class of functions more general than
almost periodic. We use recent results proposed by Kloeden and Rodrigues [9] to
prove that the solution of (1)-(2) belongs to this class when the forcing term does.
Finally, in Section 7 we estimate the Hausdorff dimension of the pullback attractor
associated to (1)-(2). We illustrate these results with some numerical simulations.

2 Abstract results on Pullback and Uniform Attractors

In this section we recall some abstract results on the theory of pullback attractors
(see, e.g., [15, 16]) and uniform attractors (see [17]).
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2.1 Processes and attractors

Let (X, dX) be a metric space, and let us denote R2
d = {(t, t0) ∈ R2 : t0 ≤ t}.

A process on X is a mapping U such that R2
d ×X 3 (t, t0, x) 7→ U(t, t0)x ∈ X

with U(t0, t0)x = x for any (t0, x) ∈ R × X, and U(t, r)(U(r, t0)x) = U(t, t0)x for
any t0 ≤ r ≤ t and all x ∈ X.

Let us denote P(X) the family of all nonempty subsets of X, and consider a
family of nonempty sets D̂ = {D(t) : t ∈ R} ⊂ P(X). Let D be a nonempty set
of parameterized families of nonempty bounded sets D̂ = {D(t) = D : t ∈ R} ⊂
P(X), where D ⊂ X is a bounded set. In what follows, we will consider a fixed
universe of attraction D and throughout our analysis the concepts of absorption and
attraction will be referred to this fixed universe.

Definition 1 It is said that D̂0 ⊂ P(X) is pullback absorbing for the process U on
X if for any t ∈ R and any D̂ ∈ D, there exists a t̂0(t, D̂) ≤ t such that

U(t, t0)D(t0) ⊂ D0(t) for all t0 ≤ t̂0(t, D̂).

Denote the omega-limit set of D̂ by

Λ(D̂, t) :=
⋂
s≤t

⋃
t0≤s

U(t, t0)D(t0)
X

for all t ∈ R, (4)

where {· · · }X is the closure in X.

Definition 2 The family of compact sets {A(t)}t∈R is said to be a pullback attractor
associated to the continuous process U if is invariant, attracts every {D(t)} ∈ D and
minimal in the sense that if {C(t)}t∈R is another family of closed attracting sets,
then A(t) ⊂ C(t) for all t ∈ R.

The general result on the existence of pullback attractors is the following.

Theorem 3 [Crauel et al. [18], Schmalfuss [16]] Assume that there exists a family
of compact pullback absorbing sets {B(t)}t∈R. Then, the family {A(t)}t∈R defined
by

A(t) =
⋃
D̂∈D

Λ
(
D̂, t

)X
,

is the pullback attractor, where Λ
(
D̂, t

)
is the omega-limit set at time t of D̂ ∈ D,

where D is the universe of fixed nonempty bounded subsets of X.

Another approach to the asymptotic dynamics of non-autonomous equations,
the uniform attractor, has been developed by Chepyzhov and Vishik [17].
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Definition 4 A set K ⊆ X is said to be uniformly (with respect to t0 ∈ R) attracting
for the process {U(t, t0)} on X if for all t0 ∈ R and for any bounded set B ⊂ X,

lim
T→+∞

(
sup
t0∈R

distX(U(T + t0, t0)B,K)

)
= 0.

Respectively, the process {U(t, t0)} is said to be uniformly asymptotically compact
(with respect to t0 ∈ R) if there exists a compact uniformly (with respect to t0 ∈ R)
attracting set of {U(t, t0)}.

Definition 5 A closed set A1 ⊆ X is said to be a uniform (with respect to t0 ∈ R)
attractor for a process {U(t, t0)} if it is the minimal closed uniformly (with respect
to t0 ∈ R) attracting set for this process. Minimality is meant in the sense that any
closed attracting set is contained in A1.

Theorem 6 [Chepyzhov and Vishik [17], Haraux [19]] If a process {U(t, t0)} is
uniformly asymptotically (with respect to t0 ∈ R) compact, then it has the uniform
(with respect to t0 ∈ R) attractor A1. The set A1 is compact in X.

To describe the structures of uniform attractors and to perform a comparison
with the pullback attractor we introduce the notions of complete trajectory of a
process, kernel of a process and kernel section.

Definition 7 A map u : R→ X is called a complete trajectory of a process U(t, t0)
if

U(t, t0)u(t0) = u(t) for all t ≥ t0, t, t0 ∈ R.

