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Abstract

Given two holomorphic functions f and g defined in two respective germs of complex analytic
manifolds (X,x) and (Y, y), we know thanks to M. Saito that, as long as one of them is Euler
homogeneous, the reduced (or microlocal) Bernstein-Sato polynomial of the Thom-Sebastiani sum
f + g can be expressed in terms of those of f and g. In this note we give a purely algebraic proof of
a similar relation between the whole functional equations that can be applied to any setting (not
necessarily analytic) in which Bernstein-Sato polynomials can be defined.

1 Introduction

Let (X,x) and (Y, y) be two germs of complex analytic manifolds of respective dimensions n and m.
We will consider two nonzero holomorphic functions f ∈ OX,x and g ∈ OY,y, not necessarily reduced,
and their Thom-Sebastiani sum h := f + g ∈ OX×Y,(x,y).

Let s be a dummy variable. The Bernstein module of f is the DX,x[s]-module Bf = OX,x[s, f
−1]·fs,

with the usual action of DX,x. The Bernstein-Sato polynomial of f is then the monic generator of the
ideal of polynomials b(s) ∈ C[s] verifying that

P (s)f · fs = b(s) · fs

in Bf , for some P (s) ∈ DX,x[s], or equivalently, the minimal polynomial of the action of s on the
quotient module DX,x[s] · fs/DX,x[s]⟨f⟩ · fs. We will denote it by bf (s).

As long as f is not invertible, it is well known that s+1 divides bf (s), so we can define the reduced
Bernstein-Sato polynomial of f as b̃f (s) := bf (s)/(s + 1), which is also the minimal polynomial of
the action of s on the DX,x[s]-module Mf := DX,x[s] · fs/DX,x[s]Jf · fs (see, for instance, [3, Lemma
1.1] and the commentary thereafter), where Jf is the “true” Jacobian ideal of f ; in local coordinates
x1, . . . , xn, we have Jf := ⟨f, f ′

x1
, . . . , f ′

xn
⟩ ⊆ OX,x. In that sense, we have a new functional equation

of the form
P (s) · fs = b̃f (s) · fs

*Corresponding author. ORCID number 0000-0002-3473-6724. Departamento de Álgebra, Universidad de Sevilla,
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in Bf , where now P (s) belongs to DX,x[s]Jf .
The polynomial b̃f (s) is also called microlocal Bernstein-Sato polynomial, and we will see the

reason later on in Section 2.
Everything in the paragraphs above can be analogously defined for g and h, and thus we may

wonder about the relation between b̃f , b̃g and b̃h. Before continuing, let us state some notation and
define an important notion.

Given a polynomial p(s) ∈ C[s], we will denote by Rp ⊆ C the set of the opposites of its roots. For
any given α ∈ Rp, we will call mα(p) its multiplicity as root of p.

Definition 1.1. Let a(s), b(s) ∈ C[s] be two nonzero polynomials. Let (a ∗ b)(s) = a(s) ∗ b(s) ∈ C[s]
be the monic polynomial with roots Ra∗b = Ra +Rb and multiplicities

mγ(a ∗ b) = max{mα(a) +mβ(b)− 1 : α+ β = γ},

for every γ ∈ Ra∗b. We will call a ∗ b the star operation of a and b.

We will use the convention that adding the empty set to any other one gives the empty set.
Therefore, if, for example, f defines a smooth divisor, in such a way that b̃f = 1, then b̃f ∗ b̃g = 1 = b̃h
as well.

In [9], M. Saito studied the existing relation between the reduced Bernstein-Sato polynomial of h
and those of f and g and proved the following ([loc. cit., Proposition 0.7, Theorem 0.8]):

Theorem 1.2. Under the same conditions as above,

� Rb̃f
+Rb̃g

⊆ Rb̃h
+Z≤0 and Rb̃h

⊆ Rb̃f
+Rb̃g

+Z≥0.

� In addition, if there exists a germ of vector field χ ∈ ΘY,y such that χ(g) = g, then (b̃f ∗ b̃g)(s) =
b̃h(s).

Remark 1.3. The condition on g given in the second point is usually referred to as being Euler-
homogeneous at y, χ being an Euler field for g. Two easy consequences of that fact are that the
Jacobian ideal Jh ⊂ OX×Y,(x,y) is just the sum of the extended Jacobian ideals Je

f + Je
g , and that

t · gt = χ · gt in OY,y[t, g
−1] · gt.