Definition 8 The kernel K of a process U(t, t0) consists of all of its bounded com-
plete trajectories of the process U(t, t0).

Definition 9 The set
K(s) = {u(s) : u(·) ∈ K}

is said to be the kernel section at a time moment t = s, s ∈ R.

These kernel sections are, essentially, the fibres of the pullback attractor.

Lemma 10 If U(·, ·) has a uniform attractor A1, then⋃
t∈R
K(t) ⊆ A1.
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2.2 The structures of attractors for periodic processes

Let {U(t, t0)} be a periodic process, and let T be its period, i.e.,

U(t+ T, t0 + T ) = U(t, t0) ∀t ≥ t0, t0 ∈ R.

We can now state a theorem about attractors of periodic processes.

Theorem 11 [Chepyzhov and Vishik [20]] Let {U(t, t0)} be a periodic uniformly
(with respect to t0 ∈ R) asymptotic compact and (X × T1)−continuous process,
where T1 = R (mod T ). Then, the process {U(t, t0)} has a uniform (with respect to
t0 ∈ R) attractor, A1, and is given by

A1 =
⋃

σ∈[0,T )

K(σ),

where K(σ) is the kernel section of the process {U(t, t0)} at time t = σ.

3 Existence and uniqueness of solutions

We state and sketch the proof of a result on the existence and uniqueness of positive
solutions of (1)–(2) for initial data in R3

+.

Theorem 12 For any initial value (S0, I0, R0) ∈ R3
+, there exists a unique positive

solution of the problem (1)–(2), denoted by u(t; t0, u0) := (S(t; t0, (S0, I0, R0)), I(t; t0,
(S0, I0, R0)), R(t; t0, (S0, I0, R0))).

Proof. Let (S(t), I(t), R(t)) be a solution of (1)–(2) with initial condition (S0, I0, R0).
If we denote

f1(S, I,R, t) := aq(t)− aS + bI − γSI
N

,

f2(S, I,R, t) := −(a+ b+ c)I + γ
SI

N
,

f3(S, I,R, t) := cI − aR,

it is easy to verify that non-negative initial data imply non-negative solutions using
Theorem 2.1 from Chapter 5 in [21], since

f1(0, I, R, t) ≥ aq− + bI > 0, f2(S, 0, R, t) = 0, f3(S, I, 0, t) = cI ≥ 0.

On the other hand, there is a unique local solution of (1)–(2) since the coefficients
of the equation are, in fact, globally Lipschitz for any given non-negative initial
value (S0, I0, R0) in R3

+, (this is true also for the nonlinear terms due to their special
structure, which will be shown in the proof of Theorem 13 below), and this solution
is a global solution one (12) is proved.

Now, thanks to the uniqueness of solution of (1)-(2), we can define a process
{U(t, t0), t0 ≤ t} in R3

+, by

U(t, t0)u0 = u(t; t0, u0) ∀u0 ∈ R3
+. (5)
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3.1 Continuity in initial data

Theorem 13 The process defined by (5) is continuous in R3
+.

Proof. We denote

(S, I,R) := (S1, I1, R1)− (S2, I2, R2),

where (S1, I1, R1) is the solution of (1)–(2) for the initial condition (S1
0 , I

1
0 , R

1
0) and

(S2, I2, R2) is the solution for the initial condition (S2
0 , I

2
0 , R

2
0). Then, (S, I,R) is

the solution for the following problem

dS

dt
= −aS + bI − γF1,2,

dI

dt
= −(a+ b+ c)I + γF1,2,

dR

dt
= cI − aR,


with initial condition

S(t0) = S1
0 − S2

0 , I(t0) = I10 − I20 , R(t0) = R1
0 −R2

0

where

F1,2 :=
S1I1
N1
− S2I2

N2
. (6)

Now

|F1,2| ≤
∣∣S∣∣+

∣∣∣∣N2

N1

∣∣∣∣ ∣∣I∣∣+

∣∣∣∣N2

N1

∣∣∣∣ ∣∣N ∣∣ , (7)

since I1
N1

, I2
N2

, S2
N2

take values in [0, 1]. Similarly, interchanging the indices in the
above derivation, we also have

|F1,2| ≤
∣∣S∣∣+

∣∣∣∣N1

N2

∣∣∣∣ ∣∣I∣∣+

∣∣∣∣N1

N2

∣∣∣∣ ∣∣N ∣∣ . (8)