Saito’s proof of the theorem uses the power of the Kashiwara-Malgrange filtration on DX,x[t, ∂t].
This note is the result of our efforts to find a purely algebraic proof of such result, that can be extended
to a more general context. What is new, to the best of our knowledge, is an explicit expression for
the functional equation for the reduced Bernstein-Sato polynomial of the sum h = f + g in terms of
those for f and g:

Theorem 1.4. Let (X,x) and (Y, y) be two germs of complex analytic manifolds of respective di-
mensions n and m. Let f ∈ OX,x and g ∈ OY,y two nonzero holomorphic functions, and let
h := f + g ∈ OX×Y,(x,y). Assume moreover that χ ∈ ΘY,y is an Euler vector field for g, i.e. χ(g) = g,
and that we have functional equations:

P (s) · fs = b̃f (s) · fs in OX,x[s, f
−1] · fs, with P (s) ∈ DX,x[s]Jf ,

Q · gt = b̃g(t) · gt in OY,y[t, g
−1] · gt, with Q ∈ DY,yJg.

Then, we have the functional equation

R(u) · hu = (b̃f ∗ b̃g)(u) · hu

in OX×Y,(x,y)[u, h
−1] · hu, where R(u) = P (u − χ)A(u, χ) + B(u, χ)Q ∈ DX×Y,(x,y)Jh. There, A(s, t)

and B(s, t) are certain polynomials in C[s, t] that can be obtained from b̃f and b̃g, whose meaning will
be explained at the end of subsection 2.1.

In particular, b̃h divides b̃f ∗ b̃g.
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Note that in the functional equation for g the operator Q does not depend on t. This is because
g being Euler-homogeneous implies that t · gt = χ · gt.

Again, notice that we do not just prove that one polynomial divides the other, but provide a
concrete functional equation for b̃f ∗ b̃g. The statement on just the divisibility was first proved by
Yano in [10, Theorem 3.15] in the particular case that g is quasi-homogeneous and has an isolated
singularity at y (note that b̃f ∗ b̃g is hidden in the statement due to the simple expression of b̃g).

In fact, even though the statements of Theorems 1.2 and 1.4 above relate holomorphic functions
on germs of complex manifolds, the functional equation and thus the relation between the reduced
Bernstein-Sato polynomials in the case g is Euler-homogeneous can be easily generalized to the global
algebraic and formal cases. The latter is just a consequence of the extension OX,x → C[[x1, . . . , xn]]
being faithfully flat for a choice of local parameters x1, . . . , xn at x.

Let us consider with a little more detail the first case, so assume f and g are nonzero polynomials.
Then, denoting by V(p) ⊆ Ar

C the vanishing locus of a polynomial p ∈ C[x1, . . . , xr], we know that their
associated (algebraic) Bernstein-Sato polynomials are just the least common multiples of their local
versions at each point of V(f) ⊆ An

C and V(g) ⊆ Am
C , respectively (see, for instance, [5, Proposition

4.2.1]). In fact we could consider only the respective singular points, for the reduced Bernstein-Sato
polynomials are 1 otherwise. In that case, let us write b̃h,(x,y)(s) to denote the local polynomial at the

point (x, y) ∈ An
C × Am

C . Therefore, b̃h(s) = lcm{b̃h,(x,y)(s) : (x, y) ∈ SingV(h) ⊆ An
C × Am

C }. The
variety SingV(h) is given by the equations

h = 0, h′xi
= 0, h′yj = 0, (1)

for i = 1, . . . , n, j = 1, . . . ,m. Since h′xi
= f ′

xi
and h′yj = g′yj and g is Euler-homogeneous, the vanishing

of the g′yj implies that of g, so the equations (1) define the same set as SingV(f) × SingV(g). In

conclusion, the functional equation for b̃f ∗ b̃g at each point of An
C ×Am

C implies the same relation for
its global versions.

In fact, the proof of Theorem 1.4 can be extended almost literally to any context in which we have a
properly working formal functional equation, like differentially admissible algebras (see [7, Definition
1.2.3.6, Theorem 3.2.2.1] and [8, Hypothesis 2.3, Proposition 3.10]), nonregular algebras or direct
summands ([1, Proposition 2.18, Theorem 3.24]).