Fix t ≥ t0. Applying (7) where N2(t) ≤ N1(t) and (8) where N1(t) ≤ N2(t), we
obtain

|F1,2| ≤
∣∣S∣∣+

∣∣I∣∣+
∣∣N ∣∣ , (9)

and we can deduce

|F1,2(t)|2 ≤ 3
∣∣S(t)

∣∣2 + 3
∣∣I(t)

∣∣2 + 3
∣∣N(t)

∣∣2 . (10)
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Defining

Σ(t) :=
∣∣S(t)

∣∣2 +
∣∣I(t)

∣∣2 +
∣∣R(t)

∣∣2 ,
and using (10), we obtain

d

dt
Σ(t) + ρΣ(t) ≤ 6γ

∣∣N(t)
∣∣2 , (11)

for an appropriate nonzero constant ρ.
Now, we observe that N = S + I +R satisfies

dN

dt
+ aN = 0.

We deduce that
d

dt

∣∣N(t)
∣∣2 = −2a

∣∣N(t)
∣∣2 .

Multiplying by eat and integrating between t0 and t, we have∣∣N(t)
∣∣2 ≤ e−2a(t−t0)

∣∣N0

∣∣2 ≤ Σ(t0),

since
∣∣N0

∣∣2 ≤ Σ(t0). Thus from the differential inequality (11) we obtain

d

dt
Σ(t) + ρΣ(t) ≤ 6γΣ(t0),

which we integrate between t0 and t, to obtain

Σ(t) ≤
[(

1− 6γ

ρ

)
e−ρ(t−t0) +

6γ

ρ

]
Σ(t0)

Hence Σ(t) → 0 as Σ(t0) → 0 for each t ≥ t0. Hence we have shown that the
process defined by (5) is continuous in R+

3 .

4 Pullback and uniform attractors

In this section, we will prove the existence of pullback and uniform attractors in R3
+

of our problem (1)-(2).

4.1 Pullback Attractor

First, we will show the existence of a pullback attractor in R3
+.

Proposition 14 Assume that 2a > c and a > b+2γ. Then for any initial condition
u0 ∈ R3

+, the solution u of (1)-(2) satisfies

|u(t; t0, u0)|2 ≤ e−l(t−t0) |u0|2 + ae−lt
∫ t

−∞
elsq2(s)ds, (12)

for all t ≥ t0, where l := min{2a− c, a− b− 2γ, 2a+ b+ c− 2γ}.
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Proof. We deduce that

d

dt
|u(t)|2 = 2aq(t)S − 2a |u(t)|2 + 2bIS + 2cIR− 2(b+ c)I2 − 2γ(

S2I

N
− SI2

N
).

We have
2aq(t)S ≤ aq2(t) + aS2,

2bIS ≤ bI2 + bS2,

and
2cIR ≤ cI2 + cR2.

Then, taking into account that 0 ≤ S
N ,

I
N ≤ 1, we can deduce

d

dt
|u(t)|2 + l |u(t)|2 ≤ aq2(t), (13)

where l := min{2a− c, a− b− 2γ, 2a+ b+ c− 2γ} > 0.
Multiplying (13) by elt, we obtain that

d

dt

(
elt |u(t)|2

)
≤ aeltq2(t).

Integrating between t0 and t

elt |u(t)|2 ≤ elt0 |u0|2 + a

∫ t

t0

elsq2(s)ds (14)

≤ elt0 |u0|2 + a

∫ t

−∞
elsq2(s)ds,

whence (12) follows.
We consider the universe of fixed nonempty bounded subsets of R3

+. Now, we
prove that there exists a pullback absorbing family for the process U(t, t0) defined
by (5).

Proposition 15 Assume that 2a > c and a > b + 2γ. Let q satisfies (3). Then,
the family D̂0 = {D0(t) : t ∈ R} defined by D0(t) = BR3

+
(0, ρl(t)), where ρl(t) is the

nonnegative number given by

ρ2l (t) = 1 + ae−lt
∫ t

−∞
elsq2(s)ds, ∀t ∈ R,

is pullback absorbing family for the process U defined by (5).

9



Proof. Let D ⊂ R3
+ be bounded. Then, there exists d > 0 such that |u0| ≤ d for all

u0 ∈ D. Thanks to Proposition 14, we deduce that for every t0 ≤ t and any u0 ∈ D,

|U(t, t0)u0|2 ≤ e−ltelt0 |u0|2 + ae−lt
∫ t

−∞
elsq2(s)ds

≤ e−ltelt0d2 + ae−lt
∫ t

−∞
elsq2(s)ds.

If we consider T (t,D) := l−1 log(eltd−2), we have

|U(t, t0)u0|2 ≤ 1 + ae−lt
∫ t

−∞
elsq2(s)ds,

for all t0 ≤ T (t,D) and for all u0 ∈ D.
Consequently the family D̂0 = {D0(t) : t ∈ R} defined by D0(t) =

BR3
+

(0, ρl(t)) is pullback absorbing for the process U defined by (5).

Now, as a direct consequence of the preceding results and Theorem 3, we have
the existence of the pullback attractor for the process U defined by (5).

Theorem 16 Under the assumptions in Proposition 15, the process U defined by
(5) possesses a pullback attractor A, which is given by

A(t) =
⋃
D̂∈D

Λ
(
D̂, t

)
. (15)

4.2 Uniform Attractor

Now, we suppose that q is translation bounded in L2
loc(R;R), i.e.,

sup
t∈R

∫ t+1

t
q2(s)ds <∞ . (16)

In this subsection, using Theorem 6, we will prove that, under the assumption (16),
the process {U(t, t0)} has a uniform (with respect to t0 ∈ R) attractor.

Remark 17 Observe that assumption (16) implies (3).

Proposition 18 Assume that 2a > c and a > b + 2γ. Let q satisfies (16). Then,
the process U defined by (5) is uniformly (with respect to t0 ∈ R) asymptotically
compact.
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Proof. Let D ⊂ R3
+ be bounded, and as in the proof of Proposition 15, let d > 0

such that |u0| ≤ d for all u0 ∈ D. Using (14), we have for any u0 ∈ D

|u(t; t0, u0)|2 ≤ e−l(t−t0) |u0|2 + a

∫ t

t0

e−l(t−s)q2(s)ds

≤ e−l(t−t0)d2 + a

∫ t

t0

e−l(t−s)q2(s)ds, (17)

for all t ≥ t0. We estimate the integral on the right-hand side of (17), taking into
account (16),∫ t

t0

e−l(t−s)q2(s)ds ≤
∫ t

−∞
e−l(t−s)q2(s)ds ≤

∑
n≥0

∫ t−n

t−(n+1)
e−l(t−s)q2(s)ds

≤
∑
n≥0

e−nl
∫ t−n

t−(n+1)
q2(s)ds = C1(1− e−l)−1,

where C1 := supt∈R
∫ t+1
t q2(s)ds <∞.

Then, we can deduce that there exists a positive constant Cl such that

|u(t; t0, u0)|2 ≤ e−l(t−t0)d2 + Cl.

Replacing t by t+ t0, we have

|u(t+ t0; t0, u0)|2 ≤ e−ltd2 + Cl,

and if we consider t ≥ T (D) := log d2

l , we obtain

|u(t+ t0; t0, u0)|2 ≤ 1 + Cl,

for all t0 and for all u0 ∈ D.
Then, the set B0 := BR3

+
(0, 1 + Cl) is compact and uniformly (with respect to

t0 ∈ R) attracting for the process U defined by (5). Therefore, the process U is
uniformly (with respect to t0 ∈ R) asymptotically compact.

We can now state a theorem about the existence of a uniform attractor of (1)-(2).
Taking into account Theorem 6 and Lemma 10, we can deduce the following result.

Theorem 19 Under the assumptions in Proposition 18, the process U defined by
(5) has a uniform attractor A1, which is compact in R3

+. Moreover, we have the
following relation: ⋃

t∈R
A(t) ⊆ A1, (18)

where A(t) is given by (15).
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5 Attractors for Periodic Equations

We consider (1)-(2) with 2a > c, a > b + 2γ and a T -periodic continuous function
q : R 7→ R.

5.1 Pullback Attractor

In this subsection we show that when we have a periodic nonlinear term we obtain
that the pullback attractor is a periodic pullback attractor. We observe that q
satisfies (3). In fact q satisfies (16).

Then, under the assumptions in Proposition 15, the process defined by (5) has
a pullback attractor A which is given by (15).

Corollary 20 Assume that q is a T -periodic continuous function. Then the process
U defined by (5) is periodic with period T , that is

U(t, t0)u0 = U(t+ T, t0 + T )u0,

for all t0, t ∈ R, and the pullback attractor A(·) is also periodic with period T .