Regarding Bernstein-Sato polynomials of ideals (see [2]), we know thanks to [6, Theorem 1.1] that
the Bernstein-Sato polynomial of a nonzero ideal a = ⟨f1(x), . . . , fr(x)⟩ ⊆ C[x1, . . . , xn] is exactly
the reduced Bernstein-Sato polynomial of z1f1(x) + . . . + zrfr(x) ∈ C[x, z]. Therefore, since such a
polynomial is always Euler homogeneous at the origin of An

C×Ar
C (assuming 0 ∈ V(f1, . . . , fr) ⊆ An

C),
the Bernstein-Sato polynomial of the sum of two ideals a ⊆ C[x1, . . . , xn] and b ⊆ C[y1, . . . , ym] always
divides ba ∗ bb.

On the other hand, we believe it would be worthwhile to find a proof for the remaining divisibility
b̃f ∗ b̃g|b̃h that is as formal or algebraic as possible, following the spirit of the proof of the theorem
above. However, up to now we have not been able to do it.

The rest of this note is organised as follows: in Section 2, we provide an alternative way to obtain
the star operation of two polynomials and we give a proof that relates directly the definition of b̃f
given here and M. Saito’s one using a microlocal construction. Finally, in section 3 we prove Theorem
1.4.

2 Alternative definitions

In this section we will give a couple of equivalent definitions for both the star operation of two
polynomials and the reduced Bernstein-Sato polynomial. Their actual equivalence might be folklore,
but we have not been able to find it in the existing literature.
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2.1 Two operations with polynomials

Let us recall Definition 1.1: the star operation of two polynomials a, b ∈ C[s] is another polynomial
(a ∗ b)(s) ∈ C[s], such that Ra∗b = Ra + Rb and, for any γ ∈ Ra∗b, its multiplicity is given by the
highest value of mα(a) +mβ(b)− 1, where α ∈ Ra, β ∈ Rb and α+ β = γ.

We will use another approach to work with such operation:

Proposition 2.1. Let a, b ∈ C[s] be two nonzero polynomials and let us denote by (a • b)(s) ∈ C[s]
the monic polynomial that verifies that ⟨a(s), b(t)⟩ ∩ C[s+ t] = ⟨(a • b)(s+ t)⟩. Then, a • b = a ∗ b.

Note that, in the statement of the proposition, we can take (a • b)(s) to be the generator of the
ideal ⟨a(s− t), b(t)⟩ ∩C[s], just by a simple change of variables. This definition will be useful later on.

Proof. The proof is elementary but a bit long. If any of a or b is constant there is nothing to show.
Therefore, let us prove first the proposition when a(s) = (s − α)d and b(s) = (s − β)e, for some
α, β ∈ C and d, e ≥ 1. In that case, clearly (a ∗ b)(u) = (u − α − β)d+e−1. Let us consider then the
ideal I = ⟨(s − α)d, (t − β)e⟩ ∩ C[s + t]. Expanding (s + t − α − β)d+e−1 = ((s − α) + (t − β))d+e−1

makes clear that (a ∗ b)(s+ t) belongs to I and is a multiple of (a • b)(s+ t).
To see the converse, we can assume, up to a simple change of variables, that α = β = 0 for the

sake of simplicity. Consider any p(s+ t) =
∑N

i=0 pi(s+ t)i ∈ I. If N ≥ d+ e− 1, reasoning as above

we can claim that p ∈ I if and only if p̃ :=
∑d+e−2

i=0 pi(s + t)i lies within I too, but that implies that
pi = 0 for each i = 0, . . . , d + e − 2. Indeed, modulo sd and te, the only nonvanishing term of degree
d+ e− 2 is pd+e−2

(
d+e−2
d−1

)
, that must be zero if p̃ ∈ I. We can continue the same argument with the

remaining coefficients. Therefore, p̃ = 0 and I = ⟨(a ∗ b)(s+ t)⟩, that is, a • b = a ∗ b.
Let us prove now that, if a(s), b(s), q(s) ∈ C[s], then

lcm(a, b) ⋆ q = lcm(a ⋆ q, b ⋆ q), (2)

where ⋆ = ∗, •. Since both operations are commutative in C[s], that suffices to finish the proof. We
will write c(s) := lcm(a(s), b(s)) for the sake of brevity.