Proof. We can deduce that (X(·; t0, u0), Y (·; t0, u0), Z(·; t0, u0)) := (S(· + T ; t0 +
T, u0), I(·+T ; t0+T, u0), R(·+T ; t0+T, u0)) is the unique solution of (1) with initial
value u0 at t = t0 because

dX

dt
(t) =

dS

dt
(t+ T ) =

dS

dτ
(τ) = aq(τ)− aS(τ) + bI(τ)− γS(τ)I(τ)

N(τ)
where τ = t+ T

= aq(t)− aX(t) + bY (t)− γX(t)Y (t)

N(t)
,

by T -periodicity of q,

dY

dt
(t) =

dI

dt
(t+ T ) =

dI

dτ
(τ) = −(a+ b+ c)I(τ) + γ

S(τ)I(τ)

N(τ)
where τ = t+ T

= −(a+ b+ c)Y (t) + γ
X(t)Y (t)

N(t)
,

and

dZ

dt
(t) =

dR

dt
(t+ T ) =

dR

dτ
(τ) = cI(τ)− aR(τ) where τ = t+ T

= cY (t)− aZ(t),

where N = X + Y + Z.
Hence, we have

U(t, t0)u0 = U(t+ T, t0 + T )u0,
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for all t ≥ t0.
Replacing t0 by t0 − t, where t ≥ 0, and t by t0, we thus have

U(t0, t0 − t)u0 = U(t0 + T, t0 + T − t)u0,

so, by (4),

Λ(D̂, t0) :=
⋂
s≤t0

⋃
t0−t≤s

U(t0, t0 − t)D(t0 − t)

=
⋂
s≤t0

⋃
t0−t≤s

U(t0 + T, t0 + T − t)D(t0 − t) = Λ(D̂, t0 + T ),

and then

A(t0) =
⋃
D̂∈D

Λ
(
D̂, t0

)
=
⋃
D̂∈D

Λ
(
D̂, t0 + T

)
= A(t0 + T ).

Hence, A(·) is also T -periodic.

In Figure 1 we exhibit a simulation showing the pullback attractor for (1)-(2)
with q a periodic function. In this simulation, we used the following parameters and
initial conditions values: a = 1

2 , b = c = γ = 1
8 , q(t) = cos(t) + 2, S(−2000) = 1,

I(−2000) = 1 and R(−2000) = 1.

5.2 Uniform Attractor

In this subsection we show that when we have a periodic term we obtain a relation
between the uniform attractor and the pullback attractor.

Proposition 21 The process U defined by (5) is (R3
+ × T1,R3

+)- continuous.

Proof. We have to prove that for all fixed t0 ∈ R, t ≥ t0, the mapping (u, t) 7→
U(t, t0)u is continuous from R3

+ × T1 into R3
+. By the continuous dependence of

solutions of (1)-(2) on initial values, we have that as the coefficients of (1) are
locally Lipschitz, then the process U defined by (5) is (R3

+×T1,R3
+)- continuous.

We can now state a theorem about the existence of a uniform attractor of (1)-(2).
Taking into account Theorem 11, we can deduce the following result.

Theorem 22 Assume that 2a > c, a > b + 2γ and q is a T -periodic continuous
function. Then, the set

A1 =
⋃

σ∈[0,T )

A(σ),

is a uniform (with respect to t0 ∈ R) attractor for the process U defined by (5),
where {A(σ)}σ∈R is the pullback attractor of the process U defined by (5).
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Figure 1: Numerical solution (S(t), I(t), R(t))
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6 Pullback attractors for a class of ODEs more general
than almost periodic

In this section we use a new class of functions and we generalize some results about
periodic solutions of (1)-(2). We use recent results due to Kloeden and Rodrigues
[9], where the authors introduced a class of functions which has the property that a
bounded temporally global solution of a nonautonomous ordinary differential equa-
tion belongs to this class when the forcing term does. Let BUC(R,R3

+) denotes
the space of bounded and uniformly continuous functions f : R → R3

+, with the
supremum norm. We consider as in [9] the following class of functions,

F := {f ∈ BUC(R,R3
+) : f has precompact range R(f)}.

The class F includes periodic functions. We now consider the class FODE defined
by

FODE :={f :R× R3
+ → R3

+; is uniformly continuous in t ∈ R, uniformly in (S, I,R)

in compact subsets C ⊂ R3
+,with precompact range RC(f)},

where
RC(f) :=

⋃
(S,I,R)∈C

{f(t, S, I, R), t ∈ R}.

Functions in the class F belong trivially to the class FODE . For our problem, we
consider

f1(t, S, I, R) := aq(t)− aS + bI − γSI
N
, (19)

f2(t, S, I, R) := −(a+ b+ c)I + γ
SI

N
, (20)

f3(t, S, I, R) := cI − aR, (21)

and we suppose that
q ∈ BUC(R,R). (22)

Proposition 23 Under assumption (22), f1, f2 and f3 defined by (19)-(21) belong
to the class FODE.

Proof. We prove that f1 ∈ FODE . We observe that f2 and f3 trivially belong to
FODE since it does not depend on t.

First, we have to prove that f1 is uniformly continuous in t ∈ R, uniformly in
(S, I,R) in compact subsets C ⊂ R3

+, i.e., we have to prove that there is a function
α0(θ, C), α0(θ, C) 7→ 0+ (θ 7→ 0+) such that

|f1(t1, S1, I1, R1)−f1(t2, S2, I2, R2)|≤α0(|t1−t2|+|S1−S2|+|I1−I2|+|R1−R2|,C) (23)
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for all (S1, I1, R1), (S2, I2, R2) ∈ C, where C ⊂ R3
+ is a compact subset, and t1, t2 ∈

R.
We deduce that

|f1(t1, S1, I1, R1)−f1(t2, S2, I2, R2)|≤a |q(t1)− q(t2)|+a |S1 − S2|+b |I1 − I2|+γ |F1,2|,

where F1,2 is given by (6). Taking into account (9) and using (22), we have (23) with
α0(|t1 − t2| +|S1−S2|+|I1−I2|+|R1−R2|,C) 7→ 0+ (|t1 − t2| +|S1−S2|+|I1−I2|+
|R1−R2| 7→ 0+), so f1 is uniformly continuous in t ∈ R, uniformly in (S, I,R) in
compact subsets C ⊂ R3

+.
Finally, thanks to (22), in particular we have that q is a bounded function in

t ∈ R, and we can deduce that RC(f1) is precompact, where C ⊂ R3
+ is a compact

subset. Therefore, f1 ∈ FODE .
Then, we can write (1) as

du

dt
= f(t, u), t ∈ R, (24)

with initial condition
u(t0) = u0, (25)

where u(t; t0, u0) := (S(t; t0, (S0, I0, R0)), I(t; t0, (S0, I0, R0)), R(t; t0, (S0, I0, R0))),
t0 ∈ R and f(t, u) := (f1(t, S, I, R), f2(t, S, I, R), f3(t, S, I, R)) belongs to the class
FODE .

Thanks to Lemma 8 in [9], on account of the following Theorem, the components
sets of the pullback attractor and its entire solutions are in fact uniformly continuous.

Theorem 24 Assume that 2a > c and a > b+2γ. Under assumption (22), problem
(24)-(25) generates a process which possesses a pullback attractor A = {A(t) : t ∈ R}
such that

⋃
t∈RA(t) is precompact.

Proof. Taking into account (22) we deduce that q satisfies (3) and (16). Then,
thanks to Theorem 16, there exists the pullback attractor for the process defined by
(5). On the other hand, using Theorem 19, we have (18). Therefore,

⋃
t∈RA(t) is

bounded and therefore
⋃
t∈RA(t) is precompact.

Lemma 25 Under the assumptions in Theorem 24 we have that (φ1, φ2, φ3) belongs
to the class F for every entire solution (φ1, φ2, φ3) of the problem (24)-(25) taking
values in the pullback attractor.

In Figure 2 we present a simulation showing the pullback attractor for (24)-
(25) where q satisfies (22). We used the following parameters and initial conditions
values: a = 1

2 , b = c = γ = 1
8 , q(t) = cos(t) + 2 + e−|t|, S(−2000) = 1, I(−2000) = 1

and R(−2000) = 1.
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Figure 2: Numerical solution (S(t), I(t), R(t))

7 Upper Estimates for the Hausdorff Dimension of the
Pullback Attractor

In this section we obtain an upper bound for the Hausdorff dimension of the pullback
attractor of the process defined by (5). For this purpose, we use a method proposed
by Leonov et al. in [11] in the framework of cocycle dynamical systems.