First, let us take ⋆ = ∗. On one hand, Rc = Ra ∪ Rb, so Rc + Rq = (Ra + Rq) ∪ (Rb ∪ Rq). Since
mα(c) = max{mα(a),mα(b)} for every α ∈ Rc, we have that for any γ ∈ Rc +Rq,

mγ(c ∗ q) = max{mα(c) +mβ(q)− 1 : α+ β = γ}
= max

{
max{mα(a) +mβ(q)− 1 : α+ β = γ},max{mα(b) +mβ(q)− 1 : α+ β = γ}

}
.

(3)

On the other hand, the opposites of the roots of lcm(a∗q, b∗q) are Ra∗q∪Rb∗q = (Ra+Rq)∪(Rb+Rq)
and their multiplicities are exactly the second line of formula (3), so formula (2) holds.

Let ⋆ be • now, and let us show that I := ⟨c(s), q(t)⟩ = J := ⟨a(s), q(t)⟩∩⟨b(s), q(t)⟩ ⊆ C[s, t]. It is
clear that I ⊆ J ; let us show the reverse inclusion. To do so, let us also write d(s) := gcd(a(s), b(s)),
so that we have a Bézout identity of the form d = αa + βb in C[s]. Then, if we have a polynomial
p(s, t) = m(s, t)a(s) + n(s, t)q(t) = m′(s, t)b(s) + n′(s, t)q(t) ∈ J , we can also write dp = αap + βbp
and use both representations of p as an element of J , such that

p = α
a

d
p+ β

b

d
p = αm′ab

d
+ α

a

d
n′q + βm

ab

d
+ β

b

d
nq ∈ I,

since c = ab/d.
In order to finish, just note that the generator of I ∩C[s+ t] is lcm(a, b) • q, whereas the generator

of J ∩ C[s+ t] is lcm(a • q, b • q).
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Now we can explain all actors involved in the statement of Theorem 1.4. Namely, since we know
that (b̃f ∗ b̃g)(s) is the generator of the ideal ⟨b̃f (s− t), b̃g(t)⟩ ∩C[s], there must exist A(s, t), B(s, t) ∈
C[s, t] such that (b̃f ∗ b̃g)(s) = A(s, t)b̃f (s − t) + B(s, t)b̃g(t). Those are the polynomials we use to
build up the functional equation for b̃f ∗ b̃g.

2.2 Reduced Bernstein-Sato polynomial

There are at least three known objects called the reduced Bernstein-Sato polynomial b̃f (s): the quo-
tient of the usual polynomial by s+1, the obtained by the Jacobian approach noted in the introduction,
that we will call “Jacobian Bernstein-Sato polynomial”, and the microlocal Bernstein-Sato polynomial
of M. Saito (see [9, § 1]). Although it is well known that these last two ones provide the same object,
we will include here a direct proof of the fact without showing that both of them are bf (s)/(s + 1).
Before that, let us comment on more about the microlocal setting, following [loc. cit.].

Let us call B̃f = OX,x[∂t, ∂
−1
t ] · δ(t− f), where δ(t− f) is a symbol representing the delta function

supported on the graph {f = t} on which DX,x, t and the integer powers of ∂t act in the usual

way. Therefore, B̃f can be endowed with the structure of D̃t-module, where by D̃t we mean the ring

DX,x[t, ∂t, ∂
−1
t ] (called R̃ in Saito’s construction).

We can define a V -filtration on D̃t by setting V 0D̃t = DX,x[t∂t, ∂
−1
t ] and V pD̃t = ∂−p

t V 0D̃t =

V 0D̃t∂
−p
t . This filtration induces another one on B̃f just by taking GpB̃f = V pD̃t · B̃f . With all this in

mind, the microlocal Bernstein-Sato polynomial b̃f,m(s) is defined as the minimal polynomial of the

action of s := −∂tt on Gr0G B̃f .

Proposition 2.2. Let f ∈ OX,x be a nonzero holomorphic function, and let b̃f,m(s) be its microlocal
Bernstein-Sato polynomial and b̃f,J(s) be its Jacobian Bernstein-Sato polynomial. Then, b̃f,m = b̃f,J .

Proof. As we have said above, recall that b̃f,m(s) and b̃f,J(s) are, respectively, the minimal polynomials

of the actions of s on Gr0G B̃f and on Mf = DX,x[s]f
s/DX,x[s]Jff

s, acting on the first object as −∂tt.