Assume that q ∈ BUC(R,R) and satisfies the following additional conditions:

(H1) Boundedness in time, i.e., there exists a nonnegative constant q0 such that

|q(t)| ≤ q0, for all t ∈ R. (26)

(H2) The hull of the function f denoting the right-hand side of (1), is a compact
metric space, i.e., H(f) = {f(t+ ·, ·) : t ∈ R} is a compact metric space.

Notice that if q is an almost periodic function, then q satisfies (26) and the hull
H(f) is a compact metric space where the closure is taken in the uniform convergence
topology (see [17] for more details).

In Section 4 we have proved that the solution mapping of (1)-(2) defines a process
given by (5) which has a pullback attractor {A(t)}t∈R ⊂ R3

+ defined by (15).

17



Also we can obtain a cocycle by considering

v′ = F(σtp, v),

v(0) = v0 ∈ R3
+,

 (27)

where p ∈ H(f), F(p, v) := p(0, v) and σ is defined as the shift mapping σt : H(f) 7→
H(f) given by

σtf̃ := f̃(·+ t, ·),

for t ∈ R and f̃ ∈ H(f).
Then, the cocycle generated by (27) is given by

ϕ(t, p)v0 = v(t; p, v0),

where v(t; p, v0) denotes the solution of (27) with initial value v0 at t = 0. If we take
p = f ∈ H(f), then

ϕ(t, f)v0 = v(t; f, v0),

and (27) becomes

v′ = σtf(0, v),

v(0) = v0 ∈ R3
+,


i.e.,

v′ = f(t, v),

v(0) = v0 ∈ R3
+,


and we have

ϕ(t, f)v0 = U(t, 0)v0.

Then, our problem (1)-(2) generates a cocycle ({ϕ(t, p)·}p∈H(f),t∈R,R3
+) over the

base flow ({σt}t∈R,H(f)), where

ϕ(t, σsf)v0 = U(t+ s, s)v0. (28)

Now, to estimate the Hausdorff dimension of the pullback attractor associated
to the process defined by (5), we will use Theorem 2 in [11], which is stated in the
framework of cocycle dynamical systems. Then, for the cocycle generated by our
system, we need to verify:

i) There exists a family of compact sets {Ã(p)}p∈H(f) which is negatively invari-
ant for the cocycle defined by (28), i.e.

Ã(σtp) ⊂ ϕ(t, p)Ã(p), for all p ∈ H(f), t ≥ 0.

18



ii) There exists a compact set K̃ ⊂ R3
+ such that⋃

p∈H(f)

Ã(p) ⊂ K̃.

iii) There exists a continuous function V : H(f) × R3
+ → R with derivatives

d
dtV (σtp, ϕ(t, p)u0) along a given trajectory such that

λ1(σtp, ϕ(t, p)u0) + λ2(σtp, ϕ(t, p)u0) + sλ3(σtp, ϕ(t, p)u0)

+
d

dt
V (σtp, ϕ(t, p)u0) < 0, (29)

for all t ∈ R, u0 ∈ K̃, p ∈ H(f) and s ∈ (0, 1], where λi with i = 1, 2, 3 are the
eigenvalues of the symmetrized Jacobian matrix of the right-hand side of (1)
arranged in nonincreasing order λ1 ≥ λ2 ≥ λ3.

Using the pullback attractor, {A(t)}t∈R, associated to the process defined by (5),
we define the family {Ã(p)}p∈H(f) by

Ã(p) =

{
A(s) if p = σsf,

{x ∈ R3
+ : x = limtn→+∞ xtn , xtn ∈ A(tn)} if p 6= σsf,

(30)

where s ∈ R and p ∈ H(f).
The set Ã(p) is compact for any p ∈ H(f). Moreover, the family {Ã(p)}p∈H(f) is

negatively invariant. Indeed, if p = σsf , taking into account (28) and the fact that
{A(t)}t∈R is invariant for the process U defined by (5), we obtain that ϕ(t, p)Ã(p) =
Ã(σtp) for all t ≥ 0. If p 6= σsf , then p = limtn→+∞ σtnf and it is easy to see that
ϕ(t, p)Ã(p) ⊇ Ã(σtp).