Following the well-known construction of [4, § 4], we can consider the isomorphism B̃f → M̃ :=

DX,x[t, ∂t, ∂
−1
t ]/⟨t− f, ∂i+ f ′

i∂t⟩ sending δ(t− f) to the generator 1̄ of M̃. As a consequence, we know

that G0B̃f = V 0D̃t · 1̄ = DX,x[∂tt, ∂
−1
t ] · 1̄ and G1B̃f = V 1D̃t · 1̄ = ∂−1

t DX,x[∂tt, ∂
−1
t ] · 1̄.

Moreover, ∂−1
t ∂i = −f ′

i in M̃, so we obtain that

Gr0G B̃f
∼=

DX,x[∂tt] +OX,x[∂
−1
t ]>0

DX,x[∂tt]Jf +OX,x[∂
−1
t ]>0

· 1̄,

where OX,x[∂
−1
t ]>0 represents the polynomials in ∂−1

t with coefficients in OX,x and no term of degree
zero.

Now note that, as OX,x-modules,

DX,x[∂tt] +OX,x[∂
−1
t ]>0

DX,x[∂tt]Jf +OX,x[∂
−1
t ]>0

∼=
DX,x[∂tt]

DX,x[∂tt]Jf

thanks to the second isomorphism theorem. Consequently,

Gr0G B̃f
∼=

DX,x[∂tt]

DX,x[∂tt]Jf
· 1̄.

Finally, recall that there is an isomorphism DX,x[∂tt] · 1̄ ∼= Mf induced by the isomorphism of DX,x-
modules DX,x[∂tt]δ(t− f) → DX,x[s] · fs that sends ∂tt to −s. Using this last correspondence, we see

that the minimal polynomial of s on Mf and of −∂tt on B̃f are the same.
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3 Proof of the main result

We provide in this section an elementary proof of Theorem 1.4.

Theorem 3.1. Let (X,x) and (Y, y) be two nonzero germs of complex analytic manifolds of respective
dimensions n and m. Let f ∈ OX,x and g ∈ OY,y two holomorphic functions, and let h := f + g ∈
OX×Y,(x,y). Assume moreover that χ ∈ ΘY,y is an Euler vector field for g, i.e. χ(g) = g, and that we
have functional equations:

b(s) · fs = P (s) · fs in OX,x[s, f
−1] · fs with P (s) =

∑
j

Pjs
j , Pj ∈ DX,xJf ,

c(t) · gt = Q · gt in OY,y[t, g
−1] · gt with Q ∈ DY,yJg = DY,y⟨g′y1 , . . . , g

′
ym⟩,

and let A(s, t), B(s, t) ∈ C[s, t] be such that (b ∗ c)(s) = A(s, t)b(s− t) + B(s, t)c(t). Then, we have a
functional equation:

(b ∗ c)(s) · hs = R(s) · hs in OX×Y,(x,y)[s, h
−1] · hs with R(s) = P (s− χ)A(s, χ) +B(s, χ)Q,

where P (s − χ) =
∑

j Pj(s − χ)j =
∑

j(s − χ)jPj. Moreover, R(s) ∈ DX×Y,(x,y)[s]Jh. In particular,

b̃h divides b̃f ∗ b̃g.

Proof. For any integer k ≥ 1, we obtain by expanding hk and R(k) that

R(k)
(
hk
)
= R(k)

(
k∑

ℓ=0

(
k

ℓ

)
fk−ℓgℓ

)

=
k∑

ℓ=0

(
k

ℓ

)(
P (k − χ)

(
A(k, χ)

(
fk−ℓgℓ

))
+B(k, χ)

(
Q
(
fk−ℓgℓ

)))
.

(4)

In the first summands we have

P (k − χ)
(
A(k, χ)

(
fk−ℓgℓ

))
= P (k − χ)

(
fk−ℓA(k, χ)

(
gℓ
))

= P (k − χ)
(
fk−ℓA(k, ℓ)gℓ

)
= P (k − ℓ)

(
fk−ℓA(k, ℓ)gℓ

)
= P (k − ℓ)

(
fk−ℓ

)
A(k, ℓ)gℓ = b(k − ℓ)fk−ℓA(k, ℓ)gℓ,

(5)

just by elementary commuting relations and the fact that χ(gℓ) = ℓgℓ. Regarding the second summands
in formula (4),

B(k, χ)
(
Q
(
fk−ℓgℓ

))
= B(k, χ)

(
fk−ℓQ

(
gℓ
))