On the other hand, we can consider the following compact set

K̃ :=
⋃
t∈R
A(t) ⊂ R3

+,

and we have that ⋃
p∈H(f)

Ã(p) ⊂ K̃,

and, consequently, condition i)-ii) hold.
We can now establish our result on the estimate of the Haussdorff dimension of

the pullback attractor for our model. We denote by dimHK the Hausdorff dimension
of K. For simplicity, we assume that c = 0.
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Theorem 26 Assume that c = 0, a > 0, a > b + 2γ, and that q ∈ BUC(R,R)
satisfies (H1)-(H2). Then the pullback attractor of the process U defined by (5)
satisfies

dimHA(t) ≤ 3− 6a+ 2b− 2γ

2a+ b− γ +m
, (31)

for all t ∈ R, where m is a positive number given by m := 2b2 +12γ2 +6bγ+ 1
4 +aq20.

Proof. We need to verify iii).
It is easy to see that the eigenvalues of the symmetrized Jacobian matrix of the

right-hand side of (1) are

−a,

and

−a+
1

2

−b+γ(
S

N
− I
N

)±

√(
−b+γ(

S

N
+
I

N
−2

SI

N2
)

)2

+

(
b−γ(

S

N
− I

N
)

)2

+2

(
γ
SI

N2

)2
.

Hence, condition (29) can be written in the form

2
d

dt
Vp(t, S, I, R)− 2a+ (1 + s)

(
−2a− b+ γ(

S

N
− I

N
)

)

+ (1− s)

√(
−b+γ(

S

N
+
I

N
−2

SI

N2
)

)2

+

(
b−γ(

S

N
− I

N
)

)2

+2

(
γ
SI

N2

)2

< 0, (32)

for all t ∈ R, (S, I,R) ∈ K̃ and p ∈ H(f). Here,

Vp(t, S, I, R) ≡ V (σtp, ϕ(t, p)(S, I,R))

is a function defined for (S, I,R) ∈ K̃, p ∈ H(f), and t ∈ R by the relation

V (σtp, S, I, R) := (1− s)1

2

(
1

2
(S2 + I2 +R2) + SI + Sq0 + Iq0

)
.

Then

d

dt
Vp = (1− s)1

2

(
aq(t)(S + I)− aq0(S + I) + aq0q(t)− aR2 − a(S + I)2

)
,

and, taking into account that 0 < S
N ,

I
N < 1, inequality (32) is equivalent to the

following

−2a+ (−2a− b+ γ)(1 + s) + (1− s)ϑ(t, S, I, R) < 0, (33)
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where

ϑ(t, S, I, R) :=

√(
−b+γ(

S

N
+
I

N
−2

SI

N2
)

)2

+

(
b−γ(

S

N
− I

N
)

)2

+2

(
γ
SI

N2

)2

+ aq(t)(S + I)− aq0(S + I) + aq0q(t)− aR2 − a(S + I)2.

Let us denote

m := max
t,S,I,R

ϑ(t, S, I, R).

We have iii) from (33), and due to Theorem 2 in [11] we obtain

dimHÃ(p) ≤ 2 +
m− 4a− b+ γ

m+ 2a+ b− γ
= 3− 6a+ 2b− 2γ

m+ 2a+ b− γ
, (34)

for all p ∈ H(f).
We have

ϑ(t, S, I, R)=−

γ
√(
−b+γ(

S

N
+
I

N
−2

SI

N2
)

)2

+

(
b−γ(

S

N
− I

N
)

)2

+2

(
γ
SI

N2

)2

− 1

2γ

2

+ γ2

[(
−b+γ(

S

N
+
I

N
−2

SI

N2
)

)2

+

(
b−γ(

S

N
− I

N
)

)2

+2

(
γ
SI

N2

)2
]

+
1

4γ2

+ aq(t)(S + I)− aq0(S + I) + aq0q(t)− aR2 − a(S + I)2,

where γ 6= 0 is a varied parameter. Further,

ϑ(t, S, I, R) ≤γ2
[(
−b+γ(

S

N
+
I

N
−2

SI

N2
)

)2

+

(
b−γ(

S

N
− I

N
)

)2

+2

(
γ
SI

N2

)2
]

+
1

4γ2

+ aq(t)(S + I)− aq0(S + I) + aq0q(t)− aR2 − a(S + I)2.

If we take the varied parameter γ = 1, taking into account (26) and 0 < S
N ,

I
N < 1,

then

ϑ(t, S, I, R) ≤ 2b2 + 12γ2 + 6bγ +
1

4
+ aq20,

and (30) and (34) imply (31).

Remark 27 For a = 1
2 , b = γ = 1

8 , c = 0, q(t) = cos(t) + 2, from the estimate
(31), we obtain dimHA(t) ≤ 2.51 for all t ∈ R.
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