= B(k, χ)
(
fk−ℓc(ℓ)gℓ

)
= B(k, ℓ)fk−ℓc(ℓ)gℓ (6)

by the same arguments as above. Putting together formulas (4), (5) and (6) and using the functional
equations for f and g and the expression of (b ∗ c)(s), we finally obtain that

R(k)
(
hk
)
=

k∑
ℓ=0

(
k

ℓ

)
(A(k, ℓ)b(k − ℓ) +B(k, ℓ)c(ℓ))fk−ℓgℓ = (b ∗ c)(k)hk,

hence R(s) · hs = (b ∗ c)(s) · hs.
Now, we know from our hypotheses that Pj = Pj0f +

∑n
r=1 Pjrf

′
xr
, with Pjr ∈ DX,x and Q =∑m

t=1Qtg
′
yt , with Qt ∈ DY,y. Therefore,

R(s) = P (s− χ)A(s, χ) +B(s, χ)Q = A(s, χ)P (s− χ) +B(s, χ)Q

=
∑
j

A(s, χ)(s− χ)jPj +B(s, χ)Q,
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that belongs toDX×Y,(x,y)[s]⟨f, f ′
x1
, . . . , f ′

xn
, g′y1 , . . . , g

′
ym⟩. However, since g = χ(g) ∈ OY,y⟨g′y1 , . . . g

′
ym⟩,

we can affirm that ⟨f, f ′
x1
, . . . , f ′

xn
, g′y1 , . . . g

′
ym⟩ = ⟨f + g, f ′

x1
, . . . , f ′

xn
, g′y1 , . . . g

′
ym⟩ = Jh.

The last claim is just an easy consequence of taking b(s) = b̃f (s) and c(s) = b̃g(s).

Examples 3.2. Let X = A1
x, Y = A1

y, and let us consider the well-known example of the cusp
h = x2 + y3, that is, the sum of f = x2 and g = y3. As an example of our main result, we can obtain
not just a multiple of the reduced Bernstein-Sato polynomial of h (in fact, the actual polynomial),
but also a functional equation. Note in this case that both f and g are evidently Euler-homogeneous.
Let us choose g as such, so that χ ∈ DY,y will be 1

3y∂y.

On one hand, we have that b̃f (s) = (s + 1/2) and b̃g(t) = (t + 1/3)(t + 2/3). In this case,
(b̃f ∗ b̃g)(s) = (s+ 5/6)(s+ 7/6) = b̃h(s). On the other hand, following the notation of Theorem 3.1,
we can take P (s) = 1

2∂xx = 1
2(x∂x + 1), Q = 1

9∂
2
yy

2 = 1
9(y

2∂2
y + 4y∂y + 2), A(s, t) = s + t + 3/2 and

B(s, t) = 1.
Summing up, we have R(s) · hs = (b̃f ∗ b̃g)(s) · hs, where

R(s) = A(s, χ)P (s− χ) +B(s, χ)Q =

(
s+

1

3
y∂y +

3

2

)
1

2
(x∂x + 1) +

1

9
(y2∂2

y + 4y∂y + 2)

=
1

2
(x∂x + 1)s+

1

6
xy∂x∂y +

1

9
y2∂2

y +
3

4
x∂x +

11

18
y∂y +

35

36
.

The example above can obviously be extended to the case of any suspension of the form h(x1, . . . , xn, z) =
zr + f(x1, . . . , xn), for any f ∈ OAn and r ≥ 2. In that case we can take g(z) = zr, for which we know
that χ = 1

rz∂z, Q = 1
rr−1∂

r−1
z zr−1 and b̃g(t) =

∏r−1
i=1 (t + i/r). If we have a reduced Bernstein-Sato

functional equation of the form P (s) · fs = b̃f (s) · fs, we could write

R(s) · hs = (b̃f ∗ b̃g)(s) · h(s),

where

R(s) = A

(
s,

1

r
z∂z

)
P

(
s− 1

r
z∂z

)
+B

(
s,

1

r
z∂z

) r−1∏
i=1

(t+ i/r),

A(s, t), B(s, t) ∈ C[s, t] being such that (b̃f ∗ b̃g)(s) = A(s, t)b̃f (s − t) + B(s, t)b̃g(t). Note that, for
instance, if no pair of roots of b̃f differ by any j/r, with j = 1, . . . , r, then (b̃f ∗b̃g)(s) =

∏r−1
i=1 b̃f (s+i/r).
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